راهنمای نصب بیم دتکتور Thefirebeam

the fire beam blue linear app controlled beam detector

WhatsApp Image 2025 09 14 at 8.43.22 AM2WhatsApp Image 2025 09 14 at 8.43.25 AMWhatsApp Image 2025 09 14 at 8.43.25 AM1WhatsApp Image 2025 09 14 at 8.43.26 AMWhatsApp Image 2025 09 14 at 8.43.26 AM1WhatsApp Image 2025 09 14 at 8.43.27 AMWhatsApp Image 2025 09 14 at 8.43.27 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM WhatsApp Image 2025 09 14 at 8.43.28 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM2 WhatsApp Image 2025 09 14 at 8.43.29 AM WhatsApp Image 2025 09 14 at 8.43.29 AM2 WhatsApp Image 2025 09 14 at 8.43.30 AM WhatsApp Image 2025 09 14 at 8.43.30 AM1 WhatsApp Image 2025 09 14 at 8.43.30 AM2 WhatsApp Image 2025 09 14 at 8.43.31 AM WhatsApp Image 2025 09 14 at 8.43.31 AM1 WhatsApp Image 2025 09 14 at 8.43.32 AM

مشخصات فنی

مشخصات الکتریکی:
ولتاژ تغذیه: 10.2 تا 40 ولت DC
جریان مصرفی: 3 میلی‌آمپر (جریان ثابت) در تمام حالات عملیاتی

مشخصات محیطی:
دمـا: 10- درجه سانتی‌گراد تا 55+ درجه سانتی‌گراد
رطوبت: 10 تا 95٪ RH بدون میعان
شاخص حفاظتی: IP65 در صورت نصب و ترمینال‌گذاری مناسب

مشخصات مکانیکی:
هد بیم: 180 میلی‌متر ارتفاع × 155 میلی‌متر عرض × 137 میلی‌متر عمق
وزن: 1.1 کیلوگرم
کنترلر: 185 میلی‌متر ارتفاع × 120 میلی‌متر عرض × 62 میلی‌متر عمق
وزن: 0.55 کیلوگرم
رفلکتور میان‌برد 40KIT80: 293 میلی‌متر ارتفاع × 293 میلی‌متر عرض × 5 میلی‌متر عمق
وزن: 0.8 کیلوگرم
رفلکتور بلندبرد 80KIT100: 394 میلی‌متر ارتفاع × 394 میلی‌متر عرض × 5 میلی‌متر عمق
وزن: 1.8 کیلوگرم
آداپتور: 270 میلی‌متر ارتفاع × 250 میلی‌متر عرض × 5 میلی‌متر عمق
وزن: 0.6 کیلوگرم (برای نصب هد بیم روی یونی‌استرات)

مشخصات اپتیکی:
طول موج اپتیکی: 870 نانومتر
حداکثر تراز زاویه‌ای: ±15 درجه
حداکثر انحراف زاویه‌ای (استاتیک بدون تراز خودکار):
هد بیم ±0.75 درجه – رفلکتور ±2 درجه

مشخصات عملیاتی:
محدوده حفاظتی:
FIREBEAM: محصول استاندارد 5 تا 40 متر
40KIT80: کیت رفلکتور میان‌برد 40 تا 80 متر
80KIT100: کیت رفلکتور بلندبرد 80 تا 100 متر

سطوح حساسیت آلارم:
25٪ (1.25dB) تا 50٪ (3dB) با افزایش 1٪ (0.05dB)
(پیش‌فرض 35٪ (1.87dB))

شرایط آلارم:
کاهش عبور نور به کمتر از سطح حساسیت از پیش تعیین‌شده
زمان رسیدن به شرایط آلارم قابل تنظیم 2 تا 30 ثانیه با افزایش 1 ثانیه
(پیش‌فرض 10 ثانیه)

نمایش آلارم:
وضعیت کنترلر – FIRE
LED قرمز چشمک‌زن کنترلر هر 0.5 ثانیه
LED قرمز چشمک‌زن هد هر 1 ثانیه
کنتاکت رله آلارم CO با ظرفیت 2 آمپر @ 30 ولت DC

ویژگی‌های تست/ریست:
عملکرد تست بیم توسط کنترلر
انتخاب حالت آلارم ماندگار/ریست خودکار (پیش‌فرض ریست خودکار)
ریست آلارم در حالت ماندگار با ریست کنترلر، قطع تغذیه برای بیش از 5 ثانیه، اعمال 12 تا 24 ولت DC به ورودی ریست در هد بیم

سطح حساسیت خطا:
90٪

شرایط خطا:
کاهش عبور نور به کمتر از سطح حساسیت خطا در کمتر از 1 ثانیه
قطع تغذیه یا ولتاژ ورودی کمتر از 9 ولت DC
حالت‌های راه‌اندازی اولیه، پیش‌تراز و تراز خودکار
خاموش شدن بیم در طول تعمیر و نگهداری (بازگشت خودکار پس از 8 ساعت به حالت عادی)
زمان رسیدن به شرایط خطا قابل تنظیم 2 تا 60 ثانیه با افزایش 1 ثانیه (پیش‌فرض 10 ثانیه)

نمایش خطا:
وضعیت کنترلر – FAULT
LED زرد چشمک‌زن کنترلر هر 1 ثانیه
LED زرد چشمک‌زن هد هر 1 ثانیه
کنتاکت رله خطا CO با ظرفیت 2 آمپر @ 30 ولت DC

شرایط عادی:
سطح عبور نور بالاتر از سطح حساسیت آلارم
وضعیت کنترلر – NORMAL
LED سبز چشمک‌زن کنترلر هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)
LED سبز چشمک‌زن هد هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)

تراز خودکار/جبران آلودگی بیم:
تراز خودکار در حین عملکرد عادی در صورت کاهش عبور نور به کمتر از 90٪ (بدون تأثیر بر حالت کاری عادی)
جبران آلودگی بیم با مانیتورینگ 4 ساعته. داده‌های جبران در کنترلر در دسترس است.

 

نوشته‌های مشابه

  • استفاده از موئین یا کاپیلاری در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    لوله موئین، یک قطعه لوله انعطاف‌پذیر است که به لوله اصلی نمونه‌برداری متصل می‌شود و در انتهای آن یک سوراخ نمونه‌برداری قرار دارد. هدف از استفاده از این لوله‌ها، گسترش ناحیه نمونه‌برداری به دور از شبکه اصلی لوله‌ها است.

    از لوله‌های موئین زمانی استفاده می‌شود که نمونه‌برداری از یک فضای بسته مانند یک کابینت یا سقف کاذب انجام می‌شود، یا در مواردی که به دلایل ظاهری یا امنیتی ضروری است. این روش، شبکه اصلی لوله‌کشی را پنهان می‌کند و تنها یک نقطه کوچک نمونه‌برداری در فضا باقی می‌گذارد. شکل ۵در زیر، لوله موئینی را نشان می‌دهد که از لوله اصلی نمونه‌برداری به پایین امتداد یافته و سوراخ نمونه‌برداری در محل مورد نظر قرار دارد.

    نرم‌افزار طراحی، افزودن لوله‌های موئین و نقاط نمونه‌برداری به طراحی شبکه لوله را پشتیبانی می‌کند و جریان هوای مناسب در سیستم را محاسبه می‌نماید. حداکثر طول معمول برای لوله‌های انعطاف‌پذیر موئین ۸ متر (۲۶فوت) است، اما این مقدار می‌تواند بسته به محاسبات نرم‌افزار طراحی متغیر باشد. زمانی که چندین لوله موئین در یک شبکه استفاده می‌شود، طول هر یک از آن‌ها باید تقریباً برابر باشد تا تعادل سیستم حفظ شود.

    توجه ۱: توصیه می‌شود از اجرای طولانی لوله‌هایی که هم دارای سوراخ‌های نمونه‌برداری استاندارد و هم نقاط نمونه‌برداری موئین هستند، خودداری شود، زیرا این امر می‌تواند جریان هوا را نامتعادل کرده و زمان پاسخ‌دهی نقاط موئین را کاهش دهد.

    IMG 1300 IMG 1301 IMG 1302

    سوراخ‌های نمونه‌برداری
    سوراخ‌های نمونه‌برداری می‌توانند مستقیماً روی لوله، روی یک درپوش انتهایی، یا در یک نقطه نمونه‌برداری در انتهای لوله موئین قرار گیرند. مهم‌ترین عامل، سوراخ‌کاری صحیح با قطری مطابق با مشخصات تعیین‌شده توسط نرم‌افزار طراحی است.

    سوراخ‌های نمونه‌برداری باید پس از نصب شبکه لوله‌کشی ایجاد شوند. برای جلوگیری از مسدود شدن سوراخ‌ها توسط گرد و غبار و آلودگی، سوراخ‌ها باید در قسمت زیرین لوله‌های نمونه‌برداری و نه در بالای آن‌ها ایجاد شوند. این کار از ورود ذرات افتاده به درون سوراخ‌ها جلوگیری می‌کند. دستورالعمل‌های زیر هنگام سوراخ‌کاری لوله‌ها باید رعایت شود:

    سوراخ‌ها باید به صورت عمود (۹۰ درجه) بر لوله ایجاد شوند. اگر مته به صورت عمود نگه داشته نشود، سوراخ به شکل دایره‌ای کامل نخواهد بود و ممکن است بر جریان هوا تأثیر بگذارد.
    سوراخ‌ها باید دقیقاً در مکان‌هایی که نرم‌افزار طراحی مشخص کرده است، ایجاد شوند.
    سوراخ‌ها باید دقیقاً با اندازه تعیین‌شده توسط نرم‌افزار طراحی ایجاد شوند.
    سوراخ‌ها نباید به صورت دوطرفه (از هر دو سمت لوله) سوراخ شوند.
    سوراخ‌کاری باید با مته‌ای تیز و با سرعت کم انجام شود. این کار خطر ایجاد پلیسه و همچنین احتمال ورود گرد و غبار و براده به داخل لوله را کاهش می‌دهد.
    پس از سوراخ‌کاری تمام سوراخ‌ها، بهتر است با دمیدن هوای فشرده داخل لوله، هرگونه گرد و غبار یا آلودگی را از لوله پاکسازی کرد. همچنین می‌توان با باز کردن درپوش انتهایی و استفاده از جاروبرقی صنعتی، ذرات را از سمت اتصال لوله به آشکارساز بیرون کشید.
    نکته بسیار مهم: پیش از دمیدن هوای فشرده یا اتصال جاروبرقی صنعتی به شبکه لوله، باید لوله نمونه‌برداری را از آشکارساز جدا کرد، چراکه ورود ذرات ریز به محفظه سنجش ممکن است به قطعات داخلی آسیب برساند.

    IMG 1303

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

    چکیده

    دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

     

    ۱. مقدمه

    دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

     

    ۲. اصول عملکرد طول‌موج دوگانه

    WhatsApp Image 2025 09 27 at 11.52.20 PM

    OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

    • UV: تأثیرگذار بر ذرات ریز و درشت
    • IR: عمدتاً حساس به ذرات بزرگ‌تر

    این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

     

    ۳. اصطلاحات کلیدی

    • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
    • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
    • خطای ورود جسم: انسداد ناگهانی شدید
    • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
    • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

     

    ۴. خطاهای رایج در سیستم OSID

    • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
    • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
    • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

     

    ۵. استقرار ایمن در محیط‌های دشوار

    ۵.۱ محیط‌های پرگرد‌و‌غبار

    • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
    • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

    ۵.۲ محیط‌های مرطوب

    WhatsApp Image 2025 09 27 at 11.52.21 PM

    • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM1
    • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM2
    • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

    WhatsApp Image 2025 09 27 at 11.52.22 PM

    ۶. تجهیزات محافظتی

    WhatsApp Image 2025 09 27 at 11.52.22 PM1

    • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
    • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
    • WhatsApp Image 2025 09 27 at 11.52.23 PM
    • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
    • WhatsApp Image 2025 09 27 at 11.52.23 PM1
    • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

    WhatsApp Image 2025 09 27 at 11.52.24 PM

     

    ۷. آلارم‌های کاذب استثنایی

    با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

    WhatsApp Image 2025 09 27 at 11.52.24 PM1

    ۸. جمع‌بندی و توصیه‌ها

    • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
    • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
    • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
    • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.

     

  • انتخاب دتکتورهای گاز

    ۸-۱. انتخاب دتکتور گاز

    تشخیص گاز می‌تواند بر اساس چند اصل مختلف انجام شود. انتخاب اصل تشخیص صحیح برای نوع گاز هدف، محیط و هدف مورد نظر ضروری است.

     

    ۱. چه گازی باید اندازه‌گیری شود؟

    گاز قابل اشتعال (برای جلوگیری از انفجار)

    پنج روش تشخیص اصلی به شرح زیر استفاده می‌شوند: روش احتراق کاتالیستی، روش سرامیک کاتالیستی جدید، روش نیمه‌رسانا، روش مادون قرمز غیرپاشنده و روش تداخلسنج.

    دتکتورهای احتراق کاتالیستی معمولاً در محدوده %LEL استفاده می‌شوند. دتکتورهای سرامیک کاتالیستی جدید معمولاً برای تشخیص در محدوده ۱۰۰۰۰ تا چند هزار ppm استفاده می‌شوند. دتکتورهای نیمه‌رسانا برای اندازه‌گیری در محدوده چند هزار تا چند ده ppm استفاده می‌شوند.

    دتکتورهای گاز قابل اشتعال مادون قرمز غیرپاشنده و تداخلسنج معمولاً گاز را در غلظت‌های %LEL و %vol اندازه‌گیری می‌کنند. دتکتورهای مادون قرمز غیرپاشنده و تداخلسنج، دتکتورهای فیزیکی هستند که واکنش شیمیایی ندارند. آن‌ها امکان تشخیص گاز را حتی در حضور موادی (مانند هالیدها، سولفیدها و سیلیکون) که دتکتورهای احتراق کاتالیستی و نیمه‌رسانا را مسموم می‌کنند، فراهم می‌سازند.

     

    گاز سمی (برای جلوگیری از مسمومیت)

    گازهای سمی معمولاً به دتکتورهای با حساسیت بالا نیاز دارند که قادر به تشخیص غلظت‌های در محدوده چند صد ppm تا چند ppb باشند.

    روش‌های تشخیص شامل روش نیمه‌رسانا، روش الکترولیز پتانسیواستاتیک، روش تشخیص ذرات پیرولیز، روش نوار شیمیایی و روش PID است. اصل تشخیص معمولاً بر اساس محدوده‌ای انتخاب می‌شود که امکان تشخیص در نقاط تنظیم هشدار یا مقادیر حد آستانه را فراهم کند.

    دتکتورهای نیمه‌رسانا گاز را در غلظت‌های حدود چند ده ppm تا چند هزار ppm تشخیص می‌دهند. دتکتورهای الکترولیز پتانسیواستاتیک گاز را در غلظت‌های حدود چند ده ppm تا چند ده ppb تشخیص می‌دهند. دتکتورهای تشخیص ذرات پیرولیز بر اساس اصل حسگری طراحی شده‌اند که به‌طور خاص برای تشخیص ترکیبات فلزی آلی در گازهای مواد نیمه‌رسانا مانند TEOS استفاده می‌شود.

    (تترااتوکسی سیلان). دتکتورهای گاز با نوار شیمیایی مزیت تشخیص گاز در غلظت‌های فوق‌العاده پایین در حد چند ppb را ارائه می‌دهند. این دتکتورها حداقل تأثیرپذیری را از گازهای مزاحم دارند و بنابراین برای استفاده در محیط‌هایی که سایر انواع دتکتورها دچار اختلال می‌شوند، ایده‌آل هستند.

     

    اکسیژن (برای جلوگیری از کم‌اکسیژنی و اکسیژن اضافی)

    دو اصل برای تشخیص اکسیژن استفاده می‌شود: روش سلول گالوانیکی غشایی و روش الکترولیز پتانسیواستاتیک. دتکتورهای سلول گالوانیکی غشایی پرکاربردترین نوع هستند که به دلیل پایداری بلندمدت و مقاومت در برابر تداخل مورد استفاده قرار می‌گیرند. با این حال، این دتکتورها به دلیل استفاده از سرب (Pb) احتمالاً در آینده تحت مقررات RoHS قرار خواهند گرفت. (در حال حاضر معاف هستند.) مجموعه‌ای از دتکتورهای الکترولیز پتانسیواستاتیک بدون سرب با توجه به روندهای قانونی در حال ظهور هستند.

     

    ۲. نوع ثابت یا قابل حمل؟

    اگر دتکتورها توسط کارگران حمل یا پوشیده می‌شوند، دتکتورهای گاز قابل حمل را انتخاب کنید. برای نظارت بر نشت گاز در یک مکان ثابت، دتکتورهای گاز ثابت را انتخاب نمایید.

     

    ۳. نوع انتشار یا مکشی؟

    دتکتورهای گاز عموماً بر اساس روش تشخیص به دو نوع تقسیم می‌شوند: نوع انتشار و نوع مکشی. دتکتورهای گاز نوع مکشی دارای یک پمپ داخلی هستند که گاز را از نقاط احتمالی نشت (مثلاً روی خطوط یا داخل محفظه‌ها) به سمت دتکتور می‌کشند. دتکتورهای گاز نوع انتشار، دتکتورهای غیرفعالی هستند که گازهای شناور در محیط را هنگام رسیدن به دتکتور تشخیص می‌دهند.

     

    ۴. تشخیص چندگانه یا تک‌گاز؟

    علاوه بر دتکتورهای گاز قابل حمل که یک جزء گازی را تشخیص می‌دهند، دتکتورهایی وجود دارند که می‌توانند چندین گاز را به طور همزمان تشخیص دهند. ترکیب پایه‌ای گازها در دتکتورهای چندگانه معمولاً شامل چهار جزء است: گاز قابل اشتعال، گاز سمی (H2S یا CO) و اکسیژن. بسته به محصول خاص، دتکتورهای

  • تاندا (TANDA)؛ پیشرو در تولید سیستم‌های اعلام حریق معرفی شرکت تاندا

    تاندا یک شرکت پیشرو در زمینه حفاظت از حریق است که در ارائه محصولات و راهکارهای جامع تخصص دارد. این شرکت با مأموریت حفاظت از جان و اموال تأسیس شده و متعهد به ارائه فناوری‌های نوآورانه و راهکارهای سفارشی برای پاسخگویی به نیازهای منحصربه‌فرد مشتریان خود در صنایع مختلف در سراسر جهان است.

    تاریخچه گسترده تاندا؛ روایتی از پیشرفت و نوآوری

    تاندا، شرکتی که با هدف ایجاد تحولی اساسی در صنعت حفاظت از حریق تأسیس شد، امروزه به یکی از رهبران جهانی این حوزه تبدیل شده است. این شرکت در طول سال‌ها توانسته است با ارائه راهکارهای نوآورانه و قابل‌اعتماد، جایگاهی ویژه در بازار به دست آورد. تعهد همیشگی به کیفیت و بهبود مستمر، نقش مهمی در موفقیت‌های آن داشته و باعث شده است که بتواند نیازهای در حال تغییر مشتریان خود را برآورده کرده و در خط مقدم فناوری ایمنی حریق باقی بماند.

    در وب‌سایت رسمی این شرکت، بخشی به انتشار اخبار و گزارش‌هایی درباره سالگردها، نوآوری‌های کلیدی، پروژه‌های مهم و مقالاتی پیرامون تاریخچه تاندا اختصاص داده شده است. این منابع اطلاعاتی، نگاهی جامع به مسیر رشد و دستاوردهای این برند ارائه می‌دهند.

    روایت‌هایی از تاریخچه تاندا

    یکی از نقاط عطف مهم در تاریخ این شرکت، سال ۲۰۱۵ است. در این سال، تاندا فعالیت‌های خود را به سطح بین‌المللی گسترش داد و با ایجاد شراکت‌های استراتژیک، موفق شد محصولات و راهکارهای پیشرفته حفاظت از حریق را به بازارهای جهانی معرفی کند. این توسعه، به تثبیت حضور این برند در مناطقی مانند خاورمیانه، آفریقا، جنوب آسیا، جنوب شرق آسیا و آمریکای جنوبی منجر شد.

    در طول این مسیر، دستاوردهای مهمی رقم خورده است. برای علاقه‌مندان به صنعت حفاظت از حریق، مطالعه تاریخچه این برند می‌تواند اطلاعات ارزشمندی درباره پیشرفت‌های آن و تأثیرگذاری‌اش در سطح بین‌المللی ارائه دهد. امکان مرور داستان‌های برجسته و استفاده از فیلترهای موضوعی در منابع منتشرشده، فرصتی برای آشنایی عمیق‌تر با مسیر رشد و نوآوری‌های این برند فراهم می‌کند.

    بررسی استانداردها و گواهینامه‌های TANDA

    شرکت TANDA موفق به دریافت چندین گواهینامه و استاندارد معتبر جهانی شده است که نشان‌دهنده کیفیت و ایمنی بالای محصولات این شرکت در صنعت اعلام حریق است. استانداردهای اخذ شده توسط TANDA شامل EN54، UL، LPCB و CE هستند. در ادامه، توضیح مختصری درباره هر یک از این استانداردها ارائه شده است:

    1. استاندارد EN54

    منطقه: اروپا
    توضیح: این استاندارد توسط کمیته استانداردسازی اروپا (CEN)تدوین شده و یکی از مهم‌ترین استانداردهای مرتبط با سیستم‌های اعلام حریق در اتحادیه اروپا است. EN54 شامل مجموعه‌ای از بخش‌ها است که هر کدام به عملکرد تجهیزات مختلف مانند دتکتورها، آژیرها، کنترل پنل‌ها و سایر اجزای سیستم اعلام حریق می‌پردازد. این استاندارد اطمینان حاصل می‌کند که تجهیزات اعلام حریق عملکردی دقیق و قابل‌اعتماد دارند.

    2. گواهینامه UL (Underwriters Laboratories)

    منطقه: ایالات متحده آمریکا
    توضیح: UL یک سازمان مستقل در آمریکا است که محصولات را از نظر ایمنی و کیفیت ارزیابی و تأیید می‌کند. تجهیزات اعلام حریق که موفق به اخذ گواهینامه UL می‌شوند، تحت آزمایش‌های سخت‌گیرانه‌ای قرار می‌گیرند تا از عملکرد ایمن و استاندارد آن‌ها اطمینان حاصل شود. دریافت این گواهینامه نشان می‌دهد که محصولات TANDA از استانداردهای بین‌المللی ایمنی و کیفیت پیروی می‌کنند.

    3. گواهینامه LPCB (Loss Prevention Certification Board)

    منطقه: بریتانیا
    توضیح: LPCB یک نهاد گواهی‌دهنده در بریتانیا است که محصولات مرتبط با ایمنی و آتش‌نشانی را مورد آزمایش و تأیید قرار می‌دهد. داشتن این گواهینامه نشان‌دهنده کیفیت بالا، عملکرد قابل‌اعتماد و تطابق محصولات TANDA با استانداردهای سخت‌گیرانه ایمنی است.

    4. نشان CE (Conformité Européenne)

    منطقه: اتحادیه اروپا
    توضیح: نشان CE تأیید می‌کند که محصولات تولیدی یک شرکت با مقررات سلامت، ایمنی و محیط‌زیست اتحادیه اروپا سازگار هستند. این گواهینامه به TANDA اجازه می‌دهد تا محصولات خود را به‌طور قانونی در بازارهای اروپایی عرضه کند. دریافت نشان CE نشان‌دهنده این است که محصولات TANDA از استانداردهای لازم برای عرضه در اروپا برخوردارند.

    انواع محصولات شرکت تاندا

    TANDA طیف گسترده‌ای از محصولات اعلام حریق را تولید می‌کند که شامل موارد زیر است

    : دتکتورهای دود، حرارت، گاز و شعله

    کنترل پنل‌های هوشمند اعلام حریق

    آژیرها و فلاشرهای هشداردهنده

    بیم دتکتورها برای نظارت بر فضاهای وسیع

    تجهیزات جانبی سیستم‌های اعلام حریق

    بیم دتکتور TANDA و کاربرد آن

    بیم دتکتور یکی از محصولات کلیدی در سیستم‌های اعلام حریق TANDA است. این دستگاه با استفاده از پرتوهای مادون قرمز، وجود دود را در محیط تشخیص می‌دهد. بیم دتکتورها برای فضاهای بزرگ مانند انبارها، سالن‌های ورزشی و مراکز خرید ایده‌آل هستند. انواع بیم دتکتور شامل:

    1. بیم دتکتور انعکاسی (Reflective Beam Detector): دارای فرستنده و گیرنده در یک سمت و بازتاب‌دهنده در سمت مقابل.
    2. بیم دتکتور فرستنده-گیرنده‌ای (End-to-End Beam Detector): شامل فرستنده و گیرنده مجزا در دو طرف مقابل یکدیگر.

    موارد استفاده و نمونه پروژه‌های اجرا شده با تجهیزات TANDA

    بسیاری از ساختمان‌های اداری، بیمارستان‌ها، انبارها و مراکز خرید از سیستم‌های اعلام حریق TANDA بهره می‌برند. این شرکت در کشورهای مختلفی حضور دارد و تجهیزات آن در پروژه‌های متعددی اجرا شده‌اند.

  • دستورالعمل نصب دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

    دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.33 PM

    دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

    دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

    عملکرد

    حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

    ملاحظات طراحی

    طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

    * NFPA-72، کد ملی اعلام حریق

    * NEC 760، کد ملی برق

    * هرگونه الزامات محلی نصب

    * الزامات مرجع قانونی ذی‌صلاح (AHJ)

    ۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

    ۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

    ۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

    ۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
    ۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

    سیم‌کشی مدار تحریک

    دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.34 PM

    • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
      ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
    • WhatsApp Image 2025 09 15 at 4.12.34 PM1
    • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

    WhatsApp Image 2025 09 15 at 4.12.35 PM

    . دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
    ۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
    ۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

    WhatsApp Image 2025 09 15 at 4.12.35 PM1

    نصب کابل دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

    WhatsApp Image 2025 09 15 at 4.12.35 PM2

    ⚠️ هشدار
    در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

    هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
    اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

    ۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

    ۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

    ۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

    WhatsApp Image 2025 09 15 at 4.12.36 PM

    . کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

    ۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

    WhatsApp Image 2025 09 15 at 4.12.36 PM1

    . انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

    ۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

    ۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

    WhatsApp Image 2025 09 15 at 4.12.37 PM

    . بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

    ⚠️ هشدار
    هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

    ۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

    اتصال کابل دتکتور (SENSOR CABLE SPLICING)

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
    به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

    روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
    روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

    ۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

    • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
    • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
    • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

    اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

    ۲. استفاده از جعبه تقسیم:
    هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

    💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
    در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

    در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

    مراحل اتصال درون‌خطی:

    ۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

    ۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

    ۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

    ۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    ۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    🧪تست عملکردی (TESTING):

    تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

    مراحل تست:

    ۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

    ۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

    ۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

    نگهداری
    کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

    🔧 آسیب به کابل دتکتور:
    در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
    برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

    • بررسی چشمی
    • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
    • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
      در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
      حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

    🔥 پس از وقوع آتش‌سوزی:
    از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
    اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.