راهنمای طراحی دتکتور دودی مکشی برای مهندسین

aspirating smoke detector differentiates between smoke dust 27237 9913942

قسمت نخست: مفاهیم و ساختارها

ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

سطوح حفاظت به شرح زیر خواهند بود:

  1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
    2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
    3. SFD (تشخیص حریق استاندارد Standard Fire Detection

4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

  • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
  • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
  • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
  • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
  • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
    ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
    ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
    ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

بخش ۲
اصول تشخیص دود به روش مکشی (ASD)
دینامیک جریان هوا

یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

  • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
  • آشکارساز دود مکشی که شامل موارد زیر است:
    – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
    – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
    – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
  • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

شبکه لوله‌کشی نمونه‌برداری
شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

  • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

WhatsApp Image 2025 09 29 at 11.40.01 PM

  • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

WhatsApp Image 2025 09 29 at 11.40.01 PM1

  • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
  • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
  • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
  • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

WhatsApp Image 2025 09 29 at 11.40.02 PM2

WhatsApp Image 2025 09 29 at 11.40.02 PM1

نوشته‌های مشابه

  • الزامات سیستم اطفاء حریق با دی اکسید کربن برای کاربرد دریایی ( کشتی ها و وسایل نقلیه دریایی، مناطق ساحلی، اسکله ها و غیره)


    فصل ۹ سیستم‌های دریایی
    9.1 تعاریف ویژه

    9.2 کلیات
    9.2.1* شرح کلی
    این فصل، اصلاحات لازم برای سیستم‌های دریایی را بیان می‌کند.
    9.2.2 کلیه الزامات دیگر این استاندارد، مگر آنکه در این فصل به‌صورت خاص تغییر یافته باشند، برای سیستم‌های دریایی نیز اعمال می‌شوند.

    9.3 الزامات سیستم
    9.3.1 اجزاء
    اجزای سیستم باید به‌طور خاص برای کاربرد دریایی سیستم‌های دی‌اکسید کربن لیست یا تأیید شده باشند.

    9.3.2 دستورالعمل‌های بهره‌برداری
    9.3.2.1 دستورالعمل‌های بهره‌برداری از سیستم باید در مکان واضحی در نزدیکی تمامی کنترل‌های دستی و در اتاق ذخیره‌سازی دی‌اکسید کربن قرار داده شوند.
    9.3.2.2 برای سیستم‌هایی که ذخیره‌سازی دی‌اکسید کربن در داخل فضای حفاظت‌شده قرار ندارد، دستورالعمل‌ها باید شامل نموداری باشند که محل کنترل اضطراری را در صورت عدم عملکرد کنترل‌های عادی نشان دهد.

    9.3.3 فعال‌سازی
    9.3.3.1* در فضاهایی با حجم بیش از ۶۰۰۰ فوت مکعب (۱۷۰متر مکعب)، فعال‌سازی خودکار سیستم دی‌اکسید کربن مجاز نمی‌باشد.
    9.3.3.2* فعال‌سازی خودکار برای فضاهایی با حجم ۶۰۰۰ فوت مکعب (۱۷۰ متر مکعب) یا کمتر، در صورتی مجاز است که الزامات بندهای 9.3.3.2.1 تا 9.3.3.2.4 رعایت شوند.

    9.3.3.2.1 مسیر خروج افقی از محفظه ماشین‌آلات به عرشه باز باید فراهم شود.
    9.3.3.2.2 محفظه باید در زمان عملکرد تجهیزات بدون حضور نفر باشد.
    9.3.3.2.3 زمانی که افراد در داخل محفظه حضور دارند، سیستم باید در وضعیت قفل قرار گیرد.
    9.3.3.2.4 فعال‌سازی خودکار سیستم نباید با ناوبری ایمن کشتی تداخل داشته باشد.

    9.3.3.3 برای عملکرد دستی، باید دو شیر جداگانه برای تخلیه دی‌اکسید کربن در هر فضای محافظت‌شده فراهم شود.
    9.3.3.3.1 یکی از شیرها باید تخلیه از مخزن دی‌اکسید کربن را کنترل کند.
    9.3.3.3.2 شیر دوم باید تخلیه دی‌اکسید کربن به فضای محافظت‌شده را کنترل کند.
    9.3.3.3.3 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای آزادسازی سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.3.4 کنترل‌ها
    9.3.3.4.1 برای هر یک از شیرهای مورد نیاز در بند 9.3.3.3 باید یک کنترل دستی جداگانه فراهم گردد.
    9.3.3.4.2 یک مجموعه کنترل باید در خارج از حداقل یکی از مسیرهای اصلی خروج از هر فضای محافظت‌شده قرار گیرد.

    9.3.3.5 علاوه بر کنترل‌های دستی مورد نیاز در 9.3.3.4، هر یک از شیرهای ذکر شده در 9.3.3.3 باید دارای کنترل اضطراری دستی مخصوص به خود باشند.

    9.3.3.6 جعبه آزادسازی
    9.3.3.6.1 کنترل‌های مربوط به شیرهای مورد نیاز در 9.3.3.4 باید درون یک جعبه آزادسازی قرار گیرند که به‌وضوح برای فضای محافظت‌شده شناسایی شده باشد.
    9.3.3.6.2 اگر جعبه حاوی کنترل‌ها قفل‌شده باشد، کلید آن باید در یک محفظه از نوع شیشه‌شکن در کنار جعبه و در مکانی مشخص قرار گیرد.

    9.3.3.7 منبع نیرو
    9.3.3.7.1 علاوه بر الزامات بند 4.3.3.2، آژیرهای هشدار قبل از تخلیه باید به‌گونه‌ای باشند که فقط به فشار دی‌اکسید کربن وابسته بوده و به منبع نیروی دیگری نیاز نداشته باشند.
    9.3.3.7.2 تأخیر زمانی مورد نیاز طبق بند 4.5.6.2.2 باید حداقل ۲۰ ثانیه بوده و تنها به فشار دی‌اکسید کربن وابسته باشد.

    9.3.4 ذخیره‌سازی دی‌اکسید کربن
    9.3.4.1 ذخیره‌سازی دی‌اکسید کربن در فضاهای محافظت‌شده‌ای که معمولاً بدون نفر هستند، برای سیستم‌هایی با حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن و دارای عملکرد خودکار مجاز می‌باشد.
    9.3.4.2 سیستم‌های با فشار پایین باید مجهز به دو واحد تبرید بوده و مطابق با مقررات 46 CFR 58.20 ساخته شوند.
    9.3.4.3 زمانی که مخازن دی‌اکسید کربن خارج از فضای محافظت‌شده قرار دارند، باید در اتاقی نگهداری شوند که در مکانی ایمن و به‌راحتی قابل دسترس بوده و به‌طور مؤثر تهویه شود تا مخازن ماده اطفاء حریق در معرض دماهای محیطی تعیین‌شده در بند 4.6.5.5 قرار نگیرند.

    9.3.4.3.1 دیوارها و عرشه‌های مشترک میان اتاق‌های نگهداری مخازن ماده اطفاء حریق و فضاهای محافظت‌شده باید با عایق ساختاری کلاس A-60 مطابق با استاندارد 46 CFR 72 محافظت شوند.
    9.3.4.3.2 درها و سایر روش‌های بسته شدن هرگونه بازشو در این مرزها باید گازبند باشند.
    9.3.4.3.3 اتاق‌های نگهداری مخازن ماده اطفاء حریق باید بدون نیاز به عبور از فضای محافظت‌شده قابل دسترسی باشند.
    9.3.4.3.4 درب‌های ورودی باید به سمت بیرون باز شوند.
    9.3.4.3.5 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای تخلیه سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.5 لوله‌کشی سیستم
    9.3.5.1 در صورت نیاز، باید زهکش‌هایی برای تخلیه رطوبت جمع‌شده تعبیه شود.
    9.3.5.2 لوله‌کشی دی‌اکسید کربن نباید دارای زهکش یا بازشویی در داخل بخش‌های مسکونی باشد.
    9.3.5.3 لوله‌کشی دی‌اکسید کربن نباید برای هیچ منظور دیگری استفاده شود، مگر اینکه در سیستم‌های تشخیص دود از نوع نمونه‌برداری از هوا مورد استفاده قرار گیرد.

    9.3.6 طراحی سیستم
    طراحی سیستم باید با فصل‌های ۵ تا ۷ مطابقت داشته باشد، مگر در موارد مشخص‌شده در بندهای 9.3.6.1 تا 9.3.6.4.2.

    9.3.6.1 فضاهای ماشین‌آلات
    فضاهای ماشین‌آلات باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.1.1 ۸۵ درصد از غلظت مورد نیاز طبق بند 9.3.6.1 باید طی ۲ دقیقه از آغاز تخلیه حاصل شود.
    9.3.6.1.2 حجم ناخالص باید شامل بدنه پوششی نیز باشد.

    9.3.6.2 فضاهای بار
    فضاهای بار (غیر از فضاهای وسایل نقلیه) باید بر اساس نسبت ۱ پوند دی‌اکسید کربن به ازای هر ۳۰ فوت مکعب حجم ناخالص مجهز شوند.
    9.3.6.2.1 مقدار اولیه دی‌اکسید کربن تخلیه‌شده باید بر اساس حجم خالص فضا و میزان بار موجود تعیین شود.
    9.3.6.2.2 در صورت نیاز، دی‌اکسید کربن اضافی باید برای کنترل آتش آزاد شود.
    9.3.6.2.3 دستورالعمل‌های شفاف در خصوص فرآیند تخلیه دی‌اکسید کربن باید در داخل اتاق نگهداری مخازن دی‌اکسید کربن نصب شود.

    9.3.6.3 فضاهای وسایل نقلیه
    9.3.6.3.1 فضاهای وسایل نقلیه که در آن‌ها سوخت وسایل نقلیه بیش از ۱۹ لیتر (۵ گالن) است، باید برای رسیدن به غلظت ۳۴درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.3.2 ۸۵ درصد از این غلظت باید طی ۲ دقیقه از آغاز تخلیه به دست آید.

    9.3.6.4 فضاهای وسایل نقلیه
    9.3.6.4.1 فضاهای وسایل نقلیه که میزان سوخت (بنزین یا گازوئیل) موجود در آن‌ها ۱۹ لیتر (۵ گالن) یا کمتر است، باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.4.2 دو سوم این غلظت باید طی ۱۰ دقیقه از آغاز تخلیه حاصل شود.

    9.3.7 فضاهای تجهیزات الکتریکی
    فضاهای تجهیزات الکتریکی باید به عنوان خطر خشک الکتریکی طبق فصل ۵ در نظر گرفته شوند.

    9.4 بازرسی و نگهداری
    بازرسی و نگهداری باید مطابق با بند 4.8.3 و بخش 9.4 انجام گیرد.

    9.4.1 کلیات
    پیش از انجام آزمایش یا عملیات نگهداری سیستم ثابت اطفاء حریق با دی‌اکسید کربن، تمام افراد باید از فضای محافظت‌شده تخلیه شوند. (رجوع شود به بخش 4.3)

    9.4.2 تأیید نصب
    9.4.2.1 آزمایش تأییدی که در بندهای 9.4.2.1.1 تا 9.4.2.1.4 شرح داده شده، باید پیش از آزمایش‌های الزامی بند 4.4.3 انجام شود.
    9.4.2.1.1 تست فشار لوله‌کشی باید مطابق با الزامات بندهای 9.4.2.1.2 تا 9.4.2.1.4 انجام شود.
    9.4.2.1.2 سیال آزمایشی باید یک گاز خشک و غیرخورنده نظیر نیتروژن یا دی‌اکسید کربن باشد.
    9.4.2.1.3 هنگام وارد کردن فشار به لوله‌ها، فشار باید به صورت افزایشی در گام‌های ۵۰ psi (۳.۵ بار) اعمال شود.
    9.4.2.1.4 پس از رسیدن به فشار تست موردنظر، منبع فشار باید قطع و از لوله جدا شود.

    ⚠️ هشدار
    تست فشار پنوماتیکی ممکن است در صورت ترکیدگی سیستم لوله‌کشی، خطر پرتاب اشیاء و آسیب به افراد را ایجاد کند. پیش از انجام این تست، ناحیه‌ای که لوله در آن قرار دارد باید تخلیه شده و اقدامات ایمنی لازم برای حفاظت از افراد انجام شود.

    9.4.2.2 سیستم‌های پرفشار
    9.4.2.2.1 سیستم‌هایی با شیر توقف
    9.4.2.2.1.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا شیرهای توقف باید تحت فشار حداقل ۱۰۰۰ psi (۶۸۹۵ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.
    9.4.2.2.1.3 تمام لوله‌کشی بین شیرهای توقف و اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.4 افت فشار در این بخش نیز در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.2.2 سیستم‌های بدون شیر توقف
    9.4.2.2.2.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷کیلوپاسکال) قرار گیرد.
    9.4.2.2.2.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.3 سیستم‌های کم‌فشار
    9.4.2.3.1 لوله‌کشی‌هایی که به‌طور معمول تحت فشار هستند
    9.4.2.3.1.1 تمام لوله‌کشی‌هایی که به طور معمول تحت فشار قرار دارند باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸کیلوپاسکال) قرار گیرند.
    9.4.2.3.1.2 در طول آزمایش ۲ دقیقه‌ای، هیچ‌گونه نشتی از لوله‌کشی نباید وجود داشته باشد.

    9.4.2.3.2 لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها
    9.4.2.3.2.1 تمام لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸ کیلوپاسکال) قرار گیرد.
    9.4.2.3.2.2 افت فشار در طول ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.3 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی‌های سیستم تهویه
    9.4.3.1 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی سیستم تهویه باید با عبور جریان دی‌اکسید کربن در سیستم آزمایش شوند.
    9.4.3.2 تأخیرهای پیش‌تخلیه‌ای که در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) دقت ±۲۰ درصد از مقدار نامی را ندارند، باید تعویض شوند.

    9.4.4 تأیید
    رعایت الزامات بند 9.3.2 باید مورد تأیید قرار گیرد

  • محاسبات برای طراحی سیستم اطفاء حریق بوسیله گاز دی اکسید کربن

    A.5.1.2 دستیابی و حفظ غلظت صحیح اطمینان می‌دهد که آتش به‌طور کامل و دائمی در ماده قابل احتراق خاص یا مواد دخیل در آتش خاموش می‌شود.

    A.5.2.1 در این نوع حفاظت، فرض بر این است که فضای نسبتاً بسته‌ای برای کاهش از دست دادن عامل اطفاء حریق در نظر گرفته شده است. مساحت منافذ غیرقابل بسته شدن مجاز بستگی به نوع مواد قابل احتراق دارد.

    A.5.2.1.1 در صورتی که دو یا چند خطر به دلیل نزدیکی آن‌ها به طور همزمان در آتش درگیر شوند، باید هر خطر با یک سیستم جداگانه حفاظت شود، یا با ترکیبی از سیستم‌ها که به‌طور همزمان عمل کنند، یا با یک سیستم واحد که باید به‌طور همزمان برای تمام خطرات بالقوه درگیر طراحی و تنظیم شود.

    A.5.2.1.3 برای آتش‌های عمیق، باید از منافذ پایین اجتناب شود، صرف‌نظر از نیازهای تهویه، تا غلظت اطفاء حریق برای مدت زمان لازم حفظ شود. دریچه‌های تهویه تحت این شرایط باید تا حد امکان در بالاترین نقطه محفظه قرار گیرند.

    A.5.2.3 تقریباً تمام خطراتی که مواد قابل احتراقی دارند که آتش سطحی تولید می‌کنند، می‌توانند مقادیر مختلفی از موادی که آتش‌های عمیق تولید می‌کنند را در خود جای دهند. انتخاب صحیح نوع آتشی که سیستم باید برای اطفاء آن طراحی شود، اهمیت زیادی دارد و در بسیاری از موارد نیازمند قضاوت صحیح پس از بررسی دقیق تمام عوامل مختلف است. اساساً، چنین تصمیمی بر اساس پاسخ به سوالات زیر گرفته می‌شود:
    (1) آیا احتمال ایجاد آتش عمیق وجود دارد، با توجه به سرعت شناسایی و کاربرد سیستم مورد نظر؟
    (2) اگر آتش عمیق ایجاد شود، آیا به‌طور جزئی خواهد بود، شرایط به‌گونه‌ای است که باعث شعله‌ور شدن ماده‌ای که آتش سطحی تولید کرده است نخواهد شد، و آیا می‌توان ترتیبی برای اطفاء دستی آن پس از تخلیه دی‌اکسیدکربن قبل از ایجاد مشکل فراهم کرد؟
    (3) آیا ارزش‌ها یا اهمیت تجهیزات به‌گونه‌ای است که حفاظت نهایی توجیه‌پذیر باشد، صرف‌نظر از هزینه اضافی برای فراهم کردن سیستمی که قادر به اطفاء آتش‌های عمیق باشد؟

    خواهید دید که در صورتی که احتمال کمی از آتش عمیق وجود داشته باشد که مشکلاتی ایجاد کند، در بسیاری از موارد پذیرش این خطر کم ممکن است توجیه‌پذیر باشد و انتخاب سیستمی که فقط آتش‌های سطحی را خاموش کند صحیح باشد. به عنوان مثال، ترانسفورماتورهای الکتریکی و سایر تجهیزات الکتریکی پر شده با روغن معمولاً به‌عنوان تولیدکننده آتش سطحی در نظر گرفته می‌شوند، اگرچه ممکن است این احتمال وجود داشته باشد که هسته گرم شده آتش عمیق در عایق الکتریکی ایجاد کند. از سوی دیگر، اهمیت برخی از تجهیزات الکتریکی برای تولید می‌تواند به‌گونه‌ای باشد که برخورد با خطر به‌عنوان آتش عمیق توجیه‌پذیر باشد.

    اغلب، تصمیم‌گیری نیاز به مشاوره با مقامات صلاحیت‌دار و با مالک و مهندسان شرکت تأمین‌کننده تجهیزات دارد. مقایسه هزینه‌ها بین سیستمی که برای اطفاء آتش سطحی طراحی شده است و سیستمی که برای اطفاء آتش عمیق طراحی شده است، می‌تواند عامل تعیین‌کننده باشد. در همه موارد، توصیه می‌شود که تمام طرف‌های ذی‌نفع کاملاً از هرگونه خطرات موجود آگاه باشند، اگر سیستم فقط برای اطفاء آتش سطحی طراحی شود و از هزینه‌های اضافی مربوط به طراحی سیستمی که قادر به اطفاء آتش عمیق است.

    A.5.2.3.1 آتش‌های سطحی رایج‌ترین خطراتی هستند که به‌ویژه به سیستم‌های اطفاء حریق با سیل کامل مناسب هستند.

    A.5.2.3.2 در هر صورت، پس از آتش عمیق، ضروری است که خطر بلافاصله بررسی شود تا اطمینان حاصل شود که اطفاء حریق کامل بوده و هر ماده‌ای که در آتش دخیل بوده است برداشته شود.

    در مواقعی که جو انفجاری از بخارات قابل اشتعال یا گرد و غبار قابل احتراق در داخل یک محفظه وجود دارد، تخلیه دی‌اکسیدکربن مایع می‌تواند باعث ایجاد جرقه‌ای استاتیکی شود که انفجار ایجاد کند. خطر انفجار می‌تواند با تزریق بخار دی‌اکسیدکربن به داخل خطر برای ایجاد جو بی‌اثر کاهش یابد. تزریق بخار دی‌اکسیدکربن باید به‌آرامی انجام شود تا از ایجاد آشفتگی که می‌تواند گرد و غبار قابل احتراق را در داخل محفظه به حالت معلق درآورد، جلوگیری شود. یک مثال از چنین خطری، سیلوی ذخیره زغال‌سنگ است.
    (توجه: حفاظت در برابر حریق و بی‌اثر کردن سیلوهای زغال‌سنگ از محدوده این استاندارد خارج است.) به A.4.2.1 مراجعه کنید.

    A.5.3.2.2 حداقل غلظت نظری دی‌اکسیدکربن و حداقل غلظت طراحی دی‌اکسیدکربن برای جلوگیری از اشتعال برخی مایعات و گازهای رایج در جدول 5.3.2.2 آورده شده است.

    A.5.3.3.1 از آنجا که در فضای کوچک نسبت به حجم محصور، مساحت مرز بیشتری وجود دارد، بنابراین احتمال نشت بیشتر و به تبع آن نیاز به در نظر گرفتن فاکتورهای حجم گرید شده در جدول 5.3.3(a) و جدول 5.3.3(b) است.
    حداقل مقادیر گاز برای کوچکترین حجم‌ها در جدول آورده شده است تا هدف ستون B در جدول‌های 5.3.3(a) و 5.3.3(b) روشن شود و از همپوشانی احتمالی در حجم‌های مرزی جلوگیری شود.

    A.5.3.5.1 زمانی که تهویه اجباری مدنظر نباشد، نشت مخلوط دی‌اکسیدکربن و هوا از فضای محصور بستگی به یکی یا چند مورد از پارامترهای زیر دارد:
    (1) دمای محفظه: دی‌اکسیدکربن در دمای پایین کمتر گسترش می‌یابد و چگالی بیشتری خواهد داشت؛ بنابراین، مقدار بیشتری از آن در صورت وجود منافذ در قسمت پایین محفظه نشت خواهد کرد.
    (2) حجم محفظه: درصد گاز دی‌اکسیدکربن که از هر منفذ در یک فضای کوچک نشت می‌کند، بسیار بیشتر از آن است که از همان منفذ در فضای بزرگتر نشت کند.
    (3) تهویه: معمولاً یک منفذ در یا نزدیک به سقف مطلوب است تا گازهای سبک‌تر از اتاق خارج شوند طی تخلیه.
    (4) محل منافذ: چون دی‌اکسیدکربن از هوا سنگین‌تر است، ممکن است نشت دی‌اکسیدکربن از منافذ نزدیک به سقف بسیار کم یا هیچ‌گونه نشت نداشته باشد، در حالی که نشت در سطح کف می‌تواند قابل توجه باشد.

    A.5.3.5.3 خطراتی که در محفظه‌هایی که معمولاً دمای آن‌ها بالاتر از 2000 درجه فارنهایت (93 درجه سلسیوس) است، قرار دارند، بیشتر در معرض خطر بازاشتعال هستند. بنابراین، اضافه کردن دی‌اکسیدکربن اضافی توصیه می‌شود تا غلظت‌های اطفاء حریق برای مدت زمان بیشتری حفظ شود، و این اجازه می‌دهد تا ماده خاموش‌شده خنک شود و احتمال بازاشتعال زمانی که گاز پخش می‌شود، کاهش یابد.

    A.5.3.5.5 تحت شرایط عادی، آتش‌های سطحی معمولاً در طول دوره تخلیه خاموش می‌شوند.

    A.5.3.5.7 آزمایش‌ها نشان داده‌اند که دی‌اکسیدکربن که مستقیماً بر روی سطح مایع توسط نازل‌های نوع کاربرد محلی اعمال می‌شود، می‌تواند برای تأمین خنک‌کنندگی مورد نیاز جهت جلوگیری از بازاشتعال پس از پایان تخلیه دی‌اکسیدکربن ضروری باشد.

    A.5.4.1 اگرچه داده‌های خاص آزمایشی در دسترس نیست، اما شناخته شده است که برخی از انواع آتش‌های عمیق ممکن است نیاز به زمان‌های نگهداری بیش از 20 دقیقه داشته باشند. مقدار دی‌اکسیدکربن مورد نیاز برای آتش‌های عمیق بر اساس محفظه‌های نسبتاً محکم است.

    A.5.4.2 برای مواد قابل اشتعال که قادر به تولید آتش‌های عمیق هستند، غلظت‌های مورد نیاز دی‌اکسیدکربن نمی‌توانند با دقت مشابهی با مواد سوختی سطحی تعیین شوند. غلظت اطفاء حریق به جرم ماده موجود بستگی خواهد داشت زیرا اثرات عایق حرارتی وجود دارد. بنابراین، عوامل سیل کردن بر اساس شرایط آزمایشی عملی تعیین شده‌اند.

    A5.4.2.1 به طور کلی، عوامل سیل کردن برای فراهم کردن غلظت‌های طراحی مناسب برای اتاق‌ها و محفظه‌های ذکر شده در جدول 5.4.2.1 یافت شده است.
    برای اطلاعات بیشتر، به پیوست D مراجعه کنید.
    بسته به قابلیت اشتعال، این خطرات ممکن است شامل آتش‌های عمیق نباشند. (به 5.3.5.6 مراجعه کنید.)

    A5.5.2 نرخ‌های حداقل طراحی اعمال شده برای آتش‌های سطحی یا عمیق معمولی کافی در نظر گرفته شده‌اند. با این حال، در مواردی که سرعت گسترش آتش سریع‌تر از حالت عادی برای نوع آتش باشد، یا زمانی که مقادیر بالا یا تجهیزات حیاتی درگیر باشند، نرخ‌های بالاتر از حداقل‌ها می‌توانند و در بسیاری از موارد باید استفاده شوند.
    در مواردی که یک خطر شامل ماده‌ای باشد که هر دو نوع آتش سطحی و عمیق را تولید کند، نرخ اعمال باید حداقل نرخ مورد نیاز برای آتش‌های سطحی باشد.
    پس از انتخاب نرخ مناسب برای خطر، جداول و اطلاعاتی که در ادامه آمده باید استفاده شود یا مهندسی خاصی که نیاز است باید برای به دست آوردن ترکیب صحیح از رهاسازی‌های مخزن، لوله‌کشی تأمین و اندازه‌های اوریفیس که این نرخ مطلوب را تولید کند، انجام شود.
    نرخ نشت از یک محفظه در غیاب تهویه اجباری عمدتاً به تفاوت چگالی بین جو داخل محفظه و هوای اطراف محفظه بستگی دارد.
    معادله زیر می‌تواند برای محاسبه نرخ از دست دادن دی‌اکسیدکربن استفاده شود، به این فرض که نشت کافی در قسمت بالایی محفظه وجود دارد تا ورود هوای آزاد را امکان‌پذیر کند:

    4ffu5FbiHe8aAAAAAASUVORK5CYII=

    جایی که:

    R = نرخ دی‌اکسیدکربن [پوند در دقیقه (کیلوگرم در دقیقه)]
    C = نسبت غلظت دی‌اکسیدکربن
    p = چگالی بخار دی‌اکسیدکربن [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    A = مساحت بازشو [فوت مربع (متر مربع)] (شامل ضریب جریان)
    g = ثابت گرانش [32.2 فوت بر ثانیه مربع (9.81 متر بر ثانیه مربع)]
    p1 = چگالی جو [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    p2 = چگالی هوای اطراف [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    h = ارتفاع ایستا بین بازشو و بالای محفظه [فوت (متر)]

    اگر تنها در دیوارها بازشوهایی وجود داشته باشد، مساحت بازشوهای دیوار می‌تواند برای محاسبات تقسیم بر 2 شود زیرا فرض بر این است که هواي تازه می‌تواند از نیمی از بازشوها وارد شود و گاز محافظ از نیمی دیگر خارج خواهد شد.
    شکل E.1 (ب) می‌تواند به‌عنوان راهنمایی برای برآورد نرخ‌های تخلیه در سیستم‌های تخلیه طولانی استفاده شود. منحنی‌ها با استفاده از معادله قبلی محاسبه شده‌اند، با فرض دمای 70 درجه فارنهایت (21 درجه سلسیوس) داخل و خارج محفظه. در یک سیستم واقعی، دمای داخل معمولاً با تخلیه کاهش می‌یابد، که باعث افزایش نرخ از دست رفتن گاز می‌شود. به دلیل وجود متغیرهای زیاد، ممکن است نیاز به آزمایش سیستم نصب‌شده برای اطمینان از عملکرد صحیح باشد.
    در صورتی که نشت قابل توجهی وجود داشته باشد، غلظت طراحی باید به سرعت به دست آید و برای مدت زمان طولانی حفظ شود. دی‌اکسیدکربن مورد نیاز برای جبران نشت باید با نرخ کمتری اعمال شود. نرخ تخلیه طولانی‌شده باید به اندازه کافی برای حفظ غلظت طراحی باشد.

    A.5.5.2.1 معمولاً زمان تخلیه اندازه‌گیری شده زمانی در نظر گرفته می‌شود که دستگاه اندازه‌گیری شروع به ثبت حضور دی‌اکسیدکربن می‌کند تا غلظت طراحی به دست آید.

    A.5.5.3 حفاظت از موتورهای احتراق ثابت و توربین‌های گازی درNFPA 37 مورد بررسی قرار گرفته است.
    برای تجهیزات الکتریکی محصور از نوع گردش داخلی، مقدار اولیه تخلیه نباید کمتر از 1 پوند (0.45 کیلوگرم) گاز برای هر 10 فوت مکعب (0.28 متر مکعب) از حجم محصور تا 2000 فوت مکعب (56.6 متر مکعب) باشد. برای حجم‌های بزرگتر، 1 پوند (0.45 کیلوگرم) گاز برای هر 12 فوت مکعب (0.34 متر مکعب) یا حداقل 200 پوند (90.8 کیلوگرم) باید استفاده شود. جدولA.5.5.3(الف) و جدول A.5.5.3(ب) می‌تواند به‌عنوان راهنما برای برآورد مقدار گاز مورد نیاز برای تخلیه طولانی‌شده جهت حفظ حداقل غلظت 30 درصد برای زمان کاهش شتاب استفاده شود. این مقدار بر اساس حجم داخلی دستگاه و زمان کاهش شتاب است، با فرض نشت متوسط. برای دستگاه‌های بدون گردش داخلی که دارای دمپر هستند، 35 درصد به مقادیر نشان داده‌شده در جدول A.5.5.3(الف) و جدول A.5.5.3(ب) باید اضافه شود تا حفاظت از تخلیه طولانی‌شده تأمین شود.

    A.5.5.4.2 روش‌های موجود برای جبران دماهای بالایی شامل کاهش چگالی پر کردن برای دماهای بالا و فشرده‌سازی نیتروژن همراه با کاهش چگالی پر کردن برای دماهای پایین است. باید با تولیدکنندگان مشورت شود برای راهنمایی بیشتر.

    A.5.6.1 ملاحظه‌های تهویه فشار شامل عواملی مانند استحکام محفظه و نرخ تزریق است.

    A.5.6.2 منافذ و نشت‌هایی مانند درها، پنجره‌ها و دمپرها که ممکن است به راحتی قابل شناسایی نباشند یا به راحتی محاسبه نشوند، در سیستم‌های سیلاب دی‌اکسیدکربن معمولاً به‌اندازه کافی برای تهویه طبیعی بدون نیاز به تهویه اضافی فراهم کرده‌اند. اتاق‌های ذخیره‌سازی رکوردها، فضاهای یخچالی و کانال‌های تهویه نیز تحت شرایط سیستم متوسط خود نیاز به تهویه اضافی ندارند.
    در بسیاری از موارد، به‌ویژه زمانی که مواد خطرناک درگیر هستند، منافذ تهویه برای تهویه انفجاری قبلاً فراهم شده است. این‌ها و سایر منافذ موجود معمولاً تهویه کافی را فراهم می‌کنند.
    عملیات ساخت‌وساز عمومی راهنمای جدول A.5.6.2 را برای در نظر گرفتن استحکام عادی و فشارهای مجاز محفظه‌های متوسط فراهم می‌آورد.

    A.6.1.2 نمونه‌هایی از خطراتی که توسط سیستم‌های کاربردی محلی محافظت می‌شوند شامل وان‌های غوطه‌وری، تانک‌های خنک‌کننده، اتاق‌های اسپری، ترانسفورماتورهای الکتریکی پر شده از روغن، دریچه‌های بخار، آسیاب‌های نورد، دستگاه‌های چاپ و غیره می‌شود.

    A.6.1.4 به بخش‌های 4.3، 4.5.5 و A.4.3 اشاره می‌شود در مورد خطرات ناشی از کدورت دید و کاهش غلظت اکسیژن به مقداری که نمی‌تواند حیات را پشتیبانی کند، نه تنها در ناحیه اطراف تخلیه، بلکه در مناطق مجاور که گاز می‌تواند به آنجا مهاجرت کند.

    A.6.3.1 در محاسبه مجموع مقدار دی‌اکسیدکربن مورد نیاز برای یک سیستم کاربردی محلی، نرخ جریان همه نازل‌ها باید با هم جمع شوند تا نرخ جریان جرمی برای حفاظت از خطر خاص به‌دست آید. این نرخ باید ضربدر زمان تخلیه شود.

    A.6.3.1.1 این سیلندرها معمولاً در ظرفیت‌های اسمی 50 پوند، 75 پوند و 100 پوند (22.7 کیلوگرم، 34.1 کیلوگرم و 45.4 کیلوگرم) دی‌اکسیدکربن اندازه‌گیری می‌شوند. زمانی که سیلندرها با دی‌اکسیدکربن در چگالی پر کردن عادی که از 68 درصد بیشتر نباشد، پر می‌شوند، بخشی از تخلیه از سیلندرها به‌صورت دی‌اکسیدکربن مایع و باقی‌مانده به‌صورت بخار خواهد بود. برای مقاصد طراحی، تخلیه بخار به‌عنوان اثربخش در خاموش کردن آتش در نظر گرفته نمی‌شود. مشخص شده است که مقدار دی‌اکسیدکربن تخلیه‌شده از نازل به‌صورت مایع دی‌اکسیدکربن از 70 درصد تا 75 درصد از کل مقدار دی‌اکسیدکربن موجود در سیلندر متغیر است و بنابراین لازم است ظرفیت اسمی سیلندر برای یک سیستم خاص 40 درصد افزایش یابد تا بخش بخار دی‌اکسیدکربن در نظر گرفته شود. به‌عنوان مثال، یک سیلندر 50 پوندی (22.7 کیلوگرم) می‌تواند بین 35 پوند و 37.5 پوند (15.9 کیلوگرم و 17.0 کیلوگرم) دی‌اکسیدکربن به‌صورت مایع تخلیه کند که بخش مؤثر تخلیه در خاموش کردن آتش است.

    A.6.3.1.2 زمانی که دی‌اکسیدکربن مایع از یک لوله‌کشی گرم عبور می‌کند، مایع به‌سرعت تبخیر می‌شود تا دمای لوله به دمای اشباع دی‌اکسیدکربن برسد. مقدار دی‌اکسیدکربن مایع تبخیرشده به این روش بستگی به مقدار کل حرارت دارد که باید از لوله‌کشی برداشته شود و حرارت نهان تبخیر دی‌اکسیدکربن دارد. برای دی‌اکسیدکربن با فشار بالا، حرارت نهان تبخیر حدود 64Btu/pound (149 kJ/kg) است؛ برای دی‌اکسیدکربن با فشار پایین، حرارت نهان تبخیر حدود 120 Btu/pound (279 kJ/kg) است.
    مقدار حرارت که باید از لوله‌کشی برداشته شود، حاصل‌ضرب وزن لوله‌کشی در ظرفیت حرارتی ویژه فلز و تغییر دمای متوسط لوله‌کشی است. برای لوله‌کشی فولادی، ظرفیت حرارتی ویژه متوسط حدود 0.11 Btu/pound·°F (0.46 kJ/kg·K) تغییر دما است. تغییر دمای متوسط نیز تفاوت بین دمای آغاز تخلیه و دمای متوسط مایع در حال جریان در لوله خواهد بود. برای دی‌اکسیدکربن با فشار بالا، می‌توان دمای متوسط مایع در لوله‌کشی را حدود 60 درجه فارنهایت (16 درجه سلسیوس) فرض کرد. برای دی‌اکسیدکربن با فشار پایین، دمای متوسط را می‌توان حدود -5 درجه فارنهایت (-21 درجه سلسیوس) فرض کرد. این دماها البته تا حدودی متناسب با فشار نازل‌های متوسط تغییر خواهند کرد، اما چنین تنظیمات جزئی تأثیر قابل توجهی بر نتایج نخواهد گذاشت. معادله زیر می‌تواند برای محاسبه مقدار دی‌اکسیدکربن تبخیرشده در لوله‌کشی استفاده شود:

     

    جایی که:

    W = C0₂ تبخیر شده [پوند (کیلوگرم)]
    w = وزن لوله‌کشی [پوند (کیلوگرم)]
    Cp = گرمای ویژه فلز در لوله [Btu/پوند·°F; 0.11 برای فولاد (kJ/کیلوگرم·K; 0.46 برای فولاد)]
    T₁ = دمای متوسط لوله قبل از تخلیه [°F (°C)]
    T₂ = دمای متوسط C0₂ [°F (°C)]
    H = حرارت نهان تبخیر C0₂ مایع [Btu/پوند (kJ/کیلوگرم)]

    A.6.3.3 چون آزمایش‌های انجام شده در فهرست یا تاییدیه‌های اسپرینکلرهای دی‌اکسید کربن ایجاب می‌کند که آتش در حداکثر زمان ۲۰ ثانیه خاموش شود، زمان حداقل ۳۰ ثانیه برای این استاندارد تعیین شده است. این زمان اضافی به‌عنوان یک ضریب ایمنی برای شرایط غیرقابل پیش‌بینی در نظر گرفته شده است. مهم است که این زمان تخلیه به‌عنوان حداقل در نظر گرفته شود و شرایطی مانند دماهای بالا و خنک شدن سطوح بسیار داغ در منطقه خطر ممکن است نیاز به افزایش زمان تخلیه برای اطمینان از خاموشی کامل و مؤثر داشته باشد.

    A.6.3.3.2 جریان دی‌اکسید کربن نیازی نیست که همزمان در تمام اسپرینکلرها شروع یا متوقف شود، اما همه اسپرینکلرها باید حداقل به مدت زمان تخلیه مایع کربن دی‌اکسید به‌طور همزمان کار کنند.

    A.6.3.3.5 دمای حداکثر سوخت مایع در حال سوخت محدود به نقطه جوش آن است که در آن سرمایش تبخیری با ورود حرارت مطابقت دارد. در بیشتر مایعات، دمای خود اشتعال بسیار بالاتر از دمای جوش است، بنابراین باز اشتعال بعد از خاموش شدن تنها می‌تواند توسط یک منبع اشتعال خارجی ایجاد شود. با این حال، برخی مایعات منحصر به فرد دارای دماهای خود اشتعال بسیار پایین‌تری نسبت به دمای جوش خود هستند. روغن‌های پخت‌وپز معمولی و موم پارافین ذوب‌شده این ویژگی را دارند. برای جلوگیری از باز اشتعال در این مواد، لازم است تا جوّ اطفاء حریق تا زمانی که سوخت پایین‌تر از دمای خود اشتعال آن سرد شود، حفظ شود. یک زمان تخلیه ۳ دقیقه‌ای برای واحدهای کوچک کافی است، اما ممکن است برای واحدهای با ظرفیت بزرگتر به زمان بیشتری نیاز باشد.

    A.6.4.1 کاربرد عملی روش نرخ بر اساس مساحت در راهنمای طراحی FSSA برای سیستم‌های محلی دی‌اکسید کربن نرخ بر اساس مساحت توضیح داده شده است. این راهنما به کاربر در تمام فرآیند طراحی سیستم دی‌اکسید کربن بر اساس نرخ مساحت با مثال‌ها کمک می‌کند. کاربر با مراحل مختلف طراحی سیستم شامل چیدمان، محاسبات و طراحی کلی سیستم آشنا خواهد شد.

    A.6.4.2.1 در فهرست‌های فردی یا تاییدیه‌های اسپرینکلرهای نوع سقفی، آزمایش‌هایی برای تعیین جریان بهینه‌ای که یک اسپرینکلر باید برای ارتفاع نصب آن نسبت به سطح مایع استفاده کند، انجام می‌شود. این آزمایش‌ها به شرح زیر انجام می‌شوند:

    1. آزمایش‌های آتش‌سوزی برای اسپرینکلرهای نوع سقفی انجام می‌شود تا یک منحنی که جریان‌های حداکثر قابل استفاده برای اسپرینکلرها را در ارتفاعات مختلف نشان می‌دهد، توسعه یابد.
    2. پس از آزمایش‌های فوق، حداقل جریان برای ارتفاعات مختلف فرض می‌شود که ۷۵ درصد از حداکثر جریان قبلاً تعیین شده است.
    3. پس از آزمایش‌های فوق، آزمایش‌هایی انجام می‌شود تا مساحت آتش تغییر کند تا بیشترین مساحتی که یک اسپرینکلر در ارتفاعات مختلف می‌تواند خاموش کند، تعیین شود.
    4. از داده‌های مراحل قبلی دو منحنی رسم می‌شود: یک منحنی جریان در مقابل ارتفاع و منحنی مساحت در مقابل ارتفاع.

    این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، بنابراین مهم است که مساحت پوشش اسپرینکلرها در ارتفاعات مختلف بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. در سیستم‌های اسپرینکلر چندگانه، این محدودیت‌ها برای بخش‌های خطر که هر اسپرینکلر به‌طور جداگانه پوشش می‌دهد، استفاده می‌شود.

    چون این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، مهم است که به‌خاطر داشته باشید که پوشش مساحت برای اسپرینکلرها در ارتفاعات مختلف که توسط منحنی دوم نشان داده شده، باید بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. همچنین مهم است که به یاد داشته باشید این دو منحنی محدودیت‌های پوشش تک اسپرینکلر را نشان می‌دهند. در سیستم‌های چند اسپرینکلری، این محدودیت‌ها برای بخشی از خطر که توسط هر اسپرینکلر پوشش داده می‌شود، استفاده می‌شود.

    A.6.4.2.2 برای اسپرینکلرهای کنار مخزن و خطی، آزمایش‌های آتش‌سوزی برای توسعه منحنی‌هایی که حداکثر و حداقل جریان‌های قابل استفاده برای اسپرینکلر را به مساحت آتشی که اسپرینکلر قادر به خاموش کردن آن است، مرتبط می‌کند، انجام می‌شود. همچنین محدودیت‌های اضافی در مورد حداکثر عرض خطر و الزامات فاصله بین اسپرینکلرها و نزدیک‌ترین گوشه خطر وجود دارد. در این آزمایش‌ها، اسپرینکلرها معمولاً در فاصله ۶اینچی (۱۵۲ میلی‌متر) از سطح مایع نصب می‌شوند، که پارامتر ارتفاع را حذف می‌کند. این آزمایش‌ها به‌صورت زیر انجام می‌شوند.

    اسپرینکلرهای تک یا چندگانه روی لبه سینی‌های مربعی یا مستطیلی نصب می‌شوند. در آزمایش‌های اسپرینکلر چندگانه، اسپرینکلرها روی یک طرف یا دو طرف متقابل نصب می‌شوند. آزمایش‌ها روی اندازه‌های مختلف سینی و آرایش‌های فاصله‌ای مختلف انجام می‌شود تا منحنی حداکثر نرخ یا منحنی پاشش ایجاد شود که می‌توان آن را به‌عنوان تابعی از جریان در مقابل مساحت پوشش یا عرض خطر ترسیم کرد. پس از این مرحله، حداقل جریان برای شرایط مختلف مساحت یا عرض خطر (با محدودیت‌های فاصله‌ای مناسب دیگر) توسط یک سری آزمایش مشابه تعیین می‌شود.

    برای همه این آزمایش‌ها، جریان‌ها بر اساس دمای ذخیره‌سازی ۰درجه فارنهایت (۱۸- درجه سانتی‌گراد) برای سیستم‌های فشار پایین (فشار متوسط ۳۰۰ psi یا ۲۰۶۸ kPa) یا دمای ذخیره‌سازی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) برای سیستم‌های فشار بالا (فشار متوسط ۷۵۰ psi یا ۵۱۷۱ kPa) محاسبه می‌شوند. در سیستم‌های فشار بالا، دمای واقعی ذخیره‌سازی می‌تواند بین ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) و ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) متغیر باشد. به همین دلیل، آزمایش‌های منحنی حداکثر نرخ یا پاشش با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی بالاتر از نرخ محاسبه شده ایجاد می‌کند. آزمایش‌های نرخ حداقل با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی پایین‌تر از نرخ محاسبه شده ایجاد می‌کند.

    از داده‌های حاصل از این آزمایش‌ها، یک منحنی جریان در مقابل مساحت پوشش یا عرض خطر ترسیم می‌شود که منحنی حداکثر یا پاشش آن با ضریبی معادل ۱۰ درصد کاهش و نرخ حداقل آن با ضریبی معادل ۱۵ درصد افزایش می‌یابد. یک منحنی معمولی برای اسپرینکلر کنار مخزن در شکل F.1 (c) و یک منحنی برای اسپرینکلر خطی در شکل F.1 (d) نشان داده شده است.

    A.6.4.3.4 برای آزمایش‌های فهرست و تاییدیه، اسپرینکلرهای محلی دی‌اکسید کربن نوع سقفی روی آتش‌سوزی‌های دو بعدی سینی انجام می‌شوند. (مراجعه شود به A.6.4.2.1.) برخی اسپرینکلرها هنگام استفاده روی چنین آتش‌سوزی‌های “مسطح” پوشش مساحت عالی دارند. اگرچه مخروط واقعی تخلیه می‌تواند تنها روی یک مساحت کوچک از آتش تأثیر بگذارد، دی‌اکسید کربن می‌تواند از ناحیه برخورد واقعی خارج شده و مساحت بسیار بزرگتری از سینی آتش را به‌طور مؤثر پوشش دهد.

    اگر سطحی که تخلیه دی‌اکسید کربن روی آن برخورد می‌کند، بسیار نامنظم باشد، ممکن است تخلیه نازل نتواند تمام قسمت‌های خطر را به‌طور مؤثر پوشش دهد. اگر نازل‌های استفاده شده دارای مناطق برخورد کوچکی نسبت به مناطق پوشش فهرست شده خود باشند، ممکن است نیاز به نازل‌های اضافی برای پوشش کامل اشیاء با اشکال نامنظم باشد. در صورتی که چنین خطراتی با اشکال نامنظم باید پوشش داده شوند، طراح باید اطمینان حاصل کند که تعداد، نوع و مکان نازل‌ها برای تضمین پوشش کامل سطوح خطر کافی است. بررسی پوشش اسپرینکلرهای محلی از جمله قسمت‌های مهم آزمایش تخلیه است.

    A.6.4.4.5 ممکن است نیاز به نازل‌های اضافی برای این منظور خاص باشد، به‌ویژه اگر انبار بیش از ۲ فوت (۰.۶ متر) بالاتر از سطح محافظت شده قرار گیرد.

    A.6.5.1 کاربرد عملی روش نرخ به حجم پیچیده است. طراحی یک سیستم می‌تواند با استفاده از مثال‌ها و یک محاسبه گام به گام از یک سیستم، تسهیل شود. دستورالعمل‌های طراحی FSSA برای سیستم‌های کاربرد محلی دی‌اکسید کربن با روش نرخ به حجم توضیح می‌دهند که چگونه یک سیستم دی‌اکسید کربن با استفاده از این روش طراحی شود.

    A.6.5.3.2 شکل A.6.5.3.2 نمودار پوشش جزئی است.

    A.6.6.2 دماهای ذخیره‌سازی فشار بالا که از ۳۲ درجه فارنهایت تا ۱۲۰ درجه فارنهایت (۰ درجه سانتی‌گراد تا ۴۹ درجه سانتی‌گراد) متغیر هستند، نیاز به روش‌های خاص برای جبران تغییرات نرخ جریان ندارند. در صورتی که دماهای ذخیره‌سازی فشار بالا بتوانند زیر ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) یا بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) قرار گیرند، ممکن است نیاز باشد ویژگی‌های خاصی در سیستم گنجانده شود تا نرخ جریان صحیح تضمین شود.

    A.7.1.1 یک منبع دی‌اکسید کربن جداگانه می‌تواند برای استفاده از شلنگ دستی فراهم شود، یا دی‌اکسید کربن می‌تواند از یک واحد ذخیره‌سازی مرکزی که چندین خط شلنگ را تأمین می‌کند یا از سیستم‌های ثابت دستی یا خودکار تأمین شود. (مراجعه شود به ۴.۶.۱.۱.)

    A.7.1.3 استفاده از لوله‌های دستی یا سیستم‌های ثابت یا خودکار برای انتقال دی‌اکسید کربن از یک واحد ذخیره‌سازی مرکزی که به چندین لوله‌ متصل است، امکان‌پذیر است. (مراجعه شود به 4.6.1.1.)
    A.7.1.4 اشاره‌ای به 4.3.1 و A.4.3 در مورد خطرات برای پرسنل به دلیل کاهش دید و کاهش غلظت اکسیژن تا حدی که قادر به حمایت از حیات نباشد، نه تنها در منطقه تخلیه بلکه در مناطق مجاور که گاز ممکن است به آنجا منتقل شود، می‌شود.
    A.7.5.2 اتصال مجموعه نازل تخلیه به شلنگ با استفاده از اتصال گردشی برای فراهم آوردن راحتی بیشتر در جابجایی توصیه می‌شود.
    A.7.5.4 عملکرد سیستم‌های لوله‌ دستی به عمل دستی و جابجایی دستی نازل تخلیه بستگی دارد. بنابراین سرعت و سادگی عملیات برای اطفاء حریق موفق ضروری است.
    A.7.5.4.2 از شیرهای بلیدر یا دستگاه‌های مشابه می‌توان برای کاهش تاخیر در تخلیه مایع در سیستم‌های فشار پایین استفاده کرد.
    A.8.1.1 تأمین دی‌اکسید کربن بر روی یک وسیله نقلیه متحرک نصب شده است که می‌تواند به محل حریق کشیده یا رانده شود و به سرعت به سیستم لوله‌ کشی متصل شود که خطرات درگیر را محافظت می‌کند. تأمین متحرک عمدتاً تجهیزات آتش‌نشانی یا پرسنل آتش‌نشانی است که برای استفاده مؤثر به آموزش نیاز دارند.
    A.8.1.2 سیستم‌های لوله‌ کشی و تأمین متحرک می‌توانند برای تکمیل سیستم‌های حفاظت در برابر حریق ثابت استفاده شوند یا به تنهایی برای محافظت از خطرات خاص استفاده شوند:
    (1) تأمین متحرک می‌تواند به عنوان یک پشتیبان برای تکمیل تأمین ثابت استفاده شود.
    (2) تأمین متحرک همچنین می‌تواند با لوله‌های دستی برای محافظت از خطرات پراکنده تجهیز شود.
    A.8.4.1 ممکن است مقادیر اضافی دی‌اکسید کربن برای جبران تاخیر در رساندن تأمین متحرک به خطر مورد نیاز باشد.
    A.8.5 اثربخشی حفاظت در برابر حریق فراهم شده توسط سیستم‌های لوله‌ کشی و تأمین متحرک به کارایی و توانایی نیروی انسانی که تأمین متحرک را اداره می‌کند بستگی دارد. به طور کلی، این تجهیزات در دسته تجهیزات آتش‌نشانی قرار دارند که به یک گروه از پرسنل ثابت نیاز دارند.
    A.9.1(2)(c) مثال‌ها شامل فضاهایی هستند که موتورهایی برای پیشرانه، موتورهایی که ژنراتورهای الکتریکی را به حرکت درمی‌آورند، ایستگاه‌های پر کردن سوخت، پمپ‌های بارگیری یا ماشین‌آلات تهویه، گرمایش و تهویه مطبوع را در خود دارند.
    A.9.1(2)(d) سیستم‌های دی‌اکسید کربن برای فضاهای وسیله نقلیه که برای مسافران قابل دسترسی هستند، توصیه نمی‌شود.
    A.9.2.1 منظور این است که NFPA 12، از جمله این فصل، به عنوان یک سند مستقل برای طراحی، نصب و نگهداری سیستم‌های دی‌اکسید کربن دریایی استفاده شود.
    فصل 9 در سال 1998 اضافه شد تا به نصب‌های دریایی پرداخته شود. این فصل به عنوان جایگزین سایر استانداردها مانند 46CFR 119، نصب ماشین‌آلات” طراحی شده است.
    A.9.3.3.1 برخی از موتورهای احتراق داخلی برای پیشرانه و ژنراتورهای مولد برق، هوای احتراق را از فضای محافظت شده که در آن نصب شده‌اند، می‌کشند. چون این نوع موتورها موظف به خاموش شدن قبل از تخلیه سیستم هستند، در برخی موارد، سیستم خودکار تخلیه ممکن است پیشرانه یا تأمین برق را زمانی که بیشترین نیاز است، خاموش کند. یک سیستم غیرخودکار به خدمه کشتی انعطاف‌پذیری بیشتری می‌دهد تا بهترین مسیر عمل را انتخاب کنند. به عنوان مثال، در حالی که کشتی در یک کانال پر ازدحام در حال حرکت است، توانایی مانور کشتی می‌تواند از تخلیه فوری سیستم مهم‌تر باشد.

    A.9.3.3.2 در سکوی‌های فراساحلی و برخی از کشتی‌ها، محفظه‌های ماشین‌آلات کوچک اغلب به‌گونه‌ای قرار دارند که دسترسی پرسنل در هنگام وقوع حریق دشوار و/یا خطرناک است و ممکن است تأخیر غیرقابل قبولی در فعال‌سازی سیستم‌ها ایجاد کند. تا زمانی که ایمنی زندگی و قابلیت ناوبری کشتی تحت تأثیر منفی قرار نگیرد، فعال‌سازی خودکار سیستم‌های محافظت‌کننده از این فضاها مجاز است.
    A.9.3.3.4 به‌استثنای فضاهای محافظت‌شده بسیار کوچک که در 9.3.3.3.3 ذکر شده است، هدف این استاندارد این است که دو عملیات دستی جداگانه برای ایجاد تخلیه یک سیستم دریایی نیاز باشد. فراهم کردن یک کنترل دستی جداگانه برای هر یک از شیرهای کنترل تخلیه مورد نیاز در 9.3.3.3 این هدف را محقق می‌کند. این الزامات استثنایی است بر «عملیات دستی معمولی» که در 4.5.1.2 تعریف شده است.
    A.9.3.3.5 برای یک سیستم دی‌اکسید کربن فشار بالا، کنترل دستی اضطراری برای تأمین، اپراتور دستی بر روی سیلندرهای پیلوت است.
    A.9.3.3.7 دی‌اکسید کربن کافی باید فراهم شود تا آلارم‌ها را با فشار نامی خود برای مدت زمان لازم فعال نگه دارد.
    A.9.3.6.2.2 یک مثال از جایی که تخلیه‌ها ضروری است، نقاط پایین در لوله‌کشی دی‌اکسید کربن است که همچنین توسط سیستم تشخیص دود از نوع نمونه‌برداری استفاده می‌شود.
    آتش‌سوزی در فضاهای باری ممکن است به‌طور کامل توسط تخلیه دی‌اکسید کربن اطفاء نشود. اینکه آتش به‌طور کامل اطفاء شده است یا فقط سرکوب شده است بستگی به چندین عامل دارد، از جمله نوع و مقدار مواد سوختی. احتمال نشت مقداری از جو دی‌اکسید کربن غنی‌شده از محفظه بار وجود دارد. بنابراین، ممکن است نیاز باشد دی‌اکسید کربن اضافی به‌طور موقت تخلیه شود تا سرکوب آتش در محفظه بار تا زمانی که کشتی به بندر برسد، حفظ شود. پس از رسیدن به بندر، قبل از باز شدن درب محفظه بار، یک گروه آتش‌نشانی مجهز و آموزش‌دیده باید آماده باشد تا اطفاء کامل مواد سوخته را انجام دهد.

     

  • بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

    چکیده

    دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

     

    ۱. مقدمه

    دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

     

    ۲. اصول عملکرد طول‌موج دوگانه

    WhatsApp Image 2025 09 27 at 11.52.20 PM

    OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

    • UV: تأثیرگذار بر ذرات ریز و درشت
    • IR: عمدتاً حساس به ذرات بزرگ‌تر

    این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

     

    ۳. اصطلاحات کلیدی

    • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
    • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
    • خطای ورود جسم: انسداد ناگهانی شدید
    • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
    • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

     

    ۴. خطاهای رایج در سیستم OSID

    • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
    • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
    • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

     

    ۵. استقرار ایمن در محیط‌های دشوار

    ۵.۱ محیط‌های پرگرد‌و‌غبار

    • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
    • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

    ۵.۲ محیط‌های مرطوب

    WhatsApp Image 2025 09 27 at 11.52.21 PM

    • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM1
    • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM2
    • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

    WhatsApp Image 2025 09 27 at 11.52.22 PM

    ۶. تجهیزات محافظتی

    WhatsApp Image 2025 09 27 at 11.52.22 PM1

    • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
    • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
    • WhatsApp Image 2025 09 27 at 11.52.23 PM
    • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
    • WhatsApp Image 2025 09 27 at 11.52.23 PM1
    • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

    WhatsApp Image 2025 09 27 at 11.52.24 PM

     

    ۷. آلارم‌های کاذب استثنایی

    با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

    WhatsApp Image 2025 09 27 at 11.52.24 PM1

    ۸. جمع‌بندی و توصیه‌ها

    • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
    • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
    • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
    • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.

     

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • دستورالعمل نصب دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

    دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.33 PM

    دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

    دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

    عملکرد

    حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

    ملاحظات طراحی

    طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

    * NFPA-72، کد ملی اعلام حریق

    * NEC 760، کد ملی برق

    * هرگونه الزامات محلی نصب

    * الزامات مرجع قانونی ذی‌صلاح (AHJ)

    ۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

    ۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

    ۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

    ۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
    ۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

    سیم‌کشی مدار تحریک

    دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.34 PM

    • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
      ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
    • WhatsApp Image 2025 09 15 at 4.12.34 PM1
    • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

    WhatsApp Image 2025 09 15 at 4.12.35 PM

    . دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
    ۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
    ۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

    WhatsApp Image 2025 09 15 at 4.12.35 PM1

    نصب کابل دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

    WhatsApp Image 2025 09 15 at 4.12.35 PM2

    ⚠️ هشدار
    در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

    هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
    اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

    ۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

    ۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

    ۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

    WhatsApp Image 2025 09 15 at 4.12.36 PM

    . کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

    ۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

    WhatsApp Image 2025 09 15 at 4.12.36 PM1

    . انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

    ۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

    ۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

    WhatsApp Image 2025 09 15 at 4.12.37 PM

    . بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

    ⚠️ هشدار
    هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

    ۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

    اتصال کابل دتکتور (SENSOR CABLE SPLICING)

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
    به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

    روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
    روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

    ۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

    • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
    • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
    • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

    اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

    ۲. استفاده از جعبه تقسیم:
    هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

    💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
    در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

    در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

    مراحل اتصال درون‌خطی:

    ۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

    ۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

    ۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

    ۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    ۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    🧪تست عملکردی (TESTING):

    تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

    مراحل تست:

    ۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

    ۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

    ۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

    نگهداری
    کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

    🔧 آسیب به کابل دتکتور:
    در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
    برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

    • بررسی چشمی
    • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
    • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
      در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
      حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

    🔥 پس از وقوع آتش‌سوزی:
    از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
    اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.

  • راهنمای دتکتورهای دودی مکشی یا اسپیراتینگ ها برای مهندسین

    دتکتور دود مکشی (Aspirating Smoke Detector)

    تمام سیستم‌های دتکتور دود مکشی (ASD) دارای تجهیزات مشابهی هستند، اما نوع فناوری تشخیص آن‌ها متفاوت است. در حال حاضر چند نوع فناوری تشخیص وجود دارد:

    سیستم‌های مبتنی بر لیزر (دارای فیلتر)

    در این روش، از لیزر به‌عنوان منبع نوری در داخل محفظه تشخیص استفاده می‌شود. ابتدا هوا از یک سیستم فیلتراسیون عبور می‌کند تا ذرات بزرگ حذف شوند. سپس نمونه‌ی هوای فیلتر شده از مقابل لیزر عبور داده می‌شود و پراکندگی نور ناشی از ذرات دود توسط یک کلکتور نوری اندازه‌گیری می‌شود. الکترونیک پیشرفته‌ی دتکتور، میزان ذرات دود موجود در محفظه را تعیین می‌کند.

    سیستم‌های مبتنی بر لیزر (بدون فیلتر)

    این روش که معمولاً با عنوان “شمارش ذرات” شناخته می‌شود نیز از لیزر به عنوان منبع نوری استفاده می‌کند. اما در این پیکربندی، هوا بدون عبور از فیلتر مستقیماً وارد محفظه حسگر می‌شود. با عبور هوا از مقابل لیزر، کلکتور نوری تعداد ذرات در اندازه میکرونی مشخص را شمارش می‌کند تا تعیین شود که آیا میزان کافی از ذرات دود وجود دارد یا خیر. الکترونیک پیشرفته این فناوری قادر است بین ذرات معلق گرد و غبار و ذرات دود در نمونه تفاوت قائل شود.

    اتاقک ابری (Cloud Chamber)

    این روش قدیمی‌ترین و ابتدایی‌ترین فناوری مکشی تشخیص دود است. عنصر حسگر آن یک محفظه‌ی مهر و موم‌شده حاوی بخار آب بسیار متراکم است. هنگامی که یک ذره دود باردار با بخار آب متراکم برخورد می‌کند، یونیزه می‌شود. یون‌های ایجاد شده به عنوان هسته‌های تراکم عمل می‌کنند که مه در اطراف آن‌ها شکل می‌گیرد (زیرا بخار آب بسیار متراکم بوده و در آستانه‌ی چگالش قرار دارد). این فرآیند باعث بزرگ‌تر شدن اندازه ذره می‌شود، به‌طوری که از حالت نامرئی (زیر طول موج نور) به حالتی می‌رسد که قابل شناسایی توسط سلول نوری درون محفظه می‌شود.

    حسگر با منبع دوگانه (Dual Source Sensor)

    در این روش، از یک LED آبی برای شناسایی غلظت‌های بسیار پایین دود و از یک لیزر مادون قرمز برای تشخیص موارد مزاحم مانند گرد و غبار استفاده می‌شود که ممکن است باعث آلارم‌های اشتباه شوند. الگوریتم‌های پیشرفته سیگنال‌های هر دو منبع را تفسیر می‌کنند تا مشخص شود که نمونه‌ی هوا حاوی دود است یا فقط گرد و غبار معلق. سطح تشخیص ذرات می‌تواند تا حداقل 0.0015% بر متر (یا 0.00046% بر فوت) کاهش یابد.

    اصول اگزاست (تخلیه هوا) در دتکتور دود مکشی

    در کاربردهای عادی، معمولاً فشار هوا در فضای حفاظت‌شده با فشار هوا (APS) برابر با فشار هوای فضای نصب دتکتور است، و لوله اگزاست از خروجی فشار اگزاست دتکتور (AES) خارج می‌شود. به همین دلیل، نرم‌افزار طراحی که زمان انتقال و حساسیت دتکتور را محاسبه می‌کند، فرض می‌کند که فشار هوای دو فضا برابر است.

    اندازه سوراخ‌های نمونه‌برداری، اندازه لوله، زمان انتقال و سرعت فن مکنده همگی تابعی از حجم هوایی هستند که از محفظه نمونه‌برداری عبور می‌کند. محفظه حسگر برای تشخیص ذرات دود طراحی شده که با سرعت مشخص فن از درون آن عبور می‌کنند.

    • اگر فشار APS بیشتر از AES باشد، سرعت ورود هوا به محفظه حسگر ممکن است بیشتر از سرعت نامی فن شود که می‌تواند بر دقت تشخیص دود اثر مستقیم بگذارد.
    • مهم: اگر AES بیشتر از APS باشد، فشار هوا در حال فشار آوردن به هوای خروجی است و در نتیجه باعث ایجاد مقاومت و کند شدن فن می‌شود. این امر موجب افزایش زمان انتقال و کاهش حجم هوای ورودی به محفظه حسگر می‌گردد.

    نکته: برای حذف تفاوت فشار، باید هوای خروجی دوباره به همان اتاقی که از آن نمونه‌برداری شده بازگردانده شود (مطابق شکل 6 صفحه بعد).

    می‌توان لوله‌ای را به پورت خروجی متصل کرد تا هوای خروجی را از محل واحد دور کند؛ به‌عنوان مثال برای کاهش نویز، کاهش خطر تداخل یا انسداد عمدی، یا بهبود حفاظت محیطی. باید از لوله‌ای با مشخصات مشابه لوله‌های نمونه‌برداری استفاده شود و در تعیین محل خروجی جدید دقت شود تا مسدود شدن تصادفی یا عمدی آن رخ ندهد.

    روش‌های نمونه‌برداری دتکتور حرارتی خطی (ASD)

    برای هدف این راهنما، پنج روش نمونه‌برداری قابل قبول برای تمام کاربردهای ممکن وجود دارد:

    نمونه‌برداری اولیه (Primary Sampling)

    نام این روش گمراه‌کننده است؛ زیرا معمولاً به‌عنوان یک سیستم تکمیلی استفاده می‌شود و نه سیستم تشخیص اصلی. در نمونه‌برداری اولیه، نمونه‌گیری هوا از یک محل خاص یا جایی انجام می‌شود که احتمال حرکت هوا در آن بیشتر است. برای مناطقی با جریان هوای بالا، مانند دیتاسنترها یا اتاق‌های تمیز، محل نمونه‌برداری اولیه در دریچه‌های برگشت هوا، واحدهای هواساز (AHU) یا کانال‌های برگشت هوا قرار دارد.

    نمونه‌برداری ثانویه (Secondary Sampling)

    در این روش، سوراخ‌های نمونه‌برداری در سطح سقف و در مکان‌هایی مشابه با دتکتورهای نقطه‌ای دود نصب می‌شوند. فاصله‌گذاری بین سوراخ‌ها باید مطابق با استاندارد یا آیین‌نامه مربوطه باشد.

    نمونه‌برداری موضعی (Localised Sampling)

    WhatsApp Image 2025 09 30 at 3.50.37 PM

    این روش شامل حفاظت از تجهیزات یا نواحی خاص در یک فضای باز بزرگ است. نمونه‌برداری موضعی ممکن است در سیستم نمونه‌برداری رک‌ها (Rack Sampling) در یک انبار بزرگ باز استفاده شود.

    نمونه‌برداری داخل کابینت
    در این نوع روش نمونه‌برداری، سوراخ‌های مکش هوا به‌گونه‌ای نصب می‌شوند که تجهیزات خاصی را در یک فضای باز بزرگ‌تر پایش کنند. این روش با نمونه‌برداری موضعی متفاوت است، زیرا حجم تحت حفاظت بسیار کوچک‌تر بوده و تجهیز مورد نظر معمولاً به‌صورت خودکفا درون یک کابینت یا رک رایانه‌ای قرار دارد. سامانه تشخیص مکشی (ASD) هوایی را که برای خنک‌سازی تجهیزات استفاده می‌شود، پایش می‌کند. این نوع نمونه‌برداری معمولاً بر روی تجهیزاتی نصب می‌شود که آسیب دیدن آن‌ها در اثر آتش می‌تواند نتایج فاجعه‌باری به دنبال داشته باشد.

    نمونه‌برداری درون کانال
    در این نوع نمونه‌برداری، به‌جای استفاده از آشکارسازهای دود کانال‌نصب سنتی، از سامانه تشخیص مکشی (ASD) استفاده می‌شود تا در صورت وقوع آتش‌سوزی، سامانه تهویه مطبوع (HVAC) مرتبط خاموش شده یا دمپرها بسته شوند تا از گسترش دود جلوگیری گردد. همچنین می‌توان از آن برای تشخیص ذرات دود موجود در هوای خروجی (یا ورودی) استفاده کرد، به‌ویژه زمانی که آشکارسازی با حساسیت بیشتر مورد نیاز است.