راهنمای طراحی دتکتور دودی مکشی برای مهندسین

aspirating smoke detector differentiates between smoke dust 27237 9913942

قسمت نخست: مفاهیم و ساختارها

ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

سطوح حفاظت به شرح زیر خواهند بود:

  1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
    2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
    3. SFD (تشخیص حریق استاندارد Standard Fire Detection

4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

  • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
  • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
  • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
  • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
  • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
    ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
    ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
    ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

بخش ۲
اصول تشخیص دود به روش مکشی (ASD)
دینامیک جریان هوا

یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

  • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
  • آشکارساز دود مکشی که شامل موارد زیر است:
    – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
    – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
    – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
  • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

شبکه لوله‌کشی نمونه‌برداری
شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

  • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

WhatsApp Image 2025 09 29 at 11.40.01 PM

  • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

WhatsApp Image 2025 09 29 at 11.40.01 PM1

  • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
  • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
  • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
  • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

WhatsApp Image 2025 09 29 at 11.40.02 PM2

WhatsApp Image 2025 09 29 at 11.40.02 PM1

نوشته‌های مشابه

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

  • راهنمای نصب بیم دتکتور Thefirebeam

    WhatsApp Image 2025 09 14 at 8.43.22 AM2WhatsApp Image 2025 09 14 at 8.43.25 AMWhatsApp Image 2025 09 14 at 8.43.25 AM1WhatsApp Image 2025 09 14 at 8.43.26 AMWhatsApp Image 2025 09 14 at 8.43.26 AM1WhatsApp Image 2025 09 14 at 8.43.27 AMWhatsApp Image 2025 09 14 at 8.43.27 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM WhatsApp Image 2025 09 14 at 8.43.28 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM2 WhatsApp Image 2025 09 14 at 8.43.29 AM WhatsApp Image 2025 09 14 at 8.43.29 AM2 WhatsApp Image 2025 09 14 at 8.43.30 AM WhatsApp Image 2025 09 14 at 8.43.30 AM1 WhatsApp Image 2025 09 14 at 8.43.30 AM2 WhatsApp Image 2025 09 14 at 8.43.31 AM WhatsApp Image 2025 09 14 at 8.43.31 AM1 WhatsApp Image 2025 09 14 at 8.43.32 AM

    مشخصات فنی

    مشخصات الکتریکی:
    ولتاژ تغذیه: 10.2 تا 40 ولت DC
    جریان مصرفی: 3 میلی‌آمپر (جریان ثابت) در تمام حالات عملیاتی

    مشخصات محیطی:
    دمـا: 10- درجه سانتی‌گراد تا 55+ درجه سانتی‌گراد
    رطوبت: 10 تا 95٪ RH بدون میعان
    شاخص حفاظتی: IP65 در صورت نصب و ترمینال‌گذاری مناسب

    مشخصات مکانیکی:
    هد بیم: 180 میلی‌متر ارتفاع × 155 میلی‌متر عرض × 137 میلی‌متر عمق
    وزن: 1.1 کیلوگرم
    کنترلر: 185 میلی‌متر ارتفاع × 120 میلی‌متر عرض × 62 میلی‌متر عمق
    وزن: 0.55 کیلوگرم
    رفلکتور میان‌برد 40KIT80: 293 میلی‌متر ارتفاع × 293 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.8 کیلوگرم
    رفلکتور بلندبرد 80KIT100: 394 میلی‌متر ارتفاع × 394 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 1.8 کیلوگرم
    آداپتور: 270 میلی‌متر ارتفاع × 250 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.6 کیلوگرم (برای نصب هد بیم روی یونی‌استرات)

    مشخصات اپتیکی:
    طول موج اپتیکی: 870 نانومتر
    حداکثر تراز زاویه‌ای: ±15 درجه
    حداکثر انحراف زاویه‌ای (استاتیک بدون تراز خودکار):
    هد بیم ±0.75 درجه – رفلکتور ±2 درجه

    مشخصات عملیاتی:
    محدوده حفاظتی:
    FIREBEAM: محصول استاندارد 5 تا 40 متر
    40KIT80: کیت رفلکتور میان‌برد 40 تا 80 متر
    80KIT100: کیت رفلکتور بلندبرد 80 تا 100 متر

    سطوح حساسیت آلارم:
    25٪ (1.25dB) تا 50٪ (3dB) با افزایش 1٪ (0.05dB)
    (پیش‌فرض 35٪ (1.87dB))

    شرایط آلارم:
    کاهش عبور نور به کمتر از سطح حساسیت از پیش تعیین‌شده
    زمان رسیدن به شرایط آلارم قابل تنظیم 2 تا 30 ثانیه با افزایش 1 ثانیه
    (پیش‌فرض 10 ثانیه)

    نمایش آلارم:
    وضعیت کنترلر – FIRE
    LED قرمز چشمک‌زن کنترلر هر 0.5 ثانیه
    LED قرمز چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله آلارم CO با ظرفیت 2 آمپر @ 30 ولت DC

    ویژگی‌های تست/ریست:
    عملکرد تست بیم توسط کنترلر
    انتخاب حالت آلارم ماندگار/ریست خودکار (پیش‌فرض ریست خودکار)
    ریست آلارم در حالت ماندگار با ریست کنترلر، قطع تغذیه برای بیش از 5 ثانیه، اعمال 12 تا 24 ولت DC به ورودی ریست در هد بیم

    سطح حساسیت خطا:
    90٪

    شرایط خطا:
    کاهش عبور نور به کمتر از سطح حساسیت خطا در کمتر از 1 ثانیه
    قطع تغذیه یا ولتاژ ورودی کمتر از 9 ولت DC
    حالت‌های راه‌اندازی اولیه، پیش‌تراز و تراز خودکار
    خاموش شدن بیم در طول تعمیر و نگهداری (بازگشت خودکار پس از 8 ساعت به حالت عادی)
    زمان رسیدن به شرایط خطا قابل تنظیم 2 تا 60 ثانیه با افزایش 1 ثانیه (پیش‌فرض 10 ثانیه)

    نمایش خطا:
    وضعیت کنترلر – FAULT
    LED زرد چشمک‌زن کنترلر هر 1 ثانیه
    LED زرد چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله خطا CO با ظرفیت 2 آمپر @ 30 ولت DC

    شرایط عادی:
    سطح عبور نور بالاتر از سطح حساسیت آلارم
    وضعیت کنترلر – NORMAL
    LED سبز چشمک‌زن کنترلر هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)
    LED سبز چشمک‌زن هد هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)

    تراز خودکار/جبران آلودگی بیم:
    تراز خودکار در حین عملکرد عادی در صورت کاهش عبور نور به کمتر از 90٪ (بدون تأثیر بر حالت کاری عادی)
    جبران آلودگی بیم با مانیتورینگ 4 ساعته. داده‌های جبران در کنترلر در دسترس است.

     

  • محاسبات برای طراحی سیستم اطفاء حریق بوسیله گاز دی اکسید کربن

    A.5.1.2 دستیابی و حفظ غلظت صحیح اطمینان می‌دهد که آتش به‌طور کامل و دائمی در ماده قابل احتراق خاص یا مواد دخیل در آتش خاموش می‌شود.

    A.5.2.1 در این نوع حفاظت، فرض بر این است که فضای نسبتاً بسته‌ای برای کاهش از دست دادن عامل اطفاء حریق در نظر گرفته شده است. مساحت منافذ غیرقابل بسته شدن مجاز بستگی به نوع مواد قابل احتراق دارد.

    A.5.2.1.1 در صورتی که دو یا چند خطر به دلیل نزدیکی آن‌ها به طور همزمان در آتش درگیر شوند، باید هر خطر با یک سیستم جداگانه حفاظت شود، یا با ترکیبی از سیستم‌ها که به‌طور همزمان عمل کنند، یا با یک سیستم واحد که باید به‌طور همزمان برای تمام خطرات بالقوه درگیر طراحی و تنظیم شود.

    A.5.2.1.3 برای آتش‌های عمیق، باید از منافذ پایین اجتناب شود، صرف‌نظر از نیازهای تهویه، تا غلظت اطفاء حریق برای مدت زمان لازم حفظ شود. دریچه‌های تهویه تحت این شرایط باید تا حد امکان در بالاترین نقطه محفظه قرار گیرند.

    A.5.2.3 تقریباً تمام خطراتی که مواد قابل احتراقی دارند که آتش سطحی تولید می‌کنند، می‌توانند مقادیر مختلفی از موادی که آتش‌های عمیق تولید می‌کنند را در خود جای دهند. انتخاب صحیح نوع آتشی که سیستم باید برای اطفاء آن طراحی شود، اهمیت زیادی دارد و در بسیاری از موارد نیازمند قضاوت صحیح پس از بررسی دقیق تمام عوامل مختلف است. اساساً، چنین تصمیمی بر اساس پاسخ به سوالات زیر گرفته می‌شود:
    (1) آیا احتمال ایجاد آتش عمیق وجود دارد، با توجه به سرعت شناسایی و کاربرد سیستم مورد نظر؟
    (2) اگر آتش عمیق ایجاد شود، آیا به‌طور جزئی خواهد بود، شرایط به‌گونه‌ای است که باعث شعله‌ور شدن ماده‌ای که آتش سطحی تولید کرده است نخواهد شد، و آیا می‌توان ترتیبی برای اطفاء دستی آن پس از تخلیه دی‌اکسیدکربن قبل از ایجاد مشکل فراهم کرد؟
    (3) آیا ارزش‌ها یا اهمیت تجهیزات به‌گونه‌ای است که حفاظت نهایی توجیه‌پذیر باشد، صرف‌نظر از هزینه اضافی برای فراهم کردن سیستمی که قادر به اطفاء آتش‌های عمیق باشد؟

    خواهید دید که در صورتی که احتمال کمی از آتش عمیق وجود داشته باشد که مشکلاتی ایجاد کند، در بسیاری از موارد پذیرش این خطر کم ممکن است توجیه‌پذیر باشد و انتخاب سیستمی که فقط آتش‌های سطحی را خاموش کند صحیح باشد. به عنوان مثال، ترانسفورماتورهای الکتریکی و سایر تجهیزات الکتریکی پر شده با روغن معمولاً به‌عنوان تولیدکننده آتش سطحی در نظر گرفته می‌شوند، اگرچه ممکن است این احتمال وجود داشته باشد که هسته گرم شده آتش عمیق در عایق الکتریکی ایجاد کند. از سوی دیگر، اهمیت برخی از تجهیزات الکتریکی برای تولید می‌تواند به‌گونه‌ای باشد که برخورد با خطر به‌عنوان آتش عمیق توجیه‌پذیر باشد.

    اغلب، تصمیم‌گیری نیاز به مشاوره با مقامات صلاحیت‌دار و با مالک و مهندسان شرکت تأمین‌کننده تجهیزات دارد. مقایسه هزینه‌ها بین سیستمی که برای اطفاء آتش سطحی طراحی شده است و سیستمی که برای اطفاء آتش عمیق طراحی شده است، می‌تواند عامل تعیین‌کننده باشد. در همه موارد، توصیه می‌شود که تمام طرف‌های ذی‌نفع کاملاً از هرگونه خطرات موجود آگاه باشند، اگر سیستم فقط برای اطفاء آتش سطحی طراحی شود و از هزینه‌های اضافی مربوط به طراحی سیستمی که قادر به اطفاء آتش عمیق است.

    A.5.2.3.1 آتش‌های سطحی رایج‌ترین خطراتی هستند که به‌ویژه به سیستم‌های اطفاء حریق با سیل کامل مناسب هستند.

    A.5.2.3.2 در هر صورت، پس از آتش عمیق، ضروری است که خطر بلافاصله بررسی شود تا اطمینان حاصل شود که اطفاء حریق کامل بوده و هر ماده‌ای که در آتش دخیل بوده است برداشته شود.

    در مواقعی که جو انفجاری از بخارات قابل اشتعال یا گرد و غبار قابل احتراق در داخل یک محفظه وجود دارد، تخلیه دی‌اکسیدکربن مایع می‌تواند باعث ایجاد جرقه‌ای استاتیکی شود که انفجار ایجاد کند. خطر انفجار می‌تواند با تزریق بخار دی‌اکسیدکربن به داخل خطر برای ایجاد جو بی‌اثر کاهش یابد. تزریق بخار دی‌اکسیدکربن باید به‌آرامی انجام شود تا از ایجاد آشفتگی که می‌تواند گرد و غبار قابل احتراق را در داخل محفظه به حالت معلق درآورد، جلوگیری شود. یک مثال از چنین خطری، سیلوی ذخیره زغال‌سنگ است.
    (توجه: حفاظت در برابر حریق و بی‌اثر کردن سیلوهای زغال‌سنگ از محدوده این استاندارد خارج است.) به A.4.2.1 مراجعه کنید.

    A.5.3.2.2 حداقل غلظت نظری دی‌اکسیدکربن و حداقل غلظت طراحی دی‌اکسیدکربن برای جلوگیری از اشتعال برخی مایعات و گازهای رایج در جدول 5.3.2.2 آورده شده است.

    A.5.3.3.1 از آنجا که در فضای کوچک نسبت به حجم محصور، مساحت مرز بیشتری وجود دارد، بنابراین احتمال نشت بیشتر و به تبع آن نیاز به در نظر گرفتن فاکتورهای حجم گرید شده در جدول 5.3.3(a) و جدول 5.3.3(b) است.
    حداقل مقادیر گاز برای کوچکترین حجم‌ها در جدول آورده شده است تا هدف ستون B در جدول‌های 5.3.3(a) و 5.3.3(b) روشن شود و از همپوشانی احتمالی در حجم‌های مرزی جلوگیری شود.

    A.5.3.5.1 زمانی که تهویه اجباری مدنظر نباشد، نشت مخلوط دی‌اکسیدکربن و هوا از فضای محصور بستگی به یکی یا چند مورد از پارامترهای زیر دارد:
    (1) دمای محفظه: دی‌اکسیدکربن در دمای پایین کمتر گسترش می‌یابد و چگالی بیشتری خواهد داشت؛ بنابراین، مقدار بیشتری از آن در صورت وجود منافذ در قسمت پایین محفظه نشت خواهد کرد.
    (2) حجم محفظه: درصد گاز دی‌اکسیدکربن که از هر منفذ در یک فضای کوچک نشت می‌کند، بسیار بیشتر از آن است که از همان منفذ در فضای بزرگتر نشت کند.
    (3) تهویه: معمولاً یک منفذ در یا نزدیک به سقف مطلوب است تا گازهای سبک‌تر از اتاق خارج شوند طی تخلیه.
    (4) محل منافذ: چون دی‌اکسیدکربن از هوا سنگین‌تر است، ممکن است نشت دی‌اکسیدکربن از منافذ نزدیک به سقف بسیار کم یا هیچ‌گونه نشت نداشته باشد، در حالی که نشت در سطح کف می‌تواند قابل توجه باشد.

    A.5.3.5.3 خطراتی که در محفظه‌هایی که معمولاً دمای آن‌ها بالاتر از 2000 درجه فارنهایت (93 درجه سلسیوس) است، قرار دارند، بیشتر در معرض خطر بازاشتعال هستند. بنابراین، اضافه کردن دی‌اکسیدکربن اضافی توصیه می‌شود تا غلظت‌های اطفاء حریق برای مدت زمان بیشتری حفظ شود، و این اجازه می‌دهد تا ماده خاموش‌شده خنک شود و احتمال بازاشتعال زمانی که گاز پخش می‌شود، کاهش یابد.

    A.5.3.5.5 تحت شرایط عادی، آتش‌های سطحی معمولاً در طول دوره تخلیه خاموش می‌شوند.

    A.5.3.5.7 آزمایش‌ها نشان داده‌اند که دی‌اکسیدکربن که مستقیماً بر روی سطح مایع توسط نازل‌های نوع کاربرد محلی اعمال می‌شود، می‌تواند برای تأمین خنک‌کنندگی مورد نیاز جهت جلوگیری از بازاشتعال پس از پایان تخلیه دی‌اکسیدکربن ضروری باشد.

    A.5.4.1 اگرچه داده‌های خاص آزمایشی در دسترس نیست، اما شناخته شده است که برخی از انواع آتش‌های عمیق ممکن است نیاز به زمان‌های نگهداری بیش از 20 دقیقه داشته باشند. مقدار دی‌اکسیدکربن مورد نیاز برای آتش‌های عمیق بر اساس محفظه‌های نسبتاً محکم است.

    A.5.4.2 برای مواد قابل اشتعال که قادر به تولید آتش‌های عمیق هستند، غلظت‌های مورد نیاز دی‌اکسیدکربن نمی‌توانند با دقت مشابهی با مواد سوختی سطحی تعیین شوند. غلظت اطفاء حریق به جرم ماده موجود بستگی خواهد داشت زیرا اثرات عایق حرارتی وجود دارد. بنابراین، عوامل سیل کردن بر اساس شرایط آزمایشی عملی تعیین شده‌اند.

    A5.4.2.1 به طور کلی، عوامل سیل کردن برای فراهم کردن غلظت‌های طراحی مناسب برای اتاق‌ها و محفظه‌های ذکر شده در جدول 5.4.2.1 یافت شده است.
    برای اطلاعات بیشتر، به پیوست D مراجعه کنید.
    بسته به قابلیت اشتعال، این خطرات ممکن است شامل آتش‌های عمیق نباشند. (به 5.3.5.6 مراجعه کنید.)

    A5.5.2 نرخ‌های حداقل طراحی اعمال شده برای آتش‌های سطحی یا عمیق معمولی کافی در نظر گرفته شده‌اند. با این حال، در مواردی که سرعت گسترش آتش سریع‌تر از حالت عادی برای نوع آتش باشد، یا زمانی که مقادیر بالا یا تجهیزات حیاتی درگیر باشند، نرخ‌های بالاتر از حداقل‌ها می‌توانند و در بسیاری از موارد باید استفاده شوند.
    در مواردی که یک خطر شامل ماده‌ای باشد که هر دو نوع آتش سطحی و عمیق را تولید کند، نرخ اعمال باید حداقل نرخ مورد نیاز برای آتش‌های سطحی باشد.
    پس از انتخاب نرخ مناسب برای خطر، جداول و اطلاعاتی که در ادامه آمده باید استفاده شود یا مهندسی خاصی که نیاز است باید برای به دست آوردن ترکیب صحیح از رهاسازی‌های مخزن، لوله‌کشی تأمین و اندازه‌های اوریفیس که این نرخ مطلوب را تولید کند، انجام شود.
    نرخ نشت از یک محفظه در غیاب تهویه اجباری عمدتاً به تفاوت چگالی بین جو داخل محفظه و هوای اطراف محفظه بستگی دارد.
    معادله زیر می‌تواند برای محاسبه نرخ از دست دادن دی‌اکسیدکربن استفاده شود، به این فرض که نشت کافی در قسمت بالایی محفظه وجود دارد تا ورود هوای آزاد را امکان‌پذیر کند:

    4ffu5FbiHe8aAAAAAASUVORK5CYII=

    جایی که:

    R = نرخ دی‌اکسیدکربن [پوند در دقیقه (کیلوگرم در دقیقه)]
    C = نسبت غلظت دی‌اکسیدکربن
    p = چگالی بخار دی‌اکسیدکربن [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    A = مساحت بازشو [فوت مربع (متر مربع)] (شامل ضریب جریان)
    g = ثابت گرانش [32.2 فوت بر ثانیه مربع (9.81 متر بر ثانیه مربع)]
    p1 = چگالی جو [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    p2 = چگالی هوای اطراف [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    h = ارتفاع ایستا بین بازشو و بالای محفظه [فوت (متر)]

    اگر تنها در دیوارها بازشوهایی وجود داشته باشد، مساحت بازشوهای دیوار می‌تواند برای محاسبات تقسیم بر 2 شود زیرا فرض بر این است که هواي تازه می‌تواند از نیمی از بازشوها وارد شود و گاز محافظ از نیمی دیگر خارج خواهد شد.
    شکل E.1 (ب) می‌تواند به‌عنوان راهنمایی برای برآورد نرخ‌های تخلیه در سیستم‌های تخلیه طولانی استفاده شود. منحنی‌ها با استفاده از معادله قبلی محاسبه شده‌اند، با فرض دمای 70 درجه فارنهایت (21 درجه سلسیوس) داخل و خارج محفظه. در یک سیستم واقعی، دمای داخل معمولاً با تخلیه کاهش می‌یابد، که باعث افزایش نرخ از دست رفتن گاز می‌شود. به دلیل وجود متغیرهای زیاد، ممکن است نیاز به آزمایش سیستم نصب‌شده برای اطمینان از عملکرد صحیح باشد.
    در صورتی که نشت قابل توجهی وجود داشته باشد، غلظت طراحی باید به سرعت به دست آید و برای مدت زمان طولانی حفظ شود. دی‌اکسیدکربن مورد نیاز برای جبران نشت باید با نرخ کمتری اعمال شود. نرخ تخلیه طولانی‌شده باید به اندازه کافی برای حفظ غلظت طراحی باشد.

    A.5.5.2.1 معمولاً زمان تخلیه اندازه‌گیری شده زمانی در نظر گرفته می‌شود که دستگاه اندازه‌گیری شروع به ثبت حضور دی‌اکسیدکربن می‌کند تا غلظت طراحی به دست آید.

    A.5.5.3 حفاظت از موتورهای احتراق ثابت و توربین‌های گازی درNFPA 37 مورد بررسی قرار گرفته است.
    برای تجهیزات الکتریکی محصور از نوع گردش داخلی، مقدار اولیه تخلیه نباید کمتر از 1 پوند (0.45 کیلوگرم) گاز برای هر 10 فوت مکعب (0.28 متر مکعب) از حجم محصور تا 2000 فوت مکعب (56.6 متر مکعب) باشد. برای حجم‌های بزرگتر، 1 پوند (0.45 کیلوگرم) گاز برای هر 12 فوت مکعب (0.34 متر مکعب) یا حداقل 200 پوند (90.8 کیلوگرم) باید استفاده شود. جدولA.5.5.3(الف) و جدول A.5.5.3(ب) می‌تواند به‌عنوان راهنما برای برآورد مقدار گاز مورد نیاز برای تخلیه طولانی‌شده جهت حفظ حداقل غلظت 30 درصد برای زمان کاهش شتاب استفاده شود. این مقدار بر اساس حجم داخلی دستگاه و زمان کاهش شتاب است، با فرض نشت متوسط. برای دستگاه‌های بدون گردش داخلی که دارای دمپر هستند، 35 درصد به مقادیر نشان داده‌شده در جدول A.5.5.3(الف) و جدول A.5.5.3(ب) باید اضافه شود تا حفاظت از تخلیه طولانی‌شده تأمین شود.

    A.5.5.4.2 روش‌های موجود برای جبران دماهای بالایی شامل کاهش چگالی پر کردن برای دماهای بالا و فشرده‌سازی نیتروژن همراه با کاهش چگالی پر کردن برای دماهای پایین است. باید با تولیدکنندگان مشورت شود برای راهنمایی بیشتر.

    A.5.6.1 ملاحظه‌های تهویه فشار شامل عواملی مانند استحکام محفظه و نرخ تزریق است.

    A.5.6.2 منافذ و نشت‌هایی مانند درها، پنجره‌ها و دمپرها که ممکن است به راحتی قابل شناسایی نباشند یا به راحتی محاسبه نشوند، در سیستم‌های سیلاب دی‌اکسیدکربن معمولاً به‌اندازه کافی برای تهویه طبیعی بدون نیاز به تهویه اضافی فراهم کرده‌اند. اتاق‌های ذخیره‌سازی رکوردها، فضاهای یخچالی و کانال‌های تهویه نیز تحت شرایط سیستم متوسط خود نیاز به تهویه اضافی ندارند.
    در بسیاری از موارد، به‌ویژه زمانی که مواد خطرناک درگیر هستند، منافذ تهویه برای تهویه انفجاری قبلاً فراهم شده است. این‌ها و سایر منافذ موجود معمولاً تهویه کافی را فراهم می‌کنند.
    عملیات ساخت‌وساز عمومی راهنمای جدول A.5.6.2 را برای در نظر گرفتن استحکام عادی و فشارهای مجاز محفظه‌های متوسط فراهم می‌آورد.

    A.6.1.2 نمونه‌هایی از خطراتی که توسط سیستم‌های کاربردی محلی محافظت می‌شوند شامل وان‌های غوطه‌وری، تانک‌های خنک‌کننده، اتاق‌های اسپری، ترانسفورماتورهای الکتریکی پر شده از روغن، دریچه‌های بخار، آسیاب‌های نورد، دستگاه‌های چاپ و غیره می‌شود.

    A.6.1.4 به بخش‌های 4.3، 4.5.5 و A.4.3 اشاره می‌شود در مورد خطرات ناشی از کدورت دید و کاهش غلظت اکسیژن به مقداری که نمی‌تواند حیات را پشتیبانی کند، نه تنها در ناحیه اطراف تخلیه، بلکه در مناطق مجاور که گاز می‌تواند به آنجا مهاجرت کند.

    A.6.3.1 در محاسبه مجموع مقدار دی‌اکسیدکربن مورد نیاز برای یک سیستم کاربردی محلی، نرخ جریان همه نازل‌ها باید با هم جمع شوند تا نرخ جریان جرمی برای حفاظت از خطر خاص به‌دست آید. این نرخ باید ضربدر زمان تخلیه شود.

    A.6.3.1.1 این سیلندرها معمولاً در ظرفیت‌های اسمی 50 پوند، 75 پوند و 100 پوند (22.7 کیلوگرم، 34.1 کیلوگرم و 45.4 کیلوگرم) دی‌اکسیدکربن اندازه‌گیری می‌شوند. زمانی که سیلندرها با دی‌اکسیدکربن در چگالی پر کردن عادی که از 68 درصد بیشتر نباشد، پر می‌شوند، بخشی از تخلیه از سیلندرها به‌صورت دی‌اکسیدکربن مایع و باقی‌مانده به‌صورت بخار خواهد بود. برای مقاصد طراحی، تخلیه بخار به‌عنوان اثربخش در خاموش کردن آتش در نظر گرفته نمی‌شود. مشخص شده است که مقدار دی‌اکسیدکربن تخلیه‌شده از نازل به‌صورت مایع دی‌اکسیدکربن از 70 درصد تا 75 درصد از کل مقدار دی‌اکسیدکربن موجود در سیلندر متغیر است و بنابراین لازم است ظرفیت اسمی سیلندر برای یک سیستم خاص 40 درصد افزایش یابد تا بخش بخار دی‌اکسیدکربن در نظر گرفته شود. به‌عنوان مثال، یک سیلندر 50 پوندی (22.7 کیلوگرم) می‌تواند بین 35 پوند و 37.5 پوند (15.9 کیلوگرم و 17.0 کیلوگرم) دی‌اکسیدکربن به‌صورت مایع تخلیه کند که بخش مؤثر تخلیه در خاموش کردن آتش است.

    A.6.3.1.2 زمانی که دی‌اکسیدکربن مایع از یک لوله‌کشی گرم عبور می‌کند، مایع به‌سرعت تبخیر می‌شود تا دمای لوله به دمای اشباع دی‌اکسیدکربن برسد. مقدار دی‌اکسیدکربن مایع تبخیرشده به این روش بستگی به مقدار کل حرارت دارد که باید از لوله‌کشی برداشته شود و حرارت نهان تبخیر دی‌اکسیدکربن دارد. برای دی‌اکسیدکربن با فشار بالا، حرارت نهان تبخیر حدود 64Btu/pound (149 kJ/kg) است؛ برای دی‌اکسیدکربن با فشار پایین، حرارت نهان تبخیر حدود 120 Btu/pound (279 kJ/kg) است.
    مقدار حرارت که باید از لوله‌کشی برداشته شود، حاصل‌ضرب وزن لوله‌کشی در ظرفیت حرارتی ویژه فلز و تغییر دمای متوسط لوله‌کشی است. برای لوله‌کشی فولادی، ظرفیت حرارتی ویژه متوسط حدود 0.11 Btu/pound·°F (0.46 kJ/kg·K) تغییر دما است. تغییر دمای متوسط نیز تفاوت بین دمای آغاز تخلیه و دمای متوسط مایع در حال جریان در لوله خواهد بود. برای دی‌اکسیدکربن با فشار بالا، می‌توان دمای متوسط مایع در لوله‌کشی را حدود 60 درجه فارنهایت (16 درجه سلسیوس) فرض کرد. برای دی‌اکسیدکربن با فشار پایین، دمای متوسط را می‌توان حدود -5 درجه فارنهایت (-21 درجه سلسیوس) فرض کرد. این دماها البته تا حدودی متناسب با فشار نازل‌های متوسط تغییر خواهند کرد، اما چنین تنظیمات جزئی تأثیر قابل توجهی بر نتایج نخواهد گذاشت. معادله زیر می‌تواند برای محاسبه مقدار دی‌اکسیدکربن تبخیرشده در لوله‌کشی استفاده شود:

     

    جایی که:

    W = C0₂ تبخیر شده [پوند (کیلوگرم)]
    w = وزن لوله‌کشی [پوند (کیلوگرم)]
    Cp = گرمای ویژه فلز در لوله [Btu/پوند·°F; 0.11 برای فولاد (kJ/کیلوگرم·K; 0.46 برای فولاد)]
    T₁ = دمای متوسط لوله قبل از تخلیه [°F (°C)]
    T₂ = دمای متوسط C0₂ [°F (°C)]
    H = حرارت نهان تبخیر C0₂ مایع [Btu/پوند (kJ/کیلوگرم)]

    A.6.3.3 چون آزمایش‌های انجام شده در فهرست یا تاییدیه‌های اسپرینکلرهای دی‌اکسید کربن ایجاب می‌کند که آتش در حداکثر زمان ۲۰ ثانیه خاموش شود، زمان حداقل ۳۰ ثانیه برای این استاندارد تعیین شده است. این زمان اضافی به‌عنوان یک ضریب ایمنی برای شرایط غیرقابل پیش‌بینی در نظر گرفته شده است. مهم است که این زمان تخلیه به‌عنوان حداقل در نظر گرفته شود و شرایطی مانند دماهای بالا و خنک شدن سطوح بسیار داغ در منطقه خطر ممکن است نیاز به افزایش زمان تخلیه برای اطمینان از خاموشی کامل و مؤثر داشته باشد.

    A.6.3.3.2 جریان دی‌اکسید کربن نیازی نیست که همزمان در تمام اسپرینکلرها شروع یا متوقف شود، اما همه اسپرینکلرها باید حداقل به مدت زمان تخلیه مایع کربن دی‌اکسید به‌طور همزمان کار کنند.

    A.6.3.3.5 دمای حداکثر سوخت مایع در حال سوخت محدود به نقطه جوش آن است که در آن سرمایش تبخیری با ورود حرارت مطابقت دارد. در بیشتر مایعات، دمای خود اشتعال بسیار بالاتر از دمای جوش است، بنابراین باز اشتعال بعد از خاموش شدن تنها می‌تواند توسط یک منبع اشتعال خارجی ایجاد شود. با این حال، برخی مایعات منحصر به فرد دارای دماهای خود اشتعال بسیار پایین‌تری نسبت به دمای جوش خود هستند. روغن‌های پخت‌وپز معمولی و موم پارافین ذوب‌شده این ویژگی را دارند. برای جلوگیری از باز اشتعال در این مواد، لازم است تا جوّ اطفاء حریق تا زمانی که سوخت پایین‌تر از دمای خود اشتعال آن سرد شود، حفظ شود. یک زمان تخلیه ۳ دقیقه‌ای برای واحدهای کوچک کافی است، اما ممکن است برای واحدهای با ظرفیت بزرگتر به زمان بیشتری نیاز باشد.

    A.6.4.1 کاربرد عملی روش نرخ بر اساس مساحت در راهنمای طراحی FSSA برای سیستم‌های محلی دی‌اکسید کربن نرخ بر اساس مساحت توضیح داده شده است. این راهنما به کاربر در تمام فرآیند طراحی سیستم دی‌اکسید کربن بر اساس نرخ مساحت با مثال‌ها کمک می‌کند. کاربر با مراحل مختلف طراحی سیستم شامل چیدمان، محاسبات و طراحی کلی سیستم آشنا خواهد شد.

    A.6.4.2.1 در فهرست‌های فردی یا تاییدیه‌های اسپرینکلرهای نوع سقفی، آزمایش‌هایی برای تعیین جریان بهینه‌ای که یک اسپرینکلر باید برای ارتفاع نصب آن نسبت به سطح مایع استفاده کند، انجام می‌شود. این آزمایش‌ها به شرح زیر انجام می‌شوند:

    1. آزمایش‌های آتش‌سوزی برای اسپرینکلرهای نوع سقفی انجام می‌شود تا یک منحنی که جریان‌های حداکثر قابل استفاده برای اسپرینکلرها را در ارتفاعات مختلف نشان می‌دهد، توسعه یابد.
    2. پس از آزمایش‌های فوق، حداقل جریان برای ارتفاعات مختلف فرض می‌شود که ۷۵ درصد از حداکثر جریان قبلاً تعیین شده است.
    3. پس از آزمایش‌های فوق، آزمایش‌هایی انجام می‌شود تا مساحت آتش تغییر کند تا بیشترین مساحتی که یک اسپرینکلر در ارتفاعات مختلف می‌تواند خاموش کند، تعیین شود.
    4. از داده‌های مراحل قبلی دو منحنی رسم می‌شود: یک منحنی جریان در مقابل ارتفاع و منحنی مساحت در مقابل ارتفاع.

    این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، بنابراین مهم است که مساحت پوشش اسپرینکلرها در ارتفاعات مختلف بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. در سیستم‌های اسپرینکلر چندگانه، این محدودیت‌ها برای بخش‌های خطر که هر اسپرینکلر به‌طور جداگانه پوشش می‌دهد، استفاده می‌شود.

    چون این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، مهم است که به‌خاطر داشته باشید که پوشش مساحت برای اسپرینکلرها در ارتفاعات مختلف که توسط منحنی دوم نشان داده شده، باید بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. همچنین مهم است که به یاد داشته باشید این دو منحنی محدودیت‌های پوشش تک اسپرینکلر را نشان می‌دهند. در سیستم‌های چند اسپرینکلری، این محدودیت‌ها برای بخشی از خطر که توسط هر اسپرینکلر پوشش داده می‌شود، استفاده می‌شود.

    A.6.4.2.2 برای اسپرینکلرهای کنار مخزن و خطی، آزمایش‌های آتش‌سوزی برای توسعه منحنی‌هایی که حداکثر و حداقل جریان‌های قابل استفاده برای اسپرینکلر را به مساحت آتشی که اسپرینکلر قادر به خاموش کردن آن است، مرتبط می‌کند، انجام می‌شود. همچنین محدودیت‌های اضافی در مورد حداکثر عرض خطر و الزامات فاصله بین اسپرینکلرها و نزدیک‌ترین گوشه خطر وجود دارد. در این آزمایش‌ها، اسپرینکلرها معمولاً در فاصله ۶اینچی (۱۵۲ میلی‌متر) از سطح مایع نصب می‌شوند، که پارامتر ارتفاع را حذف می‌کند. این آزمایش‌ها به‌صورت زیر انجام می‌شوند.

    اسپرینکلرهای تک یا چندگانه روی لبه سینی‌های مربعی یا مستطیلی نصب می‌شوند. در آزمایش‌های اسپرینکلر چندگانه، اسپرینکلرها روی یک طرف یا دو طرف متقابل نصب می‌شوند. آزمایش‌ها روی اندازه‌های مختلف سینی و آرایش‌های فاصله‌ای مختلف انجام می‌شود تا منحنی حداکثر نرخ یا منحنی پاشش ایجاد شود که می‌توان آن را به‌عنوان تابعی از جریان در مقابل مساحت پوشش یا عرض خطر ترسیم کرد. پس از این مرحله، حداقل جریان برای شرایط مختلف مساحت یا عرض خطر (با محدودیت‌های فاصله‌ای مناسب دیگر) توسط یک سری آزمایش مشابه تعیین می‌شود.

    برای همه این آزمایش‌ها، جریان‌ها بر اساس دمای ذخیره‌سازی ۰درجه فارنهایت (۱۸- درجه سانتی‌گراد) برای سیستم‌های فشار پایین (فشار متوسط ۳۰۰ psi یا ۲۰۶۸ kPa) یا دمای ذخیره‌سازی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) برای سیستم‌های فشار بالا (فشار متوسط ۷۵۰ psi یا ۵۱۷۱ kPa) محاسبه می‌شوند. در سیستم‌های فشار بالا، دمای واقعی ذخیره‌سازی می‌تواند بین ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) و ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) متغیر باشد. به همین دلیل، آزمایش‌های منحنی حداکثر نرخ یا پاشش با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی بالاتر از نرخ محاسبه شده ایجاد می‌کند. آزمایش‌های نرخ حداقل با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی پایین‌تر از نرخ محاسبه شده ایجاد می‌کند.

    از داده‌های حاصل از این آزمایش‌ها، یک منحنی جریان در مقابل مساحت پوشش یا عرض خطر ترسیم می‌شود که منحنی حداکثر یا پاشش آن با ضریبی معادل ۱۰ درصد کاهش و نرخ حداقل آن با ضریبی معادل ۱۵ درصد افزایش می‌یابد. یک منحنی معمولی برای اسپرینکلر کنار مخزن در شکل F.1 (c) و یک منحنی برای اسپرینکلر خطی در شکل F.1 (d) نشان داده شده است.

    A.6.4.3.4 برای آزمایش‌های فهرست و تاییدیه، اسپرینکلرهای محلی دی‌اکسید کربن نوع سقفی روی آتش‌سوزی‌های دو بعدی سینی انجام می‌شوند. (مراجعه شود به A.6.4.2.1.) برخی اسپرینکلرها هنگام استفاده روی چنین آتش‌سوزی‌های “مسطح” پوشش مساحت عالی دارند. اگرچه مخروط واقعی تخلیه می‌تواند تنها روی یک مساحت کوچک از آتش تأثیر بگذارد، دی‌اکسید کربن می‌تواند از ناحیه برخورد واقعی خارج شده و مساحت بسیار بزرگتری از سینی آتش را به‌طور مؤثر پوشش دهد.

    اگر سطحی که تخلیه دی‌اکسید کربن روی آن برخورد می‌کند، بسیار نامنظم باشد، ممکن است تخلیه نازل نتواند تمام قسمت‌های خطر را به‌طور مؤثر پوشش دهد. اگر نازل‌های استفاده شده دارای مناطق برخورد کوچکی نسبت به مناطق پوشش فهرست شده خود باشند، ممکن است نیاز به نازل‌های اضافی برای پوشش کامل اشیاء با اشکال نامنظم باشد. در صورتی که چنین خطراتی با اشکال نامنظم باید پوشش داده شوند، طراح باید اطمینان حاصل کند که تعداد، نوع و مکان نازل‌ها برای تضمین پوشش کامل سطوح خطر کافی است. بررسی پوشش اسپرینکلرهای محلی از جمله قسمت‌های مهم آزمایش تخلیه است.

    A.6.4.4.5 ممکن است نیاز به نازل‌های اضافی برای این منظور خاص باشد، به‌ویژه اگر انبار بیش از ۲ فوت (۰.۶ متر) بالاتر از سطح محافظت شده قرار گیرد.

    A.6.5.1 کاربرد عملی روش نرخ به حجم پیچیده است. طراحی یک سیستم می‌تواند با استفاده از مثال‌ها و یک محاسبه گام به گام از یک سیستم، تسهیل شود. دستورالعمل‌های طراحی FSSA برای سیستم‌های کاربرد محلی دی‌اکسید کربن با روش نرخ به حجم توضیح می‌دهند که چگونه یک سیستم دی‌اکسید کربن با استفاده از این روش طراحی شود.

    A.6.5.3.2 شکل A.6.5.3.2 نمودار پوشش جزئی است.

    A.6.6.2 دماهای ذخیره‌سازی فشار بالا که از ۳۲ درجه فارنهایت تا ۱۲۰ درجه فارنهایت (۰ درجه سانتی‌گراد تا ۴۹ درجه سانتی‌گراد) متغیر هستند، نیاز به روش‌های خاص برای جبران تغییرات نرخ جریان ندارند. در صورتی که دماهای ذخیره‌سازی فشار بالا بتوانند زیر ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) یا بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) قرار گیرند، ممکن است نیاز باشد ویژگی‌های خاصی در سیستم گنجانده شود تا نرخ جریان صحیح تضمین شود.

    A.7.1.1 یک منبع دی‌اکسید کربن جداگانه می‌تواند برای استفاده از شلنگ دستی فراهم شود، یا دی‌اکسید کربن می‌تواند از یک واحد ذخیره‌سازی مرکزی که چندین خط شلنگ را تأمین می‌کند یا از سیستم‌های ثابت دستی یا خودکار تأمین شود. (مراجعه شود به ۴.۶.۱.۱.)

    A.7.1.3 استفاده از لوله‌های دستی یا سیستم‌های ثابت یا خودکار برای انتقال دی‌اکسید کربن از یک واحد ذخیره‌سازی مرکزی که به چندین لوله‌ متصل است، امکان‌پذیر است. (مراجعه شود به 4.6.1.1.)
    A.7.1.4 اشاره‌ای به 4.3.1 و A.4.3 در مورد خطرات برای پرسنل به دلیل کاهش دید و کاهش غلظت اکسیژن تا حدی که قادر به حمایت از حیات نباشد، نه تنها در منطقه تخلیه بلکه در مناطق مجاور که گاز ممکن است به آنجا منتقل شود، می‌شود.
    A.7.5.2 اتصال مجموعه نازل تخلیه به شلنگ با استفاده از اتصال گردشی برای فراهم آوردن راحتی بیشتر در جابجایی توصیه می‌شود.
    A.7.5.4 عملکرد سیستم‌های لوله‌ دستی به عمل دستی و جابجایی دستی نازل تخلیه بستگی دارد. بنابراین سرعت و سادگی عملیات برای اطفاء حریق موفق ضروری است.
    A.7.5.4.2 از شیرهای بلیدر یا دستگاه‌های مشابه می‌توان برای کاهش تاخیر در تخلیه مایع در سیستم‌های فشار پایین استفاده کرد.
    A.8.1.1 تأمین دی‌اکسید کربن بر روی یک وسیله نقلیه متحرک نصب شده است که می‌تواند به محل حریق کشیده یا رانده شود و به سرعت به سیستم لوله‌ کشی متصل شود که خطرات درگیر را محافظت می‌کند. تأمین متحرک عمدتاً تجهیزات آتش‌نشانی یا پرسنل آتش‌نشانی است که برای استفاده مؤثر به آموزش نیاز دارند.
    A.8.1.2 سیستم‌های لوله‌ کشی و تأمین متحرک می‌توانند برای تکمیل سیستم‌های حفاظت در برابر حریق ثابت استفاده شوند یا به تنهایی برای محافظت از خطرات خاص استفاده شوند:
    (1) تأمین متحرک می‌تواند به عنوان یک پشتیبان برای تکمیل تأمین ثابت استفاده شود.
    (2) تأمین متحرک همچنین می‌تواند با لوله‌های دستی برای محافظت از خطرات پراکنده تجهیز شود.
    A.8.4.1 ممکن است مقادیر اضافی دی‌اکسید کربن برای جبران تاخیر در رساندن تأمین متحرک به خطر مورد نیاز باشد.
    A.8.5 اثربخشی حفاظت در برابر حریق فراهم شده توسط سیستم‌های لوله‌ کشی و تأمین متحرک به کارایی و توانایی نیروی انسانی که تأمین متحرک را اداره می‌کند بستگی دارد. به طور کلی، این تجهیزات در دسته تجهیزات آتش‌نشانی قرار دارند که به یک گروه از پرسنل ثابت نیاز دارند.
    A.9.1(2)(c) مثال‌ها شامل فضاهایی هستند که موتورهایی برای پیشرانه، موتورهایی که ژنراتورهای الکتریکی را به حرکت درمی‌آورند، ایستگاه‌های پر کردن سوخت، پمپ‌های بارگیری یا ماشین‌آلات تهویه، گرمایش و تهویه مطبوع را در خود دارند.
    A.9.1(2)(d) سیستم‌های دی‌اکسید کربن برای فضاهای وسیله نقلیه که برای مسافران قابل دسترسی هستند، توصیه نمی‌شود.
    A.9.2.1 منظور این است که NFPA 12، از جمله این فصل، به عنوان یک سند مستقل برای طراحی، نصب و نگهداری سیستم‌های دی‌اکسید کربن دریایی استفاده شود.
    فصل 9 در سال 1998 اضافه شد تا به نصب‌های دریایی پرداخته شود. این فصل به عنوان جایگزین سایر استانداردها مانند 46CFR 119، نصب ماشین‌آلات” طراحی شده است.
    A.9.3.3.1 برخی از موتورهای احتراق داخلی برای پیشرانه و ژنراتورهای مولد برق، هوای احتراق را از فضای محافظت شده که در آن نصب شده‌اند، می‌کشند. چون این نوع موتورها موظف به خاموش شدن قبل از تخلیه سیستم هستند، در برخی موارد، سیستم خودکار تخلیه ممکن است پیشرانه یا تأمین برق را زمانی که بیشترین نیاز است، خاموش کند. یک سیستم غیرخودکار به خدمه کشتی انعطاف‌پذیری بیشتری می‌دهد تا بهترین مسیر عمل را انتخاب کنند. به عنوان مثال، در حالی که کشتی در یک کانال پر ازدحام در حال حرکت است، توانایی مانور کشتی می‌تواند از تخلیه فوری سیستم مهم‌تر باشد.

    A.9.3.3.2 در سکوی‌های فراساحلی و برخی از کشتی‌ها، محفظه‌های ماشین‌آلات کوچک اغلب به‌گونه‌ای قرار دارند که دسترسی پرسنل در هنگام وقوع حریق دشوار و/یا خطرناک است و ممکن است تأخیر غیرقابل قبولی در فعال‌سازی سیستم‌ها ایجاد کند. تا زمانی که ایمنی زندگی و قابلیت ناوبری کشتی تحت تأثیر منفی قرار نگیرد، فعال‌سازی خودکار سیستم‌های محافظت‌کننده از این فضاها مجاز است.
    A.9.3.3.4 به‌استثنای فضاهای محافظت‌شده بسیار کوچک که در 9.3.3.3.3 ذکر شده است، هدف این استاندارد این است که دو عملیات دستی جداگانه برای ایجاد تخلیه یک سیستم دریایی نیاز باشد. فراهم کردن یک کنترل دستی جداگانه برای هر یک از شیرهای کنترل تخلیه مورد نیاز در 9.3.3.3 این هدف را محقق می‌کند. این الزامات استثنایی است بر «عملیات دستی معمولی» که در 4.5.1.2 تعریف شده است.
    A.9.3.3.5 برای یک سیستم دی‌اکسید کربن فشار بالا، کنترل دستی اضطراری برای تأمین، اپراتور دستی بر روی سیلندرهای پیلوت است.
    A.9.3.3.7 دی‌اکسید کربن کافی باید فراهم شود تا آلارم‌ها را با فشار نامی خود برای مدت زمان لازم فعال نگه دارد.
    A.9.3.6.2.2 یک مثال از جایی که تخلیه‌ها ضروری است، نقاط پایین در لوله‌کشی دی‌اکسید کربن است که همچنین توسط سیستم تشخیص دود از نوع نمونه‌برداری استفاده می‌شود.
    آتش‌سوزی در فضاهای باری ممکن است به‌طور کامل توسط تخلیه دی‌اکسید کربن اطفاء نشود. اینکه آتش به‌طور کامل اطفاء شده است یا فقط سرکوب شده است بستگی به چندین عامل دارد، از جمله نوع و مقدار مواد سوختی. احتمال نشت مقداری از جو دی‌اکسید کربن غنی‌شده از محفظه بار وجود دارد. بنابراین، ممکن است نیاز باشد دی‌اکسید کربن اضافی به‌طور موقت تخلیه شود تا سرکوب آتش در محفظه بار تا زمانی که کشتی به بندر برسد، حفظ شود. پس از رسیدن به بندر، قبل از باز شدن درب محفظه بار، یک گروه آتش‌نشانی مجهز و آموزش‌دیده باید آماده باشد تا اطفاء کامل مواد سوخته را انجام دهد.

     

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

     

  • سیستم اعلام حریق با توجه به بودجه

    IMG 1621

    مقدمه

    سیستم اعلام حریق، نخستین خط دفاعی در برابر آتش‌سوزی است. عملکرد سریع و دقیق این سیستم می‌تواند جان افراد و سرمایه‌های کلان را نجات دهد. اما انتخاب سیستم مناسب نیازمند درک درستی از بودجه، نیاز پروژه، و اعتبار برندهاست. بسیاری از پروژه‌ها با محدودیت بودجه روبرو هستند و در چنین شرایطی، مسئله “مقرون‌به‌صرفه بودن در مقابل قابل اطمینان بودن” مطرح می‌شود. در این مقاله به بررسی سیستم‌های اعلام حریق با توجه به این چالش‌ها می‌پردازیم.

    برندهای ایرانی: اقتصادی اما بدون تأییدیه جهانی

    برندهای ایرانی مانند سنس، آریاک، ماویگارد، افق، و زتا ایران بیشتر در پروژه‌های اقتصادی و مسکونی کوچک استفاده می‌شوند. مزیت اصلی این برندها، قیمت پایین، در دسترس بودن، و پشتیبانی نسبی در بازار داخلی است. اما در مقابل، این برندها هیچ‌گونه تأییدیه بین‌المللی نظیر UL، LPCB، VdS یا EN54ندارند و در آزمایشگاه های معتبر تحت تست قرار نگرفته اند و شرکت های بیمه ایرانی سخت گیری ویژه ای بر وجود یا عدم وجود تاییدیه های معتبر بین المللی برای محیط های حفاظت شده نشان داده اند و وجود تایدیه های معتبر مانند LPCB,Vds و UL باعث کمتر شدن هزینه بیمه مکان حفاظت شده خواهد شد.

    متاسفانه یا خوشبختانه مسائل مربوط به “حمایت از تولیدات داخل” باعث شده است تا پای بسیاری از مونتاژ کارهای ایرانی( به زعم خودشان تولید کننده داخلی) به بازار اعلام حریق ایران و در نتیجه به خانه های ایرانیان باز شود.

    از آنجا که درحال حاضر هیچ لابراتوار پیشرفته ای در کشور ما نیست و شرایط تست عملکرد دستگاه های اعلام حریق در داخل ایران وجود ندارد ولی در هنگام حریق، جان انسان ها بستگی به عملکرد درست سیستم اعلام حریق دارد، کارشناسان ما استفاده از این محصولات را به هیچ عنوان توصیه نمیکنند. بهتر است با صرف مبلغی بیشتر از سیستم های اعلام حریق دارای حداقل یکی از تاییدیه های ( آمریکا UL) یا ( انگلستان LPCB) یا ( آلمان Vds) استفاده کنید.

    در پروژه‌هایی که نیازمند رعایت استانداردهای جهانی هستند، مانند بیمارستان‌ها، فرودگاه‌ها، مراکز خرید بزرگ یا پروژه‌های صادراتی، این برندها به‌هیچ‌وجه قابل اعتماد نیستند. حتی برخی از مهندسین مشاور و سازمان‌های بیمه، استفاده از برندهای فاقد گواهی بین‌المللی را رد می‌کنند.

    در عمل، برندهای ایرانی بیشتر برای پروژه‌هایی با بودجه بسیار محدود، و حساسیت پایین به کار می‌روند. اما باید آگاه بود که سطح کیفی این سیستم‌ها به هیچ‌وجه با برندهای معتبر جهانی قابل مقایسه نیست، به‌خصوص در دقت در شناسایی حریق، پایداری در طول زمان، و مدیریت خطاهای سیستم.

    برندهای چینی: تنوع بالا، کیفیت متغیر

    بازار چین پر است از برندهای اعلام حریق، از برندهای بسیار ارزان و بی‌نام‌ونشان گرفته تا برندهایی با کیفیت قابل‌قبول نظیرTanda و TC, برخی از این برندها توانسته‌اند تأییدیه‌هایی مانند CE یا EN54 یا حتی LPCB را دریافت کنند، که اعتبار متوسطی در بازار جهانی دارند. با این حال، اغلب برندهای چینی فاقد گواهی‌های مهمی چون UL یا LPCB هستند و بیشتر برای پروژه‌های کم‌ریسک در کشورهای در حال توسعه مورد استفاده قرار می‌گیرند.

    برخی برندهای چینی نیز با استفاده از طراحی یا تکنولوژی اروپایی، محصولات نسبتاً بهتری تولید می‌کنند، اما همچنان کیفیت ساخت، دوام بلندمدت و خدمات پس از فروش آن‌ها چالش‌برانگیز است. استفاده از این برندها در پروژه‌های نیمه‌حرفه‌ای که نیاز به دقت بالا ندارند، می‌تواند راه‌حل اقتصادی مناسبی باشد. اما برای پروژه‌های حیاتی، انتخاب برند چینیبدون تاییدیه LPCB با ریسک همراه است. قبل از خرید جنس، آن رااز لحاظ تأییدیه‌ها به‌دقت بررسی شده کنید.

    برندهای اروپایی: تعادل میان کیفیت، قیمت و استاندارد

    برندهای اروپایی مانند Zeta (انگلستان)، Siemens، Bosch وEsser (آلمان)، Global Fire Equipment (پرتغال) از پیشگامان صنعت اعلام حریق هستند. این برندها معمولاً دارای تأییدیه‌های معتبر جهانی نظیر LPCB (انگلستان)، VdS(آلمان)، و EN54 (اتحادیه اروپا) هستند که نشانه انطباق آن‌ها با الزامات ایمنی بین‌المللی است.

    این برندها علاوه‌بر کیفیت بالا، پایداری و خدمات قابل اتکایی نیز ارائه می‌دهند. Zeta به‌عنوان یک برند میان‌رده، قیمت قابل‌قبولی دارد و در بسیاری از پروژه‌های داخل ایران نیز استفاده می‌شود. GFE پرتغالی نیز با وجود قیمت نسبتاً پایین‌تر، تأییدیه‌های معتبر دارد و یکی از گزینه‌های مناسب در پروژه‌های با بودجه متوسط است.

    در سمت دیگر، برندهایی چون Siemens و Bosch، بسیار حرفه‌ای و پیشرفته هستند. آن‌ها معمولاً در پروژه‌های بزرگ مانند بیمارستان‌ها، برج‌های بلند و مراکز صنعتی مورد استفاده قرار می‌گیرند. قیمت این برندها بالاست، اما برای پروژه‌هایی با حساسیت ایمنی بالا، ارزش سرمایه‌گذاری را دارند.

    برندهای آمریکایی: پیشرفته، دقیق و بسیار قابل اعتماد

    در صدر برندهای جهانی، برندهای آمریکایی مانند Notifier، Simplex، Fire-Lite و Edwards قرار دارند. این برندها معمولاً دارای تأییدیه‌های بسیار معتبر مانند UL (Underwriters Laboratories)، FM (Factory Mutual) و ULC (کانادا) هستند که استاندارد طلایی ایمنی در صنعت جهانی محسوب می‌شوند.

    این سیستم‌ها بسیار هوشمند، سریع، و قابل مدیریت هستند و در پروژه‌هایی مانند فرودگاه‌ها، پالایشگاه‌ها، مراکز داده و پروژه‌های بین‌المللی کاربرد دارند. البته قیمت این برندها بالا است و نصب و راه‌اندازی آن‌ها نیز نیازمند دانش فنی دقیق و تجربه بالاست. با این حال، برای پروژه‌هایی که هزینه حریق می‌تواند میلیاردی باشد، استفاده از برندهای آمریکایی یک الزام واقعی است.

    جمع‌بندی

    اگر پروژه‌ای با بودجه محدود دارید، استفاده از برندهای ایرانی مثل سنس یا آریاک می‌تواند راه‌حلی موقت باشد، ولی باید بدانید این برندها فاقد هرگونه تأییدیه معتبر بین‌المللیهستند و شرایط کارکرد صحیح آنها در آزمایشگاه های معتبر و مجهز جهانی تایید نشده است و فقط برای پروژه‌های کوچک بدون الزام قانونی کاربرد دارند.

    در صورتی‌که بودجه شما در سطح متوسط است و پروژه در کلاس مدارس، مراکز درمانی محلی یا ادارات قرار دارد، برندهای چینی با تأییدیه‌های حداقلی مانند Tandaیا برندهای اروپایی اقتصادی مثل GST، گزینه‌های مناسب‌تری خواهند بود.

    اما اگر پروژه شما حساس، بزرگ یا نیازمند اخذ تأییدیه بیمه، گواهی آتش‌نشانی یا صادراتی است، باید به سراغ برندهای معتبر اروپایی یا آمریکایی بروید. سیستم‌هایی مانندSiemens، Bosch، Notifier و Simplex تضمین امنیت و کیفیت هستند و دارای تأییدیه‌هایی هستند که در سراسر جهان شناخته‌شده و قابل استناد هستند.

  • تشخیص گاز در سردخانه ها

    مقدمه
    تشخیص گاز و نشت‌یابی دو فعالیت مجزا هستند که به موضوعی یکسان می‌پردازند، اما روش‌های آن‌ها بسیار متفاوت است.
    تشخیص گاز شامل آنالیز نمونه‌های هوا برای تعیین وجود گاز مبرد است.
    نشت‌یابی، بازرسی نظام‌مند یک سیستم تبرید به‌منظور مشخص کردن وجود نشتی است.
    اصطلاحات تشخیص گاز و نشت‌یابی قابل جایگزینی با یکدیگر نیستند و نباید با هم اشتباه گرفته شوند.

    دتکتورهای نشت معمولاً تجهیزات دستی هستند که توسط افراد حمل می‌شوند و برای شناسایی نشتی‌ها در سیستم‌های تبرید مورد استفاده قرار می‌گیرند.
    انواع مختلفی از دتکتورهای نشت در دسترس است، از روش‌های ساده‌ای مانند آب صابون گرفته تا ابزارهای الکتریکی پیشرفته.

    دتکتورهای گاز معمولاً در نصب‌های ثابت به کار می‌روند و شامل تعدادی دتکتور هستند که در مکان‌هایی قرار می‌گیرند که در صورت نشت از تأسیسات، احتمال تجمع گاز مبرد وجود دارد.
    این مکان‌ها به چیدمان اتاق ماشین‌آلات و فضاهای مجاور، پیکربندی سیستم و نوع مبرد بستگی دارند.

    پیش از انتخاب دتکتور مناسب تشخیص گاز، باید به چند پرسش پاسخ داده شود:

    • کدام گازها باید اندازه‌گیری شوند و در چه مقادیری؟
      – کدام اصل عملکرد دتکتور برای این کار مناسب‌تر است؟
      – چه تعداد دتکتور مورد نیاز است؟
      – دتکتورها در کجا و چگونه باید نصب و کالیبره شوند؟
    • حدود هشدار مناسب کدام است؟
      – چند سطح هشدار لازم است؟
      – اطلاعات هشدار چگونه باید پردازش شود؟

    این راهنمای کاربردی به این پرسش‌ها پاسخ خواهد داد.

     

    فناوری دتکتور

    انتخاب فناوری دتکتور برای تشخیص گاز مبرد به نوع گاز هدف و محدوده ppm مورد نیاز بستگی دارد.
    دتکتورهای مختلفی وجود دارند که با گازهای رایج، محدوده‌های ppm مناسب و الزامات ایمنی برای سیستم‌های تبرید سازگارند.

    EC – دتکتور الکتروشیمیایی
    دتکتورهای الکتروشیمیایی عمدتاً برای گازهای سمی استفاده می‌شوند و برای آمونیاک مناسب هستند.
    این دتکتورها شامل دو الکترود هستند که در یک محیط الکترولیت غوطه‌ور شده‌اند.
    واکنش اکسایش/کاهش جریان الکتریکی تولید می‌کند که با غلظت گاز متناسب است.
    این دتکتورها بسیار دقیق هستند (±۲٪) و عمدتاً برای گازهای سمی که به روش دیگری قابل شناسایی نیستند یا در مواردی که دقت بالا نیاز است، استفاده می‌شوند.
    دتکتورهای EC مخصوص آمونیاک با محدوده تا ۰ تا ۵۰۰۰ ppm عرضه می‌شوند و طول عمر مورد انتظار آن‌ها حدود ۲ سال است که بستگی به میزان تماس با گاز هدف دارد.
    تماس با نشت‌های بزرگ آمونیاک یا وجود دائمی آمونیاک در پس‌زمینه، طول عمر دتکتور را کاهش می‌دهد.
    دتکتورهای EC تا زمانی که حساسیت آن‌ها بالای ۳۰٪ باشد، قابل کالیبراسیون مجدد هستند.
    این دتکتورها بسیار انتخاب‌پذیر هستند و به ندرت دچار تداخل متقابل می‌شوند. ممکن است به تغییرات ناگهانی رطوبت واکنش نشان دهند اما به سرعت پایدار می‌شوند.

    SC – دتکتور نیمه‌رسانا (حالت جامد)
    عملکرد دتکتور نیمه‌رسانا بر پایه اندازه‌گیری تغییر مقاومت است (متناسب با غلظت)، زمانی که گاز روی سطح یک نیمه‌رسانا که معمولاً از اکسیدهای فلز ساخته شده، جذب می‌شود.
    این دتکتورها برای طیف گسترده‌ای از گازها از جمله گازهای قابل اشتعال، سمی و گازهای مبرد قابل استفاده هستند.

    ادعا می‌شود که این نوع دتکتورها در تشخیص گازهای قابل احتراق در غلظت‌های پایین تا ۱۰۰۰ ppm عملکرد بهتری نسبت به نوع کاتالیستی دارند. این دتکتورها کم‌هزینه، با طول عمر بالا، حساس هستند و می‌توان از آن‌ها برای تشخیص طیف گسترده‌ای از گازها از جمله تمامی مبردهای HCFC، HFC، آمونیاک و هیدروکربن‌ها استفاده کرد.

    با این حال، این دتکتورها انتخاب‌پذیر نیستند و برای تشخیص یک گاز خاص در مخلوط یا در مواردی که احتمال وجود غلظت بالایی از گازهای تداخل‌زا وجود دارد، مناسب نیستند.

    تداخل ناشی از منابع کوتاه‌مدت (مانند گاز اگزوز کامیون) که منجر به هشدارهای اشتباه می‌شود، را می‌توان با فعال کردن تأخیر در آلارم برطرف کرد.

    دتکتورهای نیمه‌رسانا برای هالوکربن‌ها می‌توانند بیش از یک گاز یا یک مخلوط را به طور هم‌زمان تشخیص دهند. این ویژگی به‌ویژه در نظارت بر اتاق ماشین‌آلات با چندین مبرد مختلف مفید است.

    P – دتکتور پلستور
    پلستورها (که گاهی مهره یا کاتالیتیکی نیز نامیده می‌شوند) عمدتاً برای گازهای قابل احتراق از جمله آمونیاک استفاده می‌شوند و در سطوح بالای تشخیص، محبوب‌ترین دتکتورها برای این کاربرد هستند. عملکرد این دتکتور بر اساس سوزاندن گاز در سطح مهره و اندازه‌گیری تغییر مقاومت حاصل‌شده در مهره (که متناسب با غلظت است) می‌باشد.

    این دتکتورها نسبتاً کم‌هزینه، جاافتاده و قابل‌فهم هستند و طول عمر خوبی دارند (عمر مورد انتظار ۳ تا ۵ سال). زمان پاسخ‌دهی معمولاً کمتر از ۱۰ ثانیه است.

    در برخی کاربردها ممکن است دچار مسمومیت شوند.
    مسمومیت به کاهش واکنش دتکتور نسبت به گاز هدف در اثر وجود (آلودگی) یک ماده دیگر در سطح کاتالیست گفته می‌شود که یا با آن واکنش می‌دهد یا لایه‌ای روی آن تشکیل می‌دهد که ظرفیت واکنش با گاز هدف را کاهش می‌دهد. رایج‌ترین مواد مسموم‌کننده ترکیبات سیلیکونی هستند.

    پلستورها عمدتاً برای گازهای قابل احتراق استفاده می‌شوند و بنابراین برای آمونیاک و مبردهای هیدروکربنی در غلظت‌های بالا مناسب هستند. این دتکتورها تمامی گازهای قابل احتراق را تشخیص می‌دهند اما با نرخ‌های مختلف، و بنابراین می‌توان آن‌ها را برای گازهای خاص کالیبره کرد. نسخه‌های خاصی برای آمونیاک وجود دارد.

    IR – مادون قرمز
    فناوری مادون قرمز از این واقعیت بهره می‌برد که بیشتر گازها دارای باند جذب مشخصی در ناحیه مادون قرمز طیف هستند و از این ویژگی برای تشخیص آن‌ها استفاده می‌شود. مقایسه با پرتو مرجع امکان تعیین غلظت را فراهم می‌سازد.

    اگرچه نسبت به دتکتورهای دیگر نسبتاً گران‌قیمت هستند، اما طول عمر بالایی تا ۱۵ سال، دقت زیاد و حساسیت متقابل پایین دارند.

    به دلیل اصل اندازه‌گیری، دتکتورهای مادون قرمز ممکن است در محیط‌های دارای گرد و غبار دچار مشکل شوند، زیرا حضور ذرات زیاد در هوا ممکن است خوانش را مختل کند.

    این دتکتورها برای تشخیص دی‌اکسید کربن توصیه می‌شوند و رایج هستند. اگرچه فناوری آن برای گازهای دیگر نیز وجود دارد، اما معمولاً در راه‌حل‌های تجاری مشاهده نمی‌شود.

    کدام دتکتور برای مبرد خاص مناسب است؟
    بر اساس گاز مبرد هدف و محدوده ppm مورد نظر، جدول زیر نمای کلی از مناسب‌بودن فناوری‌های مختلف دتکتورهای ارائه‌شده توسط دانفوس را ارائه می‌دهد.

    زمان پاسخ‌دهی دتکتور
    زمان پاسخ‌دهی، مدت‌زمان لازم برای خواندن درصد مشخصی از مقدار واقعی در اثر تغییر ناگهانی غلظت گاز هدف توسط دتکتور است.
    زمان پاسخ‌دهی برای اغلب دتکتورها به صورت t90 بیان می‌شود، به این معنا که مدت‌زمانی که طول می‌کشد دتکتور ۹۰ درصد از غلظت واقعی را بخواند. شکل ۴ نمونه‌ای از دتکتوری با زمان پاسخ‌دهی t90 برابر با ۹۰ ثانیه را نشان می‌دهد.

    همان‌طور که در نمودار مشخص است، واکنش دتکتور پس از عبور از ۹۰ درصد کندتر شده و مدت‌زمان بیشتری برای رسیدن به ۱۰۰ درصد نیاز دارد.

    نیاز به تشخیص گاز
    دلایل متعددی برای نیاز به تشخیص گاز وجود دارد. دو دلیل آشکار، محافظت از افراد، تولید و تجهیزات در برابر تأثیر نشت احتمالی گاز و رعایت مقررات است. دلایل مهم دیگر عبارتند از:

    • کاهش هزینه خدمات (هزینه گاز جایگزین و مراجعه تعمیرکار)
      • کاهش هزینه مصرف انرژی به دلیل فقدان مبرد
      • خطر آسیب به محصولات ذخیره‌شده در اثر نشت گسترده
    • امکان کاهش هزینه‌های بیمه
      • مالیات یا سهمیه مربوط به مبردهای ناسازگار با محیط زیست
      کاربردهای مختلف سامانه‌های تبرید به دلایل متفاوتی نیازمند تشخیص گاز هستند.

    آمونیاک به عنوان ماده‌ای سمی با بوی بسیار خاص طبقه‌بندی می‌شود، بنابراین به‌طور طبیعی «هشداردهنده» است. با این حال، استفاده از دتکتورهای گاز برای صدور هشدار اولیه و پایش نواحی‌ای که همواره افراد حضور ندارند (مانند اتاق‌های ماشین‌آلات) الزامی است. باید توجه داشت که آمونیاک تنها مبرد رایج است که از هوا سبک‌تر می‌باشد. در بسیاری از موارد، این ویژگی باعث می‌شود آمونیاک به بالای ناحیه تنفسی صعود کرده و شناسایی نشتی برای افراد دشوار شود. استفاده از دتکتور گاز در نواحی مناسب، هشدارهای اولیه در صورت نشتی آمونیاک را تضمین می‌کند.

    هیدروکربن‌ها به‌عنوان مواد قابل اشتعال طبقه‌بندی می‌شوند. بنابراین، ضروری است که غلظت آن‌ها در اطراف سامانه تبرید از حد اشتعال فراتر نرود.

    مبردهای فلوئوردار همگی دارای اثرات منفی خاصی بر محیط زیست هستند و به همین دلیل باید از هرگونه نشتی آن‌ها جلوگیری کرد.

    دی‌اکسید کربن (CO₂) مستقیماً در فرآیند تنفس دخیل است و باید متناسب با آن با آن برخورد شود. حدود ۰٫۰۴٪ دی‌اکسید کربن به‌طور طبیعی در هوا وجود دارد. در غلظت‌های بالاتر، برخی واکنش‌های منفی مشاهده شده است که با افزایش نرخ تنفس (حدود ۱۰۰٪ در غلظت ۳٪) آغاز شده و به از دست دادن هوشیاری و مرگ در غلظت‌های بالاتر از ۱۰٪ منجر می‌شود.

    مقررات و استانداردها
    الزامات مربوط به تشخیص گاز در کشورهای مختلف جهان متفاوت است. در صفحات بعد نمایی کلی از قوانین و مقررات رایج ارائه شده است.

    اروپا
    استاندارد ایمنی فعلی برای سامانه‌های تبرید در اروپا، EN 378:2016 است.

    سطوح هشدار مشخص‌شده در EN 378:2016 به‌گونه‌ای تعیین شده‌اند که امکان تخلیه ایمن ناحیه را فراهم کنند. این سطوح بازتابی از اثرات ناشی از مواجهه بلندمدت با مبردهای نشت‌یافته نیستند. به‌عبارت‌دیگر، در EN 378 وظیفه دتکتور گاز، هشدار در هنگام وقوع نشتی ناگهانی و زیاد است، در حالی که تهویه اتاق ماشین و اقدامات کیفی سامانه باید اطمینان حاصل کنند که نشتی‌های کوچک تأثیرات منفی برای سلامتی ایجاد نکنند.

    توجه
    الزامات مربوط به دتکتور گاز در اروپا تحت پوشش قوانین ملی کشورهای مختلف قرار دارد و ممکن است با الزامات مندرج در EN 378 تفاوت داشته باشد.

    با چند استثناء، دتکتور گاز مطابق با استانداردهای EN 378:2016 و ISO 5149:2014 برای تمام نصب‌هایی که احتمال دارد غلظت گاز در اتاق از حد عملی فراتر رود، الزامی است.

    در مورد مبردهای سمی و قابل اشتعال، این موضوع تقریباً شامل تمام سامانه‌های صنعتی و تجاری می‌شود. در مورد مبردهای گروه A1، امکان طراحی سامانه‌های کوچکی وجود دارد که نیازی به دتکتور گاز ندارند. اما در بیشتر تأسیسات بزرگ، در صورت بروز نشتی عمده، احتمالاً غلظت مبرد از حد عملی فراتر خواهد رفت و در نتیجه استفاده از دتکتور گاز الزامی می‌گردد.

    راهنمایی‌هایی در بخش ۳ استاندارد EN 378:2016 یا بخش ۳ استاندارد ISO 5149:2014 ارائه شده‌اند. الزامات این دو استاندارد بسیار مشابه بوده و در شکل ۵ خلاصه شده‌اند.

    در صورتی که با انجام محاسبات مشخص شود غلظت مبرد در یک اتاق هرگز به حد عملی نمی‌رسد، دیگر نیازی به استفاده از دتکتور گاز ثابت نیست، به‌جز در مورد خاصی در استاندارد EN 378 که سیستم در زیرزمین نصب شده و بار مبرد آن از مقدار m2 فراتر رود (تقریباً معادل ۱ کیلوگرم پروپان). ISO 5149 چنین استثنایی را ندارد.

    مقدار m2 برابر است با ۲۶ مترمکعب ضرب در LFL (حد پایین اشتعال‌پذیری). برای پروپان، این مقدار برابر است با:
    ۲۶ m³ × ۰٫۰۳۸ kg/m³ = ۰٫۹۸۸ kg
    یا اگر LFL برحسب گرم اندازه‌گیری شود:
    ۲۶ m³ × ۳۸ g/m³ = ۹۸۸ g
    در نتیجه، m2 دارای واحد نیست، چرا که واحد نهایی آن به واحد انتخاب‌شده برای LFL بستگی دارد.

    بیشتر هیدروکربن‌ها دارای مقدار LFL مشابه هستند، بنابراین مقدار m2 معمولاً در حدود ۱ کیلوگرم است.

    با این حال، اگر غلظت بتواند به حد عملی برسد، حتی برای مبردهای گروه A1، نصب دتکتور ثابت الزامی است – البته با چند استثناء جزئی.
    حدود عملی برای مبردهای مختلف در پیوست II که از بخش ۱ استاندارد EN 378-2016 استخراج شده، ارائه شده است. در این جداول، حد عملی آمونیاک بر اساس سمیت آن تعیین شده است. حدود عملی هیدروکربن‌ها بر اساس قابلیت اشتعال آن‌ها و معادل ۲۰ درصد از حد پایین اشتعال‌پذیری تعیین شده‌اند. حدود عملی برای تمامی مبردهای گروه A1 بر اساس حد مواجهه با سمیت حاد (ATEL) تعیین شده است.
    اگر کل بار مبرد در یک اتاق تقسیم بر حجم خالص اتاق بیشتر از «حد عملی» (مطابق پیوست II) باشد، به‌طور منطقی می‌توان نتیجه گرفت که باید سامانه دتکتور گاز ثابت نصب شود.
    هر دو استاندارد EN378:2016 و ISO 5149:2014 الزام می‌کنند که دستگاه نمایشگری برای نشان دادن فعال شدن شیر اطمینان در سامانه‌هایی با مبرد ۳۰۰ کیلوگرم یا بیشتر نصب شود. یکی از روش‌ها، نصب دتکتور گاز در خط تخلیه است.

    مقررات F-Gas
    مقررات F-Gas (EC) شماره ۵۱۷/۲۰۱۴
    یکی از اهداف مقررات F-Gas محدود کردن، جلوگیری و کاهش انتشار گازهای گلخانه‌ای فلوئوردار تحت پوشش پروتکل کیوتو است. این دستورالعمل برای همه کشورهای عضو اتحادیه اروپا و همچنین سه کشور منطقه اقتصادی اروپا (EEA) شامل ایسلند، لیختن‌اشتاین و نروژ اجباری است.
    این مقررات موضوعات متعددی از جمله واردات، صادرات و استفاده از گازهای سنتی HFC و PFC در تمام کاربردهایشان را پوشش می‌دهد. این مقررات از اول ژانویه ۲۰۱۵ لازم‌الاجرا شده است.

    الزامات بازرسی نشتی به منظور پیشگیری از نشت و تعمیر هرگونه نشتی کشف‌شده، بر اساس معادل‌های دی‌اکسید کربن مبرد در هر مدار محاسبه می‌شود. معادل دی‌اکسید کربن برابر است با مقدار شارژ (کیلوگرم) ضرب در پتانسیل گرمایش جهانی (GWP) مبرد.

    بازرسی دوره‌ای نشتی توسط افراد مجاز با فرکانس زیر لازم است که بستگی به مقدار مبرد مصرفی دارد:
    • معادل ۵ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۱۲ ماه – به استثناء سیستم‌های کاملاً بسته که کمتر از ۱۰ تن معادل CO2 دارند
    • معادل ۵۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه (۱۲ ماه در صورت وجود سامانه مناسب تشخیص نشتی)
    • معادل ۵۰۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه. سامانه مناسب تشخیص نشتی الزامی است. سامانه تشخیص نشتی باید حداقل هر ۱۲ ماه یک‌بار بررسی شود.