طراحی سیستم‌های اطفاء حریق گاز پایه به روش سیلاب کامل

IMG 1830

۷.۱ enclosure

۷.۱.۱ در طراحی سیستم اطفاء حریق به روش سیلاب کامل، ویژگی‌هایenclosure محافظت‌شده باید مورد توجه قرار گیرد.
۷.۱.۲ مساحت منافذی که قابل بسته شدن نیستند در enclosure محافظت‌شده باید به حداقل برسد.
۷.۱.۳ مرجع ذی‌صلاح می‌تواند برای اطمینان از عملکرد سیستم مطابق با الزامات این استاندارد، از سیستم‌های فشرده‌سازی/افزایش فشار یا آزمایش‌های دیگر استفاده کند. (برای اطلاعات بیشتر به پیوست D مراجعه کنید.)
۷.۱.۴ برای جلوگیری از از دست رفتن عامل از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید به طور دائمی مهر و موم شده یا مجهز به بسته‌کننده‌های خودکار باشند.
۷.۱.۵ در صورتی که محدود کردن عامل عملی نباشد، یکی از موارد زیر باید اعمال شود:
(۱) حفاظت باید گسترش یابد تا شامل خطرات یا مناطق کاری متصل مجاور شود.
(۲) عامل اضافی باید از طریق پیکربندی تخلیه گسترش‌یافته به enclosure محافظت‌شده وارد شود.
۷.۱.۶ در صورتی که یک سیستم اطفاء حریق به روش سیلاب کامل با عامل پاک برای حفاظت از یک اتاق با کف بلند یا فرورفته در نظر گرفته شده باشد، اتاق و کف بلند یا فرورفته باید به طور همزمان محافظت شوند.
۷.۱.۶.۱ اگر فقط فضای زیر کف بلند قرار است توسط سیستم سیلاب کامل محافظت شود، باید از گاز بی‌اثر برای محافظت از آن فضا استفاده شود.
۷.۱.۶.۲ هر حجم، اتاق و کف بلند یا فرورفته که باید محافظت شود باید دارای دتکتورها، شبکه لوله‌کشی و نازل‌ها باشد.
۷.۱.۷ به جز سیستم‌های تهویه شناسایی شده در بند ۷.۱.۷.۲، سیستم‌های تهویه هوای فشرده، شامل سیستم‌های تهویه بازگشتی مستقل، باید به طور خودکار خاموش یا بسته شوند در صورتی که ادامه کار آن‌ها عملکرد سیستم اطفاء حریق را تحت تأثیر منفی قرار دهد یا منجر به گسترش آتش شود.
۷.۱.۷.۱ در صورتی که سیستم تهویه هوای فشرده یا بازگشتی مستقل به طور خودکار خاموش یا بسته نشود، حجم کانال‌های سیستم تهویه بازگشتی خود-contained که در زیر ارتفاع سقف فضای محافظت‌شده نصب شده‌اند باید به عنوان بخشی از حجم کل خطر هنگام تعیین مقدار عامل در نظر گرفته شود.
۷.۱.۷.۲ سیستم‌های تهویه‌ای که برای تأمین ایمنی ضروری هستند نیازی به خاموش شدن هنگام فعال‌سازی سیستم اطفاء حریق ندارند.
۷.۱.۷.۳ در صورتی که سیستم تهویه مجاز به ادامه کار طبق بند ۷.۱.۷.۲باشد، باید تخلیه گسترش‌یافته عامل فراهم شود تا غلظت طراحی برای مدت زمان مورد نیاز حفاظت حفظ شود.
۷.۱.۸ enclosure محافظت‌شده باید دارای استحکام ساختاری و یکپارچگی لازم برای نگهداری تخلیه عامل باشد.
۷.۱.۸.۱ اگر فشارهای ایجادشده تهدیدی برای استحکام ساختاریenclosure ایجاد کند، باید تهویه فراهم شود تا از فشارهای زیاد جلوگیری شود.
۷.۱.۸.۲ طراحان باید به دستورالعمل‌های سازنده سیستم در خصوص تهویهenclosure مشورت کنند. (برای منطقه تهویه relief فشار یا مساحت معادل نشت، به بند ۶.۱.۲.۵(۲۸) مراجعه کنید.)

۷.۲ الزامات غلظت طراحی

۷.۲.۱ عمومی
۷.۲.۱.۱ غلظت حداقل اطفاء حریق یا غلظت بی‌اثر باید برای تعیین غلظت طراحی حداقل برای سوخت خاص استفاده شود.
۷.۲.۱.۲ برای ترکیب‌های سوختی، باید از غلظت حداقل اطفاء حریق یا غلظت بی‌اثر برای سوختی که نیاز به بالاترین غلظت دارد استفاده شود مگر اینکه آزمایش‌هایی روی ترکیب واقعی انجام شده باشد.

۷.۲.۲ خاموش کردن شعله

۷.۲.۲.۱ خطرات کلاس A
۷.۲.۲.۱.۱ غلظت حداقل اطفاء حریق برای سوخت‌های کلاس A باید از طریق آزمایش به عنوان بخشی از برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳تعیین شود.

۷.۲.۲.۱.۲ غلظت حداقل طراحی برای یک خطر سطحی کلاس A باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
(۱) غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۲ برای سیستم‌هایی با شناسایی و فعال‌سازی خودکار (به بند ۹.۱.۲ مراجعه کنید) یا ۱.۳ برای سیستم‌هایی با فعال‌سازی دستی فقط (به بند ۹.۱.۱.۱ مراجعه کنید).
(۲) برابر با حداقل غلظت اطفاء حریق برای هپتان همانطور که از بند ۷.۲.۲.۲.۱ (۲) تعیین شده است.

۷.۲.۲.۱.۳ غلظت حداقل طراحی برای آتش‌های عمیق باید از طریق آزمایش خاص کاربردی تعیین شود.

۷.۲.۲.۲ خطرات کلاس B
۷.۲.۲.۲.۱ غلظت اطفاء حریق برای سوخت‌های کلاس B باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
(۱) غلظت کلاس B همانطور که از طریق یک برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳ تعیین شده است.
(۲) غلظت اطفاء حریق برای سوخت خاص، همانطور که از طریق روش فنجان برنر (به پیوست B مراجعه کنید) تعیین شده است.
هشدار: در شرایط خاص، ممکن است خاموش کردن یک جت گاز در حال سوخت خطرناک باشد. به عنوان اولین اقدام، تأمین گاز را قطع کنید.

۷.۲.۲.۲.۲ تجهیزات اندازه‌گیری که در استفاده از روش فنجان برنر به کار می‌روند باید کالیبره شده باشند.
۷.۲.۲.۲.۳ غلظت حداقل طراحی برای یک خطر سوخت کلاس B باید غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۲.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳ باشد.

۷.۲.۲.۳ برنامه فهرست‌بندی
به حداقل، برنامه فهرست‌بندی باید مطابق با UL 2127، سیستم‌های اطفاء حریق با گاز بی‌اثر تمیز، یا UL 2166، سیستم‌های اطفاء حریق با گاز هالوکربن تمیز، یا معادل آن باشد.

۷.۲.۲.۴ خطرات کلاس C
۷.۲.۲.۴.۱ غلظت حداقل طراحی برای یک خطر کلاس C باید غلظت حداقل اطفاء حریق کلاس A باشد، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳۵.
۷.۲.۲.۴.۲ غلظت حداقل طراحی برای فضاهایی که حاوی خطرات الکتریکی انرژی‌دار با ولتاژ بالاتر از ۴۸۰ ولت هستند و در حین و بعد از تخلیه برق دارند، باید از طریق تحلیل خطر و آزمایشات لازم تعیین شود.

۷.۲.۳ بی‌اثر کردن
۷.۲.۳.۱ غلظت بی‌اثر باید از طریق آزمایش تعیین شود.
۷.۲.۳.۲ غلظت بی‌اثر باید در تعیین غلظت طراحی عامل استفاده شود زمانی که شرایطی برای بازگشت مجدد یا انفجار وجود دارد.
۷.۲.۳.۳ غلظت حداقل طراحی برای بی‌اثر کردن جو یک enclosure که خطر آن یک مایع یا گاز قابل اشتعال است، باید غلظت بی‌اثر ضرب در یک عامل ایمنی ۱.۱ باشد.

۷.۳ مقدار سیستم سیلاب کامل
۷.۳.۱ مقدار عامل هالوکربنی که برای دستیابی به غلظت طراحی مورد نیاز است، باید از طریق معادله زیر محاسبه شود:

guFQK+BdJPAAAAAElFTkSuQmCC

مقادیر پارامترها عبارتند از:

W = مقدار عامل پاک کننده [پوند (کیلوگرم)]

V = حجم خالص خطر، که به‌صورت حجم ناخالص منهای حجم ساختارهای ثابت غیر قابل نفوذ به بخار عامل پاک کننده محاسبه می‌شود [فوت‌مکعب (مترمکعب)]

C = غلظت طراحی عامل (درصد حجم)

s = حجم ویژه بخار عامل فوق‌گرم در فشار 1 اتمسفر و دمای حداقل پیش‌بینی شده [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

7.3.1.1 غلظت عامل هالوکربنی که در محفظه حفاظت‌شده توسعه خواهد یافت، باید در دمای حداقل و حداکثر طراحی با استفاده از معادله زیر محاسبه شود:

مقادیر پارامترها عبارتند از:

C = غلظت عامل [درصد حجم]

W = مقدار نصب‌شده عامل [پوند (کیلوگرم)]

s = حجم ویژه گاز عامل در دمای حداقل/حداکثر طراحی خطر [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

V = حجم محفظه ساخته‌شده [فوت‌مکعب (مترمکعب)]

7.3.1.2 غلظت‌های عامل محاسبه‌شده بر اساس داده‌های ساخته‌شده و نصب‌شده و دماهای حداقل و حداکثر طراحی فضای حفاظت‌شده باید طبق الزامات 6.1.2.7 و 6.2.4 ثبت شوند.

7.3.2* مقدار عامل گاز بی‌اثر مورد نیاز برای دستیابی به غلظت طراحی باید با استفاده از معادله 7.3.2، 7.3.2.1a یا 7.3.2.1b محاسبه شود:

مقادیر پارامترها عبارتند از:

X = حجم گاز بی‌اثر اضافه‌شده در شرایط استاندارد 14.7 psi مطلق، 70°F (1.013 بار مطلق، 21 درجه سلسیوس) به ازای حجم فضای خطر [فوت‌مکعب/فوت‌مکعب (مترمکعب/مترمکعب)]

sJ = حجم ویژه گاز بی‌اثر در 70°F (21 درجه سلسیوس) و 14.7 psi مطلق (1.013 بار مطلق)

s = حجم ویژه گاز بی‌اثر در 14.7 psi مطلق و دمای حداقل طراحی [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

C = غلظت طراحی گاز بی‌اثر (درصد حجم)

7.3.2.1* معادله جایگزینی برای محاسبه غلظت‌های عامل گاز بی‌اثرمجاز است، به‌شرح زیر:

B8vFtHzjS0rvAAAAABJRU5ErkJggg==

t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در فارنهایت)

B+oGJ7zCObEBAAAAABJRU5ErkJggg==

جایی که:

t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در سلسیوس)

7.3.2.2 مقدار طراحی شده گاز بی‌اثر در واحدهای جرم باید به صورت زیر محاسبه شود:

جایی که:

W = مقدار گاز بی‌اثر [پوند (کیلوگرم)]
V = حجم خطر [پای³ (متر³)]
[7.3.2.2a]
[7.3.2.2b]
s = حجم ویژه گاز در دمای خطر [پای³ /پوند (متر³ /کیلوگرم)]
C = غلظت گاز بی‌اثر [% حجم]

7.3.2.3 غلظت گاز بی‌اثر تمیز که در محفظه محافظت‌شده تولید خواهد شد، باید در دمای طراحی حداقل و حداکثر محاسبه شود، با استفاده از یکی از معادلات زیر:

جایی که:

C = غلظت گاز [٪ حجم]
W = مقدار نصب‌شده گاز [پوند (کیلوگرم)]
s = حجم ویژه گاز در دمای طراحی حداقل/حداکثر خطر [پای³ /پوند (متر³ /کیلوگرم)]
V = حجم محفظه ساخته‌شده [پای³ (متر³)]

7.3.3* عوامل طراحی. در صورتی که شرایط خاصی بر کارایی اطفاء حریق تأثیر بگذارد، حداقل مقدار گاز باید از طریق استفاده از عوامل طراحی افزایش یابد.

7.3.3.1 * عامل طراحی تی. غیر از موارد شناسایی‌شده در 7.3.3.1.3، هنگامی که یک منبع گاز واحد برای محافظت از چندین خطر استفاده می‌شود، باید از عامل طراحی جدول 7.3.3.1 استفاده شود.

7.3.3.1.1 برای کاربرد جدول 7.3.3.1، تعداد عامل طراحی تی باید برای هر خطری که سیستم از آن محافظت می‌کند، با استفاده از راهنماهای زیر تعیین شود:
(1) از نقطه‌ای که سیستم لوله‌کشی وارد خطر می‌شود، تعداد تی‌های موجود در مسیر جریان که به منبع گاز برمی‌گردند باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود (تی‌های استفاده‌شده در یک منیفولد را شامل نشوید).
(2) هر تی که در داخل خطر گاز را به خطر دیگری می‌رساند، باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود.

7.3.3.1.2 خطر با بزرگ‌ترین تعداد عامل طراحی تی باید در جدول 7.3.3.1 برای تعیین عامل طراحی استفاده شود.

7.3.3.1.3 برای سیستم‌هایی که آزمون تخلیه را با موفقیت پشت سر می‌گذارند، این عامل طراحی اعمال نخواهد شد.

7.3.3.2* عوامل طراحی اضافی. طراح باید عوامل طراحی اضافی را برای هر یک از موارد زیر تعیین و مستند کند:
(1) دهانه‌های غیرقابل بستن و تأثیر آن‌ها بر توزیع و غلظت (برای جزئیات بیشتر به 7.6.3 مراجعه کنید).
(2) کنترل گازهای اسیدی
(3) بازآتش‌سوزی از سطوح گرم‌شده
(4) نوع سوخت، پیکربندی‌ها، سناریوهایی که به طور کامل در غلظت اطفاء حریق، هندسه محفظه و موانع در نظر گرفته نشده‌اند و تأثیر آن‌ها بر توزیع.Z

7.3.3.3* عامل طراحی برای فشار محفظه. مقدار طراحی گاز تمیز باید طبق جدول 7.3.3.3 تنظیم شود تا فشارهای محیطی که بیشتر از 11 درصد (معادل تقریباً 3000 فوت (915 متر) تغییر ارتفاع) از فشارهای استاندارد سطح دریا [29.92 اینچ جیوه در 70°F (760 میلیمتر جیوه در 0°C)] متفاوت است، جبران شود.

7.4* مدت زمان حفاظت.
7.4.1 برای سیستم‌های اطفاء حریق شعله‌ای، حداقل غلظت 85 درصد از حداقل غلظت طراحی باید در بالاترین ارتفاع محتوای محافظت‌شده در داخل خطر برای مدت زمان 10 دقیقه یا مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.
7.4.2 برای سیستم‌های بی‌اثر کننده، حداقل غلظت نباید کمتر از غلظت بی‌اثر کننده تعیین‌شده مطابق با 7.2.3.1 باشد و باید در طول فضای محافظت‌شده برای مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.

7.5 سیستم توزیع.
7.5.1 * زمان تخلیه اولیه.
7.5.1.1* برای گازهای هالوکربنی، زمان تخلیه نباید بیشتر از 10 ثانیه باشد یا طبق الزامات مقامات مسئول.
7.5.1.2 برای گازهای بی‌اثر، زمان تخلیه نباید بیشتر از 60 ثانیه برای خطرات سوخت کلاس B، 120 ثانیه برای خطرات آتش‌سوزی سطحی کلاسA یا خطرات کلاس C باشد یا طبق الزامات مقامات مسئول. (برای جزئیات بیشتر به A.7.5.1.1 مراجعه کنید.)
7.5.1.3* محاسبات جریان انجام شده طبق بخش 6.2 یا طبق دستورالعمل‌های سیستم‌های پیش‌مهندسی‌شده فهرست‌شده باید برای اثبات انطباق با 7.5.1.1 یا 7.5.1.2 استفاده شود.
7.5.1.4 برای سیستم‌های پیشگیری از انفجار، زمان تخلیه گازها باید به گونه‌ای باشد که غلظت حداقل طراحی بی‌اثر قبل از رسیدن غلظت بخارات قابل اشتعال به محدوده قابل اشتعال بدست آید.

7.5.2* تخلیه طولانی. در صورتی که تخلیه طولانی برای حفظ غلظت طراحی برای مدت زمان مشخص ضروری باشد، مقادیر اضافی گاز باید با نرخ کاهش یافته به کار گرفته شوند.
7.5.2.1 تخلیه اولیه باید در محدودیت‌های مشخص شده در 7.5.1.1 تکمیل شود.
7.5.2.2 عملکرد سیستم تخلیه طولانی باید با آزمایش تأیید شود.

7.6 انتخاب و مکان‌یابی نازل‌ها.
7.6.1 نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند.
7.6.2 نازل‌ها باید در داخل محفظه محافظت‌شده مطابق با محدودیت‌های فهرست‌شده از نظر فاصله، پوشش کف و هم‌راستایی قرار گیرند.
7.6.3 نوع نازل‌های انتخاب‌شده، تعداد آن‌ها و مکان‌یابی آن‌ها باید به گونه‌ای باشد که غلظت طراحی در تمام قسمت‌های محفظه خطر ایجاد شود و به گونه‌ای باشد که تخلیه موجب پاشیدن مایعات قابل اشتعال یا ایجاد ابرهای گرد و غبار نشود که بتوانند آتش را گسترش دهند، انفجار ایجاد کنند یا به طور دیگری بر محتویات یا یکپارچگی محفظه تأثیر منفی بگذارند.

2Q==

نوشته‌های مشابه

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM

     

  • استفاده از بیم دتکتور با الگوی پیشرفته

    هدف این راهنما ارائه اطلاعات در مورد نصب صحیح بیم دتکتورهای دود در کاربردهای حفاظت از جان و مال است. این راهنما به طور خلاصه اصول عملکرد بیم دتکتورها، الزامات طراحی آنها و کاربردهای عملی آنها به عنوان بخشی از سیستم اعلام حریق را شرح می‌دهد.

    بیم دتکتورها می‌توانند اجزای مهمی از یک سیستم اعلام حریق با طراحی مناسب باشند. قابلیت‌های منحصر به فرد آنها این امکان را فراهم می‌کند تا بسیاری از مشکلات و محدودیت‌های دتکتورهای نقطه‌ای و سیستم‌های مکنده در برخی کاربردها را برطرف کنند. این راهنما برای کمک به درک قابلیت‌ها و محدودیت‌های بیم دتکتورها و تفاوت آنها با دتکتورهای نقطه‌ای تهیه شده است.

    توجه: این سند تنها به عنوان یک راهنمای کلی برای کاربرد بیم دتکتورها در نظر گرفته شده است. همیشه باید به الزامات و دستورالعمل‌های نصب سازنده دتکتور و استانداردهای محلی مراجعه شود.

     

    **دتکتورهای دود مکنده**

    هوا از طریق شبکه‌ای از لوله‌ها مکیده می‌شود تا دود تشخیص داده شود. دود وارد محفظه نمونه‌برداری می‌شود که با تشخیص نور پراکنده‌شده توسط ذرات دود معلق در هوا، وجود آنها را شناسایی می‌کند.

     

    **بیم دتکتور دود نوری (بیم)**

    یک دتکتور آتش که از پرتو نور (معمولاً مادون قرمز) استفاده می‌کند و آن را در یک فضای باز منتشر می‌نماید تا دود ناشی از آتش اولیه را نظارت کند. دو نوع اصلی بیم دتکتور وجود دارد:

    – **انتهایی به انتهایی:** فرستنده و گیرنده در دو انتهای ناحیه تحت حفاظت نصب می‌شوند.

    – **بازتابی:** فرستنده و گیرنده در یک محفظه واحد نصب شده‌اند و پرتو به یک بازتابنده ویژه هدایت می‌شود که در انتهای مقابل ناحیه تحت حفاظت قرار دارد.

     

    **فرستنده (معروف به پرتاب‌کننده، TX)**

    این دستگاه در سیستم بیم دتکتور انتهایی به انتهایی با یک گیرنده اختصاصی جفت می‌شود و سیگنال نوری را در ناحیه تحت حفاظت منتشر می‌کند. فرستنده می‌تواند به صورت یکپارچه با گیرنده در یک واحد ترکیب شود.

     

    گیرنده (معروف به حسگر، RX)
    این دستگاه در سیستم بیم دتکتور دود نوع انتهایی به انتهایی با یک فرستنده اختصاصی جفت می‌شود و سطح سیگنال نور دریافت‌شده پس از عبور از ناحیه تحت حفاظت را نظارت می‌کند.

    کنترلر
    این قطعه از سیستم بیم دتکتور دود نوری است که به مهندس اعلام حریق یا فرد صلاحیت‌دار اجازه می‌دهد تنظیمات، پیکربندی و عیب‌یابی بیم‌ها را در سطح زمین انجام دهد و نیاز به استفاده از تجهیزات دسترسی در ارتفاع را برطرف می‌کند.

    محدوده بیم
    این فاصله کلی بین فرستنده و گیرنده بیم در دتکتورهای نوع انتهایی به انتهایی و فاصله بین فرستنده/گیرنده تا بازتابنده در دتکتورهای بازتابی است.

    این محدوده معمولاً به صورت ‘A تا B’ بیان می‌شود که در آن:

    • A حداقل محدوده عملیاتی (از ۰ متر)
    • B حداکثر محدوده عملیاتی (از ۰ متر) است.

    مثال: محدوده ۵ تا ۱۰۰ متر به این معنی است که بیم می‌تواند در فاصله حداقل ۵ متر و حداکثر ۱۰۰ متر به درستی عمل کند.

    **پوشش دتکتور**

    پوشش دتکتور به ناحیه‌ای گفته می‌شود که در آن دتکتور قادر به تشخیص مؤثر آتش‌سوزی در حال وقوع است. این ناحیه بر اساس استانداردهای محلی و بین‌المللی تعریف می‌شود و معمولاً به صورت عرضی یا مدور از مرکز دتکتور محاسبه می‌گردد.

     

    **جبران انحراف (دریفت)**

    این قابلیت به دتکتور اجازه می‌دهد به صورت خودکار موقعیت و/یا سیگنال ارسالی را تنظیم کند تا همترازی بهینه حفظ شود. این ویژگی با محدودیت‌هایی طراحی شده تا:

    – توانایی تشخیص آتش‌های با رشد کند (آتش‌های کم‌دود) حفظ شود

    – اثرات تجمع آلودگی روی سطوح دتکتور خنثی گردد

    – جابجایی‌های جزئی ساختمان جبران شود

     

    **منشور (بازتابنده)**

    این قطعه در بیم‌های بازتابی استفاده می‌شود. ویژگی بازتاب بالای آن امکان بازگرداندن نور به منبع نور و حسگر مجاور را حتی در مسافت‌های طولانی فراهم می‌کند. با استفاده از آرایه‌ای از منشورها می‌توان به بردهای تا ۱۲۰ متر دست یافت.

     

    **تیرگی (ابسکیوریشن)**

    تیرگی مقدار کاهش شدت نور در اثر وجود ذرات یا مواد نیمه‌شفاف در مسیر بیم است. این مقدار معمولاً به صورت درصد یا کاهش دسی‌بل (dB) بیان می‌شود و معیاری برای تشخیص دود محسوب می‌گردد.

     

    **حساسیت**

    توانایی دتکتور دود در واکنش به سطح معینی از دود. این ویژگی در بیم دتکتورها معمولاً قابل تنظیم است.

     

    **دتکتور نقطهای**

    دستگاهی که آتش اولیه را در یک نقطه مشخص تشخیص میدهد و معمولاً از فناوری تشخیص دود نوری یا یونیزاسیون و یا تشخیص حرارت استفاده میکند. محدوده پوشش دتکتور نقطهای توسط استانداردهای محلی یا ملی تعریف میشود.

     

    **لایهبندی (استراتیفیکیشن)**

    پدیدهای که هنگام گرمتر بودن دود از هوای اطراف رخ میدهد، به طوری که دود تا رسیدن به دمای برابر با هوای اطراف بالا میرود و سپس متوقف میشود.

     

    **چه کسانی باید این راهنما را مطالعه کنند؟**

    در صورتی که یکی از موارد زیر در مورد شما صدق میکند، این راهنما برای شما مفید خواهد بود:

    – شما مسئول طراحی یا مشخص کردن سیستمهای تشخیص حریق هستید

    – مسئول سیستم حفاظت از حریق ساختمان هستید

    – مسئول ایمنی آتش (مارشال آتش) در محل کار خود هستید

    – قصد نصب بیم دتکتور دود یا سایر سیستمهای تشخیص دود را دارید

    – در حوزه ارزیابی ریسک حفاظت از حریق فعالیت میکنید

    – در پشتیبانی یا فروش سیستمهای تشخیص حریق نقش دارید

    – در خدمات آتشنشانی و نجات فعالیت میکنید

     

    **توجه:** این راهنما تنها راهنمای کلی ارائه میدهد. شما باید مقررات محلی و ملی و همچنین مشخصات فنی سازنده را برای دتکتورهای خاص نیز بررسی کنید

    **بیم دتکتور دودی اعلام حریق چیست؟**

     

    رایج‌ترین نوع دتکتور دود، **دتکتور نقطهای دودی** است. این دستگاه شامل یک پرتو نور مادون قرمز است که درون محفظه‌ای کوچک در بدنه دستگاه تابیده می‌شود. هنگام ورود دود به محفظه از طریق منافذ بدنه، پرتو نور تحت تأثیر قرار گرفته و دستگاه را به حالت هشدار می‌برد.

     

    **بیم دتکتورهای دودی اعلام حریق** بر همین اصل کار می‌کنند، با این تفاوت که پرتو نور در فضای باز ساختمان منتشر می‌شود. این سیستم به‌طور مؤثر کل فضای ساختمان را به یک محفظه تشخیص دود تبدیل می‌کند که امکان شناسایی دود در طول مسیر پرتو را فراهم می‌نماید.

    WhatsApp Image 2025 09 27 at 11.49.58 PM

     

    **نحوه عملکرد بیم دتکتور دودی اعلام حریق**

    سیستم تشخیص دود با پرتو نوری به این صورت عمل می‌کند:

    1. **تشکیل پرتو نامرئی**: یک پرتو مادون قرمز نامرئی بین فرستنده و گیرنده برقرار می‌شود.
    2. **تأثیر دود بر پرتو**: هنگام عبور دود از مسیر پرتو، ذرات جامد و قطرات مایع موجود در دود باعث پراکندگی و انعکاس فوتون‌های نور می‌شوند.
    3. **کاهش شدت نور**: این پراکندگی منجر به کاهش شدت نور در سمت مقابل ابر دود می‌گردد.
    4. **تشخیص و هشدار**: سیستم این کاهش شدت نور (که به عنوان تیرگی شناخته می‌شود) را تشخیص داده و آن را به عنوان علامت وجود آتش تفسیر می‌کند.

     

    **مزایای کلیدی:**

    – پوشش گسترده‌تر نسبت به دتکتورهای نقطهای

    – حساسیت تنظیم‌پذیر برای تشخیص دود

    – مناسب برای فضاهای بزرگ و سقف‌های بلند

    WhatsApp Image 2025 09 27 at 11.49.58 PM1

    WhatsApp Image 2025 09 27 at 11.49.59 PM

    انواع بیم دتکتورهای موجود چیست؟

    دو نوع پیکربندی اصلی برای بیم دتکتورها وجود دارد:

    و یا رفلکتوری و انتها به انتها**بازتابشی** و **انتهایی**.

    هر دو شامل یک فرستنده (T) (منبع نور) و یک گیرنده (R) (دتکتور) هستند.

    WhatsApp Image 2025 09 27 at 11.49.59 PM1

    **نصب و نگهداری**

    بیم دتکتورهای بازتابشی نصب و نگهداری آسان‌تر و کم‌هزینه‌تری نسبت به نوع انتهایی دارند، زیرا تنها به کابل‌کشی الکتریکی در یک سمت فضای تحت حفاظت نیاز است و تنها یک دستگاه برای تمیزکاری و نگهداری در زمان سرویس وجود دارد.

     

    **ترازکردن**

    معمولاً ترازکردن بیم بازتابشی ساده‌تر است، زیرا تنها یک قطعه تجهیز در یک انتهای بیم نیاز به تنظیم دارد (معمولاً بازتابنده قابل تنظیم نیست)، درحالی که دتکتورهای انتهایی نیاز به تنظیم در هر دو انتهای بیم دارند.

     

    **فضای مورد نیاز بیم**

    بیم بازتابشی با عبور از فضای بازگشتی از بازتابنده، واگرا می‌شود و بنابراین فضای بیشتری اشغال می‌کند. درحالی که یک بیم انتهایی می‌تواند از فاصله‌ای باریک‌تر عبور کند

    WhatsApp Image 2025 09 27 at 11.49.59 PM2

    تفاوت آن‌ها با سایرین چیست؟
    دتکتورهای دود نقطه‌ای، همان‌طور که از نامشان پیداست، دود را در فاصله‌های بسیار کوتاه و با استفاده از یک محفظه درون خود دتکتور شناسایی می‌کنند. برخی مدل‌ها از اصل پراکندگی نور استفاده می‌کنند، جایی که وجود دود جهت پرتو نور را تغییر می‌دهد تا توسط یک فوتودیود تشخیص داده شود. مدل‌های دیگر تغییر در ویژگی‌های الکتریکی هوای داخل دتکتور را که ناشی از وجود دود است، شناسایی می‌کنند.

    دتکتورهای دود مکنده، هوا را از طریق شبکه‌ای از نقاط نمونه‌برداری متصل به سیستم لوله‌کشی به یک محفظه حسگر می‌کشند. تشخیص دود در این سیستم‌ها بر اساس اصول مشابه دتکتورهای نقطه‌ای انجام می‌شود.

    مهم‌ترین تفاوت بین این فناوری‌ها، نحوه پایش منطقه تحت حفاظت است.

    نحوه نصب صحیح بیم دتکتورهای نوری
    رعایت دستورالعمل‌های زیر عملکرد بهینه دتکتورها را تضمین کرده و از خطاها و هشدارهای کاذب جلوگیری می‌کند:

    نصب بر سطوح سازه‌ای مستحکم:
    فرستنده/گیرنده/بازتابنده را بر بخش‌های سازه‌ای ثابت ساختمان نصب کنید که حداقل جابجایی ناشی از تغییرات دما، ارتعاش یا نشست را تجربه می‌کنند. از دتکتورهای دارای قابلیت تنظیم مجدد خودکار برای جبران جابجایی‌های طولانی‌مدت ساختمان استفاده نمایید.

    انتخاب نوع مناسب بیم برای نصب:
    اگر فضای تحت حفاظت برای یک بیم واحد بیش‌ازحد طولانی است، از آرایش‌های پشت‌به‌پشت، رو‌به‌پشت یا رو‌به‌رو استفاده کنید. یا از دتکتورهای مجهز به فازبندی پویا بیم برای جلوگیری از تداخل بیم‌ها و حذف نیاز به محافظ اضافی بهره ببرید.

    تضمین خط دید واضح برای بیم:
    از سطوح براق در مسیر بیم اجتناب کنید و در دتکتورهای بازتابشی این سطوح را حداقل یک متر از مرکز بیم دور نگه دارید (این فاصله در دتکتورهای انتهایی می‌تواند کمتر باشد).

    همراستایی صحیح بیم:
    از دتکتورهای دارای شاخص‌های همترازی مؤثر یا روال‌های تراز خودکار استفاده کنید تا از راه‌اندازی بیم‌های ناهمتراز جلوگیری شود.

    چیدمان بهینه بیم‌ها برای پوشش فضایی مطلوب:
    بیم‌ها می‌توانند بدون ایجاد سیگنال‌های ناخواسته در گیرنده‌ها، یکدیگر را قطع کنند.

    اجتناب از نور مستقیم خورشید:
    در صورت اجتناب‌ناپذیری (مثلاً در آتریوم‌های شیشه‌ای)، از دتکتورهای دارای الگوریتم‌های جبران نور برای تنظیم تغییرات سطح نور محیط استفاده کنید.

    تعیین وظایف/فواصل نگهداری مناسب:
    میزان آلودگی نوری ناشی از گردوغبار یا تعریق را با بررسی سطوح نزدیک به دتکتورها ارزیابی کنید. آستانه هشدار را متناسب با سطح آلودگی احتمالی تنظیم نمایید. از دتکتورهای دارای الگوریتم‌های پایش و تنظیم بهره برای جبران تغییرات تدریجی سیگنال استفاده کنید. برنامه‌ای برای تمیزکاری دوره‌ای اجزای نوری تعیین نمایید.

    تنظیمات مناسب سیستم:
    مشخصه تأخیر تا خطا را متناسب با عملیات ساختمان پیکربندی کنید (مثلاً برای تحمل انسدادهای موقت بیم توسط ماشین‌آلات). اگر تغییرات عملیاتی مکرر است، یک کنترلر سطح پایین نصب کنید تا تنظیمات به‌راحتی بهینه شوند. از دتکتورهای پیشرفته‌ای که روند شدت بیم را پایش می‌کنند، برای تفکیک آتش واقعی از اثرات دیگر استفاده نمایید

    WhatsApp Image 2025 09 27 at 11.50.00 PM

    جلوگیری از نشستن پرندگان:
    در صورت لزوم، تمهیداتی برای ممانعت از نشستن پرندگان روی دتکتورها و انسداد احتمالی بیم بیندیشید

     

    ثبت گزارش سیستم:
    بیم دتکتورها تجهیزات ایمنی حیاتی هستند. مستندسازی نصب برای نگهداری آینده و اطمینان از ایمنی و صحت نصب ضروری است.

    آرایش‌های نصب

    برای نصب بیم دتکتورهای نوری، آرایش‌های مختلفی وجود دارد که بسته به شرایط محیط و نیازهای حفاظتی می‌توان از آنها استفاده کرد:

    1. آرایش انتهایی (End-to-End):
      • فرستنده (T) و گیرنده (R) در دو طرف فضای تحت حفاظت نصب می‌شوند.
      • مناسب برای فضاهای با مسیر مستقیم و بدون مانع.
    2. آرایش بازتابشی (Reflective):
      • فرستنده/گیرنده (TR) در یک سمت و بازتابنده (Reflector) در سمت مقابل نصب می‌شود.
      • مناسب برای مکان‌هایی که کابل‌کشی به سمت مقابل دشوار است.
    3. آرایش پشت‌به‌پشت (Back-to-Back):
      • دو دتکتور به صورت پشت‌به‌هم نصب شده و هر کدام فضای مجاور را پوشش می‌دهند.
      • برای فضاهای بزرگ با نیاز به پوشش چندمنطقه.
    4. آرایش رو‌به‌پشت (Face-to-Back):
      • فرستنده یک دتکتور به گیرنده دتکتور دیگر نشانه‌گیری می‌کند.
      • جهت پوشش‌دهی زوایای خاص یا فضاهای نامنظم.
    5. آرایش رو‌به‌رو (Face-to-Face):
      • فرستنده و گیرنده دو دتکتور به صورت مستقیم به هم نشانه‌گیری می‌کنند.
      • برای افزایش حساسیت در مناطق حساس.

    انتخاب آرایش مناسب به عواملی مانند ابعاد فضای تحت پوشش، موانع فیزیکی، سهولت نصب و هزینه‌های نگهداری بستگی دارد.

    WhatsApp Image 2025 09 27 at 11.50.00 PM1

    **توصیه‌های استاندارد (BS 5839 بخش 1)**

     

    استاندارد **BS 5839 Part 1** راهنمایی برای **طراحی، نصب، راه‌اندازی و نگهداری** سیستم‌های تشخیص خودکار حریق در ساختمان‌های غیرمسکونی ارائه می‌دهد. برخی از توصیه‌های کلیدی مربوط به **بیم دتکتورهای نوری** به شرح زیر است:

     

    *(این مطالب صرفاً جهت راهنمایی کلی است. برای اطلاعات دقیق‌تر به متن استاندارد مراجعه کنید.)*

     

    ### **ارتفاع نصب دتکتورها**

    – بیم دتکتورها باید **تا حد امکان نزدیک به سقف** نصب شوند تا از تجمع و گسترش دود (Smoke Plume) در زمان آتش‌سوزی بهره‌برداری کنند.

    – **حداکثر ارتفاع قابل پوشش** توسط یک دتکتور به دو عامل بستگی دارد:

    1. **تخت بودن یا نبودن سقف**
    2. **حساسیت دتکتور**

     

    **راهنمای ارتفاع بر اساس حساسیت:**

    WhatsApp Image 2025 09 27 at 11.50.01 PM

    – **حساسیت معمولی** (Normal Sensitivity):

    – آستانه هشدار دتکتور >35% تضعیف سیگنال

    – مناسب برای فضاهای با ارتفاع استاندارد.

     

    – **حساسیت افزایش‌یافته** (Enhanced Sensitivity):

    – آستانه هشدار دتکتور ≤35% تضعیف سیگنال

    – در فضاهای بلندتر، **تشخیص مکمل (Supplementary Detection)** در ارتفاع پایین‌تر نیز توصیه می‌شود (به بخش *«فاصله افقی دتکتورها»* مراجعه کنید).

     

     

    ### **ملاحظات اضافی برای فضاهای بلند:**

    – در محیط‌های با ارتفاع زیاد، ممکن است نیاز به **نصب دتکتورهای اضافی در سطوح پایین‌تر** باشد تا از پوشش بهینه اطمینان حاصل شود.

    – در سقف‌های غیرتخت (مانند سقف‌های شیبدار یا قوسی)، محاسبه ارتفاع نصب باید با دقت بیشتری انجام شود.

     

    *(برای جزئیات فنی بیشتر، از جمله جدول‌های دقیق ارتفاع و فاصله، به استاندارد BS 5839 Part 1 مراجعه نمایید.)*

    بیم دتکتورها را می‌توان در ارتفاعی بسیار بیشتر از دتکتورهای نقطه‌ای (حداکثر ۱۰.۵ متر) نصب کرد، زیرا طول بیشتر فضای تحت حفاظت، مشکل تشخیص چگالی کمتر دود را هنگام پراکندگی آن جبران می‌کند

    WhatsApp Image 2025 09 27 at 11.50.01 PM1

    در برخی مکان‌ها مانند آتریوم‌ها یا زیر نورگیرها، نصب بیم‌ها در نزدیکی حداکثر فاصله مجاز زیر سقف ایمن‌تر است تا بتوانند لایه‌های دود طبقه‌بندی شده‌ای را که به سقف نمی‌رسند تشخیص دهند.

    WhatsApp Image 2025 09 27 at 11.50.01 PM2

    فاصله از سطوح عمودی

    WhatsApp Image 2025 09 27 at 11.50.02 PM

    دتکتورها باید حداقل 0.5 متر فاصله از موارد زیر داشته باشند:

    • نزدیک‌ترین دیوار عمودی؛
    • هر سطح نصب‌شده روی سقف (مانند تیر یا کانال) که بیش از 10% از ارتفاع کل سقف به داخل فضا پیش‌آمدگی دارد؛
    • هر سطح نصب‌شده روی کف که کمتر از 300 میلی‌متر به سقف نزدیک شده است
    • فاصله افقی بیم دتکتورها
      در ارتفاع سقف، حداکثر فاصله افقی بین هر نقطه و بخشی از یک بیم باید ۷.۵ متر باشد

    WhatsApp Image 2025 09 27 at 11.50.02 PM1

    • همین محدودیت ۷.۵ متری برای دتکتورهای نقطه‌ای و دتکتورهای مکنده دود نیز اعمال می‌شود که این موضوع مزیت آشکاری برای بیم دتکتور در فضاهای بزرگ فراهم می‌کند، زیرا پوشش‌دهی بسیار کارآمدتری دارد.
      در مثال نشان داده شده برای یک سطح به مساحت ۱۲۶۰ متر مربع، ۲ بیم دتکتور کافی است، در حالی که ۱۲ دتکتور نقطه‌ای یا نقاط نمونه‌برداری مکنده مورد نیاز است
    • بیم دتکتورهایی که در رأس سقف‌های شیب‌دار نصب می‌شوند، به دلیل اثر «هدایت‌کنندگی» سقف، می‌توانند مناطق افقی وسیع‌تری را پوشش دهند.
      فاصله را به ازای هر ۱ درجه شیب سقف، ۱٪ افزایش دهید تا حداکثر افزایش ۲۵٪ حاصل شود (که حداکثر فاصله ۹.۳۸ متر خواهد بود)

    WhatsApp Image 2025 09 27 at 11.50.02 PM2

    استفاده از تشخیص تکمیلی برای ساختمان‌هایی با سقف‌های بسیار بلند توصیه می‌شود. این کار می‌تواند تشخیص زودتر حریق را فراهم کند و از اثر لایه‌بندی جلوگیری نماید.

    WhatsApp Image 2025 09 27 at 11.50.03 PM

    محدودیت‌های فاصله افقی در این حالت کمتر از فاصله در ارتفاع سقف است، زیرا در بالای حجم تحت حفاظت، سطحی وجود ندارد که از پراکندگی ستون دود جلوگیری کند.

    چه ابزاری برای نصب آن نیاز دارید؟
    دستورالعمل‌های نصب، تراز کردن و آزمایش بیم دتکتور اعلام حریق بسته به مدل و سازنده متفاوت است، بنابراین باید دستورالعمل‌های ارائه‌شده همراه با سیستم خود را دنبال کنید. با این حال، ابزارها و تجهیزات زیر هنگام نصب هر نوع سیستم تشخیص مفید هستند:

    ابزارهای لازم برای نصب دتکتورها روی سازه ساختمان:
    دریل، پیچ‌گوشتی چهارسو و دوسو و غیره.

    کیت راه‌اندازی و آزمایش: این کیت از تأمین‌کننده شما قابل تهیه است و شامل تمام ابزارهای لازم برای آزمایش دتکتور در برابر حریق و خطا می‌باشد.

    مولتی‌متر و سیم‌های آزمایش: برای بررسی منبع تغذیه ورودی هنگام عیب‌یابی.

    بالابر قیچی‌شو یا سایر تجهیزات دسترسی در ارتفاع: برای نصب دتکتورها استفاده می‌شود. همچنین میله‌های دسترسی برای آزمایش دتکتورها پس از نصب مفید هستند، زیرا در وقت صرفه‌جویی کرده و از نیاز به کار در ارتفاع جلوگیری می‌کنند.

    الزامات نگهداری برای بیم دتکتور اعلام حریق چیست؟
    برای حفظ عملکرد دتکتورها، به صورت دوره‌ای مراحل زیر را انجام دهید (فاصله زمانی این کار بستگی به میزان تمیزی محیط عملکرد دارد):

    ۱. دتکتورها را از پنل کنترل سیستم اعلام حریق جدا کنید.
    ۲. اجزای نوری (فرستنده/گیرنده/بازتاب‌دهنده) را با یک پارچه نرم و بدون پرز تمیز کنید.
    ۳. دتکتورها را مجدداً تراز کنید تا از بهینه بودن سطح سیگنال اطمینان حاصل شود.
    ۴. دتکتورها را به پنل کنترل سیستم اعلام حریق متصل کنید.
    ۵. دتکتورها را آزمایش کنید (این معمولاً شامل مسدود کردن بیم در محل گیرنده است).

    WhatsApp Image 2025 09 27 at 11.50.03 PM1

    کجا می‌توان آن‌ها را نصب کرد؟
    فاصله‌های طولانی و بدون مانع:
    – انبارها
    – آشیانه هواپیما
    – ترمینال‌های فرودگاه
    – مراکز ورزشی
    – چاه‌های آسانسور

    ساختمان‌های بلند
    – تأسیسات تولیدی
    – ترمینال‌های فرودگاه
    – آشیانه‌های هواپیما
    – کلیساها
    – آتریوم‌ها

    دسترسی محدود
    – پایانه‌های حمل‌ونقل عمومی
    – ترمینال‌های فرودگاه
    – ساختمان‌های دولتی
    – سایت‌های تولیدی

    تعداد محدود دتکتورها قابل قبول است
    – ملاحظات معماری (ساختمان‌های باستانی، سبک‌های مدرن مینیمالیستی)
    – نصب روی سقف امکان‌پذیر نیست (آتریوم‌ها، سقف‌های شیشه‌ای)
    – دفاتر با پلان باز
    – تشخیص غیر ملموس و نامحسوس مطلوب است (نگارخانه‌های هنری، موزه‌ها، کتابخانه‌ها)

    فضاهای انفجاری
    – تجهیزات الکترونیکی می‌توانند در محفظه‌های ضد انفجار مهر و موم شوند.
    – کنترلر سطح پایین در ناحیه‌ای ایمن و دور از محل خطر برای پایش سیستم قرار می‌گیرد.

    WhatsApp Image 2025 09 27 at 11.50.04 PM

    آیا می‌دانستید؟
    بیم دتکتورهای اعلام حریق تنها قادر به محافظت از فضاها به صورت افقی نیستند. این دتکتورها با موفقیت برای محافظت از نصب‌های عمودی مانند چاه‌های آسانسور نیز استفاده شده‌اند، جایی که تنها یک یا دو دتکتور برای محافظت از چندین طبقه نصب و نگهداری می‌شود، به جای تعداد بسیار بیشتری از دتکتورهای نقطه‌ای.

  • بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق

    11.1 کلیات

    مسئولیت بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق در نهایت بر عهده مالک(ان) سیستم خواهد بود، مگر اینکه این مسئولیت به صورت کتبی به شرکت مدیریت، مستاجر یا طرف دیگر منتقل شده باشد.

    11.1.1 ایمنی

    در طول بازرسی، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک‌کننده و مخازن عامل، باید از روش‌های ایمن پیروی شود. (به بخش A.10.1 مراجعه شود.)

    11.1.2 تکنسین سرویس‌دهی حفاظت در برابر حریق

    پرسنلی که سیستم‌های اطفاء حریق با عامل پاک‌کننده را بازرسی، سرویس‌دهی، آزمایش و نگهداری می‌کنند باید دارای دانش و تجربه کافی در خصوص نیازمندی‌های نگهداری و سرویس‌دهی مندرج در این استاندارد، تجهیزات سرویس‌دهی یا نگهداری شده و روش‌ها و نیازمندی‌های نگهداری یا سرویس‌دهی مندرج در دستورالعمل‌های طراحی، نصب و نگهداری سازنده و هرگونه بولتن‌های مربوطه باشند.

    11.2 بازرسی ماهانه

    11.2.1

    حداقل به صورت ماهانه، باید یک بازرسی بصری مطابق با دستورالعمل‌های نگهداری فهرست‌شده سازنده یا دستورالعمل مالک انجام شود.

    11.2.2

    حداقل، این بازرسی باید شامل تایید موارد زیر باشد، در صورت نیاز:

    (1) پنل آزادسازی تحت برق است و از هیچ وضعیت نظارتی، مشکل یا هشدار خالی است. (2) کنترل‌های دستی مسدود نشده‌اند. (3) سیستم هیچ گونه آسیب فیزیکی یا شرایطی ندارد که بتواند از عملکرد آن جلوگیری کند. (4) فشارسنج‌ها در محدوده قابل‌عمل هستند. (5) تجهیزات یا خطر محافظت‌شده تغییر یا اصلاح نشده است. (6) هر گونه نقص قبلی اصلاح شده است.

    11.2.3

    اگر هرگونه نقصی پیدا شود، باید بلافاصله اقدامات اصلاحی مناسب انجام شود.

    11.2.4

    اگر اقدامات اصلاحی شامل نگهداری یا تعمیرات باشد، باید توسط یک تکنسین سرویس‌دهی حفاظت در برابر حریق انجام شود، طبق بند 11.1.2.

    11.2.5

    هنگامی که بازرسی‌ها انجام می‌شود، باید یک رکورد برای تأیید تکمیل بازرسی نگهداری شود.

    11.2.5.1

    رکورد باید شامل تاریخ انجام بازرسی و حروف اولیه شخص انجام‌دهنده بازرسی باشد.

    11.2.5.2

    رکورد باید شامل هرگونه نقص شناسایی‌شده باشد.

    11.2.5.3

    رکوردها باید تا بازرسی و سرویس نیم‌سالی بعدی نگهداری شوند.

    11.3* سرویس و بازرسی نیم‌سالانه

    حداقل به صورت نیم‌سالی، مقدار عامل و فشار مخازن باید بررسی شوند.

    11.3.1

    برای عوامل پاک‌کننده هالوکربنی که دارای وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل یا کاهش فشار (تنظیم شده برای دما) بیش از 10 درصد باشد، باید دوباره پر شده یا تعویض شود.

    11.3.2

    برای مخازن عامل هالوکربنی که فاقد وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل باشد، باید دوباره پر شده یا تعویض شود.

    11.3.3*

    عوامل پاک‌کننده هالوکربنی که در حین سرویس یا نگهداری از مخازن خارج می‌شوند، باید بازیابی شده و مجدداً استفاده شوند یا مطابق با قوانین و مقررات مربوطه دفع شوند.

    11.3.4*

    برای عوامل پاک‌کننده گازهای بی‌اثر، اگر مخزن نشان‌دهنده کاهش فشار (تنظیم‌شده برای دما) بیش از 5 درصد باشد، باید دوباره پر شده یا تعویض شود.

    11.3.5

    هنگامی که از فشارسنج‌های مخزن برای مطابقت با بند 11.3.4 استفاده می‌شود، باید حداقل سالی یک‌بار با یک دستگاه کالیبره جداگانه مقایسه شوند.

    11.3.6

    هنگامی که مقدار عامل در مخزن با دستگاه‌های اندازه‌گیری خاص تعیین می‌شود، این دستگاه‌ها باید فهرست شده باشند.

    11.3.7

    اطلاعات زیر باید روی برچسبی که به مخزن متصل است ثبت شود:

    1. تاریخ بازرسی
    2. شخص انجام‌دهنده بازرسی
    3. نوع عامل
    4. وزن ناخالص مخزن و وزن خالص عامل (فقط برای عوامل پاک‌کننده هالوکربنی)
    5. فشار مخزن و دما (برای عوامل پاک‌کننده هالوکربنی با فشارسنج و عوامل پاک‌کننده گازهای بی‌اثر)

    11.4 بازرسی و سرویس سالانه

    11.4.1

    حداقل سالیانه، تمام سیستم‌ها باید توسط پرسنل واجد شرایط، مطابق با بند 11.1.2 بازرسی، سرویس و برای عملکرد آزمایش شوند.

    11.4.2

    آزمایش‌های تخلیه الزامی نمی‌باشد.

    11.4.3

    گزارش سرویس با توصیه‌ها باید به مالک سیستم ارائه شود.

    11.4.4

    گزارش سرویس باید به‌صورت کاغذی یا الکترونیکی ذخیره و قابل دسترسی باشد.

    11.4.5 شیلنگ‌های سیستم

    11.4.5.1 تمام شیلنگ‌های سیستم باید سالانه از نظر آسیب‌دیدگی مورد بازرسی قرار گیرند.
    11.4.5.2 اگر بازرسی بصری هرگونه نقصی را نشان دهد، شیلنگ باید فوراً تعویض شود یا طبق آنچه در بخش 11.7 مشخص شده آزمایش شود.

    11.4.6 بازرسی محفظه

    11.4.6.1 محفظه محافظت‌شده باید سالانه بازرسی شود یا توسط یک برنامه مدیریتی مستند برای تغییرات در یکپارچگی موانع یا ابعاد محفظه مورد نظارت قرار گیرد.
    11.4.6.2 اگر تغییرات باعث شود که محفظه نتواند غلظت ماده پاک‌کننده را حفظ کند، شرایط باید اصلاح شود.

    11.5 نگهداری

    11.5.1

    این سیستم‌ها باید همیشه در شرایط عملیاتی کامل نگهداری شوند.

    11.5.2

    فعال‌سازی سیستم ماده پاک‌کننده باید فوراً به مقام مسئول گزارش شود.

    11.5.3

    نقص‌ها باید مطابق با فصل 12 رسیدگی شوند.

    11.5.4 نگهداری محفظه

    11.5.4.1 هرگونه نفوذی که از طریق محفظه محافظت‌شده توسط ماده پاک‌کننده ایجاد شود باید فوراً مسدود شود.
    11.5.4.2 روش مسدود کردن باید رتبه مقاومتی آتش اولیه محفظه را بازسازی کند.

    11.6 آزمایش مخزن

    11.6.1

    مخازن ماده پاک‌کننده با طراحی وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا (CTC) یا مشابه نباید بدون آزمایش مجدد شارژ شوند، اگر دوره مجدد ارزیابی که توسط مقام مسئول برای مخزن مشخص شده است از زمان آخرین آزمایش و بازرسی گذشته باشد.

    11.6.1.1 برای مخازن ذخیره‌سازی مواد هالوکربن، آزمایش باید مجاز باشد که شامل یک بازرسی کامل بصری طبق 49 CFR باشد.
    11.6.1.2 یک سیلندر باید مجاز باشد که هر زمان قبل از ماه و سال موعد مجدد ارزیابی، مجدداً ارزیابی شود.
    11.6.1.3 سیلندری که قبل از موعد مجدد ارزیابی پر شده باشد باید هر دو مورد زیر را داشته باشد:
    1. مجاز به باقی ماندن در خدمت
    2. به‌طور دوره‌ای مطابق با بند 11.6.2 بازرسی شود

    11.6.1.4

    یک سیلندر با عمر سرویس مشخص نباید پس از پایان عمر مجاز سرویس آن، دوباره شارژ شده و برای حمل و نقل ارائه شود.

    11.6.2

    مخازن که به طور مداوم در خدمت هستند و نیازی به شارژ مجدد یا تعمیر ندارند، باید هر 5 سال یک‌بار یا بیشتر از آن بر اساس نیاز، یک بازرسی کامل بصری خارجی انجام دهند.

    11.6.2.1

    بازرسی بصری باید مطابق با بخش 3 از استاندارد CGA C-6، استاندارد بازرسی بصری سیلندرهای فولادی گازهای فشرده، باشد، با این تفاوت که مخازن نیازی به مهر و موم شدن در هنگام تحت فشار بودن ندارند.

    11.6.2.2

    نتایج بازرسی باید در هر دو مورد زیر ثبت شوند:

    1. یک برچسب ثبت که به‌طور دائمی به هر مخزن متصل شده است.
    2. یک گزارش بازرسی مناسب.

    11.6.2.3

    یک نسخه تکمیل شده از گزارش بازرسی مخزن باید به مالک سیستم یا نماینده مجاز او تحویل داده شود.

    11.6.2.4

    این سوابق باید توسط مالک برای مدت عمر سیستم نگهداری شوند.

    11.6.2.5

    در صورتی که بازرسی بصری خارجی نشان دهد که مخزن آسیب دیده است، آزمایش‌های اضافی قدرت باید طبق مقررات حمل‌ونقل قابل اجرا انجام شوند.

    11.7 آزمایش شیلنگ

    11.7.1

    تمام شیلنگ‌ها باید هر 5 سال یک‌بار آزمایش یا تعویض شوند.

    11.7.2

    فشاری برابر با 1.5 برابر فشار حداکثر مخزن در دمای 1300 درجه فارنهایت (54.4 درجه سلسیوس) باید در مدت 1 دقیقه اعمال شده و برای 1 دقیقه نگه داشته شود.

    11.7.3

    روش آزمایش باید به شرح زیر باشد:

    1. شیلنگ از هر گونه اتصال جدا می‌شود.
    2. سپس مجموعه شیلنگ در یک محفظه حفاظتی قرار می‌گیرد که به‌طور مناسب اجازه مشاهده بصری آزمایش را می‌دهد.
    3. شیلنگ باید قبل از آزمایش کاملاً با آب پر شود.
    4. سپس فشار به گونه‌ای اعمال می‌شود که در مدت 1 دقیقه به فشار آزمایش برسد. فشار آزمایش به مدت یک دقیقه کامل نگه داشته می‌شود. مشاهداتی برای بررسی هر گونه انحراف یا نشت انجام می‌شود.
    5. پس از مشاهده شیلنگ برای نشت، حرکت اتصالات و انحراف، فشار آزاد می‌شود.

    11.7.4

    مجموعه شیلنگ زمانی که تمام شرایط زیر رعایت شود، قبول می‌شود:

    1. هیچ گونه افت فشاری در طول آزمایش وجود نداشته باشد.
    2. هیچ حرکتی از اتصالات در حین فشار وجود نداشته باشد.
    3. هیچ انحراف دائمی در شیلنگ ایجاد نشده باشد.

    11.7.5

    هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را قبول کند باید با تاریخ آزمایش علامت‌گذاری شود.

    11.7.6

    هر مجموعه شیلنگ که آزمایش را گذرانده باشد باید قبل از نصب مجدد، به‌طور داخلی خشک شود.

    11.7.7

    هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را رد کند باید علامت‌گذاری و از بین برود.

    11.8 آموزش

    تمام افرادی که ممکن است انتظار داشته باشند سیستم‌های اطفاء حریق را بازرسی، سرویس، آزمایش یا نگهداری کنند، باید آموزش دیده و در عملکردهایی که انتظار می‌رود انجام دهند، به‌طور مستمر آموزش دیده بمانند.

  • دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

    WhatsApp Image 2025 09 14 at 9.31.18 AM

    کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

    طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

    دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

    ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

    WhatsApp Image 2025 09 14 at 9.31.19 AM

    • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
    • تولید دود کم و بدون هالوژن (LS0H)
    • ساختار مقاوم برای استفاده در محیط‌های سخت
    • نصب آسان با گزینه‌های متنوع برای نصب
    • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
    • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

    WhatsApp Image 2025 09 14 at 9.31.19 AM1

    • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
    • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
    • طیف گسترده‌ای از کاربردهای اثبات‌شده

    WhatsApp Image 2025 09 14 at 9.31.20 AM

    اصول عملکرد

    دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

    مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

    WhatsApp Image 2025 09 14 at 9.31.20 AM1

    این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

    ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

    در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

    رجوع شود به:
    «ویژگی‌ها به عنوان کابل تشخیص آتش»

    کاربردها

    دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

    دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

    دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

    این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

    نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

    کاربردهای رایج:

    • تونل‌ها، کانال‌ها و سقف‌های کاذب
    • پله‌های برقی و مسیرهای متحرک
    • مخازن ذخیره‌سازی پتروشیمی
    • سالن‌های رنگ و اتاقک‌های اسپری
    • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
    • فضاهای سقفی و زیرشیروانی
    • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
    • مناطق تأسیسات نیروگاه هسته‌ای
    • انبارهای سرد و سردخانه‌ها
    • تابلوهای کنترل و کلیدهای برق
    • قفسه‌های مرتفع انبارها
    • سکوهای نفتی دریایی
    • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
    • سیلوهای غلات و انبارهای کشاورزی
    • محفظه‌های موتور خودروهای جاده‌ای / ریلی
    • نشت بخار و خطاهای گرمایش ردیابی‌شده
    • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
    • فضاهای زیرکفی اتاق‌های کامپیوتر

    ویژگی‌ها به عنوان کابل تشخیص آتش

    در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

    • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
    • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

    ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

    WhatsApp Image 2025 09 14 at 9.31.21 AM

    همچنین به مثال ارائه‌شده رجوع شود.

    مثال

    این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

    • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
    • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
    • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

    عملکرد دو مرحله‌ای

    اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

    .  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

    عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

    یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

    مشخصات پایه

    • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
    • رنگ: قرمز
    • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
    • بافت: سیم مسی قلع‌زده
    • دی‌الکتریک داخلی: سفید
    • رسانای مرکزی: فولاد با روکش مس
    • استحکام کششی: ۲۰۰ نیوتن

    WhatsApp Image 2025 09 14 at 9.31.21 AM1

    دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

    ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

    با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

    انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

    پیکربندی سیستم و سازگاری تجهیزات

    دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

    دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

  • نقص سیستم حفاظت در برابر آتش با عامل گازی

    12.1 * کلیات

    12.1.1 این فصل حداقل الزامات برای برنامه نقص سیستم حفاظت در برابر آتش را ارائه می‌دهد.
    12.1.2 اقداماتی باید در هنگام بروز نقص در سیستم انجام شود تا اطمینان حاصل گردد که خطرات افزایش یافته به حداقل رسیده و مدت زمان نقص محدود باشد.

    12.2 هماهنگ‌کننده نقص

    12.2.1 مالک ملک یا نماینده منصوب باید یک هماهنگ‌کننده نقص را برای رعایت الزامات این فصل منصوب کند.
    12.2.2 در غیاب یک فرد خاص منصوب، مالک ملک یا نماینده منصوب به‌عنوان هماهنگ‌کننده نقص در نظر گرفته می‌شود.
    12.2.3 اگر قرارداد اجاره، توافق‌نامه استفاده کتبی، یا قرارداد مدیریت به‌طور خاص اختیار بازرسی، آزمایش و نگهداری سیستم‌های حفاظت در برابر آتش را به مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده اعطا کند، مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده باید یک نفر را به‌عنوان هماهنگ‌کننده نقص منصوب کند.

    12.3 سیستم برچسب نقص

    12.3.1 یک برچسب باید برای نشان دادن اینکه سیستم یا بخشی از آن از سرویس خارج شده است، استفاده شود.
    12.3.2 یک برچسب باید در جزء سیستم عامل تمیز که باعث نقص شده، واحد کنترل آزادسازی سیستم، واحد کنترل آژیر آتش‌سوزی ساختمان در صورت لزوم و سایر مکان‌های مورد نیاز توسط مقام ذی‌صلاح نصب شود تا نشان دهد کدام سیستم یا بخشی از آن از سرویس خارج شده است.

    12.4 برنامه‌های نقص پیش‌بینی‌شده

    12.4.1 تمام نقص‌های پیش‌بینی‌شده باید توسط هماهنگ‌کننده نقص مجاز شوند.
    12.4.2 نیاز به حفاظت موقتی در برابر آتش، خاتمه تمامی عملیات خطرناک و فراوانی بازرسی‌ها در نواحی درگیر باید مشخص شود.
    12.4.3 قبل از اعطای مجوز، هماهنگ‌کننده نقص مسئول است تا اطمینان حاصل کند که مراحل زیر انجام شده است:
    1. میزان و مدت زمان مورد انتظار نقص تعیین شده است.
    2. نواحی یا ساختمان‌های درگیر بازرسی شده و خطرات افزایش یافته مشخص شده‌اند.
    3. پیشنهاداتی برای کاهش خطرات افزایش یافته به مدیریت یا مالک ملک یا نماینده منصوب ارسال شده است.
    4. اگر سیستم حفاظت در برابر آتش با عامل تمیز به‌عنوان حفاظت اولیه عمل می‌کند و بیش از 10 ساعت در یک دوره 24 ساعته از سرویس خارج است، ترتیباتی برای یکی از موارد زیر انجام می‌شود:
    (a) تخلیه ساختمان یا بخش از ساختمان که تحت تأثیر سیستم خارج از سرویس قرار گرفته است.
    (b) * یک نگهبانی آتش‌نشانی تأیید شده.
    (c) * برقراری و اجرای یک برنامه تأیید شده برای حذف منابع بالقوه احتراق و محدود کردن میزان سوخت در دسترس برای آتش.
    (5) اطلاع‌رسانی به اداره آتش‌نشانی.
    (6) اطلاع‌رسانی به شرکت بیمه، شرکت آژیر، مالک ملک یا نماینده منصوب، و دیگر مقامات ذی‌صلاح.
    (7) اطلاع‌رسانی به سرپرستان در نواحی تحت تأثیر.
    (8) اجرای یک سیستم برچسب نقص. (به بخش 12.3 مراجعه کنید.)
    (9) جمع‌آوری تمام ابزارها و مواد ضروری در محل نقص.

    12.5 نقص‌های اضطراری

    12.5.1 نقص‌های اضطراری شامل، اما نه محدود به، قطع تأمین عامل تمیز، شکستگی یا آسیب لوله‌ها، خرابی تجهیزات، و از دست رفتن یکپارچگی محفظه، و شامل نقص‌هایی است که در حین بازرسی، آزمایش یا نگهداری شناسایی می‌شود.
    12.5.2 در صورت وقوع نقص اضطراری، هماهنگ‌کننده باید مراحل مشخص شده در 12.4.2 و 12.4.3 را اجرا کند.
    12.5.3 هنگامی که یک یا چند نقص در حین بازرسی، آزمایش و نگهداری شناسایی می‌شود، مالک یا نماینده مجاز مالک باید به صورت کتبی اطلاع‌رسانی شود.

    12.6 بازگرداندن سیستم‌ها به سرویس

    هنگامی که تمام تجهیزات معیوب به حالت عادی باز می‌گردد، هماهنگ‌کننده نقص باید تأیید کند که مراحل زیر اجرا شده است:
    1. هر بازرسی و آزمایش ضروری انجام شده تا اطمینان حاصل شود که سیستم‌های تحت تأثیر عملیاتی هستند.
    2. به سرپرستان اطلاع داده شده که حفاظت دوباره برقرار شده است.
    3. به اداره آتش‌نشانی اطلاع داده شده که حفاظت دوباره برقرار شده است.
    4. به مالک ملک یا نماینده منصوب، شرکت بیمه، شرکت آژیر در صورت لزوم، و دیگر مقامات ذی‌صلاح اطلاع داده شده که حفاظت دوباره برقرار شده است.
    5. تمام برچسب‌های نقص برداشته شده‌اند.

  • سیستم‌های اسپرینکلر

    5.1 کلیات
    5.1.1 الزامات حداقل
    5.1.1.1 این فصل الزامات حداقل برای بازرسی، آزمایش و نگهداری روتین سیستم‌های اسپرینکلر آب را ارائه می‌دهد.
    5.1.1.2 جدول 5.1.1.2 برای تعیین فرکانس‌های حداقل مورد نیاز برای بازرسی، آزمایش و نگهداری باید استفاده شود.
    5.1.2 اجزای مشترک و شیرها
    اجزای مشترک و شیرها باید طبق فصل 13 بازرسی، آزمایش و نگهداری شوند.
    5.1.3 بررسی موانع
    در صورتی که نیاز به انجام بررسی موانع باشد، باید از روش‌های ذکر شده در فصل 14 پیروی شود.

    5.1.4 نقص‌ها. رویه‌های ذکر شده در فصل 15 باید زمانی که نقصی در سیستم حفاظت پیش می‌آید، دنبال شوند.
    5.1.5 اتصالات شیلنگ. اتصالات شیلنگ باید طبق فصل‌های 6 و 13 بررسی، آزمایش و نگهداری شوند.
    5.2* بازرسی.
    5.2.1 آبپاش‌ها.
    5.2.1.1* آبپاش‌ها باید از سطح زمین به طور سالانه بازرسی شوند.
    5.2.1.1.1* هر آبپاشی که علائم یکی از موارد زیر را نشان دهد باید تعویض شود:
    (1) نشتی
    (2) خوردگی که به عملکرد آبپاش آسیب می‌زند
    (3) آسیب فیزیکی
    (4) از دست دادن مایع در عنصر حساس به حرارت حباب شیشه‌ای
    (5) بارگذاری که به عملکرد آبپاش آسیب می‌زند
    (6) رنگی غیر از رنگ اعمال‌شده توسط سازنده آبپاش
    5.2.1.1.2 هر آبپاشی که به اشتباه در جهت نادرست نصب شده باشد باید با جابجایی خط انشعاب، آویز یا شاخه اصلاح شود یا تعویض گردد.
    5.2.1.1.3* آبپاش‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیاز به بازرسی ندارند.
    5.2.1.1.4 آبپاش‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.1.1.5 اسکاشون‌ها و پوشش‌های آبپاش‌های فرورفته، توکار و پنهان باید با اسکاشون یا پوشش فهرست‌شده خود جایگزین شوند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.1.5.1 زمانی که اسکاشون یا پوشش فهرست‌شده از یک مجموعه فهرست‌شده مفقود شده و دیگر در دسترس تجاری نیست، باید آبپاش تعویض شود.
    5.2.1.1.6 اسکاشون‌ها برای آبپاش‌های معلق که نه فرورفته، نه توکار و نه پنهان هستند نیازی به تعویض ندارند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.2* حداقل فاصله از انبار مطابق با موارد 5.2.1.2.1 تا 5.2.1.2.6 باید در زیر تمام دستگاه‌های معیوب آبپاش حفظ شود.
    5.2.1.2.1* مگر اینکه فاصله‌های بیشتری توسط 5.2.1.2.2، 5.2.1.2.3 یا 5.2.1.2.4 لازم باشد یا فاصله‌های کمتری توسط 5.2.1.2.6 مجاز باشد، فاصله بین دستگاه معیوب و بالای انبار باید 18 اینچ (457 میلی‌متر) یا بیشتر باشد.
    5.2.1.2.2 در صورتی که استانداردهایی غیر از NFPA 13 حداقل فاصله بیشتری از انبار مشخص کنند، باید از آنها پیروی شود.
    5.2.1.2.3* فاصله بین دستگاه معیوب و بالای انبار باید 36 اینچ (914 میلی‌متر) یا بیشتر برای آبپاش‌های ویژه باشد.
    5.2.1.2.4 فاصله از بالای انبار تا دستگاه معیوب باید 36 اینچ (914 میلی‌متر) یا بیشتر باشد زمانی که لاستیک‌های رابر ذخیره شده باشند.
    5.2.1.2.5 آبپاش‌های درون قفسه نیازی به رعایت معیارهای انسداد و الزامات فاصله از انبار ندارند.

    5.2.1.2.6* فاصله بین دستگاه معیوب و بالای انبار می‌تواند کمتر از 18 اینچ (457 میلی‌متر) باشد در صورتی که توسط استاندارد نصب مجاز شناخته شده باشد.
    5.2.1.3* انباری که نزدیک‌تر از حد مجاز به دستگاه معیوب اسپرینکلر قرار دارد طبق قوانین فاصله از انبار استاندارد نصب، که در 5.2.1.2.1 تا 5.2.1.2.4 توضیح داده شده است، باید اصلاح شود.
    5.2.1.4 تأمین اسپرینکلرهای یدکی باید سالانه برای موارد زیر بازرسی شود:
    (1) تعداد و نوع صحیح اسپرینکلرها طبق الزامات 5.4.1.5
    (2) آچار اسپرینکلر برای هر نوع اسپرینکلر طبق الزامات 5.4.1.5.5
    (3) فهرست اسپرینکلرهای یدکی طبق الزامات 5.4.1.5.6
    5.2.2* لوله و اتصالات. لوله‌ها و اتصالات اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.2.1* لوله‌ها و اتصالات باید از هرگونه آسیب مکانیکی، نشتی و خوردگی پاک باشند.
    5.2.2.2 لوله‌های اسپرینکلر نباید تحت بارهای خارجی توسط مواد قرار گیرند که روی لوله استراحت کنند یا از لوله آویزان شوند.
    5.2.2.3* لوله‌ها و اتصالات نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.2.4 لوله‌ها و اتصالات نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.3* آویزها، میله‌ها و پشتیبانی‌ها. آویزها، میله‌ها و پشتیبانی‌های لوله‌های اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.3.1 آویزها، میله‌ها و پشتیبانی‌ها نباید آسیب دیده، شل یا جدا شده باشند.
    5.2.3.2 آویزها، میله‌ها و پشتیبانی‌هایی که آسیب دیده، شل یا جدا شده‌اند باید تعویض یا دوباره محکم شوند.
    5.2.3.3* آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.3.4 آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.4 دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت. دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت باید هر سه ماه یکبار بازرسی شوند تا اطمینان حاصل شود که از آسیب فیزیکی آزاد هستند.
    5.2.5* تابلو اطلاعات طراحی هیدرولیکی. تابلو اطلاعات طراحی هیدرولیکی باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم به لوله‌کش نصب شده و قابل خواندن است.
    5.2.5.1 تابلو اطلاعات طراحی هیدرولیکی که مفقود یا غیرقابل خواندن باشد باید تعویض شود.
    5.2.5.2 سیستم جدول لوله‌ای باید تابلو اطلاعات طراحی هیدرولیکی داشته باشد که روی آن نوشته شده باشد “سیستم جدول لوله‌ای.”
    5.2.6 ردیابی حرارتی. ردیابی حرارتی باید طبق الزامات سازنده بازرسی و نگهداری شود.

    5.2.7 تابلو اطلاعات. تابلو اطلاعات مورد نیاز در 4.1.9 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.8* تابلو اطلاعات عمومی. تابلو اطلاعات عمومی مورد نیاز در NFPA 13 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.9 تابلو اطلاعات ضدیخ. تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.3 آزمایش.
    5.3.1* اسپرینکلرها.
    5.3.1.1* در جایی که طبق این بخش نیاز باشد، نمونه اسپرینکلرها باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند.
    5.3.1.1.1 هرگاه اسپرینکلرها به مدت 50 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید آزمایش شوند.
    5.3.1.1.1.1 روش‌های آزمایش باید در فواصل 10 ساله تکرار شوند.
    5.3.1.1.1.2 اسپرینکلرهایی که پیش از سال 1920 ساخته شده‌اند باید تعویض شوند.
    5.3.1.1.1.3* اسپرینکلرهایی که با استفاده از عناصر واکنش سریع ساخته شده‌اند و به مدت 20 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.1.4* نمونه‌های نمایندگی از اسپرینکلرهای نوع لحیم با کلاس دمایی فوق‌العاده بالا [325°F (163°C)] یا بیشتر که در شرایط دمای محیطی حداکثر مجاز نیمه‌پی‌در‌پی تا پیوسته قرار دارند باید در فواصل 5 ساله آزمایش شوند.
    5.3.1.1.1.5 هرگاه اسپرینکلرها به مدت 75 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند و آزمایش‌ها در فواصل 5 ساله تکرار شوند.
    5.3.1.1.1.6* اسپرینکلرهای خشک که به مدت 15 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.2* اسپرینکلرهایی که در محیط‌های سخت قرار دارند، از جمله جو‌های خورنده، باید یکی از موارد زیر باشند:
    (1) تعویض شوند
    (2) آزمایش شوند از طریق نمونه‌های نمایندگی اسپرینکلر در فواصل 5 ساله
    5.3.1.1.3 اسپرینکلرهای مقاوم در برابر خوردگی فهرست‌شده که در محیط‌های سخت نصب شده‌اند باید مجاز باشند که در فواصل 10 ساله آزمایش شوند.
    5.3.1.1.4 در جایی که داده‌های تاریخی نشان دهند، فواصل طولانی‌تری بین آزمایش‌ها مجاز خواهد بود.
    5.3.1.2* نمونه نمایندگی از اسپرینکلرها برای آزمایش طبق 5.3.1.1 باید حداقل از چهار اسپرینکلر یا 1 درصد از تعداد اسپرینکلرها در هر نمونه فردی اسپرینکلر، هرکدام که بیشتر است، تشکیل شده باشد.

    5.3.1.3 هرگاه یکی از اسپرینکلرها در یک نمونه نمایندگی نتواند شرایط آزمایش را برآورده کند، تمام اسپرینکلرهای موجود در ناحیه‌ای که توسط آن نمونه نمایندگی می‌شود باید تعویض شوند.
    5.3.1.3.1 به تولیدکنندگان مجاز است که تغییراتی در اسپرینکلرهای خود در میدان با استفاده از دستگاه‌های فهرست‌شده انجام دهند که عملکرد اصلی را مطابق با لیست بازمی‌گرداند، در صورتی که برای مقام مسئول قابل قبول باشد.
    5.3.2 اسپرینکلرهای برقی.
    5.3.2.1 اسپرینکلرهای برقی باید طبق الزامات سازنده آزمایش شوند.
    5.3.2.2 آزمایش فعال‌سازی الکترونیکی و نظارت باید مطابق با الزامات سازنده و NFPA 72 یا کد هشدار آتش محلی باشد.
    5.3.3 دستگاه‌های هشدار آب.
    5.3.3.1 دستگاه‌های هشدار آب مکانیکی، از جمله اما نه محدود به زنگ‌های موتور آب، باید هر سه ماه یکبار آزمایش شوند.
    5.3.3.2* دستگاه‌های هشدار آب نوع وانی و نوع سوئیچ فشار باید هر شش ماه یکبار آزمایش شوند.
    5.3.3.3 آزمایش دستگاه‌های هشدار آب نوع سوئیچ فشار در سیستم‌های لوله‌های تر باید از طریق باز کردن اتصال آزمایش بازرسان انجام شود.
    5.3.3.3.1 در صورتی که شرایط یخبندان یا سایر شرایط استفاده از اتصال آزمایش بازرسان را منع کند، استفاده از اتصال بای‌پس مجاز خواهد بود.
    5.3.3.4 به جز در موارد مجاز در 5.3.3.4.1، آزمایش دستگاه‌های هشدار آب نوع وانی در سیستم‌های لوله‌های تر باید از طریق جریان آبی معادل جریان خارج از کوچکترین اسپرینکلر با عامل k (یا کوچک‌تر) از سوئیچ جریان انجام شود.
    5.3.3.4.1 یک دستگاه هشدار آب نوع وانی که با ویژگی تست خودکار یکپارچه فهرست‌شده باشد و قادر به تأیید وجود آب در محل دستگاه هشدار آب و عملکرد دستگاه هشدار آب و زنگ باشد، مجاز است که استفاده شود.
    5.3.3.4.2 دستگاه‌های هشدار آب نوع وانی که هر شش ماه یکبار با استفاده از آب گردش‌دهی یا طبق توضیحات 5.3.3.4.1 آزمایش می‌شوند، باید با باز کردن اتصال آزمایش بازرسان در حداقل یک بار هر 3 سال آزمایش شوند.
    5.3.3.5 پمپ‌های آتش‌نشانی نباید در طول آزمایش از سرویس خارج شوند، مگر اینکه دائماً توسط پرسنل واجد شرایط نظارت شوند یا تمام روش‌های اصلاحات در فصل 15 دنبال شوند.
    5.3.4* سیستم‌های ضدیخ. سالانه، قبل از آغاز شرایط یخبندان، محلول ضدیخ باید با استفاده از روش زیر آزمایش شود:
    (1) با استفاده از تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10، سوابق نصب، سوابق نگهداری، اطلاعات مالک، آزمایش‌های شیمیایی، یا سایر منابع معتبر اطلاعات، نوع ضدیخ در سیستم باید تعیین شود و در صورت لزوم یکی از موارد (الف) یا (ب) انجام شود:
    (الف) اگر مشخص شود که ضدیخ از نوعی است که دیگر مجاز نیست، سیستم باید کاملاً تخلیه شود و ضدیخ با محلول قابل قبول جایگزین شود.

    (ب) اگر نوع ضدیخ نتواند به‌طور قابل اعتمادی تعیین شود، سیستم باید کاملاً تخلیه شده و ضدیخ با محلول قابل قبول طبق 5.3.4.4 جایگزین شود.
    (2) اگر ضدیخ طبق 5.3.4(1)(الف) و 5.3.4(1)(ب) تعویض نشود، نمونه‌های آزمایش باید از بالای هر سیستم و از پایین هر سیستم به شرح زیر گرفته شوند:
    (الف) اگر دورترین بخش سیستم نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از دورترین بخش گرفته شود.
    (ب) اگر اتصال به لوله‌های تأمین آب نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از اتصال به لوله‌های تأمین آب گرفته شود.
    (3) گرانروی خاص هر محلول باید با استفاده از هیدرومتر با مقیاس مناسب یا رفراکتومتر با مقیاس کالیبره‌شده برای محلول ضدیخ بررسی شود.
    (4) اگر هر یک از نمونه‌ها غلظتی بیش از مقدار مجاز در 5.3.4.4 نشان دهد، سیستم باید تخلیه شده و دوباره با محلول جدید قابل قبول پر شود.
    (5) اگر غلظتی بیشتر از آنچه که در حال حاضر طبق 5.3.4.4 مجاز است برای جلوگیری از یخ‌زدگی مایع ضروری بوده باشد، روش‌های جایگزین برای جلوگیری از یخ‌زدگی لوله باید استفاده شود.
    5.3.4.1 محلول ضدیخ باید در دورترین نقطه خود و جایی که با سیستم لوله‌های تر ارتباط دارد آزمایش شود.
    5.3.4.2 در جایی که ظرفیت سیستم‌های ضدیخ بیشتر از 150 گالن (568 لیتر) باشد، آزمایش‌ها باید در یک نقطه اضافی برای هر 100 گالن (379 لیتر) انجام شود.
    5.3.4.2.1 اگر نتایج نشان‌دهنده نقطه انجماد اشتباه در هر نقطه از سیستم باشد، سیستم باید تخلیه شده و دوباره با ضدیخ جدید مخلوط‌شده پر شود.
    5.3.4.2.2 برای محلول‌های مخلوط‌شده، دستورالعمل‌های سازنده باید برای تعداد نقاط آزمایش و فرآیند پرکردن مجدد مجاز باشد.
    5.3.4.3 استفاده از محلول‌های ضدیخ باید مطابق با مقررات بهداشتی ایالتی و محلی باشد.
    5.3.4.3.1* لوله‌ها و اتصالات اسپرینکلر CPVC فهرست‌شده باید فقط با گلیسرین از یخ‌زدگی محافظت شوند.
    5.3.4.3.1.1 استفاده از دی‌اتیلن، اتیلن یا پروپیلن گلیکول‌ها به‌طور خاص ممنوع است.
    5.3.4.4 به جز در موارد مجاز در 5.3.4.4.1 و 5.3.4.4.3، تمامی سیستم‌های ضدیخ باید از محلول‌های ضدیخ فهرست‌شده استفاده کنند.
    5.3.4.4.1* برای سیستم‌های نصب‌شده قبل از 30 سپتامبر 2012، محلول‌های ضدیخ فهرست‌شده تا 30 سپتامبر 2022 مورد نیاز نخواهند بود، مشروط بر اینکه یکی از شرایط زیر برقرار باشد:
    (1) * غلظت محلول ضدیخ باید محدود به 30 درصد پروپیلن گلیکول به‌صورت حجمی یا 38 درصد گلیسرین به‌صورت حجمی باشد.
    (2) * سیستم‌های ضدیخ با غلظت‌های بیش از 30 درصد اما نه بیشتر از 40 درصد پروپیلن گلیکول به‌صورت حجمی و 38 درصد اما نه بیشتر از 50 درصد گلیسرین به‌صورت حجمی مجاز خواهند بود، بر اساس ارزیابی ریسک قطعی تایید‌شده که توسط یک شخص واجد شرایط تایید‌شده توسط مقام مسئول تهیه شده است.

    5.3.4.4.2 محلول‌های جدیدی که معرفی می‌شوند باید محلول‌های ضدیخ از نوع مخلوط‌شده در کارخانه (شیمیایی خالص یا 96.5 درصد مطابق با داروشناسی ایالات متحده) باشند.
    5.3.4.4.3 محلول‌های ضدیخ مخلوط‌شده از پروپیلن گلیکول که غلظتی بیش از 30 درصد به‌صورت حجمی دارند، برای استفاده با اسپرینکلرهای ESFR مجاز هستند، مشروط بر اینکه اسپرینکلرهای ESFR برای چنین استفاده‌ای در یک کاربرد خاص فهرست‌شده باشند.
    5.4 نگهداری.
    5.4.1 اسپرینکلرها.
    5.4.1.1 در صورتی که یک اسپرینکلر به هر دلیلی برداشته شود، نباید دوباره نصب شود.
    5.4.1.2* اسپرینکلرهای تعویضی باید ویژگی‌های مناسب برای کاربرد مورد نظر را داشته باشند که شامل موارد زیر است:
    (1) نوع
    (2) اندازه سوراخ و ضریب K
    (3) درجه حرارت
    (4) پوشش، در صورت وجود
    (5) نوع دفییکتور (مثلاً ایستاده، آویز، دیواری)
    (6) الزامات طراحی
    5.4.1.2.1* اسپرینکلرهای پاششی مجاز هستند تا اسپرینکلرهای قدیمی را تعویض کنند.
    5.4.1.2.2* در صورتی که اسپرینکلرهای مسکونی که قبل از سال 2003 تولید شده و دیگر از سوی سازنده در دسترس نیستند، و طراحی چگالی آنها کمتر از 0.05 گالن در دقیقه در هر فوت مربع (204 میلی‌متر در دقیقه) باشد، می‌توان از اسپرینکلر مسکونی با ضریب K معادل (± 5 درصد) استفاده کرد، مشروط بر اینکه ناحیه پوششفعلی برای اسپرینکلر تعویضی تجاوز نشود.
    5.4.1.2.3 اسپرینکلرهای تعویضی برای اسکله‌ها و دکل‌ها باید با استاندارد NFPA 307 مطابقت داشته باشند.
    5.4.1.3 فقط از اسپرینکلرهای جدید و فهرست‌شده برای تعویض اسپرینکلرهای موجود استفاده شود.
    5.4.1.4* اسپرینکلرهای ویژه و سریع‌العمل تعریف‌شده توسط NFPA 13 باید با اسپرینکلرهایی با همان اندازه سوراخ، دامنه دما، ویژگی‌های واکنش حرارتی و ضریبK تعویض شوند.
    5.4.1.5* حداقل شش اسپرینکلر یدکی باید در محل نگهداری شود تا هر اسپرینکلری که عمل کرده یا به‌گونه‌ای آسیب دیده باشد، به‌سرعت تعویض شود.
    5.4.1.5.1 اسپرینکلرها باید با انواع و درجه حرارت‌های اسپرینکلرهای موجود در ملک همخوانی داشته باشند.
    5.4.1.5.2 موجودی اسپرینکلرهای یدکی باید در کابینتی نگهداری شود که دمای آن در هیچ زمانی از حداکثر دمای سقف‌های مشخص‌شده در جدول 5.4.1.5.2 برای هر یک از اسپرینکلرهای داخل کابینت تجاوز نکند.
    5.4.1.5.3 در صورتی که اسپرینکلرهای خشک با طول‌های مختلف نصب شده باشند، نیازی به نگهداری اسپرینکلرهای خشک یدکی نیست، مشروط بر اینکه راهی برای بازگشت سیستم به حالت عملیاتی فراهم شود.

    5.4.1.5.4 موجودی اسپرینکلرهای یدکی باید شامل تمام انواع و درجه‌های اسپرینکلر نصب‌شده باشد و به شرح زیر باشد:
    (1) برای تاسیسات محافظت‌شده با کمتر از 300 اسپرینکلر حداقل 6 اسپرینکلر
    (2) برای تاسیسات محافظت‌شده با 300 تا 1000 اسپرینکلر حداقل 12 اسپرینکلر
    (3) برای تاسیسات محافظت‌شده با بیش از 1000 اسپرینکلر حداقل 24 اسپرینکلر
    5.4.1.5.5* یک آچار اسپرینکلر مطابق با مشخصات سازنده اسپرینکلر باید برای هر نوع اسپرینکلر نصب‌شده در کابینت قرار داده شود تا برای برداشتن و نصب اسپرینکلرها در سیستم استفاده شود.
    5.4.1.5.6 فهرستی از اسپرینکلرهای نصب‌شده در ملک باید در کابینت اسپرینکلر نصب شود.
    5.4.1.5.6.1* این فهرست باید شامل موارد زیر باشد:
    (1) شماره شناسایی اسپرینکلر (SIN) در صورت وجود؛ یا سازنده، مدل، سوراخ، نوع دفییکتور، حساسیت حرارتی و درجه فشار
    (2) شرح کلی
    (3) تعداد هر نوع که باید در کابینت نگهداری شود
    (4) تاریخ انتشار یا اصلاح فهرست
    5.4.1.6* اسپرینکلرها نباید به هیچ‌وجه تغییر داده شوند یا هیچ‌گونه زینت، رنگ یا پوشش پس از ارسال از کارخانه تولید اعمال شود.
    5.4.1.7 اسپرینکلرها و نازل‌های اسپری خودکار مورد استفاده برای حفاظت از تجهیزات آشپزی تجاری و سیستم‌های تهویه باید سالانه تعویض شوند.
    5.4.1.7.1 در صورتی که اسپرینکلرهای نوع لامپ خودکار یا نازل‌های اسپری استفاده شوند و در بررسی سالانه هیچ تجمع چربی یا مواد دیگر روی اسپرینکلرها یا نازل‌ها مشاهده نشود، این اسپرینکلرها و نازل‌ها نیازی به تعویض نخواهند داشت.
    N 5.4.1.8 اسپرینکلرهای الکتریکی باید مطابق با الزامات سازنده نگهداری شوند.
    5.4.1.9 پوشش‌های حفاظتی.
    5.4.1.9.1* اسپرینکلرهایی که مناطق اسپری و اتاق‌های میکس را در نواحی کاربرد رزین محافظت می‌کنند و با پوشش‌های حفاظتی نصب شده‌اند، باید همچنان از باقی‌مانده‌های پاشش محافظت شوند تا در صورت بروز آتش‌سوزی، به درستی عمل کنند.

    5.4.1.9.2 اسپرینکلرهایی که همانطور که در 5.4.1.9.1 توضیح داده شده نصب شده‌اند، باید با کیسه‌های سلوفانی با ضخامت 0.003 اینچ (0.076 میلی‌متر) یا کمتر یا کیسه‌های کاغذی نازک محافظت شوند.
    5.4.1.9.3 پوشش‌ها باید به صورت دوره‌ای تعویض شوند تا از تجمع رسوبات سنگین جلوگیری شود.
    5.4.2* سیستم‌های لوله خشک. سیستم‌های لوله خشک باید در تمام اوقات خشک نگه داشته شوند.
    5.4.2.1 در طول هوای غیر یخ‌زدگی، سیستم لوله خشک می‌تواند مرطوب بماند، در صورتی که تنها گزینه دیگر خارج کردن سیستم از سرویس باشد تا زمانی که قطعات مورد نیاز یا در حین فعالیت‌های تعمیراتی برسد.
    5.4.2.2 فضاهای یخچالی یا سایر نواحی داخل ساختمان که دما در آن‌ها در 40°F (4°C) یا کمتر نگه داشته می‌شود، نباید اجازه داده شود که مرطوب بمانند.
    5.4.2.3 خشک‌کن‌های هوا باید مطابق با دستورالعمل‌های سازنده نگهداری شوند.
    5.4.2.4 کمپرسورهایی که در ارتباط با سیستم‌های آبیاری لوله خشک استفاده می‌شوند، باید با توجه به دستورالعمل‌های سازنده و همچنین فصل 13 بازرسی، تست و نگهداری شوند.
    5.4.3* سیستم‌های دریایی. سیستم‌های آبیاری که معمولاً با استفاده از آب شیرین به عنوان منبع نگهداری می‌شوند، باید پس از ورود آب خام به سیستم، تخلیه و دوباره با آب شیرین پر شوند، سپس دوباره تخلیه و با آب شیرین پر شوند.
    5.5 الزامات عملکرد اجزا.
    5.5.1 هرگاه یک جزء از سیستم آبیاری تنظیم، تعمیر، بازسازی یا تعویض شود، اقدامات لازم طبق جدول 5.5.1 باید انجام شود.
    5.5.2 در صورتی که استاندارد نصب اصلی با استاندارد ذکر شده متفاوت باشد، استفاده از استاندارد نصب مناسب مجاز است.
    5.5.3 این اقدامات نیازی به بررسی طراحی ندارند که خارج از محدوده این استاندارد است.