سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی

IMG 1864

1 کلیات

این فصل تغییرات، اصلاحات و اضافات لازم برای کاربردهای دریایی را بیان می‌کند. تمامی الزامات دیگر NFPA 2001 برای سیستم‌های کشتی‌بردی اعمال می‌شود، مگر اینکه توسط این فصل اصلاح شده باشد. در صورتی که مفاد فصل 13 با مفاد فصل‌های 1 تا 11 تضاد داشته باشد، مفاد فصل 13 اولویت دارد.

13.1.1 دامنه

این فصل محدود به کاربردهای سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی است. سیستم‌های بی‌اثرکننده انفجار در توسعه این فصل مد نظر قرار نگرفته‌اند.

13.2 استفاده و محدودیت‌ها

13.2.1* سیستم‌های اطفاء حریق با عامل تمیز به‌طور عمده باید برای حفاظت از خطراتی که در محفظه‌ها یا تجهیزاتی هستند که خود شامل یک محفظه برای نگهداری عامل می‌باشد، استفاده شوند.

13.2.2* علاوه بر محدودیت‌های ذکر شده در 4.2.2، سیستم‌های اطفاء حریق با عامل تمیز نباید برای حفاظت از موارد زیر استفاده شوند:

1. محفظه‌های بار خشک
2. بار عمده

13.2.3 تأثیرات محصولات تجزیه عامل و محصولات احتراق بر مؤثر بودن سیستم اطفاء حریق و تجهیزات باید در هنگام استفاده از عوامل تمیز در محیط‌هایی با دماهای محیطی بالا (مانند اتاق‌های سوزاندن، ماشین‌آلات داغ و لوله‌ها) در نظر گرفته شود.

13.3 خطرات برای پرسنل

13.3.1 به‌جز اتاق‌های موتورخانه که در 13.3.1.1 مشخص شده‌اند، سایر فضاهای اصلی ماشین‌آلات باید به‌عنوان فضاهای معمولی اشغال شده در نظر گرفته شوند.

13.3.1.1 اتاق‌های موتورخانه با حجم 6000 فوت‌مکعب (170 مترمکعب) یا کمتر که فقط برای نگهداری به آن دسترسی دارند، نیازی به رعایت 13.3.1 ندارند.

13.3.2* برای سیستم‌های دریایی، فاصله‌های الکتریکی باید مطابق با 46CFR، زیرمجموعه J، مهندسی الکتریکی” باشد.

13.4 تأمین عامل

13.4.1 این استاندارد از ذخایر اضافی عامل نیاز ندارد.

13.4.2* ترتیب ذخیره‌سازی مخازن باید مطابق با 5.1.3.1 و 5.1.3.3 تا 5.1.3.5 باشد. در صورتی که تجهیزات در معرض شرایط آب و هوایی شدید قرار گیرند، سیستم باید مطابق با دستورالعمل‌های طراحی و نصب تولیدکننده نصب شود.

13.4.2.1 به‌جز در مورد سیستم‌هایی که سیلندرهای ذخیره‌سازی در داخل فضای محافظت شده قرار دارند، مخازن فشاری مورد نیاز برای ذخیره‌سازی عامل باید مطابق با 13.4.2.2 باشد.

13.4.2.2 در صورتی که مخازن عامل خارج از فضای محافظت شده قرار دارند، باید در اتاقی ذخیره شوند که در یک مکان امن و به‌راحتی قابل دسترسی قرار داشته باشد و به‌طور مؤثر تهویه شود به‌طوری‌که مخازن عامل در معرض دماهای محیطی بالاتر از 130°F (55°C) قرار نگیرند. دیوارها و عرشه‌های مشترک بین اتاق‌های ذخیره‌سازی مخازن عامل و فضاهای محافظت شده باید با عایق‌بندی ساختاری کلاس A-60 طبق تعریف 46CFR 72 محافظت شوند. اتاق‌های ذخیره‌سازی مخازن عامل باید بدون نیاز به عبور از فضای محافظت شده قابل دسترسی باشند. درها باید به‌صورت بیرون‌چرخشی باز شوند و دیوارها و عرشه‌ها، از جمله درها و سایر وسایل بستن هرگونه بازشو در آن‌ها، باید مرزهایی بین این اتاق‌ها و فضاهای مجاور باشند و محکم و غیر قابل نفوذ به گاز باشند.

13.4.3 زمانی که مخازن عامل در فضای اختصاصی ذخیره می‌شوند، درهای خروجی باید به‌صورت بیرون‌چرخشی باز شوند.

13.4.4 در صورتی که مخازن در معرض رطوبت قرار گیرند، باید به‌طوری نصب شوند که فاصله‌ای حداقل 2 اینچ (51 میلی‌متر) بین عرشه و قسمت پایین مخزن فراهم شود.

13.4.5 علاوه بر الزامات 5.1.3.4، مخازن باید با حداقل دو بست محکم شوند تا از حرکت ناشی از حرکات کشتی و لرزش جلوگیری شود.

13.4.6* برای کاربردهای دریایی، تمامی لوله‌ها، شیرها و اتصالات از مواد آهنی باید از داخل و خارج در برابر خوردگی محافظت شوند، مگر اینکه در 13.4.6.1 مجاز باشد.

13.4.6.1

بخش‌های بسته لوله و شیرها و اتصالات داخل بخش‌های بسته لوله باید تنها از خارج در برابر خوردگی محافظت شوند.

13.4.6.2

جز در مواردی که در 13.4.6.1 مجاز است، قبل از آزمایش پذیرش، داخل لوله‌ها باید تمیز شود بدون اینکه مقاومت آن‌ها در برابر خوردگی تحت تأثیر قرار گیرد.

13.4.7*

لوله‌ها، اتصالات، نازل‌ها و آویزها، از جمله مواد پرکننده جوشکاری، در داخل فضای محافظت شده باید دارای دمای ذوب بالاتر از 1600°F (871°C) باشند. استفاده از قطعات آلومینیومی مجاز نیست.

13.4.8

لوله‌ها باید حداقل 2 اینچ (51 میلی‌متر) از نازل آخر در هر خط شاخه‌ای فراتر بروند تا از مسدود شدن جلوگیری شود.

13.5 سیستم‌های شناسایی، راه‌اندازی و کنترل

13.5.1 کلیات

13.5.1.1 سیستم‌های شناسایی، راه‌اندازی، آلارم و کنترل باید مطابق با الزامات مقامات صلاحیت‌دار نصب، آزمایش و نگهداری شوند.

13.5.1.2* برای فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب)،آزادسازی خودکار عامل اطفاء حریق مجاز نیست، مگر اینکه راه‌اندازی سیستم در ایمنی حرکت کشتی تداخل نکند. آزادسازی خودکار عامل اطفاء حریق در هر فضایی که راه‌اندازی سیستم موجب تداخل در ایمنی حرکت کشتی نشود، مجاز است.

13.5.1.2.1 آزادسازی خودکار برای هر فضای 6000 فوت مکعب (170 مترمکعب) یا کمتر مجاز است.

13.5.2 شناسایی خودکار

13.5.2.1 سیستم‌های شناسایی الکتریکی، سیگنال‌دهی، کنترل و راه‌اندازی باید حداقل دو منبع انرژی داشته باشند. منبع اصلی باید از باس اضطراری کشتی باشد. برای کشتی‌هایی که باس اضطراری یا باتری دارند، منبع پشتیبان باید یا باتری هشدار عمومی کشتی یا باتری داخلی سیستم باشد. باتری‌های داخلی باید قادر به راه‌اندازی سیستم برای حداقل 24 ساعت باشند. تمامی منابع انرژی باید تحت نظارت باشند.

13.5.2.1.1 برای کشتی‌هایی که باس اضطراری یا باتری ندارند، منبع اصلی مجاز است که تأمین انرژی اصلی الکتریکی کشتی باشد.

13.5.2.2 علاوه بر الزامات ذکر شده در بخش 9.3، مدارهای راه‌اندازی نباید از داخل فضای محافظت شده عبور کنند، مگر در سیستم‌های دریایی که راه‌اندازی الکتریکی دستی استفاده می‌شود.

13.5.2.2.1 برای سیستم‌هایی که با 13.5.2.4 مطابقت دارند، عبور مدارهای راه‌اندازی از داخل فضای محافظت شده مجاز است.

13.5.2.3*

راه‌اندازی دستی برای سیستم‌ها نباید قادر به اجرا شدن با یک اقدام واحد باشد. جز در مواردی که در 13.5.2.3.1 مشخص شده است، ایستگاه‌های راه‌اندازی دستی باید در یک محفظه قرار گیرند.

13.5.2.3.1

راه‌اندازی دستی باید به‌صورت راه‌اندازی دستی محلی در محل سیلندرها مجاز باشد.

13.5.2.4

سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی دستی در مسیر اصلی خروجی خارج از فضای محافظت‌شده داشته باشند. علاوه بر این، سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند و سیلندرهایی در داخل فضای محافظت‌شده دارند و همچنین سیستم‌هایی که فضاهای ماشین‌آلات اصلی بدون نظارت را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی در یک ایستگاه کنترل که به‌طور مداوم نظارت می‌شود، خارج از فضای محافظت‌شده داشته باشند.

13.5.2.4.1

سیستم‌هایی که فضاهای 6000 فوت مکعب (170 مترمکعب) یا کمتر را محافظت می‌کنند، مجاز هستند که یک ایستگاه راه‌اندازی واحد در یکی از مکان‌های توضیح داده‌شده در 13.5.2.4 داشته باشند.

13.5.2.5

نور اضطراری باید برای ایستگاه‌های راه‌اندازی از راه دور که سیستم‌های محافظت‌کننده از فضاهای ماشین‌آلات اصلی را سرویس می‌دهند، فراهم شود. تمامی دستگاه‌های عملیات دستی باید برچسب‌گذاری شوند تا خطرات محافظت‌شده را شناسایی کنند. علاوه بر این، اطلاعات زیر باید فراهم شود:

1. دستورالعمل‌های عملیاتی
2. مدت زمان تأخیر
3. اقداماتی که باید در صورت عدم عملکرد سیستم انجام شود
4. اقدامات دیگری که باید انجام شود مانند بستن دریچه‌ها و گرفتن شمارش سرنشینان

13.5.2.5.1

برای سیستم‌هایی که سیلندرها را در داخل فضای محافظت‌شده دارند، باید یک وسیله برای نشان دادن تخلیه سیستم در ایستگاه راه‌اندازی از راه دور فراهم شود.

13.6 الزامات اضافی برای سیستم‌های محافظت‌کننده از خطرات کلاس B بزرگتر از 6000 فوت مکعب (170 مترمکعب) با سیلندرهای ذخیره‌شده در داخل فضای محافظت‌شده.

13.6.1*

یک سیستم شناسایی آتش خودکار باید در فضای محافظت‌شده نصب شود تا هشدار اولیه برای آتش‌سوزی ارائه دهد و از خسارات بالقوه به سیستم اطفاء حریق قبل از فعال شدن دستی آن جلوگیری کند. سیستم شناسایی باید در صورت شناسایی آتش، آلارم‌های شنیداری و بصری را در فضای محافظت‌شده و بر روی پل هدایت کشتی فعال کند. تمامی دستگاه‌های شناسایی و آلارم باید از نظر الکتریکی برای پیوستگی تحت نظارت باشند و هرگونه مشکل باید در پل هدایت کشتی اعلام شود.

13.6.2*

مدارهای برق متصل به مخازن باید برای شرایط خرابی و از دست دادن برق تحت نظارت باشند. باید آلارم‌های بصری و شنیداری برای نشان دادن این وضعیت فراهم شود و آلارم‌ها باید در پل هدایت کشتی اعلام شوند.

13.6.3*

در داخل فضای محافظت‌شده، مدارهای الکتریکی که برای آزادسازی سیستم ضروری هستند باید در برابر حرارت مقاوم باشند، مانند کابل‌های معدنی با عایق مطابق با ماده 332 از NFPA 70، یا معادل آن. سیستم‌های لوله‌کشی ضروری برای آزادسازی سیستم‌هایی که برای عملیات هیدرولیکی یا پنوماتیکی طراحی شده‌اند باید از فولاد یا مواد مقاوم در برابر حرارت معادل آن باشند.

13.6.4*

چیدمان‌های مخازن و مدارهای الکتریکی و لوله‌کشی که برای آزادسازی هر سیستم ضروری هستند، باید به‌گونه‌ای باشند که در صورت آسیب به هر یک از خطوط آزادسازی برق به دلیل آتش‌سوزی یا انفجار در فضای محافظت‌شده (یعنی مفهوم خطای واحد)، تمام بار اطفاء حریق مورد نیاز برای آن فضا هنوز بتواند تخلیه شود.

13.6.5*

مخازن باید برای کاهش فشار ناشی از نشت و تخلیه تحت نظارت باشند. باید سیگنال‌های بصری و شنیداری در فضای محافظت‌شده و یا در پل هدایت کشتی یا در فضایی که تجهیزات کنترل آتش متمرکز است، برای نشان دادن وضعیت فشار پایین فراهم شود.

13.6.6*

در داخل فضای محافظت‌شده، مدارهای الکتریکی ضروری برای آزادسازی سیستم باید با استانداردهای Class A طبق NFPA 72 طراحی شوند.

13.7 پوشش

13.7.1*

برای جلوگیری از خروج ماده اطفاء حریق از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید یکی از طراحی‌های زیر را داشته باشند:

1. به‌طور دائم مهر و موم‌شده
2. مجهز به بسته‌شونده‌های خودکار
3. مجهز به بسته‌شونده‌های دستی که با یک مدار هشدار برای نشان دادن زمانی که این بسته‌شونده‌ها هنگام فعال‌سازی سیستم مهر و موم نشده‌اند، تجهیز شده‌اند.

13.7.1.1

در مواردی که حبس ماده اطفاء حریق عملی نباشد یا در صورتی که سوخت بتواند از یک بخش به بخش دیگر جریان یابد (مانند از طریق بیلج)، محافظت باید گسترش یابد تا بخش‌های مجاور یا مناطق کاری متصل شده را شامل شود.

13.7.2*

قبل از تخلیه ماده اطفاء حریق، تمامی سیستم‌های تهویه باید بسته و ایزوله شوند تا از انتقال ماده به دیگر بخش‌ها یا خارج از کشتی جلوگیری شود. باید از خاموش‌شونده‌های خودکار یا خاموش‌شونده‌های دستی که توسط یک نفر از مکانی که ایستگاه تخلیه ماده اطفاء حریق در آن قرار دارد، قابل بسته شدن باشد، استفاده شود.

13.8 الزامات غلظت طراحی

13.8.1 ترکیب سوخت‌ها

برای ترکیب سوخت‌ها، غلظت طراحی باید از مقدار اطفاء شعله برای سوختی که بیشترین غلظت را نیاز دارد، استخراج شود.

13.8.2 غلظت طراحی

برای هر سوخت خاص، غلظت طراحی که در 13.8.3 ذکر شده است باید استفاده شود.

13.8.3 اطفاء شعله

حداقل غلظت طراحی برای مایعات آتش‌زا و قابل اشتعال کلاس B باید طبق دستورالعمل‌های ذکر شده در IMO MSC/Circ. 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” طبقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری، که به‌روزرسانی‌شده توسط IMO MSC.1/Circ. 1267، اصلاحات دستورالعمل‌ها برای تأیید سیستم‌های گاز اطفاء حریق ثابت معادل” است، تعیین شود.

13.8.4* مقدار کل سیلابی

مقدار ماده اطفاء حریق باید بر اساس حجم خالص فضای محافظت‌شده و مطابق با الزامات بند 5 از IMO MSC/Circular 848 تعیین شود.

13.8.5* مدت زمان محافظت

مهم است که غلظت طراحی ماده اطفاء حریق نه تنها باید تحقق یابد بلکه باید برای مدت زمان کافی برای اقدام اضطراری موثر توسط پرسنل آموزش‌دیده کشتی حفظ شود. در هیچ موردی مدت زمان نگهداری نباید کمتر از 15 دقیقه باشد.

13.9 سیستم توزیع

13.9.1 نرخ کاربرد

حداکثر نرخ طراحی کاربرد باید بر اساس مقدار ماده اطفاء حریق مورد نیاز برای غلظت دلخواه و زمان لازم برای دستیابی به آن غلظت تعیین شود.

13.9.2 زمان تخلیه

13.9.2.1

زمان تخلیه برای مواد هالوکربنی نباید از 10 ثانیه بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

13.9.2.2

برای مواد هالوکربنی، زمان تخلیه باید به‌عنوان زمانی تعریف شود که 95 درصد از جرم ماده اطفاء حریق [در دمای 70°F (21°C)] از نازل‌ها تخلیه شده باشد، که برای دستیابی به غلظت طراحی حداقل ضروری است.

13.9.2.3

زمان تخلیه برای مواد گاز بی‌اثر نباید از 120 ثانیه برای 85 درصد غلظت طراحی بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

13.10 انتخاب و موقعیت نازل

برای فضاهایی که در 13.10.1 شناسایی نشده‌اند، نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند. محدودیت‌ها باید بر اساس آزمایش‌های انجام‌شده طبق IMO MSC/Circular 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” مطابقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری تعیین شوند. فاصله نازل‌ها، پوشش منطقه‌ای، ارتفاع و هم‌راستایی نباید از محدودیت‌ها تجاوز کند.

13.10.1

برای فضاهایی که فقط سوخت‌های کلاس A وجود دارند، محل قرارگیری نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده برای نازل‌ها باشد.

13.11 بازرسی و آزمایش

حداقل سالیانه، تمامی سیستم‌ها باید توسط پرسنل متخصص بازرسی و آزمایش شوند تا عملکرد صحیح آن‌ها تضمین شود. آزمایش‌های تخلیه الزامی نیستند.

13.11.1

گزارش بازرسی همراه با توصیه‌ها باید به فرمانده کشتی و نماینده مالک ارائه شود. این گزارش باید برای بازرسی توسط مقامات ذی‌صلاح در دسترس باشد.

13.11.2

حداقل سالیانه، مقدار ماده اطفاء حریق در مخازن قابل بازسازی باید توسط پرسنل متخصص بررسی شود. فشار مخزن باید حداقل ماهی یک بار توسط خدمه کشتی تأیید و ثبت شود.

13.11.3*

برای مواد هالوکربنی تمیز، اگر یک مخزن بیش از 5 درصد از ماده اطفاء حریق را از دست دهد یا فشار آن بیش از 10 درصد کاهش یابد، باید دوباره پر شود یا تعویض شود.

13.11.3.1*

اگر یک مخزن ماده گاز بی‌اثر فشار خود را بیشتر از 5 درصد از دست دهد، باید دوباره پر شود یا تعویض شود. زمانی که از گیج‌های فشار برای این منظور استفاده می‌شود، آن‌ها باید حداقل سالیانه با یک دستگاه کالیبره مقایسه شوند.

13.11.4

پیمانکار نصب باید دستورالعمل‌هایی برای ویژگی‌های عملیاتی و روش‌های بازرسی خاص برای سیستم ماده تمیز نصب‌شده روی کشتی فراهم کند.

13.12 تأیید نصب‌ها

قبل از پذیرش سیستم، مستندات فنی مانند راهنمای طراحی سیستم، گزارش‌های آزمایش یا گزارش فهرست‌شده باید به مقامات ذی‌صلاح ارائه شود. این مستندات باید نشان دهند که سیستم و اجزای آن با یکدیگر سازگار بوده، در محدوده‌های آزمایش‌شده مورد استفاده قرار می‌گیرند و برای استفاده دریایی مناسب هستند.

13.12.1 وظایف سازمان فهرست‌بندی

سازمان فهرست‌بندی باید عملکردهای زیر را انجام دهد:

1. تأیید اینکه آزمایش‌های آتش‌سوزی مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
2. تأیید اینکه آزمایش‌های اجزا مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
3. بازبینی برنامه تضمین کیفیت اجزاء.
4. بازبینی دستورالعمل طراحی و نصب.
5. شناسایی محدودیت‌های سیستم و اجزاء.
6. تأیید محاسبات جریان.
7. تأیید یکپارچگی و قابلیت اطمینان سیستم به‌عنوان یک کل.
8. داشتن یک برنامه پیگیری.
9. انتشار فهرستی از تجهیزات.

13.13 آزمایش فشار دوره‌ای

آزمایشی طبق بند 10.4.15 باید در فواصل زمانی 24 ماهه انجام شود. برنامه آزمایش دوره‌ای باید شامل آزمایش عملیاتی تمامی آلارم‌ها، کنترل‌ها و تأخیرهای زمانی باشد.

13.14 انطباق

سیستم‌های الکتریکی باید مطابق با زیرشاخه 46 CFR بخش 1 باشند. برای کشتی‌های کانادایی، نصب‌های الکتریکی باید مطابق با TP 127 E، استانداردهای الکتریکی ایمنی کشتی‌ها انجام شوند.

نوشته‌های مشابه

  • الزامات سیستم اطفاء حریق با دی اکسید کربن برای کاربرد دریایی ( کشتی ها و وسایل نقلیه دریایی، مناطق ساحلی، اسکله ها و غیره)


    فصل ۹ سیستم‌های دریایی
    9.1 تعاریف ویژه

    9.2 کلیات
    9.2.1* شرح کلی
    این فصل، اصلاحات لازم برای سیستم‌های دریایی را بیان می‌کند.
    9.2.2 کلیه الزامات دیگر این استاندارد، مگر آنکه در این فصل به‌صورت خاص تغییر یافته باشند، برای سیستم‌های دریایی نیز اعمال می‌شوند.

    9.3 الزامات سیستم
    9.3.1 اجزاء
    اجزای سیستم باید به‌طور خاص برای کاربرد دریایی سیستم‌های دی‌اکسید کربن لیست یا تأیید شده باشند.

    9.3.2 دستورالعمل‌های بهره‌برداری
    9.3.2.1 دستورالعمل‌های بهره‌برداری از سیستم باید در مکان واضحی در نزدیکی تمامی کنترل‌های دستی و در اتاق ذخیره‌سازی دی‌اکسید کربن قرار داده شوند.
    9.3.2.2 برای سیستم‌هایی که ذخیره‌سازی دی‌اکسید کربن در داخل فضای حفاظت‌شده قرار ندارد، دستورالعمل‌ها باید شامل نموداری باشند که محل کنترل اضطراری را در صورت عدم عملکرد کنترل‌های عادی نشان دهد.

    9.3.3 فعال‌سازی
    9.3.3.1* در فضاهایی با حجم بیش از ۶۰۰۰ فوت مکعب (۱۷۰متر مکعب)، فعال‌سازی خودکار سیستم دی‌اکسید کربن مجاز نمی‌باشد.
    9.3.3.2* فعال‌سازی خودکار برای فضاهایی با حجم ۶۰۰۰ فوت مکعب (۱۷۰ متر مکعب) یا کمتر، در صورتی مجاز است که الزامات بندهای 9.3.3.2.1 تا 9.3.3.2.4 رعایت شوند.

    9.3.3.2.1 مسیر خروج افقی از محفظه ماشین‌آلات به عرشه باز باید فراهم شود.
    9.3.3.2.2 محفظه باید در زمان عملکرد تجهیزات بدون حضور نفر باشد.
    9.3.3.2.3 زمانی که افراد در داخل محفظه حضور دارند، سیستم باید در وضعیت قفل قرار گیرد.
    9.3.3.2.4 فعال‌سازی خودکار سیستم نباید با ناوبری ایمن کشتی تداخل داشته باشد.

    9.3.3.3 برای عملکرد دستی، باید دو شیر جداگانه برای تخلیه دی‌اکسید کربن در هر فضای محافظت‌شده فراهم شود.
    9.3.3.3.1 یکی از شیرها باید تخلیه از مخزن دی‌اکسید کربن را کنترل کند.
    9.3.3.3.2 شیر دوم باید تخلیه دی‌اکسید کربن به فضای محافظت‌شده را کنترل کند.
    9.3.3.3.3 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای آزادسازی سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.3.4 کنترل‌ها
    9.3.3.4.1 برای هر یک از شیرهای مورد نیاز در بند 9.3.3.3 باید یک کنترل دستی جداگانه فراهم گردد.
    9.3.3.4.2 یک مجموعه کنترل باید در خارج از حداقل یکی از مسیرهای اصلی خروج از هر فضای محافظت‌شده قرار گیرد.

    9.3.3.5 علاوه بر کنترل‌های دستی مورد نیاز در 9.3.3.4، هر یک از شیرهای ذکر شده در 9.3.3.3 باید دارای کنترل اضطراری دستی مخصوص به خود باشند.

    9.3.3.6 جعبه آزادسازی
    9.3.3.6.1 کنترل‌های مربوط به شیرهای مورد نیاز در 9.3.3.4 باید درون یک جعبه آزادسازی قرار گیرند که به‌وضوح برای فضای محافظت‌شده شناسایی شده باشد.
    9.3.3.6.2 اگر جعبه حاوی کنترل‌ها قفل‌شده باشد، کلید آن باید در یک محفظه از نوع شیشه‌شکن در کنار جعبه و در مکانی مشخص قرار گیرد.

    9.3.3.7 منبع نیرو
    9.3.3.7.1 علاوه بر الزامات بند 4.3.3.2، آژیرهای هشدار قبل از تخلیه باید به‌گونه‌ای باشند که فقط به فشار دی‌اکسید کربن وابسته بوده و به منبع نیروی دیگری نیاز نداشته باشند.
    9.3.3.7.2 تأخیر زمانی مورد نیاز طبق بند 4.5.6.2.2 باید حداقل ۲۰ ثانیه بوده و تنها به فشار دی‌اکسید کربن وابسته باشد.

    9.3.4 ذخیره‌سازی دی‌اکسید کربن
    9.3.4.1 ذخیره‌سازی دی‌اکسید کربن در فضاهای محافظت‌شده‌ای که معمولاً بدون نفر هستند، برای سیستم‌هایی با حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن و دارای عملکرد خودکار مجاز می‌باشد.
    9.3.4.2 سیستم‌های با فشار پایین باید مجهز به دو واحد تبرید بوده و مطابق با مقررات 46 CFR 58.20 ساخته شوند.
    9.3.4.3 زمانی که مخازن دی‌اکسید کربن خارج از فضای محافظت‌شده قرار دارند، باید در اتاقی نگهداری شوند که در مکانی ایمن و به‌راحتی قابل دسترس بوده و به‌طور مؤثر تهویه شود تا مخازن ماده اطفاء حریق در معرض دماهای محیطی تعیین‌شده در بند 4.6.5.5 قرار نگیرند.

    9.3.4.3.1 دیوارها و عرشه‌های مشترک میان اتاق‌های نگهداری مخازن ماده اطفاء حریق و فضاهای محافظت‌شده باید با عایق ساختاری کلاس A-60 مطابق با استاندارد 46 CFR 72 محافظت شوند.
    9.3.4.3.2 درها و سایر روش‌های بسته شدن هرگونه بازشو در این مرزها باید گازبند باشند.
    9.3.4.3.3 اتاق‌های نگهداری مخازن ماده اطفاء حریق باید بدون نیاز به عبور از فضای محافظت‌شده قابل دسترسی باشند.
    9.3.4.3.4 درب‌های ورودی باید به سمت بیرون باز شوند.
    9.3.4.3.5 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای تخلیه سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.5 لوله‌کشی سیستم
    9.3.5.1 در صورت نیاز، باید زهکش‌هایی برای تخلیه رطوبت جمع‌شده تعبیه شود.
    9.3.5.2 لوله‌کشی دی‌اکسید کربن نباید دارای زهکش یا بازشویی در داخل بخش‌های مسکونی باشد.
    9.3.5.3 لوله‌کشی دی‌اکسید کربن نباید برای هیچ منظور دیگری استفاده شود، مگر اینکه در سیستم‌های تشخیص دود از نوع نمونه‌برداری از هوا مورد استفاده قرار گیرد.

    9.3.6 طراحی سیستم
    طراحی سیستم باید با فصل‌های ۵ تا ۷ مطابقت داشته باشد، مگر در موارد مشخص‌شده در بندهای 9.3.6.1 تا 9.3.6.4.2.

    9.3.6.1 فضاهای ماشین‌آلات
    فضاهای ماشین‌آلات باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.1.1 ۸۵ درصد از غلظت مورد نیاز طبق بند 9.3.6.1 باید طی ۲ دقیقه از آغاز تخلیه حاصل شود.
    9.3.6.1.2 حجم ناخالص باید شامل بدنه پوششی نیز باشد.

    9.3.6.2 فضاهای بار
    فضاهای بار (غیر از فضاهای وسایل نقلیه) باید بر اساس نسبت ۱ پوند دی‌اکسید کربن به ازای هر ۳۰ فوت مکعب حجم ناخالص مجهز شوند.
    9.3.6.2.1 مقدار اولیه دی‌اکسید کربن تخلیه‌شده باید بر اساس حجم خالص فضا و میزان بار موجود تعیین شود.
    9.3.6.2.2 در صورت نیاز، دی‌اکسید کربن اضافی باید برای کنترل آتش آزاد شود.
    9.3.6.2.3 دستورالعمل‌های شفاف در خصوص فرآیند تخلیه دی‌اکسید کربن باید در داخل اتاق نگهداری مخازن دی‌اکسید کربن نصب شود.

    9.3.6.3 فضاهای وسایل نقلیه
    9.3.6.3.1 فضاهای وسایل نقلیه که در آن‌ها سوخت وسایل نقلیه بیش از ۱۹ لیتر (۵ گالن) است، باید برای رسیدن به غلظت ۳۴درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.3.2 ۸۵ درصد از این غلظت باید طی ۲ دقیقه از آغاز تخلیه به دست آید.

    9.3.6.4 فضاهای وسایل نقلیه
    9.3.6.4.1 فضاهای وسایل نقلیه که میزان سوخت (بنزین یا گازوئیل) موجود در آن‌ها ۱۹ لیتر (۵ گالن) یا کمتر است، باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.4.2 دو سوم این غلظت باید طی ۱۰ دقیقه از آغاز تخلیه حاصل شود.

    9.3.7 فضاهای تجهیزات الکتریکی
    فضاهای تجهیزات الکتریکی باید به عنوان خطر خشک الکتریکی طبق فصل ۵ در نظر گرفته شوند.

    9.4 بازرسی و نگهداری
    بازرسی و نگهداری باید مطابق با بند 4.8.3 و بخش 9.4 انجام گیرد.

    9.4.1 کلیات
    پیش از انجام آزمایش یا عملیات نگهداری سیستم ثابت اطفاء حریق با دی‌اکسید کربن، تمام افراد باید از فضای محافظت‌شده تخلیه شوند. (رجوع شود به بخش 4.3)

    9.4.2 تأیید نصب
    9.4.2.1 آزمایش تأییدی که در بندهای 9.4.2.1.1 تا 9.4.2.1.4 شرح داده شده، باید پیش از آزمایش‌های الزامی بند 4.4.3 انجام شود.
    9.4.2.1.1 تست فشار لوله‌کشی باید مطابق با الزامات بندهای 9.4.2.1.2 تا 9.4.2.1.4 انجام شود.
    9.4.2.1.2 سیال آزمایشی باید یک گاز خشک و غیرخورنده نظیر نیتروژن یا دی‌اکسید کربن باشد.
    9.4.2.1.3 هنگام وارد کردن فشار به لوله‌ها، فشار باید به صورت افزایشی در گام‌های ۵۰ psi (۳.۵ بار) اعمال شود.
    9.4.2.1.4 پس از رسیدن به فشار تست موردنظر، منبع فشار باید قطع و از لوله جدا شود.

    ⚠️ هشدار
    تست فشار پنوماتیکی ممکن است در صورت ترکیدگی سیستم لوله‌کشی، خطر پرتاب اشیاء و آسیب به افراد را ایجاد کند. پیش از انجام این تست، ناحیه‌ای که لوله در آن قرار دارد باید تخلیه شده و اقدامات ایمنی لازم برای حفاظت از افراد انجام شود.

    9.4.2.2 سیستم‌های پرفشار
    9.4.2.2.1 سیستم‌هایی با شیر توقف
    9.4.2.2.1.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا شیرهای توقف باید تحت فشار حداقل ۱۰۰۰ psi (۶۸۹۵ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.
    9.4.2.2.1.3 تمام لوله‌کشی بین شیرهای توقف و اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.4 افت فشار در این بخش نیز در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.2.2 سیستم‌های بدون شیر توقف
    9.4.2.2.2.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷کیلوپاسکال) قرار گیرد.
    9.4.2.2.2.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.3 سیستم‌های کم‌فشار
    9.4.2.3.1 لوله‌کشی‌هایی که به‌طور معمول تحت فشار هستند
    9.4.2.3.1.1 تمام لوله‌کشی‌هایی که به طور معمول تحت فشار قرار دارند باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸کیلوپاسکال) قرار گیرند.
    9.4.2.3.1.2 در طول آزمایش ۲ دقیقه‌ای، هیچ‌گونه نشتی از لوله‌کشی نباید وجود داشته باشد.

    9.4.2.3.2 لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها
    9.4.2.3.2.1 تمام لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸ کیلوپاسکال) قرار گیرد.
    9.4.2.3.2.2 افت فشار در طول ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.3 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی‌های سیستم تهویه
    9.4.3.1 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی سیستم تهویه باید با عبور جریان دی‌اکسید کربن در سیستم آزمایش شوند.
    9.4.3.2 تأخیرهای پیش‌تخلیه‌ای که در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) دقت ±۲۰ درصد از مقدار نامی را ندارند، باید تعویض شوند.

    9.4.4 تأیید
    رعایت الزامات بند 9.3.2 باید مورد تأیید قرار گیرد

  • ملاحظات مربوط به اسپیراتینگ ها یا دتکتورهای دودی مکشی بر اساس اصول عملکرد آن‌ها

    اثر رقیق‌سازی
    حساسیت یک سامانه تشخیص مکشی به دو عامل اصلی بستگی دارد: تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی و آستانه‌های قابل برنامه‌ریزی تشخیص دود. تعداد سوراخ‌های نمونه‌برداری می‌تواند بر میزان رقیق‌سازی هوای بازگشتی به محفظه حسگر تأثیر بگذارد.
    برای مثال، زمانی که دود از یک سوراخ نمونه‌برداری وارد می‌شود، غلظت دود به‌دلیل عبور از سایر سوراخ‌هایی که هوای پاک (بدون دود) را جذب می‌کنند، کاهش می‌یابد. زمانی که این هوای تمیز با هوای آلوده به دود ترکیب می‌شود و به محفظه تشخیص وارد می‌گردد، هوای آلوده به دود رقیق می‌شود. به این پدیده «اثر رقیق‌سازی» گفته می‌شود (شکل ۷ در پایین).

    در شکل ۷، رنگ خاکستری نشان‌دهنده دودی است که از دورترین سوراخ نمونه‌برداری در لوله وارد می‌شود. این دود در حین عبور از لوله با هوای پاک ترکیب شده و غلظت آن کاهش می‌یابد. اثر رقیق‌سازی به‌طور مستقیم با تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی مرتبط است. هرچه تعداد سوراخ‌ها بیشتر باشد، حجم هوایی که به سمت ASD منتقل می‌شود نیز بیشتر شده و در نتیجه دود معلق در هوا بیشتر رقیق می‌شود.
    برای مثال، اگر لوله نمونه‌برداری ۵۰ متر (۱۶۴ فوت) طول داشته باشد و در هر ۵ متر (۱۶ فوت) یک سوراخ تعبیه شده باشد، در مجموع ۱۰ سوراخ از جمله درپوش انتهایی خواهیم داشت.

    در این مثال ساده، فرض می‌شود که هر سوراخ مقدار تقریباً برابری از هوا را وارد می‌کند. اگر یک منبع دود با غلظت ۲٪ انسداد بر متر (obs/m) در انتهای لوله قرار گیرد و از سایر سوراخ‌ها دود وارد نشود، دود در مسیر حرکت خود با هوای پاک ترکیب می‌شود. زمانی که نمونه به آشکارساز می‌رسد، غلظت آن به ۰.۲٪ obs/m، یا یک‌دهم مقدار اولیه کاهش یافته است. بنابراین، اگر آستانه هشدار اولیه روی ۰.۲٪ obs/m تنظیم شده باشد، غلظت دود در خارج از سوراخ باید بیش از ۲٪ obs/m باشد تا هشدار به صدا درآید.

    در نتیجه، هرچه طول لوله و تعداد سوراخ‌های نمونه‌برداری بیشتر باشد، سامانه بیشتر در معرض اثر رقیق‌سازی قرار می‌گیرد. در این شرایط، بهتر است بر اساس بدترین حالت ممکن طراحی صورت گیرد.
    در واقعیت، محاسبه رقیق‌سازی به سادگی مثال بالا نیست و عوامل بیشتری دخیل‌اند. هر سامانه ویژگی‌های متفاوتی دارد، بنابراین محاسبه دقیق آن بسیار پیچیده است. عواملی که بر نرخ رقیق‌سازی تأثیر می‌گذارند شامل اندازه و تعداد سوراخ‌ها، سه‌راهی‌ها و زانویی‌ها در شبکه لوله‌کشی، قطر لوله، و عوامل محیطی مانند دما، فشار و رطوبت هوا می‌شوند.

     

    زمان انتقال

    زمان انتقال، مدت‌زمانی است که ذرات دود برای رسیدن به محفظه حسگر در دتکتور دودی مکشی نیاز دارند. این زمان (بر حسب ثانیه) از لحظه ورود ذرات به نقطه نمونه‌برداری تا رسیدن آن‌ها به محفظه تشخیص اندازه‌گیری می‌شود. این زمان‌ها با استفاده از نرم‌افزار طراحی دتکتور دودی مکشی محاسبه شده و در فرآیند راه‌اندازی و تأیید نهایی در میدان، به‌صورت عملی ارزیابی و تأیید می‌گردند.

    WhatsApp Image 2025 09 30 at 3.50.36 PM

    چندین پارامتر در تعیین زمان انتقال تأثیرگذار هستند، از جمله:

    • اندازه و تعداد سوراخ‌های نمونه‌برداری
    • تنظیم سرعت مکنده (دور بر دقیقه)
    • تنظیم حساسیت آشکارساز
    • مقدار کل و چیدمان لوله‌های نمونه‌برداری

    استانداردها و آیین‌نامه‌های مدرن، زمان‌های انتقال مشخصی را برای کلاس‌های مختلف دتکتورهای دودی مکشی الزام می‌کنند. حداکثر زمان انتقال ممکن است بسته به نوع کاربرد، از ۶۰ ثانیه برای دتکتورهای بسیار زودهنگام، ۹۰ ثانیه برای دتکتورهای زودهنگام، یا ۱۲۰ ثانیه برای دتکتورهای استاندارد متغیر باشد.

    برای تعیین زمان‌های مجاز انتقال، به استانداردهای EN 54-20، NFPA 72، NFPA 76 و آیین‌نامه‌های محلی مربوطه مراجعه شود.

     

  • بررسی جامع بیم دتکتورها بر اساس استاندارد ISO 7240-12

    سازمان بین‌المللی استانداردسازی (ISO) یک نهاد مستقل و غیردولتی است که استانداردهای بین‌المللی را برای تضمین کیفیت، ایمنی و کارایی در صنایع مختلف تدوین می‌کند. استانداردهایISO در سطح جهانی پذیرفته شده و به بهبود عملکرد سیستم‌های مختلف، از جمله سیستم‌های اعلام حریق، کمک می‌کنند. یکی از مهم‌ترین استانداردهای مرتبط با اعلام حریق، ISO 7240-12است که به بیم دتکتورهای دودی اختصاص دارد. این استاندارد دستورالعمل‌های دقیقی را برای طراحی، عملکرد، نصب و آزمون این تجهیزات ارائه می‌دهد تا عملکرد صحیح و دقت بالای آن‌ها تضمین شود.

    بیم دتکتورها تجهیزاتی هستند که با استفاده از پرتو نوری مادون قرمز یا لیزری کاهش شفافیت هوا ناشی از دود را تشخیص می‌دهند. این دتکتورها به‌طور کلی در دو نوع اصلی طبقه‌بندی می‌شوند:

    1. بیم دتکتور نوع فرستنده-گیرنده جدا  

    2Q==

    (Projected Beam Smoke Detector)

    در این نوع، فرستنده و گیرنده در دو نقطه جداگانه قرار دارند و پرتو نوری از فرستنده به گیرنده ارسال می‌شود. در صورت کاهش شدت نور به دلیل وجود دود، آلارم فعال می‌شود.

    2. بیم دتکتور نوع انعکاسی

    2Q==

    (Reflective Beam Smoke Detector)

    در این مدل، فرستنده و گیرنده در یک واحد قرار دارند و یک بازتابنده در سمت مقابل نصب می‌شود. پرتو پس از برخورد به بازتابنده، به گیرنده بازمی‌گردد و کاهش شدت آن نشانه وجود دود است.

    الزامات بیم دتکتورها در استاندارد ISO 7240-12

    استاندارد ISO 7240-12 دستورالعمل‌هایی برای طراحی، نصب، آزمایش و نگهداری بیم دتکتورها ارائه می‌دهد. برخی از مهم‌ترین الزامات این استاندارد عبارت‌اند از:

    1. معیارهای عملکردی

    بیم دتکتورها باید توانایی تشخیص تغییرات شفافیت هوا را با دقت بالا داشته باشند.
    محدوده تشخیص بیم دتکتورها باید بین 10 تا 100 متر باشد.
    حساسیت دستگاه باید قابل تنظیم بوده و نسبت به تغییرات غیرعادی محیطی مقاوم باشد.

    2. شرایط محیطی و محدودیت‌ها

    بیم دتکتورها نباید تحت تأثیر نور مستقیم خورشید، گرد و غبار، رطوبت بالا یا تغییرات دمایی شدید قرار گیرند.
    در محیط‌هایی که دود به‌صورت یکنواخت منتشر نمی‌شود یا در نزدیکی سقف باقی نمی‌ماند، کارایی بیم دتکتورها کاهش می‌یابد.
    در مناطقی که دارای لرزش زیاد یا جریان هوا شدیدهستند، نیاز به کالیبراسیون و بررسی‌های مکرر وجود دارد.

    3. الزامات نصب

    بیم دتکتورها باید در فضاهای بزرگ مانند انبارها، سالن‌های تولید، آشیانه‌های هواپیما، فرودگاه‌ها و مراکز خرید نصب شوند.
    ارتفاع نصب باید متناسب با ارتفاع سقف باشد و معمولاً در محدوده 4 تا 25 متر قرار گیرد.
    در صورت وجود مانع در مسیر پرتو نوری، باید از چندین بیم دتکتور به‌صورت مکمل استفاده شود.
    فاصله بین بیم دتکتورها و دیوارها باید حداقل 0.5 متر باشد.

    4. الزامات نگهداری و آزمون‌های دوره‌ای

    بیم دتکتورها باید به‌صورت دوره‌ای آزمایش و کالیبره شوند تا عملکرد صحیح آن‌ها تضمین شود.
    گرد و غبار و آلودگی‌های محیطی باید به‌طور منظم از سطح فرستنده، گیرنده و بازتابنده پاک شوند.
    زاویه و تنظیمات نوری باید بررسی شده و در صورت لزوم، مجدداً تنظیم شوند.
    دتکتورها باید دارای سیستم خودآزمایی (Self-Testing) و قابلیت تشخیص خرابی (Fault Detection) باشند.

    روش‌های آزمون بیم دتکتورها بر اساس ISO 7240-12

    ISO 7240-12 شامل مجموعه‌ای از آزمون‌های عملکردی و محیطی است که دقت و قابلیت اطمینان بیم دتکتورها را تأیید می‌کند. برخی از این آزمون‌ها عبارت‌اند از:

    1. آزمون حساسیت به دود: بررسی میزان کاهش نور لازم برای فعال شدن هشدار.
    2. آزمون محیطی: بررسی عملکرد دستگاه در دمای بالا، دمای پایین، رطوبت زیاد و شرایط گرد و غبار.
    3. آزمون تأخیر هشدار: بررسی مدت‌زمان لازم برای فعال شدن هشدار جهت کاهش هشدارهای کاذب.
    4. آزمون مقاومت در برابر نور خارجی: ارزیابی تأثیر منابع نوری خارجی مانند نور خورشید بر عملکرد دتکتور.
    5. آزمون لرزش و ضربه: بررسی مقاومت بیم دتکتور در برابر لرزش‌های مکانیکی و ضربات احتمالی.

    مقاومت در برابر عوامل مزاحم و هشدارهای کاذب

    بیم دتکتورها باید دارای فیلترهای نوری و الگوریتم‌های پردازش هوشمند باشند تا در برابر عوامل مزاحم مقاوم باشند. مهم‌ترین عوامل مزاحم که بیم دتکتورها باید در برابر آن‌ها ایمن باشند عبارت‌اند از:

    نور مستقیم خورشید یا نورهای مصنوعی قوی.
    گرد و غبار، دودهای غیرحریق (مانند دود اگزوز ماشین‌آلات صنعتی).
    حرکت اشیاء در مسیر بیم دتکتور (مانند پرندگان یا وسایل متحرک در انبارها).

    نتیجه‌گیری

    استاندارد ISO 7240-12 مجموعه‌ای از الزامات فنی، نصب، آزمایش و نگهداری برای بیم دتکتورها ارائه می‌دهد که رعایت آن‌ها باعث افزایش دقت و کاهش هشدارهای کاذب می‌شود. انتخاب مناسب، نصب اصولی و نگهداری منظم این تجهیزات مطابق با استاندارد ISO نقش مهمی در بهبود عملکرد سیستم‌های اعلام حریق دارد. این استاندارد باعث می‌شود بیم دتکتورها در شرایط مختلف محیطی و عملکردی بهینه عمل کنند و ایمنی ساختمان‌ها و تأسیسات حساس را تضمین نمایند.

  • تأسیس تأسیسات سیستم های اطفاء حریق گاز پایه

    10.1 ایمنی

    بایستی در حین نصب، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک و مخازن عامل، از روش‌های ایمن پیروی شود.

    10.2 عمومی

    10.2.1 سیستم تکمیل‌شده باید توسط پرسنلی که دانش و تجربه لازم در زمینه الزامات این استاندارد، تجهیزات نصب‌شده و راهنمای طراحی، نصب و نگهداری سازنده را دارند، بازبینی و آزمایش شود.
    10.2.2 تنها از تجهیزات و دستگاه‌های فهرست‌شده باید در سیستم‌ها استفاده شود.

    10.2.3 آزمایش پذیرش سیستم

    10.2.3.1 سیستم باید مطابق با الزامات این استاندارد و راهنمای طراحی، نصب و نگهداری سازنده آزمایش شود.
    10.2.3.2 تجهیزات باید بررسی شوند تا تأیید شود که مطابق با دستورالعمل‌های سازنده و اسناد طراحی سیستم نصب شده‌اند.
    10.2.3.3 ابعاد واقعی خطر باید با ابعادی که در نقشه‌های سیستم مشخص شده‌اند، بررسی شوند تا مقدار عامل تأیید شود.
    10.2.3.4 در صورتی که آزمایش تخلیه انجام شود، مخازن عامل باید قبل و بعد از آزمایش تخلیه وزن شوند.
    10.2.3.5 وزن عامل در مخازن باید از طریق وزن‌کشی یا روش‌های تأیید شده دیگر تأیید شود.
    10.2.3.6 برای عوامل گاز بی‌اثر، فشار مخزن باید قبل و بعد از آزمایش تخلیه ثبت شود.
    10.2.3.7 در صورتی که برای عملکرد سیستم لازم باشد، زمان کاهش سرعت فن و زمان بسته شدن دمپر باید تأیید شود که مطابق با معیارهای طراحی سیستم است.

    10.2.4 آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه

    زمانی که توسط مشخصات پروژه الزامی است، آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شود.

    10.3 گزارش آزمایش پذیرش

    10.3.1 آزمایش پذیرشی که در 10.2.3 الزامی است باید در یک گزارش آزمایش مستند شود.
    10.3.2 گزارش آزمایش پذیرش باید توسط مالک سیستم برای تمام مدت عمر سیستم نگهداری شود.

    10.4 بازبینی اجزای مکانیکی

    10.4.1 سیستم توزیع لوله‌کشی باید بازبینی شود تا تأیید شود که با اسناد طراحی و نصب مطابقت دارد.
    10.4.2 اندازه نازل‌ها و لوله‌ها باید مطابق با نقشه‌های سیستم باشد.
    10.4.3 روش‌های کاهش اندازه لوله و وضعیت اتصالات انشعاب باید برای تطابق با طراحی بررسی شوند.
    10.4.4 مفاصل لوله‌کشی، نازل‌های تخلیه و تکیه‌گاه‌های لوله باید به‌طور ایمن بسته شوند تا از حرکت عمودی یا جانبی ناخواسته در حین تخلیه جلوگیری شود.
    10.4.5 نازل‌های تخلیه باید به‌گونه‌ای نصب شوند که لوله‌کشی نتواند در حین تخلیه از اتصال خارج شود.
    10.4.6 در حین مونتاژ، سیستم توزیع لوله‌کشی باید به‌طور داخلی بازبینی شود تا احتمال هرگونه آلودگی با روغن یا ذرات که ممکن است منطقه خطر را آلوده کرده یا توزیع عامل را تحت تأثیر قرار دهد (به دلیل کاهش در مساحت اوریفیس نازل) شناسایی شود.
    10.4.7 نازل تخلیه باید مطابق با فهرست نازل نصب شود.
    10.4.8 اگر محافظ‌های نازل نصب شده‌اند، باید طبق فهرست تجهیزات نصب شوند.
    10.4.9 نازل‌های تخلیه، لوله‌کشی و براکت‌های نصب باید به‌گونه‌ای نصب شوند که خطر آسیب به پرسنل نداشته باشند.
    10.4.10 عامل نباید مستقیماً به نواحی‌ای که ممکن است پرسنل در آن‌ها حضور داشته باشند در منطقه کاری برخورد کند.
    10.4.11 عامل نباید مستقیماً به هیچ جسم رها شده‌ای یا قفسه‌ها، سطوح بالای کابینت‌ها یا سطوح مشابه که ممکن است اشیاء رها شده در آن‌ها وجود داشته باشد و به ش projectiles تبدیل شوند، برخورد کند.

    10.4.12 تمامی مخازن ذخیره عامل باید مطابق با مجموعه تأسیسات تایید شده از نقشه‌های سیستم نصب شوند.

    10.4.13 تمامی مخازن و براکت‌های نصب باید مطابق با الزامات سازنده به‌طور ایمن نصب شوند.

    10.4.14 سیستم لوله‌کشی باید در یک مدار بسته با استفاده از نیتروژن یا گاز خشک فشار آزمایی شود.

    10.4.14.1 لوله باید به حداقل فشار 40 psi (276 kPa) فشار وارد شود.
    10.4.14.2 پس از برداشتن منبع گاز فشار، فشار در لوله نباید کمتر از 80 درصد فشار آزمایش پس از 10 دقیقه باشد.
    10.4.14.3 آزمایش فشار در صورتی که سیستم لوله‌کشی تنها یک تغییر جهت بین مخزن ذخیره‌سازی و نازل تخلیه داشته باشد و تمامی لوله‌ها از نظر سفت بودن فیزیکی بررسی شده باشند، مجاز است که حذف شود.

    10.4.15* آزمایش جریان با استفاده از نیتروژن یا گاز بی‌اثر باید بر روی شبکه لوله‌کشی انجام شود تا تأیید شود که جریان به‌طور مداوم وجود دارد.

    10.5 بازبینی یکپارچگی محفظه

    10.5.1 باید تأیید شود که محفظه حفاظت‌شده به‌طور کلی با اسناد ساخت مطابقت دارد.
    10.5.2 تمامی سیستم‌های سیلاب‌کامل باید مورد بازبینی و آزمایش قرار گیرند تا درزهای هوایی قابل توجهی که می‌توانند منجر به شکست محفظه در نگه‌داشتن سطح غلظت عامل مشخص شده برای مدت زمان مشخص شده شوند، شناسایی و به‌طور مؤثر مهر و موم شوند.
    10.5.3* نتایج کمی باید به‌دست آید و ثبت شود تا تأیید شود که غلظت عامل مشخص‌شده برای مدت زمان مشخص‌شده حفاظت مطابق با بخش 7.4 است، با استفاده از واحد فن دمنده تایید شده یا روش‌های دیگری که توسط مرجع نظارتی تایید شده باشد. (برای راهنمایی، به پیوست D مراجعه کنید.)

    10.6 بازبینی اجزای الکتریکی

    10.6.1 تمامی سیستم‌های سیم‌کشی باید مطابق با کدهای محلی و نقشه‌های سیستم نصب شوند.
    10.6.2 سیم‌کشی جریان متناوب (ac) و مستقیم (dc) نباید در یک لوله یا مسیر مشترک ترکیب شوند، مگر اینکه از شیلدینگ و زمین‌گذاری استفاده شده باشد.
    10.6.3 تمامی مدارهای میدانی باید از خطاهای زمینی و اتصالات کوتاه آزاد باشند.
    o 10.6.3.1 هنگامی که مدارهای میدانی اندازه‌گیری می‌شوند، تمامی اجزای الکترونیکی مانند تشخیص‌دهنده‌های دود و شعله یا تجهیزات الکترونیکی ویژه برای سایر تشخیص‌دهنده‌ها یا پایه‌های نصب آن‌ها باید حذف شده و پل‌ها نصب شوند تا از احتمال آسیب به این دستگاه‌ها جلوگیری شود.
    o 10.6.3.2 اجزای حذف‌شده مطابق با 10.6.3.1 باید پس از اندازه‌گیری‌ها جایگزین شوند.
    10.6.4 تأمین برق به واحد کنترل باید از یک منبع اختصاصی جداگانه باشد که در هنگام راه‌اندازی سیستم قطع نشود.
    10.6.5 منابع انرژی اصلی و 24 ساعته حداقل باید برای تأمین نیازهای عملکردی تشخیص، سیگنال‌دهی، کنترل و فعال‌سازی سیستم قابل اعتماد و کافی باشند.
    10.6.6* تمامی عملکردهای کمکی مانند دستگاه‌های آلارم، نمایشگرها، اعلان‌کننده‌های از راه دور، خاموشی سیستم تهویه و خاموشی برق باید برای عملکرد مطابق با الزامات سیستم و مشخصات طراحی بررسی شوند.
    10.6.7 خاموش کردن آلارم‌ها، در صورت مجاز بودن، نباید تأثیری بر سایر عملکردهای کمکی داشته باشد.
    10.6.8 دستگاه‌های تشخیص باید برای نوع و مکان مطابق با نقشه‌های سیستم بررسی شوند.
    10.6.9* تشخیص‌دهنده‌ها نباید در نزدیکی موانع یا تجهیزات تهویه و خنک‌کننده هوا نصب شوند که می‌تواند ویژگی‌های واکنش آن‌ها را تحت تأثیر قرار دهد.
    10.6.10* طراحی سیستم تشخیص باید حجم تغییرات هوای داخل منطقه حفاظت‌شده را در نظر بگیرد.
    10.6.11 تشخیص‌دهنده‌ها باید مطابق با داده‌های فنی سازنده و الزامات NFPA 72 نصب شوند.
    10.6.12 ایستگاه‌های دستی کشیدن (Manual Pull Stations)
    o 10.6.12.1 ایستگاه‌های دستی کشیدن باید به‌طور ایمن نصب شوند.
    o 10.6.12.2 قسمت قابل استفاده ایستگاه دستی کشیدن باید حداقل 42 اینچ (1.07 متر) و حداکثر 48 اینچ (1.22 متر) از کف تمام‌شده باشد.
    o 10.6.12.3 ایستگاه‌های دستی کشیدن باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.
    o 10.6.12.4 تمامی ایستگاه‌های دستی کشیدن باید به‌طور واضح شناسایی شوند که به کدام خطر حفاظت می‌کنند، عملکرد آن‌ها چیست و روش عملیات آن‌ها چگونه است.
    o 10.6.12.5 تمامی ایستگاه‌های دستی که برای آزادسازی عامل‌ها استفاده می‌شوند باید نیاز به دو اقدام مجزا و متمایز برای عملکرد داشته باشند.
    10.6.13 سیستم‌های با قابلیت اصلی/رزرو
    o 10.6.13.1 برای سیستم‌هایی با قابلیت اصلی/رزرو، سوئیچ اصلی/رزرو باید مطابق با دستورالعمل‌های طراحی، نصب و نگهداری سازنده سیستم و نقشه‌های سیستم نصب شود.
    o 10.6.13.2 اگر نصب شده باشد، سوئیچ اصلی/رزرو باید شناسایی شود.
    10.6.14 سیستم‌هایی که از سوئیچ‌های انصراف استفاده می‌کنند
    o 10.6.14.1 سوئیچ‌های انصراف باید از نوع “deadman” باشند که نیاز به فشار دستی مداوم دارند.
    o 10.6.14.2 سوئیچ‌هایی که در موقعیت انصراف باقی می‌مانند زمانی که آزاد شوند، نباید برای این منظور استفاده شوند.
    o 10.6.14.3 سوئیچ‌های انصراف باید به‌گونه‌ای نصب شوند که در داخل منطقه خطر به‌راحتی قابل دسترس باشند.
    o 10.6.14.4 سوئیچ‌های انصراف باید به‌طور ایمن نصب شوند.
    o 10.6.14.5 ایستگاه‌های انصراف باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.

    10.6.14.6 قسمت قابل استفاده از سوئیچ انصراف نباید کمتر از 42 اینچ (1.07 متر) و بیشتر از 48 اینچ (1.22 متر) از کف تمام‌شده باشد.

    10.6.14.7 ایستگاه‌های دستی کشیدن همیشه باید سوئیچ‌های انصراف را لغو کنند.

    10.6.15 واحد کنترل آزادسازی باید مطابق با مستندات سیستم نصب شده و به‌راحتی قابل دسترس باشد.

    10.7 آزمایش عملکردی

    10.7.1 آزمایش‌های عملکردی مقدماتی

    10.7.1.1 اگر سیستم به یک دفتر دریافت آلارم متصل باشد، دفتر دریافت آلارم باید اطلاع داده شود که آزمایش سیستم آتش‌نشانی قرار است انجام شود و پاسخ اضطراری از سوی آتش‌نشانی یا پرسنل ایستگاه آلارم ضروری نیست.
    10.7.1.2 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید مطلع شوند که آزمایشی قرار است انجام شود.
    10.7.1.3 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید دستورالعمل‌هایی دریافت کنند که به آن‌ها توضیح داده شود چه اتفاقاتی ممکن است در حین آزمایش سیستم اطفاء حریق رخ دهد.
    10.7.1.4* مکانیزم آزادسازی هر مخزن ذخیره عامل باید غیرفعال شده یا با یک دستگاه عملیاتی جایگزین شود به‌طوری‌که فعال‌سازی مدار آزادسازی منجر به آزادسازی عامل نشود.
    10.7.1.5 هر تشخیص‌دهنده باید برای عملکرد آزمایش شود.
    10.7.1.6 تمامی دستگاه‌های آلارم قطبی‌شده و رله‌های کمکی باید برای قطبیت مطابق با دستورالعمل‌های سازنده بررسی شوند.
    10.7.1.7 مدارهای شروع و اعلان باید برای دستگاه‌های انتهای خط، در صورت لزوم، بررسی شوند.
    10.7.1.8 تمامی مدارهای تحت نظارت باید برای پاسخ به مشکلات آزمایش شوند.

    10.7.2 آزمایش عملکرد عملیاتی سیستم

    10.7.2.1 هر مدار شروع تشخیص باید اجرا شود تا تأیید شود که تمامی عملکردهای آلارم مطابق با مشخصات طراحی رخ می‌دهند.
    10.7.2.2 هر آزادسازی دستی باید اجرا شود تا تأیید شود که عملکرد آزادسازی دستی مطابق با مشخصات طراحی انجام می‌شود.
    10.7.2.3 هر مدار سوئیچ انصراف باید اجرا شود تا تأیید شود که عملکرد انصراف مطابق با مشخصات طراحی انجام می‌شود و سیگنال‌های نظارتی بصری و صوتی در پنل کنترل اعلام می‌شود.
    10.7.2.4 تمامی شیرهای خودکار باید برای تأیید عملکرد آزمایش شوند، مگر اینکه آزمایش شیر منجر به آزادسازی عامل یا آسیب به شیر (آزمایش تخریبی) شود.
    10.7.2.5 تجهیزات پنوماتیک، در صورت نصب، باید برای یکپارچگی آزمایش شوند تا از عملکرد صحیح آن‌ها اطمینان حاصل شود.

    10.7.3 عملیات نظارت از راه دور

    10.7.3.1 هر نوع دستگاه شروع باید در حالت برق پشتیبان اجرا شود تا تأیید شود که پس از فعال شدن دستگاه، سیگنال آلارم در پنل از راه دور دریافت می‌شود.

    10.7.3.2 یک وضعیت خطا باید به هر مدار شروع یا اعلان اعمال شود تا تأیید شود که وضعیت مشکل در ایستگاه از راه دور دریافت شده است.

    10.7.3.3 هر دستگاه تحت نظارت باید اجرا شود تا تأیید شود که وضعیت نظارتی در ایستگاه از راه دور دریافت شده است.

    10.7.4 منبع قدرت اصلی پنل کنترل

    یک قطع برق اصلی باید مطابق با مشخصات سازنده آغاز شود تا تأیید شود که سیستم بر روی برق پشتیبان کار می‌کند.

    10.7.5 بازگرداندن سیستم به وضعیت عملیاتی

    10.7.5.1 هنگامی که آزمایش‌های عملکردی به پایان رسید، سیستم باید به وضعیت عملیاتی کامل بازگردانده شود.
    10.7.5.2 دفتر دریافت آلارم و تمامی پرسنل مربوطه در تأسیسات کاربر نهایی باید مطلع شوند که آزمایش سیستم آتش‌نشانی تکمیل شده است و سیستم به وضعیت کامل خدمات بازگشته است.

    10.8 مستندات مالک

    10.8.1 نسخه‌های کاغذی یا الکترونیکی تمامی گزارش‌های آزمایش و مستندات مربوطه باید به مالک سیستم ارائه شود.
    10.8.2 مالک سیستم باید این گزارش‌ها را برای مدت زمان عمر سیستم نگه‌داری کند.

    10.9 آموزش

    10.9.1 تمامی افرادی که احتمالاً مجبور به استفاده از سیستم‌های اطفاء حریق هستند باید آموزش دیده و آموزش‌های خود را در زمینه عملکردهایی که باید انجام دهند، به‌روز نگه دارند.
    10.9.2* پرسنلی که در یک اتاق سرور که توسط عامل پاک‌کننده محافظت می‌شود کار می‌کنند باید آموزش‌هایی در خصوص مسائل ایمنی عامل دریافت کنند.

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM

     

  • NFPA12 پیوست G اطلاعات درباره اثرات گاز دی‌اکسید کربن سیستم اطفاء

    پیوست G اطلاعات عمومی درباره دی‌اکسید کربن
    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاعاتی ارائه شده است.
    G.1 دی‌اکسید کربن به طور متوسط با غلظت حدود ۰.۰۴ درصد حجمی در جو وجود دارد. این ماده همچنین محصول نهایی طبیعی متابولیسم انسان و حیوانات است. دی‌اکسید کربن به چندین روش مهم بر برخی عملکردهای حیاتی تأثیر می‌گذارد، از جمله کنترل تنفس، گشاد شدن و تنگ شدن رگ‌های خونی – به ویژه در مغز – و تنظیم pH مایعات بدن. غلظت دی‌اکسید کربن در هوا نرخ آزادسازی دی‌اکسید کربن از ریه‌ها را کنترل می‌کند و بنابراین بر غلظت دی‌اکسید کربن در خون و بافت‌ها تأثیر می‌گذارد. افزایش غلظت دی‌اکسید کربن در هوا می‌تواند خطرناک شود، زیرا باعث کاهش نرخ آزادسازی دی‌اکسید کربن از ریه‌ها و کاهش دریافت اکسیژن می‌شود. اطلاعات بیشتر در مورد مواجهه با دی‌اکسید کربن را می‌توان از انتشارات شماره 76-194 اداره بهداشت و خدمات انسانی آمریکا (NIOSH) به دست آورد. ملاحظات ایمنی پرسنل در بخش ۴.۳ پوشش داده شده است.
    جدول G.1 اطلاعاتی درباره اثرات حاد سلامتی ناشی از غلظت‌های بالای دی‌اکسید کربن ارائه می‌دهد.

    9k=

    دی‌اکسید کربن یک محصول تجاری استاندارد با کاربردهای فراوان است. این گاز شاید بیشتر به عنوان گازی که به نوشابه‌ها و سایر نوشیدنی‌های گازدار حالت “فیز” می‌دهد، شناخته شده باشد. در کاربردهای صنعتی، دی‌اکسید کربن به دلیل خواص شیمیایی، خواص مکانیکی به عنوان عامل فشاردهنده، یا خواص سرمایشی به صورت یخ خشک استفاده می‌شود.
    در کاربردهای اطفاء حریق، دی‌اکسید کربن دارای چندین ویژگی مطلوب است. این گاز غیرخورنده، بدون آسیب‌رسانی و بدون باقی گذاشتن باقی‌مانده‌ای برای تمیزکاری پس از حریق است. همچنین فشار مورد نیاز برای تخلیه از طریق لوله‌ها و اسپرینکلرها را خود تأمین می‌کند. چون یک گاز است، به راحتی نفوذ کرده و به همه بخش‌های خطر گسترش می‌یابد. دی‌اکسید کربن رسانای الکتریسیته نیست و بنابراین می‌توان از آن در خطرات برقی فعال استفاده کرد. این گاز می‌تواند تقریباً برای تمام مواد قابل احتراق به جز چند فلز فعال، هیدریدهای فلزی و موادی مانند نیترات سلولز که دارای اکسیژن آزاد هستند، به طور مؤثر استفاده شود.
    در شرایط معمول، دی‌اکسید کربن گازی بی‌رنگ و بی‌بو با چگالی حدود ۵۰ درصد بیشتر از چگالی هوا است. بسیاری از افراد ادعا می‌کنند که می‌توانند بوی دی‌اکسید کربن را حس کنند، اما این احتمالاً به دلیل وجود ناخالصی‌ها یا تأثیرات شیمیایی در بینی است. دی‌اکسید کربن به راحتی با فشرده‌سازی و سرمایش به مایع تبدیل می‌شود. با سرمایش و انبساط بیشتر، می‌توان آن را به حالت جامد نیز تبدیل کرد.
    رابطه بین دما و فشار دی‌اکسید کربن مایع در منحنی شکل G.1 نشان داده شده است. با افزایش دمای مایع، فشار نیز افزایش می‌یابد. با افزایش فشار، چگالی بخار بالای مایع افزایش می‌یابد. از سوی دیگر، مایع با افزایش دما منبسط شده و چگالی آن کاهش می‌یابد. در دمای ۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)، مایع و بخار چگالی یکسانی دارند و در نتیجه فاز مایع ناپدید می‌شود. این دما به عنوان دمای بحرانی دی‌اکسید کربن شناخته می‌شود. در دمای زیر دمای بحرانی [۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)]، دی‌اکسید کربن در یک مخزن بسته به صورت بخشی مایع و بخشی گاز است. بالاتر از دمای بحرانی، کاملاً به حالت گاز در می‌آید.
    یکی از ویژگی‌های غیرمعمول دی‌اکسید کربن این است که نمی‌تواند به صورت مایع در فشارهای کمتر از ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)] وجود داشته باشد. این فشار نقطه سه‌گانه است که در آن دی‌اکسید کربن می‌تواند به صورت جامد، مایع یا بخار باشد. زیر این فشار، بسته به دما، دی‌اکسید کربن باید یا به صورت جامد یا گاز باشد.
    اگر فشار در یک مخزن ذخیره‌سازی با تخلیه بخار کاهش یابد، بخشی از مایع تبخیر می‌شود و مایع باقی‌مانده سردتر می‌شود. در فشار ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)]، مایع باقی‌مانده به یخ خشک در دمای ۶۹.۹- درجه فارنهایت (۵۷- درجه سانتی‌گراد) تبدیل می‌شود. کاهش بیشتر فشار به فشار اتمسفری، دمای یخ خشک را به دمای طبیعی ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) کاهش می‌دهد.
    همین فرآیند زمانی اتفاق می‌افتد که دی‌اکسید کربن مایع به اتمسفر تخلیه شود. بخش بزرگی از مایع به بخار تبدیل شده و حجم آن به شدت افزایش می‌یابد. بقیه به ذرات ریز یخ خشک در دمای ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) تبدیل می‌شود. این یخ خشک یا برف باعث می‌شود که تخلیه ظاهری ابری سفیدرنگ داشته باشد. دمای پایین همچنین موجب چگالش بخار آب موجود در هوای مکیده شده می‌شود، به طوری که مه آب معمولی تا مدتی پس از تصعید یخ خشک باقی می‌ماند.
    دی‌اکسید کربن گازی بی‌رنگ، بی‌بو، غیررسانای الکتریکی و بی‌اثر است که یک محیط مناسب برای اطفاء حریق محسوب می‌شود. دی‌اکسید کربن مایع هنگام آزادسازی مستقیم به اتمسفر، به یخ خشک (“برف”) تبدیل می‌شود. گاز دی‌اکسید کربن ۱.۵ برابر سنگین‌تر از هوا است. دی‌اکسید کربن با کاهش غلظت اکسیژن، بخار سوخت، یا هر دو در هوا تا جایی که احتراق متوقف شود، آتش را خاموش می‌کند. (به بخش ۴.۳ مراجعه شود.)

    سیستم‌های اطفاء حریق دی‌اکسید کربن در محدوده این استاندارد برای خاموش کردن آتش‌های مربوط به خطرات خاص یا تجهیزات در کاربری‌های زیر مفید هستند:
    (۱) در جایی که یک محیط بی‌اثر و غیررسانای الکتریکی ضروری یا مطلوب باشد
    (۲) در جایی که پاکسازی سایر محیط‌ها مشکل ایجاد کند
    (۳) در جایی که نصب چنین سیستم‌هایی نسبت به سیستم‌هایی که از محیط‌های دیگر استفاده می‌کنند، اقتصادی‌تر باشد

    برخی از انواع خطرات و تجهیزاتی که سیستم‌های دی‌اکسید کربن می‌توانند به طور رضایت‌بخشی از آن‌ها محافظت کنند شامل موارد زیر است:
    (۱) مواد مایع قابل اشتعال (به بخش ۴.۵.۴.۹ مراجعه شود.)
    (۲) خطرات الکتریکی مانند ترانسفورماتورها، کلیدها، قطع‌کننده‌های مدار، تجهیزات چرخشی و تجهیزات الکترونیکی
    (۳) موتورهایی که از بنزین و سایر سوخت‌های مایع قابل اشتعال استفاده می‌کنند
    (۴) مواد قابل احتراق معمولی مانند کاغذ، چوب و منسوجات
    (۵) جامدات خطرناک

    G.2 اطلاعات بیشتر درباره خواص فیزیکی دی‌اکسید کربن در “راهنمای مهندسی حفاظت از حریق SFPE” قابل دسترسی است.