فناوری های تشخیص گاز

how smart gas detection technology is changing safety standards

WhatsApp Image 2025 09 25 at 2.25.53 AM

WhatsApp Image 2025 09 25 at 2.26.01 AM

دسته‌بندی‌های پایش گاز:

  1. گازهای قابل احتراق / اشتعال‌پذیر
    • خطر انفجار.
    • برای جلوگیری از انفجار، باید سطح گاز در هوا کمتر از حد پایین انفجار (LEL) برای هر گاز نگه داشته شود یا اکسیژن از محیط حذف شود.
    • معمولاً در بازه ۰ تا ۱۰۰ درصد از حد پایین انفجار یا در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شود.
    • دتکتورهای گاز قابل احتراق به‌گونه‌ای طراحی شده‌اند که پیش از وقوع شرایط بالقوه انفجاری هشدار دهند.
  2. گازهای سمی / محرک
    • برای سلامت انسان خطرناک‌اند؛ باید میزان تماس کارکنان با این گازها پایش شود.
    • معمولاً در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شوند.
    • دتکتورهای گاز سمی به‌گونه‌ای طراحی شده‌اند که پیش از رسیدن سطح گاز به غلظت زیان‌آور به کارکنان هشدار دهند.
    • برخی از دتکتورهای گاز سمی می‌توانند میانگین تماس در طول زمان را محاسبه کرده و مقادیر حد تماس کوتاه‌مدت (STEL) و میانگین وزنی زمان‌دار (TWA) را ارائه دهند.
  3. اکسیژن
    • محیط‌هایی با میزان کم اکسیژن (کمتر از ۱۹.۵ درصد حجمی اکسیژن) «کم‌اکسیژن» تلقی شده و تنفس طبیعی انسان را مختل می‌کنند.
    • محیط‌هایی با میزان زیاد اکسیژن (بیش از ۲۵ درصد حجمی اکسیژن) «غنی از اکسیژن» تلقی شده و خطر انفجار در آن‌ها افزایش می‌یابد.
    • در بازه درصد حجمی اندازه‌گیری می‌شود (درصد طبیعی اکسیژن در هوا در سطح دریا ۲۰.۸ درصد حجمی است).
    • دتکتورهای اکسیژن به‌طور کلی به‌گونه‌ای تنظیم می‌شوند که در صورت کم بودن یا زیاد بودن بیش از حد اکسیژن در محیط، هشدار دهند.

 

فضاهای قابل احتراق

برای ایجاد شعله، وجود سه شرط ضروری است:
• یک منبع سوخت (مانند گاز متان یا بخارات بنزین)
• مقدار کافی اکسیژن (بیش از ۱۰ تا ۱۵ درصد) برای اکسید شدن یا سوختن سوخت
• یک منبع گرما (جرقه) برای شروع فرآیند

نمونه‌هایی از منابع گرما و جرقه:
• شعله‌های باز مانند شعله‌های فندک، مشعل، کبریت و مشعل‌های جوشکاری، رایج‌ترین منابع جرقه هستند.
• تابش در قالب نور خورشید یا سطوح داغ
• جرقه‌های ناشی از منابع مختلف مانند روشن یا خاموش کردن وسایل برقی، بیرون کشیدن دوشاخه‌ها، الکتریسیته ساکن یا کلیدهای الکتریکی

فضاهای قابل احتراق
عوامل مؤثر در فضاهای قابل احتراق

بخار در برابر گاز
اگرچه اصطلاحات «بخار» و «گاز» اغلب به‌جای یکدیگر استفاده می‌شوند، اما معانی یکسانی ندارند. واژه «بخار» به ماده‌ای اطلاق می‌شود که اگرچه در حالت گازی وجود دارد، اما به‌طور معمول در دمای اتاق به صورت مایع یا جامد است. وقتی می‌گوییم یک ماده مایع یا جامد در حال سوختن است، در واقع بخار آن ماده است که می‌سوزد. «گاز» به ماده‌ای گفته می‌شود که به‌طور طبیعی در دمای اتاق در حالت گازی است.

فشار بخار و نقطه جوش
فشار بخار، فشاری است که زمانی ایجاد می‌شود که یک جامد یا مایع با بخار خودش در حالت تعادل قرار دارد. این فشار به‌طور مستقیم با دما مرتبط است. مثالی از فشار بخار، فشاری است که توسط بخار یک مایع در یک ظرف بسته نیمه‌پر ایجاد می‌شود. بسته به دما، فشار بخار تا یک آستانه مشخص افزایش می‌یابد. وقتی این آستانه برسد، فضا «اشباع‌شده» در نظر گرفته می‌شود.

فشار بخار و نقطه جوش یک ماده شیمیایی تعیین می‌کنند که چه میزان از آن احتمال دارد وارد هوا شود. فشار بخار پایین به معنای مولکول‌های کمتری از آن ماده در هواست که قابل اشتعال باشند، بنابراین به‌طور کلی خطر کمتری وجود دارد. این همچنین به این معناست که مولکول‌های کمتری برای آشکارسازی وجود دارد و ممکن است آشکارسازی دشوارتر شده و نیاز به تجهیزات با حساسیت بیشتر باشد. با افزایش فشار بخار و کاهش نقطه جوش، احتمال تبخیر افزایش می‌یابد. اگر ظروف حاوی این نوع مواد شیمیایی باز بمانند یا بر روی سطوح بزرگ پخش شوند، احتمال خطر بیشتری به‌وجود می‌آید.

نقطه اشتعال (Flashpoint)
یک ماده قابل اشتعال تا زمانی که به نقطه اشتعال خود نرسد، بخار یا گاز کافی برای شروع آتش تولید نمی‌کند. نقطه اشتعال، پایین‌ترین دمایی است که در آن یک مایع بخار کافی برای ایجاد شعله تولید می‌کند. اگر دما پایین‌تر از این مقدار باشد، مایع بخار کافی برای اشتعال تولید نمی‌کند. اگر نقطه اشتعال برسد و یک منبع خارجی اشتعال مانند جرقه وجود داشته باشد، ماده آتش خواهد گرفت. سند NFPA-325M از آژانس ملی حفاظت در برابر آتش (NFPA) تحت عنوان ویژگی‌های خطر آتش مواد قابل اشتعال، گازها و حلال‌های فرّار، نقطه اشتعال بسیاری از مواد رایج را فهرست کرده است.

نقطه اشتعال اهمیت دارد زیرا نشان‌دهنده میزان خطر ناشی از یک مایع قابل اشتعال است. به‌طور کلی، هرچه نقطه اشتعال پایین‌تر باشد، تشکیل مخلوط‌های قابل اشتعال سوخت و هوا آسان‌تر بوده و در نتیجه خطر بیشتر است.

دمای خوداشتعالی
اگر ماده‌ای تا دمای مشخصی—یعنی دمای اشتعال خودبه‌خودی (یا «خوداشتعالی»)—گرم شود، بیشتر مواد شیمیایی قابل اشتعال می‌توانند بدون وجود منبع خارجی اشتعال، تنها با انرژی گرمایی خود، به‌طور خودبه‌خودی آتش بگیرند.

چگالی بخار
چگالی بخار نسبت وزن یک حجم از بخار قابل اشتعال به حجم مساوی از هوا است. بیشتر بخارهای قابل اشتعال سنگین‌تر از هوا هستند، بنابراین به سمت زمین حرکت کرده و در نواحی پایین‌تر تجمع می‌یابند. گاز یا بخاری که چگالی بخار آن بیشتر از ۱ باشد ممکن است در سطوح پایین حرکت کرده و به دنبال یک منبع اشتعال بگردد (برای مثال: هگزان با چگالی بخار ۳.۰). گاز یا بخاری که چگالی بخار آن کمتر از ۱ باشد تمایل دارد به سمت بالا حرکت کند (برای مثال: متان با چگالی بخار ۰.۶). چگالی بخار در تعیین محل بهینه نصب دتکتور اهمیت دارد، زیرا به پیش‌بینی محل احتمالی تجمع گاز یا بخار در یک اتاق یا فضا کمک می‌کند.

حدود انفجار
برای ایجاد شعله، مقدار کافی گاز یا بخار باید وجود داشته باشد؛ اما مقدار بیش‌ازحد گاز می‌تواند اکسیژن موجود در فضا را جابه‌جا کرده و مانع از احتراق شود. به همین دلیل، برای غلظت‌های پایین و بالا، حد مشخصی وجود دارد که در آن احتراق می‌تواند رخ دهد. این حدود به عنوان حد پایین انفجار (LEL) و حد بالای انفجار (UEL) شناخته می‌شوند. این‌ها همچنین به عنوان حد پایین اشتعال‌پذیری (LFL) و حد بالای اشتعال‌پذیری (UFL) نیز شناخته می‌شوند.

برای حفظ احتراق، محیط باید ترکیب مناسبی از سوخت و اکسیژن (هوا) داشته باشد. LEL حداقل مقدار گاز مورد نیاز برای احتراق و UEL حداکثر مقدار آن را نشان می‌دهد. مقادیر دقیق LEL برای گازهای مختلف متفاوت است و به صورت درصد حجمی در هوا اندازه‌گیری می‌شوند. مقادیر LEL و UEL گازها در سند NFPA 325 درج شده‌اند.

LEL معمولاً بین ۱.۴٪ تا ۵٪ حجمی است. با افزایش دما، انرژی کمتری برای ایجاد احتراق مورد نیاز است و درصد گاز لازم برای رسیدن به ۱۰۰٪ LEL کاهش یافته و در نتیجه خطر افزایش می‌یابد. محیطی با سطح اکسیژن بالاتر باعث افزایش UEL گاز، همچنین نرخ و شدت گسترش شعله می‌شود. از آنجا که مخلوطی از چندین گاز شرایط را پیچیده می‌کند، LEL دقیق آن‌ها باید از طریق آزمایش مشخص شود.

بیشتر ابزارهای اندازه‌گیری گازهای قابل احتراق در محدوده LEL کار می‌کنند و قرائت گاز را به صورت درصدی از LEL نمایش می‌دهند. برای مثال: عدد ۵۰٪ LEL به این معناست که مخلوط گاز نمونه‌برداری‌شده شامل نیمی از مقدار گاز مورد نیاز برای حمایت از احتراق است.

هر غلظتی از گاز یا بخار که بین این دو حد قرار گیرد، در محدوده قابل اشتعال (انفجاری) قرار دارد. مواد مختلف دارای پهنای متفاوتی از محدوده اشتعال‌پذیری هستند — برخی بسیار گسترده و برخی دیگر باریک‌تر هستند. موادی که محدوده اشتعال‌پذیری وسیع‌تری دارند، معمولاً خطرناک‌تر محسوب می‌شوند، زیرا سطوح بیشتری از غلظت آن‌ها می‌تواند دچار اشتعال شود.

فضاهایی که در آن‌ها سطح غلظت گاز پایین‌تر از LEL است (سوخت کافی برای اشتعال وجود ندارد)، «لاغر» (lean) و غیرقابل اشتعال نامیده می‌شوند؛ و فضاهایی که سطح گاز بالاتر از UEL است (اکسیژن کافی برای اشتعال وجود ندارد)، «غلیظ» (rich) و غیرقابل اشتعال تلقی می‌شوند.

فضاهای سمی

پایش گازهای سمی
گاز سمی به گازی گفته می‌شود که توانایی آسیب رساندن به بافت‌های زنده، اختلال در سیستم عصبی مرکزی، ایجاد بیماری‌های شدید یا—در موارد حاد—مرگ را دارد، زمانی که از طریق بلع، تنفس یا جذب از راه پوست یا چشم وارد بدن شود. میزان لازم برای ایجاد این اثرات به‌طور گسترده‌ای با توجه به ماهیت ماده و مدت زمان تماس متفاوت است. «سمیت حاد» به تماس کوتاه‌مدت مانند یک مواجهه‌ی لحظه‌ای اشاره دارد. «سمیت مزمن» به تماس بلندمدت مانند مواجهه‌های مکرر یا طولانی اشاره دارد.

پایش گازهای سمی اهمیت دارد زیرا برخی از این مواد قابل مشاهده یا بوییدن نیستند و اثرات فوری ندارند. بنابراین شناسایی خطر گاز از طریق حواس فرد معمولاً خیلی دیر و پس از رسیدن غلظت به سطح زیان‌آور انجام می‌شود.

اثرهای سمی گازها از بی‌ضرر تا بسیار سمی متغیر است. برخی در مواجهه‌های کوتاه و در سطح پایین نیز تهدیدکننده‌ی زندگی هستند، در حالی که برخی دیگر تنها در مواجهه‌های مکرر و با غلظت بالا خطرناک‌اند. میزان خطری که یک ماده برای یک کارگر ایجاد می‌کند، به عوامل مختلفی بستگی دارد که شامل سطح غلظت گاز و مدت زمان تماس است.

حدود تماس مجاز
کنفرانس آمریکایی متخصصان بهداشت صنعتی دولتی (ACGIH) فهرستی سالانه و بازبینی‌شده از حدود مجاز تماس با ترکیبات صنعتی رایج منتشر می‌کند که با عنوان «مقادیر حد آستانه (TLV) و شاخص‌های تماس زیستی (BEI) بر اساس مستندات حدود آستانه مواد شیمیایی و عوامل فیزیکی» شناخته می‌شود. (برای سفارش نسخه‌ای از آن به www.acgih.org مراجعه کنید).
ACGIH مفهوم مقدار حد آستانه (TLV) را تعریف کرده است؛ TLV به غلظت مجاز یک ماده آلاینده در هوا گفته می‌شود که تصور می‌شود تقریباً همه کارگران بتوانند به‌طور مکرر و روزانه در طول عمر کاری خود در معرض آن قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. این مقادیر بر اساس ترکیبی از تجربه صنعتی و مطالعات انسانی و حیوانی تعیین شده‌اند.

میانگین‌های وزنی زمانی (TWA)
مقادیر TLV معمولاً به‌صورت میانگین وزنی ۸ ساعته در نظر گرفته می‌شوند. جنبه میانگین‌گیری به این معناست که مواجهه‌هایی بالاتر از حد مجاز قابل‌قبول است، به شرطی که با دوره‌هایی از تماس کمتر از حد مجاز جبران شوند.

محدودیت‌های تماس کوتاه‌مدت (STEL)
محدودیت‌های تماس کوتاه‌مدت غلظت‌هایی هستند که بالاتر از میانگین ۸ ساعته‌اند و کارگران می‌توانند برای مدت زمان کوتاه در معرض آن‌ها قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. (اگر غلظت به اندازه کافی بالا باشد، حتی یک بار تماس نیز می‌تواند اثرات مضر بر سلامت داشته باشد.)
STEL برای موقعیت‌هایی به‌کار می‌رود که در آن کارگر در معرض غلظت بالای گاز قرار دارد اما فقط برای مدت کوتاهی. این محدودیت‌ها به‌صورت میانگین وزنی ۱۵ دقیقه‌ای تعریف می‌شوند که نباید حتی در صورتی که میانگین ۸ ساعته کمتر از مقدار TLV باشد، از آن فراتر رود.

غلظت‌های سقفی (Ceiling Concentrations)
برای برخی از گازهای سمی، حتی یک تماس که از TLV فراتر رود می‌تواند برای سلامت کارگر خطرناک باشد. در این موارد، از غلظت‌های سقفی استفاده می‌شود تا سطوحی را مشخص کند که هرگز نباید از آن‌ها عبور شود.

حدود مجاز تماس (PELs)
حدود مجاز تماس (Permissible Exposure Limits) توسط اداره ایمنی و بهداشت شغلی ایالات متحده (OSHA) تدوین و اجرا می‌شوند. بخش ۱۹۱۰.۱۰۰۰ از بخش ۲۹ کد مقررات فدرال (CFR) این استانداردها را شامل می‌شود که مشابه مقادیر TLV سازمان ACGIH هستند، با این تفاوت که PEL به‌صورت قانونی الزام‌آور است نه صرفاً توصیه‌شده. با این حال، دقیق‌ترین مقادیر PEL معمولاً در برگه‌های اطلاعات ایمنی مواد (MSDS) درج شده‌اند.

شرایط فوری خطرناک برای زندگی و سلامت (IDLH)
مؤسسه ملی ایمنی و بهداشت شغلی (NIOSH) شرایط تماس IDLH را به‌عنوان شرایطی تعریف می‌کند که در آن، قرار گرفتن در معرض آلاینده‌های هوابرد می‌تواند منجر به مرگ، اثرات مضر فوری یا تأخیری دائمی بر سلامت شود یا مانع از فرار فرد از آن محیط گردد.
از آنجا که مقادیر IDLH برای تضمین توانایی کارگر در فرار از محیط خطرناک در صورت از کار افتادن تجهیزات حفاظت تنفسی تعیین شده‌اند، این مقادیر عمدتاً برای تعیین نوع مناسب وسایل حفاظت تنفسی مطابق با استانداردهای OSHA به‌کار می‌روند.

کاهش یا افزایش سطح اکسیژن

کمبود اکسیژن (Oxygen Deficiency)
هوای طبیعی محیط دارای غلظت ۲۰.۸ درصد حجمی اکسیژن است. زمانی که سطح اکسیژن به کمتر از ۱۹.۵ درصد از کل ترکیب هوا کاهش یابد، آن فضا «کم‌اکسیژن» در نظر گرفته می‌شود. در چنین محیط‌هایی، اکسیژن لازم برای ادامه‌ی حیات ممکن است با گازهای دیگری مانند دی‌اکسید کربن جایگزین شود. این امر منجر به ایجاد فضایی می‌شود که در صورت تنفس، می‌تواند خطرناک یا کشنده باشد.

کمبود اکسیژن همچنین ممکن است بر اثر زنگ‌زدگی، خوردگی، تخمیر یا سایر اشکال اکسایش که اکسیژن مصرف می‌کنند، ایجاد شود. در فرآیند تجزیه مواد، اکسیژن از جو برای تأمین واکنش اکسایش مصرف می‌شود.

تأثیرات کمبود اکسیژن ممکن است تدریجی یا ناگهانی باشد، که این موضوع به غلظت کلی اکسیژن و همچنین سطوح دیگر گازهای موجود در فضا بستگی دارد. به‌طور کلی، کاهش سطح اکسیژن محیط باعث بروز علائم فیزیولوژیکی زیر می‌شود:

درصد اکسیژن اثرات فیزیولوژیکی
۱۹.۵ تا ۱۶ بدون اثر قابل مشاهده
۱۶ تا ۱۲ افزایش سرعت تنفس، افزایش ضربان قلب، اختلال در تمرکز، تفکر و هماهنگی حرکتی
۱۴ تا ۱۰ قضاوت نادرست، ضعف در هماهنگی عضلانی، خستگی سریع در اثر فعالیت، تنفس متناوب
۱۰ تا ۶ تهوع و استفراغ، ناتوانی در انجام حرکات شدید یا از دست دادن توان حرکتی، بیهوشی و در ادامه مرگ
کمتر از ۶ دشواری در تنفس، حرکات تشنجی، مرگ

غنی شدن اکسیژن (Oxygen Enrichment)
زمانی که غلظت اکسیژن در فضا به بالاتر از ۲۰.۸ درصد حجمی افزایش یابد، آن محیط «غنی از اکسیژن» محسوب می‌شود و مستعد ناپایداری خواهد بود. در نتیجه افزایش سطح اکسیژن، احتمال و شدت آتش‌سوزی ناگهانی یا انفجار به‌شدت افزایش می‌یابد.

 

فناوری‌های آشکارسازی گاز

امروزه انواع مختلفی از فناوری‌های آشکارسازی گاز مورد استفاده قرار می‌گیرند. از جمله رایج‌ترین آن‌ها می‌توان به موارد زیر اشاره کرد:

  • کاتالیستی مهره‌ای (Catalytic Bead)
    • نیمه‌رسانای اکسید فلز (که با عنوان «حالت جامد» نیز شناخته می‌شود)
    • مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
    • مادون قرمز باز با مسیر بلند (Open (Long Path) Infrared)
    • مادون قرمز فوتواکوستیک (Photoacoustic Infrared)
    • الکتروشیمیایی برای آشکارسازی گازهای سمی
    • الکتروشیمیایی برای آشکارسازی اکسیژن
    • رسانایی گرمایی (Thermal Conductivity)
    • یونیزاسیون نوری (Photoionization)
    • مادون قرمز غیرپراکندگی (NDIR)

جدول‌ها و نمودارهای صفحات بعدی عملکرد هر یک از این فناوری‌ها را به‌صورت خلاصه نمایش می‌دهند.

فناوری: کاتالیستی مهره‌ای (Catalytic Bead)

WhatsApp Image 2025 09 25 at 2.26.03 AM

نوع گاز قابل تشخیص:
گازهای قابل احتراق

اصل عملکرد:
از یک مهره کاتالیستی برای اکسید کردن گاز قابل احتراق استفاده می‌کند؛ پل ویتستون تغییر مقاومت ایجاد شده را به سیگنال الکتریکی دتکتور تبدیل می‌کند.

توضیح دقیق:
یک سیم پیچ با پوشش ماده‌ای شیشه‌ای یا سرامیکی که روی آن کاتالیزور قرار دارد، به صورت الکتریکی تا دمایی گرم می‌شود که بتواند گاز تحت پایش را بسوزاند (اکسید کند). این فرآیند گرما تولید کرده و دمای سیم را افزایش می‌دهد. با افزایش دمای سیم، مقاومت الکتریکی آن نیز افزایش می‌یابد. این مقاومت توسط مدار پل ویتستون اندازه‌گیری شده و این اندازه‌گیری به سیگنال الکتریکی تبدیل می‌شود که توسط دتکتور گاز استفاده می‌شود. سنسور دوم به نام جبران‌کننده برای جبران تغییرات دما، فشار و رطوبت به کار می‌رود.

محدوده اندازه‌گیری:
درصدی از حد پایین انفجار (% LEL)

مزایا:
طول عمر بالا، حساسیت کمتر به تغییرات دما، رطوبت، تراکم و فشار؛ دقت بالا؛ پاسخ سریع؛ توانایی پایش گستره وسیعی از گازها و بخارهای قابل احتراق در هوا.

معایب:
مستعد مسمومیت سنسور؛ نیاز به هوا یا اکسیژن؛ طول عمر کاهش‌یافته در مواجهه‌های مکرر یا مداوم با غلظت‌های بالای LEL.

فناوری: نیمه‌رسانای اکسید فلز (Metal Oxide Semiconductor)

WhatsApp Image 2025 09 25 at 2.26.09 AM

نوع گاز قابل تشخیص:
گازهای قابل احتراق؛ گازهای سمی

اصل عملکرد:
این دتکتور از اکسید فلزی ساخته شده است که در واکنش به حضور گاز، مقاومت آن تغییر می‌کند؛ این تغییر مقاومت اندازه‌گیری شده و به مقدار غلظت گاز تبدیل می‌شود.

توضیح دقیق:
یک ماده نیمه‌رسانا (اکسید فلز) روی یک بستر عایق بین دو الکترود قرار می‌گیرد.
بستر تا دمایی گرم می‌شود که حضور گاز می‌تواند باعث تغییر برگشت‌پذیر در رسانایی ماده نیمه‌رسانا شود. وقتی گازی وجود ندارد، اکسیژن به صورت یون روی سطح جذب شده و سنسور نیمه‌رسانا می‌شود؛ وقتی مولکول‌های گاز مورد نظر حضور دارند، جایگزین یون‌های اکسیژن شده و مقاومت بین الکترودها کاهش می‌یابد. این تغییر به‌صورت الکتریکی اندازه‌گیری شده و متناسب با غلظت گاز است.

محدوده اندازه‌گیری:
قسمت در میلیون (PPM)

مزایا:
حساسیت بالا (قادر به تشخیص غلظت‌های پایین)؛ دامنه دمای عملکرد وسیع؛ عمر طولانی.

معایب:
غیر اختصاصی (حساسیت متقاطع به ترکیبات دیگر)؛ خروجی غیرخطی؛ حساس به تغییرات رطوبت؛ مستعد مسمومیت.

 

 

فناوری: مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
(همچنین با نام مادون قرمز غیرپخشی یا NDIR شناخته می‌شود)

 

نوع گاز قابل تشخیص:
گازهای قابل احتراق

 

اصل عملکرد:
این فناوری از قابلیت جذب پرتو مادون قرمز توسط گازها استفاده می‌کند. دو نمونه گاز شامل گاز مورد نظر و یک گاز مرجع بی‌اثر در معرض تابش مادون قرمز قرار می‌گیرند. میزان عبور نور از هر نمونه اندازه‌گیری شده و با هم مقایسه می‌شود تا غلظت گاز هدف تعیین گردد.

 

توضیح دقیق:
از یک منبع مادون قرمز با مدولاسیون الکتریکی و دو آشکارساز استفاده می‌شود که انرژی مادون قرمز را به سیگنال‌های الکتریکی تبدیل می‌کنند. هر آشکارساز به دامنه خاصی از طول موج مادون قرمز حساس است.
پرتو ساطع‌شده از منبع از طریق یک پنجره وارد حجم باز محفظه می‌شود. ممکن است از یک آینه در انتهای مسیر برای بازتاب انرژی و هدایت آن به سمت آشکارسازها استفاده شود.

وجود گاز قابل احتراق باعث کاهش شدت پرتو دریافتی توسط آشکارساز تحلیلی می‌شود، اما شدت پرتو دریافت‌شده توسط آشکارساز مرجع تغییر نمی‌کند.
میکروپروسسور نسبت این دو سیگنال را بررسی کرده و آن را به درصد حد پایین انفجار (%LEL) تبدیل می‌کند.

 

محدوده اندازه‌گیری:
درصد حد پایین انفجار (%LEL)

مزایا:
دقت و گزینش‌پذیری بالا
دامنه اندازه‌گیری وسیع
نیاز به نگهداری پایین
مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
عدم نیاز به اکسیژن یا هوا
پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
عملکرد ایمن در خطا (Fail-to-safe)
نسبت به دتکتورهای مسیر باز، اندازه‌گیری دقیق در محل نقطه‌ای

 

معایب:
مناسب برای تشخیص گاز هیدروژن نیست.

 

فناوری: مادون قرمز مسیر باز (Open Path Infrared)

 

نوع گاز قابل تشخیص:
گازهای قابل احتراق

WhatsApp Image 2025 09 25 at 2.26.09 AM1

اصل عملکرد:
عملکرد مشابه دتکتورهای مادون قرمز نقطه‌ای دارد، با این تفاوت که منبع مادون قرمز از آشکارساز جدا شده است.

 

توضیح دقیق:
دتکتورهای مسیر باز مادون قرمز، مفهوم تشخیص نقطه‌ای را به مسیرهایی با طول تا ۱۰۰ متر گسترش می‌دهند. مانند نمونه‌های نقطه‌ای، این دتکتورها از دو پرتو استفاده می‌کنند:

  • پرتو “نمونه” در طول موجی از مادون قرمز قرار دارد که توسط هیدروکربن‌ها جذب می‌شود.
  • پرتو “مرجع” در طول موجی خارج از محدوده جذب گاز قرار دارد.

نسبت بین این دو پرتو به‌طور پیوسته مقایسه می‌شود:
در حالت بدون گاز، نسبت سیگنال‌ها ثابت باقی می‌ماند.
وقتی ابر گاز از مسیر عبور می‌کند، پرتو نمونه به نسبت غلظت گاز جذب یا تضعیف می‌شود، اما پرتو مرجع بدون تغییر باقی می‌ماند.
سیستم، حاصل‌ضرب غلظت متوسط گاز در عرض ابر گاز را محاسبه کرده و مقدار را به‌صورت درصد حد پایین انفجار بر متر (%LEL/m) نمایش می‌دهد.

 

محدوده اندازه‌گیری:
درصد حد پایین انفجار بر متر (%LEL/m)

 

مزایا:
دقت و گزینش‌پذیری بالا
دامنه اندازه‌گیری وسیع
نیاز به نگهداری پایین
مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
عدم نیاز به اکسیژن یا هوا
پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
عملکرد ایمن در خطا (Fail-to-safe)

 

معایب:
مناسب برای تشخیص گاز هیدروژن نیست
برخلاف فناوری نقطه‌ای، محل نشت گاز را به‌طور دقیق مشخص نمی‌کند
نیاز به مسیر باز و بدون مانع بین منبع و آشکارساز دارد

WhatsApp Image 2025 09 25 at 2.26.10 AM2

WhatsApp Image 2025 09 25 at 2.26.10 AM1

فناوری: مادون قرمز مسیر باز (Open Path Infrared)

 

نوع گاز قابل تشخیص:
گازهای قابل اشتعال (Combustible gases)

 

اصل عملکرد:
مشابه دتکتورهای مادون قرمز نقطه‌ای (Point IR) عمل می‌کند، با این تفاوت که منبع تابش مادون قرمز و آشکارساز از یکدیگر جدا هستند.

 

توضیح تفصیلی:
دتکتورهای مسیر باز مادون قرمز، روش تشخیص نقطه‌ای را به مسیری با طول حداکثر ۱۰۰ متر گسترش می‌دهند. مانند فناوری نقطه‌ای، این سیستم از دو پرتو استفاده می‌کند:

  • پرتو نمونه (Sample Beam): در طول موج مادون قرمز قرار دارد که توسط گازهای هیدروکربنی جذب می‌شود.
  • پرتو مرجع (Reference Beam): خارج از محدوده جذب گاز قرار دارد و تحت تأثیر حضور گاز نیست.

نسبت شدت این دو پرتو به‌صورت پیوسته مقایسه می‌شود:
اگر گازی وجود نداشته باشد، نسبت دو سیگنال ثابت می‌ماند.
وقتی ابری از گاز از مسیر عبور می‌کند، شدت پرتو نمونه کاهش می‌یابد، ولی پرتو مرجع ثابت باقی می‌ماند.
سیستم با مقایسه این نسبت، مقدار حاصل‌ضرب میانگین غلظت گاز و عرض ابر گاز را محاسبه می‌کند.

واحد اندازه‌گیری: درصد حد انفجار پایین در واحد متر (%LEL/m)

 

مزایا:

  • دقت و گزینش‌پذیری بالا
  • دامنه وسیع اندازه‌گیری
  • نیاز به نگهداری بسیار کم
  • مقاوم در برابر مسمومیت شیمیایی
  • نیاز نداشتن به هوا یا اکسیژن محیط
  • پایداری بسیار خوب در کالیبراسیون (عدم نیاز به کالیبراسیون منظم)
  • طراحی Fail-to-safe (ایمن در صورت بروز خطا)

 

معایب:

  • برای تشخیص گاز هیدروژن مناسب نیست

WhatsApp Image 2025 09 25 at 2.26.11 AM 1

WhatsApp Image 2025 09 25 at 2.26.11 AM1

  • نسبت به فناوری نقطه‌ای، توانایی تعیین دقیق محل نشت گاز را ندارد
  • نیاز به مسیر مستقیم و بدون مانع بین منبع و آشکارساز دارد

 

 

فناوری: مادون قرمز فوتواکوستیک (Photoacoustic Infrared)

 

نوع گاز قابل تشخیص:
گازهای قابل اشتعال و گازهای سمی (Combustible gases; Toxic gases)

 

اصل عملکرد:
از توانایی جذب پرتو مادون قرمز توسط گاز و تغییرات فشار ناشی از آن استفاده می‌شود.

 

توضیح تفصیلی:
نمونه گاز در معرض نور مادون قرمز قرار می‌گیرد. زمانی که مولکول‌های گاز نور را جذب می‌کنند، ضربان یا پالس فشاری تولید می‌شود.
مقدار این پالس فشاری مستقیماً نشان‌دهنده غلظت گاز موجود است.
این تغییرات فشار توسط میکروفون یا سنسور حساس به فشار تشخیص داده می‌شود و به سیگنال الکتریکی تبدیل می‌گردد.

واحدهای اندازه‌گیری:

  • درصد حد انفجار پایین (%LEL)
  • درصد حجمی (% by volume)
  • قسمت در میلیون (PPM)
  • قسمت در میلیارد (PPB)

 

مزایا:

  • حساسیت بالا
  • خروجی خطی
  • استفاده آسان
  • مقاوم در برابر مسمومیت سنسور
  • پایداری بلندمدت

 

معایب:

  • برای تشخیص گاز هیدروژن مناسب نیست

 

فناوری: الکتروشیمیایی برای گازهای سمی (Electrochemical Toxic Gases)

 

نوع گاز قابل تشخیص:
گازهای سمی (Toxic gases)

 

اصل عملکرد:
واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت گاز است.

 

توضیح تفصیلی:
سنسور شامل یک محفظه با ژل یا الکترولیت و دو الکترود فعال است:

  • الکترود اندازه‌گیری (آند)
  • الکترود متقابل (کاتد)
    یک الکترود سوم (مرجع) ولتاژ ثابت بین آند و کاتد را حفظ می‌کند.

نمونه گاز از طریق غشاء وارد محفظه می‌شود.

در آند واکنش اکسیداسیون و در کاتد واکنش کاهش رخ می‌دهد.
در نتیجه، یون‌های مثبت به سمت کاتد و یون‌های منفی به سمت آند حرکت می‌کنند.
این جریان الکتریکی متناسب با غلظت گاز سمی تولید می‌شود.

واحد اندازه‌گیری:
قسمت در میلیون (PPM) برای گازهای سمی

 

مزایا:

  • حساسیت بالا
  • خروجی خطی
  • کاربری آسان

 

معایب:

  • عمر مفید محدود
  • تأثیرپذیر از گازهای مزاحم (interferents)
  • کاهش طول عمر در محیط‌های بسیار خشک یا بسیار گرم

 

 

 

 

دتکتور گاز الکتروشیمیائی گازهای سمی

Electrochemical Toxic Sensor

 

 

فناوری: الکتروشیمیایی برای سنجش اکسیژن (Electrochemical Oxygen)

 

نوع گاز قابل تشخیص:
کمبود یا غنی‌شدگی اکسیژن (O₂)

 

اصل عملکرد:
واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت اکسیژن است.

 

توضیح تفصیلی:
سنسور شامل محفظه‌ای حاوی ژل یا الکترولیت و دو الکترود است:

  • الکترود اندازه‌گیری (آند)
  • الکترود مرجع/متقابل (معمولاً از جنس سرب)

نمونه گاز از طریق غشاء وارد محفظه می‌شود.
واکنش اکسیداسیون در آند و واکنش کاهش در کاتد رخ می‌دهد.
جریان یونی ایجادشده، متناسب با غلظت اکسیژن، یک جریان الکتریکی تولید می‌کند که توسط دستگاه اندازه‌گیری می‌شود.

واحد اندازه‌گیری:
درصد حجمی اکسیژن (% Volume)

 

مزایا:

  • حساسیت بالا
  • خروجی خطی
  • کاربری آسان
  • مقاوم در برابر سمّی شدن سنسور

معایب:

  • عمر مفید محدود
  • تأثیرپذیر از گازهای مزاحم (interferents)
  • کاهش عمر در محیط‌های بسیار خشک یا بسیار گرم، یا در شرایط اکسیژن غنی‌شده

 

WhatsApp Image 2025 09 25 at 2.26.12 AM

 

 

دتکتور گاز الکتروشیمیائی گاز اکسیژن

Typical Electrochemical Oxygen Sensor

 

WhatsApp Image 2025 09 25 at 2.26.12 AM1

 

دتکتور گاز  رسانایی حرارتی معمولی

Typical Thermal Conductivity Sensor

 

فناوری: رسانش گرمایی (Thermal Conductivity)

WhatsApp Image 2025 09 25 at 2.26.13 AM

نوع گاز قابل تشخیص:
گازهای قابل اشتعال و گازهای سمی

 

اصل عملکرد:
سنجش توانایی گاز برای انتقال حرارت با مقایسه آن با یک گاز مرجع (معمولاً هوا)

توضیح تفصیلی:
در این روش از دو سنسور استفاده می‌شود:

  • سنسور آشکارساز (Detecting Sensor)
  • سنسور جبران‌کننده (Compensating Sensor)

هر دو سنسور در یک پل ویتستون (Wheatstone Bridge) قرار دارند.
سنسور آشکارساز در معرض گاز موردنظر قرار دارد، در حالی که سنسور جبران‌کننده در محفظه‌ای با هوای تمیز مهر و موم شده است.
وقتی گاز وارد سنسور آشکارساز می‌شود، باعث خنک شدن آن می‌گردد که این امر مقاومت الکتریکی را تغییر می‌دهد.
این تغییر مقاومت متناسب با غلظت گاز است.
سنسور جبران‌کننده تضمین می‌کند که تغییر دما ناشی از خود گاز است نه دمای محیط یا عوامل دیگر.

واحد اندازه‌گیری:
PPM تا ۱۰۰٪ حجمی

 

مزایا:

  • دامنه وسیع اندازه‌گیری

 

معایب:

  • غیر اختصاصی (به سایر ترکیبات نیز واکنش نشان می‌دهد)
  • برای گازهایی با رسانش گرمایی نزدیک به یک (مانند هوا، NH₃، CO، NO، O₂، N₂) مناسب نیست
  • اندازه‌گیری گازهایی با رسانش گرمایی کمتر از یک دشوارتر است
  • خروجی سیگنال همیشه خطی نیست

 

فناوری: یونیزاسیون نوری (Photoionization – PID)

 

نوع گاز قابل تشخیص:
گازهای سمی (ترکیبات آلی)

 

اصل عملکرد:
مبنای آشکارسازی بر اساس یونیزه کردن گاز با استفاده از پرتو فرابنفش (UV)

 

توضیح تفصیلی:
دتکتور یونیزاسیون نوری (PID) از یک لامپ فرابنفش برای یونیزه کردن ترکیب موردنظر استفاده می‌کند.
مولکول‌های گاز تحت تابش فرابنفش یونیزه شده و یون‌ها تولید می‌شوند.
این یون‌ها روی یک الکترود جمع‌آوری می‌گردند و جریان الکتریکی ایجاد می‌کنند.
مقدار این جریان متناسب با غلظت گاز است و به‌صورت عددی در واحد PPM یا مقادیر زیر PPM (sub-ppm) روی نمایشگر دستگاه نشان داده می‌شود.

 

واحد اندازه‌گیری:
PPM و زیر PPM

 

مزایا:

  • سرعت پاسخ‌دهی بسیار بالا
  • توانایی تشخیص در سطوح بسیار پایین
  • قابلیت تشخیص طیف گسترده‌ای از ترکیبات

 

معایب:

  • هزینه بالا
  • نیاز به نگهداری بیشتر
  • نیاز به کالیبراسیون مکرر
  • غیر اختصاصی بودن (عدم تمایز دقیق بین ترکیبات مشابه)
  • حساسیت به رطوبت

 

دتکتور گاز فوتویونیزاسیون

Photoionization Sensor Design

WhatsApp Image 2025 09 25 at 2.26.13 AM1

روش‌های نمونه‌برداری گاز

سه روش اصلی برای نمونه‌برداری از گاز وجود دارد:

۱. نمونه‌برداری به روش انتشار (Diffusion Sampling)
۲. نمونه‌برداری با پمپ (Pumped Sampling)
۳. نمونه‌برداری با مکش (Aspirated Sampling)

 

نمونه‌برداری به روش انتشار (Diffusion Sampling)

در این روش، انتقال گاز به سمت حسگر از طریق حرکت طبیعی مولکول‌ها از ناحیه‌ای با غلظت بالا به ناحیه‌ای با غلظت پایین صورت می‌گیرد.
واژه «انتشار» به فرایندی اشاره دارد که در آن مولکول‌ها یا ذرات دیگر به دلیل حرکت حرارتی تصادفی خود با یکدیگر مخلوط می‌شوند.
شرایط محیطی مانند دما، جریان‌های هوا و سایر عوامل محیطی بر میزان و سرعت انتشار تأثیر می‌گذارند.

 

مزایا:

  • نصب دتکتور دقیقاً در نقطه موردنظر برای نمونه‌گیری انجام می‌شود.
  • پاسخ‌دهی سریع به دلیل عدم نیاز به انتقال نمونه
  • عدم نیاز به پمپ یا فیلتر و در نتیجه نگهداری ساده‌تر

 

نمونه‌برداری با پمپ (Pumped Sampling)

در این روش، یک پمپ برای مکش نمونه گاز از یک مکان دوردست به داخل یا از میان حسگر به‌کار گرفته می‌شود.
با استفاده از نمونه‌برداری پمپی، امکان جمع‌آوری نمونه‌ها به‌صورت همزمان از دو یا چند محل مختلف وجود دارد.

 

مزایا:

  • قابلیت نمونه‌گیری از فواصل دور
  • امکان پایش هم‌زمان چند نقطه
  • مناسب برای کاربردهایی که در آن حسگر نمی‌تواند مستقیماً در محل نمونه‌برداری نصب شود

 

توجه:

  • این روش نیاز به تجهیزات مکانیکی (پمپ) دارد که ممکن است نیازمند نگهداری منظم باشند.
  • ممکن است به زمان انتقال نمونه نیاز داشته باشد که باعث تاخیر در پاسخ‌دهی شود.

 

شرایط مناسب برای نمونه‌برداری پمپی (Pumped Sampling):

مواردی که این روش توصیه می‌شود:

  • نقطه نمونه‌برداری بسیار گرم یا بسیار سرد است.
  • دسترسی به محل نمونه‌برداری دشوار است.
  • بخارهای سنگین وجود دارد که به‌خوبی با نیروهای طبیعی پخش نمی‌شوند.
  • در برخی کاربردها، استفاده از پمپ می‌تواند سیستم را از کلاس ضدانفجار (XP) به کلاس کاربرد عمومی (GP) تبدیل کند.
    (در این حالت، ممکن است نیاز به نصب مهارکننده شعله (Flashback Arrestor) بین ورودی نمونه و حسگر باشد.)
  • مناسب برای فضاهای بسته و محدود (Confined Spaces)

 

نمونه‌برداری آسپیره (Aspirated Sampling)

در این روش، نمونه گاز با استفاده از مکش غیرفعال یا جریان طبیعی به داخل یا از میان حسگر کشیده می‌شود.

 

مزایای نمونه‌برداری آسپیره نسبت به پمپی:

  • هزینه پایین‌تر
  • نگهداری کمتر به‌دلیل نبود قطعات متحرک
    (در مقایسه با پمپ که نیاز به تعمیرات دوره‌ای دارد)

 

نوشته‌های مشابه

  • دستورالعمل NFPA در مورد بیم دتکتور استاندارد

    یکی از معتبرترین و جامع‌ترین مراجع جهانی در زمینه ایمنی و حفاظت از حریق است. این استاندارد مجموعه‌ای از دستورالعمل‌ها و الزامات را برای طراحی، نصب، اجرا، و نگهداری سیستم‌های اعلام و اطفای حریقدر ایالات متحده آمریکا را تعیین می‌کند. در این میان، NFPA 72 به‌عنوان استاندارد سیستم‌های اعلام حریق و ارتباطات اضطراری، الزامات مربوط به بیم دتکتورها را نیز پوشش می‌دهد. این مقاله به بررسی تخصصی بیم دتکتورها و الزامات آن‌ها بر اساس NFPA 72 می‌پردازد.

    تعریف و عملکرد بیم دتکتورها

    بیم دتکتورها (Beam Smoke Detectors) تجهیزاتی هستند که از یک پرتو نوری برای تشخیص کاهش شفافیت هوا ناشی از وجود دود استفاده می‌کنند. این دتکتورها در فضاهای بزرگ و مرتفع که استفاده از دتکتورهای نقطه‌ای دشوار است، کاربرد دارند. به‌طور کلی، بیم دتکتورها به دو دسته اصلی تقسیم می‌شوند:

    1. بیم دتکتور فرستنده-گیرنده جدا

    (Projected Beam Smoke Detector)

    9k=

    شامل یک فرستنده و یک گیرنده مجزا است که در دو نقطه متفاوت نصب می‌شوند. پرتو نوری از فرستنده به گیرنده ارسال شده و در صورت کاهش شدت نور دریافتی، هشدار فعال می‌شود.

    2Q==

    2. بیم دتکتور انعکاسی

    (Reflective Beam Smoke Detector)

    9k=

    فرستنده و گیرنده در یک واحد قرار دارند و پرتو نوری پس از برخورد به یک بازتابنده، مجدداً به گیرنده بازمی‌گردد. در این نوع نیز کاهش شدت نور نشان‌دهنده وجود دود است.

    2Q==

    الزامات بیم دتکتورها در استاندارد NFPA 72

    استاندارد NFPA 72 الزامات دقیق و مشخصی را برای بیم دتکتورها ارائه می‌دهد که شامل موارد زیر است:

    1. معیارهای عملکردی

    بیم دتکتورها باید قابلیت تشخیص تغییرات شفافیت هوا را با دقت بالا داشته باشند.
    محدوده تشخیص باید متناسب با محیط مورد نظر باشد. معمولاً برد تشخیص این تجهیزات بین 10 تا 100 متر است.
    قابلیت تنظیم حساسیت بر اساس شرایط محیطی باید وجود داشته باشد.

    2. ملاحظات محیطی و محدودیت‌ها

    عملکرد بیم دتکتور نباید تحت تأثیر نور مستقیم خورشید، گرد و غبار یا سایر عوامل محیطی قرار گیرد.
    در شرایطی که دود به‌صورت لایه‌ای در سقف تجمع پیدا نمی‌کند، استفاده از بیم دتکتورها توصیه نمی‌شود.
    نباید در محیط‌هایی که دارای لرزش زیاد یا تغییرات ساختاری هستند، بدون اقدامات تثبیت‌کننده نصب شوند.

    3. الزامات نصب

    بیم دتکتورها باید در فضاهای مرتفع و بزرگ مانند انبارها، سوله‌ها، سالن‌های تولید، فرودگاه‌ها و سالن‌های نمایشگاهی نصب شوند.
    فاصله بین فرستنده و گیرنده یا بازتابنده باید به‌گونه‌ای باشد که کل فضای مورد نظر را پوشش دهد.
    ارتفاع نصب معمولاً در محدوده 4 تا 25 متر توصیه می‌شود.
    در فضاهایی که جریان هوا شدید است، ممکن است دقت عملکرد بیم دتکتورها کاهش یابد و نیاز به تنظیمات خاص داشته باشند.

    4. الزامات نگهداری و تست دوره‌ای

    بیم دتکتورها باید به‌صورت دوره‌ای مورد آزمایش قرار گیرند تا عملکرد صحیح آن‌ها تضمین شود.
    فرستنده و گیرنده باید به‌طور منظم تمیز شوند تا از انباشت گرد و غبار جلوگیری شود.
    بررسی وضعیت هم‌ترازی بیم دتکتورها و تنظیم مجدد در صورت نیاز ضروری است.
    سیستم باید دارای امکان انجام تست خودکار یا تست دستی توسط اپراتور باشد.

    روش‌های تست و تأییدیه بر اساس NFPA

    NFPA 72 روش‌های تست بیم دتکتورها را برای اطمینان از عملکرد صحیح آن‌ها مشخص می‌کند. برخی از این آزمایش‌ها شامل:

    تست حساسیت: بررسی میزان کاهش نور لازم برای فعال شدن هشدار.
    تست‌های محیطی: شامل عملکرد در شرایط مختلف دمایی، رطوبتی و نور محیطی.
    تست تأخیر زمانی: بررسی مدت‌زمان لازم برای فعال‌سازی هشدار جهت کاهش هشدارهای کاذب.
    تست کارایی در شرایط گرد و غبار و آلودگی محیطی: بررسی میزان تحمل بیم دتکتور در برابر ذرات معلق.

    مقاومت در برابر عوامل تداخلی

    NFPA مشخص می‌کند که بیم دتکتورها باید در برابر موارد زیر مقاوم باشند:

    تداخل نوری: از جمله نور خورشید، نورهای مصنوعی و انعکاس‌های ناخواسته.
    گرد و غبار و آلاینده‌های محیطی: که ممکن است منجر به کاهش دقت تشخیص شود.
    ارتعاشات و جابه‌جایی‌های سازه‌ای: که می‌تواند باعث عدم هم‌ترازی فرستنده و گیرنده شود.

    نتیجه‌گیری

    استاندارد NFPA 72 مجموعه‌ای از الزامات فنی و عملکردی برای بیم دتکتورها ارائه می‌دهد که رعایت آن‌ها منجر به افزایش ایمنی و کاهش هشدارهای کاذب می‌شود. انتخاب مناسب، نصب اصولی و نگهداری منظم این تجهیزات مطابق با استانداردNFPA نقش مهمی در بهبود عملکرد سیستم‌های اعلام حریق دارد. رعایت دستورالعمل‌های ارائه‌شده در این استاندارد باعث افزایش دقت تشخیص حریق و کاهش نرخ هشدارهای کاذب شده و درنهایت منجر به ارتقای ایمنی ساختمان‌ها و اماکن صنعتی، تجاری و عمومی می‌شود.

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.

     

  • راهکارهای سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی سیستم اطفاء آتش

    این مقاله به بررسی راهکارهای کاربرد سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی در کارخانه‌های تولید مهمات و سایر تأسیساتی که نیاز به سیستم مهار آتش آبپاشی (Deluge) با سرعت بالا دارند می‌پردازد. همچنین فناوری دتکتور شعله‌ای نوری و پیشرفت‌های اخیر در سیستمی که به کاربران در دستیابی به انطباق با کدها و استانداردهای صنعتی کمک می‌کند، مرور خواهد شد.

    ۱.۰ مقدمه
    برای برآورده‌کردن الزامات زمانی پاسخ‌دهی کل سیستم طبق کدها و استانداردهای صنعتی فوق‌سریع، سیستم دتکتور شعله‌ای و آزادسازی باید قادر باشد رویداد را شناسایی کرده و سیگنالی به سیستم آبپاشی ارسال کند که این سیستم باید ظرف ۱۰۰ میلی‌ثانیه یا کمتر از لحظه حضور منبع انرژی در مقابل دتکتور تا شروع جریان آب از نازل آبپاش واکنش نشان دهد.

    WhatsApp Image 2025 09 16 at 5.25.44 AM

    برای اینکه یک سیستم به‌عنوان «سریع» شناخته شود، باید ظرف ۵۰۰ میلی‌ثانیه یا کمتر عمل کند (ارجاع به استاندارد NFPA 15)در کاربردهایی که به این سیستم‌ها نیاز دارند، آتش بسیار سریع‌تر از آن رشد می‌کند که بتوان از دتکتورهای حرارتی یا دتکتورهای دود استفاده کرد، زیرا این دتکتورها ممکن است چندین ثانیه طول بکشند تا آتش را شناسایی کنند.

    WhatsApp Image 2025 09 16 at 5.25.45 AMWhatsApp Image 2025 09 16 at 5.25.45 AM1

    برای درک روش‌های به‌کارگیری دتکتور شعله‌ای نوری فوق‌سریع در کارخانه‌های پردازش مهمات، مرور مختصری بر اصول پایه عملکرد فناوری دتکتور شعله‌ای ضروری است.

    ۲.۰ مروری بر دتکتور شعله‌ای نوری
    دتکتورهای شعله‌ای تشخیص انرژی تابشی، آتش را از طریق حس و تحلیل تابش الکترومغناطیسی منتشر شده از آتش شناسایی می‌کنند. انواع مختلف آتش طیف‌های نوری متفاوتی منتشر می‌کنند که امکان شناسایی آن‌ها را فراهم می‌کند.
    بازه طیفی انتشار که دتکتور به آن حساس است باید به‌طور دقیق کنترل شود تا اثر تابش طیفی ناشی از نور خورشید، نور محیط، ماشین‌آلات و تجهیزات پردازش به حداقل برسد. شکل ۱ نمای کلی از طیف الکترومغناطیسی و نواحی فروسرخ (IR) و فرابنفش (UV) مطلوب برای تشخیص شعله را نشان می‌دهد.
    در ادامه شرح مختصری از هر فناوری مناسب برای تشخیص شعله فوق‌سریع (UV، IR و UV/IR) آمده است.

    ۲.۱ فناوری‌های دتکتور شعله‌ای نوری

    ۲.۱.۱ فرابنفش (UV)

    دتکتورهای شعله‌ای UV از یک دتکتور تشکیل شده‌اند که شامل لوله خلأ از نوع Geiger-Mueller است. این دتکتور معمولاً به‌گونه‌ای طراحی می‌شود که به یک باند بسیار باریک از انرژی نوری در محدوده ۱۸۵۰ تا ۲۴۵۰ آنگستروم (Å) پاسخ دهد و مدل‌های خاصی نیز وجود دارند که این محدوده را تا ۲۶۵۰Å گسترش می‌دهند. همان‌طور که در شکل ۲ نشان داده شده، محدوده حساسیت UV خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد.

    وقتی تابش UV منتشر شده از آتش با دتکتور تماس پیدا می‌کند، پالس‌های ولتاژی تولید می‌شود که فرکانس آن‌ها متناسب با شدت تابش UV است. این پالس‌ها توسط یک میکروپروسسور پردازش شده و با پارامترهای برنامه‌ریزی‌شده مقایسه می‌شوند. اگر میزان پالس‌های پردازش‌شده از آستانه تعیین‌شده فراتر رود، آلارم فعال می‌شود.

    WhatsApp Image 2025 09 16 at 5.25.45 AM2WhatsApp Image 2025 09 16 at 5.25.46 AM

    این دتکتورها قادر به تشخیص هر نوع آتش بوده و در شرایط ایده‌آل می‌توانند زمان پاسخ کمتر از ۱۵ میلی‌ثانیه داشته باشند.

    از آنجا که دتکتورهای UV می‌توانند به‌صورت ضدنور خورشید طراحی شوند و تحت تأثیر تابش حرارتی قرار نگیرند، می‌توان آن‌ها را در بسیاری از کاربردها با موفقیت به‌کار برد.

    همانند هر فناوری دتکتور دیگری، مزایا و معایبی وجود دارد. دتکتورهای شعله‌ای UV نسبت به رعد و برق، جوشکاری و پرتوهای ایکس حساس هستند. انسداد فیزیکی جزئی شعله یا وجود دود و/یا بخارات جاذب UV ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی شود. شکل ۴ را ببینید.

    WhatsApp Image 2025 09 16 at 5.25.46 AM1

    ۲.۱.۲ فروسرخ (IR)

    WhatsApp Image 2025 09 16 at 5.25.46 AM2

    دتکتورهای شعله‌ای IR از یک دتکتور پیرولکتریک تشکیل شده‌اند. درون دتکتور پیرولکتریک، یک فیلتر تداخلی نوری استفاده می‌شود تا یک ناحیه عبور باند ایجاد کند که برای تشخیص اختصاصی آتش مناسب باشد. این فیلترها بر اساس طول موج مورد نظر انتخاب می‌شوند که معمولاً بین ۴٫۲ تا ۴٫۸ میکرومتر (μm) در باند انتشار CO₂ قرار دارد. همان‌طور که در شکل ۵ نشان داده شده، محدوده حساسیت IR خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد

    .WhatsApp Image 2025 09 16 at 5.25.47 AM3

    WhatsApp Image 2025 09 16 at 5.25.47 AM1WhatsApp Image 2025 09 16 at 5.25.47 AM2WhatsApp Image 2025 09 16 at 5.25.48 AM

    دتکتورهای شعله‌ای IR (شکل ۶) می‌توانند آتش‌هایی را که پیش از آن دود ایجاد می‌کنند یا حاوی بخارات هستند، راحت‌تر از دتکتورهای مبتنی بر فناوری UV شناسایی کنند. زمان پاسخ در شرایط ایده‌آل می‌تواند کمتر از ۱۵ میلی‌ثانیه باشد. از آنجا که دتکتورهای IR می‌توانند مقاوم در برابر نور خورشید ساخته شوند و تحت تأثیر تابش UV قرار نمی‌گیرند، می‌توان آن‌ها را در بسیاری از کاربردهایی که برای دتکتورهای UV چالش‌برانگیز است، با موفقیت به کار برد.

     

    اگر انرژی الکترومغناطیسی منتشرشده شامل طول موج‌هایی باشد که از فیلتر تداخلی عبور می‌کنند، نور با یک عنصر تک‌بلوری برخورد می‌کند. این عنصر سیگنال کوچکی تولید می‌کند که دامنه و فرکانس آن متناسب با تابش الکترومغناطیسی منتشرشده از آتش است. این سیگنال سپس توسط یک میکروپروسسور پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه می‌شود و در صورت احراز شرایط، آلارم آتش فعال می‌گردد.
    دتکتورهای شعله‌ای IR ممکن است به اجسام داغ مدوله‌شده و منابع نوری حساس باشند. وجود آب، برف یا یخ بر روی لنز دتکتور نیز ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی آتش شود (شکل ۷ را ببینید).

    ۲.۱.۳ فرابنفش-فروسرخ (UVIR)
    دتکتورهای شعله‌ای UVIR ترکیبی از فناوری‌های UV و IR را در یک دتکتور شعله‌ای به کار می‌گیرند (شکل ۸). برای فعال‌شدن آلارم آتش، هر دو دتکتور UV و IR باید تابش الکترومغناطیسی منتشرشده را شناسایی کرده و هر دو سیگنال پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه شوند. شکل ۹ نواحی حساسیت الکترومغناطیسی یک دتکتور UVIR را نشان می‌دهد.
    فناوری UVIR می‌تواند عملکرد مناسب در تشخیص آتش را در حالی فراهم کند که در مقایسه با فناوری UV یا IR به‌تنهایی مقاومت بیشتری در برابر فعال‌سازی کاذب دارد. تمام مزایا و محدودیت‌های فناوری‌های UV و IR در مورد یک دتکتور شعله‌ای UVIR نیز صدق می‌کند. این ویژگی‌ها باعث شده که فناوری UVIR به‌طور گسترده پذیرفته شود.
    علاوه بر رله آلارم آتش که زمانی عمل می‌کند که هر دو دتکتور UV و IR آتش را تشخیص دهند، دتکتورهای شعله‌ای UVIR شرکتهای معتبر تولیدی  دارای یک رله کمکی قابل برنامه‌ریزی داخلی نیز هستند. این رله کمکی می‌تواند طوری پیکربندی شود که در شرایط آلارم فقط UV، فقط IR یا پیش‌آلارم UVIR تغییر وضعیت دهد و انعطاف‌پذیری بیشتری را برای دتکتور شعله‌ای در مکان‌هایی که ویژگی‌های طیفی ماده مورد نظر ممکن است متغیر باشد، فراهم کند.

    ۲.۲ حفظ عملکرد تشخیص
    در اکثر کاربردها، این احتمال وجود دارد که لنز دتکتور به‌وسیله مواد خارجی مسدود شود. آلودگی لنز دتکتور ممکن است باعث تأخیر یا حتی جلوگیری از رسیدن تابش طیفی آتش به دتکتور(های) موجود در دتکتور شعله‌ای گردد. بنابراین بسیار مهم است که دتکتور قادر به بررسی خودکار تمام سطوح نوری، دتکتورها و مدارهای داخلی خود باشد.
    دتکتور باید قادر باشد به‌طور خودکار اپراتور را در صورت تأثیر بر عملکرد آن آگاه سازد. در صورت بروز این وضعیت خطا، می‌توان یک فرآیند مشخص را متوقف کرد یا اقدامات دیگری را بر اساس نیاز انجام داد.

    WhatsApp Image 2025 09 16 at 5.25.49 AM

    برخی دتکتورهای شعله‌ای نوری دارای قابلیت یکپارچگی نوری خودکار (oiR) هستند که یک تست عملکرد کالیبره‌شده را هر یک دقیقه یک‌بار برای اطمینان از توانایی عملیاتی کامل دتکتور انجام می‌دهند (شکل ۱۰). برای انجام تست یکپارچگی نوری، منابع داخلی IR و UV کالیبره‌شده و کنترل‌شده توسط میکروپروسسور برای هر سنسور موجود در دتکتور، سیگنال‌های تست را فراهم می‌کنند. اگر دتکتور دچار آلودگی نوری یا هرگونه مشکل عملکرد داخلی شود، زمانی که کمتر از نصف محدوده تشخیص اولیه باقی مانده باشد، وضعیت خطای یکپارچگی نوری را گزارش خواهد کرد. معمولاً این خطا ناشی از کثیف بودن لنز است و با تمیز کردن، عملکرد کامل دتکتور بازگردانده می‌شود.

    برخی نواحی کارخانه مستعد گرد و غبار و آلاینده‌های معلق در هوا هستند که ممکن است باعث تجمع رسوبات روی لنز دتکتور شوند. برای این محیط‌ها، شرکت شرکت های تولیدی پیشرفته شیلدهای هوایی ارائه می‌دهد که با ایجاد جریان مداوم هوای پاک بر سطح بیرونی لنز دتکتور، تجمع آلاینده‌ها را کاهش داده و به افزایش فاصله زمانی بین سرویس‌های نگهداری کمک می‌کنند. این شیلدهای هوایی هیچ‌گونه اختلالی در نصب دتکتور، زاویه دید آن یا تست یکپارچگی نوری ایجاد نمی‌کنند.

    ۲.۳ ثبت رویدادها
    هنگام وقوع یک رویداد یا وضعیت خطا، ضروری است که اطلاعات دقیق به‌سرعت گردآوری شود. واحد کنترل اعلام حریق سرویس اطفاء، باید توانایی ارائه اطلاعات سطح بالا شامل ورودی‌های فعال‌شده یا نوع خطای رخ‌داده را داشته باشد. علاوه بر این، برای بررسی رویدادها، به‌دست آوردن جزئیات بیشتر مفید است. هر دتکتور شعله‌ای شرکت های تولیدی پیشرفته دارای قابلیت ثبت رویداد داخلی است که به‌طور خودکار برای هر رویداد یا خطای رخ‌داده، زمان و تاریخ را ثبت می‌کند. رویدادهایی مانند روشن یا خاموش شدن دستگاه، شرایط خطا، پیش‌آلارم و آلارم آتش به همراه دمای محیط و ولتاژ ورودی در زمان وقوع رویداد ذخیره می‌شوند.

    ۲.۴ انتخاب فناوری
    هنگام انتخاب فناوری برای حفاظت از افراد، فرآیندها، دارایی‌ها و ساختمان‌ها، باید نهایت دقت در طراحی سیستم به‌کار گرفته شود تا در شرایط پیش‌بینی‌شده به‌درستی عمل کند. نوع فناوری دتکتور شعله‌ای انتخابی برای یک ناحیه باید بر اساس یک ارزیابی طراحی مبتنی بر عملکرد انتخاب شود. لازم است درک کامل از اهداف عملکردی مورد انتظار برای هر دتکتور در سیستم به‌دست آید.

    برخی موارد قابل بررسی در ارزیابی طراحی مبتنی بر عملکرد شامل:

    • ترکیب آتش
    • ویژگی‌های آتش (نرخ رشد، ویژگی‌های سوختن، طیف انتشار)
    • حداقل اندازه آتشی که نیاز به تشخیص دارد
    • بخارات کاهنده UV یا گرد و غبار کاهنده IR
    • منابع غیرآتش

    دتکتورهای شعله‌ای نوری ممکن است بسته به مدل و سازنده عملکرد متفاوتی داشته باشند. تنها روش قابل اعتماد برای سنجش حساسیت دتکتور شعله‌ای نسبت به یک ماده خاص، قرار دادن آن در معرض یک رویداد کنترل‌شده واقعی است. با این حال، تولید آتش‌های آزمایشی تکرارپذیر و کاملاً یکسان دشوار است. بنابراین، معمولاً لازم است چندین بار یک ماده خاص در معرض دتکتور قرار گیرد تا داده‌های آزمایشی معتبر به‌دست آید.

    علاوه بر این، باید بین حساسیت مطلوب دتکتور به ماده مورد نظر و حساسیت آن به منابع تابش غیردر اثر آتش، تعادل برقرار شود. دتکتوری که بیش از حد به محیط اطراف حساس باشد و باعث آلارم‌های مزاحم شود، قطعاً نامطلوب است. بنابراین، دتکتور باید در معرض منابع رایج موجود در ناحیه مورد پایش قرار گیرد تا ارزیابی دقیقی از عملکرد کلی دتکتور شعله‌ای انجام شود.

    این جنبه‌ها ممکن است چالش‌های متعددی را برای مهندس مسئول اجرای ارزیابی مبتنی بر عملکرد ایجاد کنند. برنامه‌ریزی و کنترل مؤثر توسط مهندس آزمون، دقت هر اندازه‌گیری مبتنی بر عملکرد را به حداکثر می‌رساند.

    ۲.۵ ملاحظات برای ارزیابی طراحی مبتنی بر عملکرد آشکارسازی شعله نوری

    ۲.۵.۱ محل آزمون

    WhatsApp Image 2025 09 16 at 5.25.49 AM1

    • محلی برای آزمون شناسایی کنید که دسترسی، مشاهده و امکان خروج ایمن برای همه افراد درگیر را فراهم کند. امکان کنترل دسترسی به محل آزمون مطلوب است.
    • آزمون‌های آتش در محیط‌های داخلی ممکن است تحت تأثیر تجمع مواد معلق کاهنده مانند دود، گرد و غبار و بخارات حلال قرار گیرند که همگی می‌توانند عملکرد آشکارسازی شعله را منفی تحت تأثیر قرار دهند. برای دستیابی به نتایج آزمون و عملکرد آشکارسازی شعله ثابت، باید قبل و بین تمام آزمون‌های داخلی، تبادل هوای پاک فراهم شود.
    • اطمینان حاصل کنید که روش مناسبی برای خاموش کردن آتش آزمون در محل موجود باشد یا اگر ماده به راحتی خاموش نمی‌شود، تدابیری برای کنترل سوختن آن اتخاذ شده باشد.
    • اطمینان حاصل کنید که تمام مواد سوخته به طور کامل خاموش شده و تمام مواد باقی‌مانده سوخته به‌درستی دفع شوند.
    • بهتر است شرایطی که در کاربرد واقعی محل نصب دتکتورهای شعله‌ای پیش خواهد آمد، شبیه‌سازی شود. موانع احتمالی دید دتکتورهای شعله‌ای نسبت به منطقه را در نظر بگیرید.
    • در صورت امکان، دمای محیط، رطوبت، جهت و سرعت باد را کنترل کنید.

    ۲.۵.۲ فرآیند آزمون

    • پیش از شروع آزمون، دمای محیط، رطوبت، جهت و سرعت باد را ثبت کنید.
    • بسته به شرایط محیطی، آزمون‌های آتش که در فضای باز انجام می‌شوند ممکن است تحت تأثیر تغییرات در ویژگی‌های انتشار شعله قرار گیرند. فیلم‌برداری از آزمون‌های آتش در فضای باز می‌تواند برای تعیین اثرات احتمالی تغییرات جهت و سرعت باد ارزشمند باشد.
    • نوع یا انواع سوخت، اندازه‌های موردنظر آتش، فاصله‌ها و نیازمندی‌های زمانی که دتکتورهای شعله‌ای باید در کاربرد واقعی به آن‌ها پاسخ دهند را شناسایی کنید. از این داده‌ها برای تعیین شاخص‌های عملکرد مورد نظر برای کاربرد و روش ارزیابی استفاده کنید.
    • حداقل سه آزمون تکراری از هر نوع سوخت در هر فاصله انجام دهید تا داده‌های معتبر به دست آید.
    • روشی که برای اشتعال ماده استفاده می‌شود نباید باعث واکنش دتکتورهای شعله‌ای شود. اگر دتکتورها به منبع اشتعال واکنش نشان دهند، این امر ممکن است دقت اندازه‌گیری زمان را تحت تأثیر قرار دهد.
    • منابع اشتعال آتش مانند کبریت‌های برقی توصیه نمی‌شوند، زیرا ممکن است ماده قابل اشتعالی را وارد ماده مورد نظر کنند که به طور معمول وجود ندارد. این ماده ممکن است طیف گسیلی متفاوتی نسبت به طیف ماده مورد نظر تولید کند.
    • روش پذیرفته‌شده‌ای را برای تعیین سرعت واکنش دتکتور مشخص کنید. نمونه‌های معمول شامل استفاده از تایمر دیجیتال یا سیستم فیلم‌برداری با سرعت بالا هستند.
    • تمام فناوری‌ها/انواع دتکتور، شماره سریال‌ها و موقعیت‌ها (فاصله و زاویه) نسبت به آتش، همچنین تمام تنظیمات آستانه آتش دتکتورها و/یا تنظیمات تأخیر زمانی را ثبت کنید.
    • اطمینان حاصل کنید که تمام دتکتورها به‌درستی تراز شده و لنزها تمیز باشند.

    ۲.۵.۳ سوخت‌های آزمون

    • آزمون‌های آتش برای جامدات قابل اشتعال، مهمات و پیشرانه‌ها به دلیل تنوع زیاد در قابلیت اشتعال و نرخ انتشار آتش، نیازمند ملاحظات ویژه هستند. اندازه آتش ایجاد شده توسط این مواد با تعیین وزن ماده نسوخته، حجم و آرایش قبل از اشتعال مشخص می‌شود.
    • پودرها و پیشرانه‌های قابل اشتعال با نرخ‌های مختلفی می‌سوزند که به آرایش ماده بستگی دارد (مثال: ۳۰ گرم باروت به‌صورت انباشته به‌طور متفاوتی نسبت به ۳۰ گرم گسترده‌شده روی سطح ۵ سانتی‌متر مربع می‌سوزد). روش چیدمان پودرها یا پیشرانه‌های قابل اشتعال را استاندارد کرده و برای هر آزمون تکرار کنید.
    • اگر منطقه تحت نظارت شامل پردازش چندین ماده آتش‌بازی باشد، سیستم باید طوری طراحی شود که امکان آشکارسازی بدترین حالت، یعنی کندترین ماده در حال سوختن را فراهم کند.

     

    هر آزمون باید با استفاده از مواد جدید انجام شود و هرگز سوخت‌ها بیش از یک بار سوزانده نشوند، زیرا احتمال دارد ماده در صورت اشتعال مجدد ویژگی‌های متفاوتی نشان دهد.

    ۲.۶ توصیه‌های آزمون منابع هشدار مزاحم
    منابع معمول هشدار مزاحم دتکتور شعله‌ای در زیر فهرست شده‌اند. نباید هیچ واکنش هشدار حریق دتکتور شعله‌ای در اثر قرار گرفتن در معرض این منابع رخ دهد:

    • نور مستقیم خورشید
    • لامپ رشته‌ای ۳۰۰ وات در فاصله ۵ فوت
    • لامپ فلورسنت ۳۴ وات در فاصله ۱ فوت
    • لامپ هالوژن ۵۰۰ وات (با لنز پلاستیکی یا شیشه‌ای) در فاصله ۵ فوت
    • بخاری کوارتز مادون قرمز برقی (۱۵۰۰ وات) در فاصله ۱۰ فوت
    • بی‌سیم دستی دوطرفه (۵ وات) در حالت ارسال در فاصله ۳ فوت
    • مدوله کردن انرژی منبع هشدار مزاحم با نرخ تقریباً ۲ تا ۱۰ هرتز (با استفاده از یک چرخاننده بدون حرارت، نه دست) نیز نباید باعث واکنش هشدار حریق دتکتور شعله‌ای شود.
    • هر منبع هشدار مزاحم شناخته‌شده دیگر باید همان‌گونه که در کاربرد واقعی وجود دارد به دتکتورها ارائه شود تا درک مناسبی از اثر احتمالی آن‌ها به دست آید.
    • توانایی آشکارسازی شعله در حضور منابع انرژی تابشی رایج فوق. این منابع در بسیاری از کارخانه‌ها و محیط‌های تولیدی یافت می‌شوند.
      ممکن است نیازهایی وجود داشته باشد که برآورده یا کشف نشده‌اند. یک بررسی کامل که شامل بحث آزاد باشد، می‌تواند راهکارهای غیرمتعارف را آشکار کرده و به راه‌حل‌های آشکارسازی منجر شود.

    ۳.۰ رعایت کدها و استانداردها
    کدها و استانداردها، مانند آن‌هایی که توسط انجمن ملی حفاظت از آتش (NFPA) و دولت ایالات متحده تدوین شده‌اند، دانش و اطلاعات لازم برای به حداقل رساندن خطر و اثرات آتش را فراهم می‌کنند. کدهایی مانند NFPA 101 «کد ایمنی حیات»، NFPA 72 «کد ملی هشدار و اعلام حریق»، NFPA 15 «استاندارد سیستم‌های ثابت آب‌پاش برای حفاظت در برابر آتش» و معیارهای یکپارچه تسهیلات (UFC) UFC 3-600-01 از این نمونه‌ها هستند.
    همچنین مهم است که هر سیستمی که هدف آن آشکارسازی و اطفای حریق است، به‌طور کامل با تمام کدها و استانداردهای قابل اجرا مطابقت داشته باشد. بنابراین، انتخاب دتکتورهای شعله‌ای و سیستم‌های کنترلی که دارای تأییدیه از سازمان‌های شخص ثالث باشند، اهمیت دارد. انتخاب محصولات مناسب در نهایت به کاربر کمک می‌کند تا انطباق را به دست آورد.

    ۳.۱
    برای رعایت کدها و استانداردهای فعلی، خروجی‌های دتکتورهای شعله‌ای فوق‌سریع باید به یک واحد کنترل هشدار حریق خدمات آزادسازی که به‌طور خاص برای این خدمات فهرست شده باشد، متصل شوند و دتکتورها نیز باید برای استفاده با همان واحد کنترل فهرست شده باشند. این واحد کنترل عملکردهای مهمی مانند نظارت بر ورودی‌ها و خروجی‌ها را انجام می‌دهد تا اطمینان حاصل شود سیستم در زمان نیاز به‌درستی عمل می‌کند.
    HSDM برای داشتن زمان واکنش مستقل ۲ میلی‌ثانیه طراحی شده است و هنگامی که با دتکتور شعله‌ای UV، UV/IR یا IR شرکت Det-Tronics ترکیب می‌شود، سیستم ترکیبی می‌تواند در شرایط ایده‌آل پاسخی کمتر از ۱۵ میلی‌ثانیه ارائه دهد.
    HSDM با نظارت پیوسته بر تمام ورودی‌ها و خروجی‌ها، عملکرد سیستم را تضمین می‌کند و از یک شبکه محلی/مدار خط سیگنال (LON/SLC) استفاده می‌کند که نظارت کلاس X را برای اتصال بین HSDM و کنترلر سیستم ایمنی EQP فراهم می‌آورد.
    ماژول HSDM دارای شش کانال ورودی و شش کانال خروجی قابل پیکربندی است که می‌توان آن‌ها را برای عملکرد تحت نظارت یا بدون نظارت برنامه‌ریزی کرد. هر کانال ورودی، اتصالات بسته را از دستگاه‌های آشکارساز حریق مانند دتکتورهای شعله‌ای نوری، دتکتورهای حرارتی، دتکتورهای دود و شستی‌های دستی می‌پذیرد. کانال‌های خروجی برای فعال‌سازی سلونوئیدهای تأییدشده شخص ثالث که برای راه‌اندازی شیرهای سیلابی پایلوت‌دار استفاده می‌شوند، طراحی شده‌اند.
    دتکتورهای شعله‌ای نوری، ماژول سیلابی فوق‌سریع و کنترلر سیستم ایمنی به مشتریان این امکان را می‌دهند که سیستمی مطابق با الزامات UFC و NFPA طراحی کنند (شکل ۱۱).
    خروجی رله هشدار حریق از دتکتور شعله‌ای نوری UV، IR یا UV/IR به HSDM متصل می‌شود. دتکتور شعله‌ای همراه با HSDM قادر به ارائه زمان واکنش فوق‌سریع، کمتر از ۲۰ میلی‌ثانیه در شرایط ایده‌آل است.
    HSDM یک سیگنال اولویت‌دار روی کابل LON ارسال می‌کند که توسط کنترلر سیستم ایمنی EQP دریافت می‌شود. این ارتباط پرسرعت نیست. EQP از منطق از پیش برنامه‌ریزی‌شده برای تعیین اقدامات بعدی استفاده می‌کند که معمولاً شامل ارسال سیگنال به یک ماژول ورودی/خروجی مجزا و پیشرفته است که به نوبه خود برای فعال‌سازی تجهیزات اعلان هشدار استفاده می‌شود. همچنین ارتباط اضافی با نگهبانان، پلیس، آتش‌نشانی یا سایر بخش‌های مورد نیاز نیز امکان‌پذیر است.
    یک سیستم آشکارسازی شعله و آزادسازی که به‌خوبی طراحی و فهرست شده باشد، می‌تواند به کاربران کمک کند تا الزامات کدهای UFC و NFPA برای یک سیستم آب‌پاش فوق‌سریع را برآورده کنند.

    ۳.۲ رعایت نیاز زمان واکنش کمتر از ۱۰۰ میلی‌ثانیه (ms)
    در حالی که بحث سرعت واکنش دتکتورهای شعله‌ای مهم است، باید توجه داشت که اندازه‌گیری مهم‌تر، سرعت واکنش کل سیستم است که شامل دتکتور شعله‌ای، واحد کنترل هشدار حریق خدمات آزادسازی، شیرهای سلونوئیدی و یک بخش سیلابی است. یک دتکتور شعله‌ای فوق‌سریع می‌تواند آتش در حال گسترش سریع را در حدود ۲۰ میلی‌ثانیه و در شرایط ایده‌آل شناسایی کند. واحد کنترل هشدار حریق خدمات آزادسازی نیز ممکن است ظرف چند میلی‌ثانیه واکنش نشان دهد. شیر سلونوئیدی زمانی را برای تخلیه فشار پایلوت از شیر سیلابی نیاز دارد و در نهایت، آب نیز زمانی را برای عبور از لوله‌کشی تا نازل و از نازل تا آتش طی می‌کند. بنابراین، باید در نظر داشت که سرعت واکنش دتکتور و واحد کنترل تنها بخشی کوچک از کل زمان واکنش سیستم است.
    توجه دقیق باید به نصب دتکتورها در نزدیک‌ترین فاصله ممکن به خطر بالقوه و اطمینان از عدم وجود مانع بین دتکتور و منطقه تحت نظارت که می‌تواند خط دید دتکتور را مسدود کند، معطوف شود. تمام حباب‌های هوا باید از داخل لوله‌کشی سیستم هیدرولیک خارج شوند. علاوه بر این، باید سریع‌ترین سلونوئیدهای ممکن استفاده شوند و نازل‌های سیلابی نیز باید در نزدیک‌ترین فاصله ممکن به خطر بالقوه نصب شوند. رعایت دقیق این موارد، سرعت کل سیستم را به‌طور چشمگیری بهبود می‌بخشد (شکل ۱۲).

    ۴.۰ راهکارهایی برای آشکارسازی شعله نوری فوق‌سریع

    دتکتورهای شعله نوری مدرن به‌گونه‌ای طراحی شده‌اند که به کاربران در دستیابی به انطباق با کدها و استانداردهای UFC و NFPA کمک کنند. برخی شرکت‌ها مدل‌های X2200 UV، X9800 IR و X5200 UVIR از دتکتورهای شعله را ارائه می‌دهند که در صورت پیکربندی و نصب صحیح، قادر به ارائه زمان پاسخ‌دهی با سرعت بالا و فوق‌العاده سریع هستند.
    علاوه بر آزمون‌های حرارتی سختگیرانه، آزمون‌های آزمایشگاهی و شبیه‌سازی‌هایی که در کارخانه انجام می‌شود، تمامی دتکتورهای شعله پیش از ارسال به مشتریان، در مرکز آزمون مهندسی با استفاده از آتش واقعی آزمایش می‌شوند.

  • دستورالعمل نصب دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

    دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.33 PM

    دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

    دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

    عملکرد

    حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

    ملاحظات طراحی

    طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

    * NFPA-72، کد ملی اعلام حریق

    * NEC 760، کد ملی برق

    * هرگونه الزامات محلی نصب

    * الزامات مرجع قانونی ذی‌صلاح (AHJ)

    ۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

    ۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

    ۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

    ۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
    ۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

    سیم‌کشی مدار تحریک

    دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.34 PM

    • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
      ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
    • WhatsApp Image 2025 09 15 at 4.12.34 PM1
    • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

    WhatsApp Image 2025 09 15 at 4.12.35 PM

    . دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
    ۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
    ۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

    WhatsApp Image 2025 09 15 at 4.12.35 PM1

    نصب کابل دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

    WhatsApp Image 2025 09 15 at 4.12.35 PM2

    ⚠️ هشدار
    در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

    هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
    اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

    ۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

    ۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

    ۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

    WhatsApp Image 2025 09 15 at 4.12.36 PM

    . کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

    ۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

    WhatsApp Image 2025 09 15 at 4.12.36 PM1

    . انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

    ۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

    ۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

    WhatsApp Image 2025 09 15 at 4.12.37 PM

    . بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

    ⚠️ هشدار
    هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

    ۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

    اتصال کابل دتکتور (SENSOR CABLE SPLICING)

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
    به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

    روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
    روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

    ۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

    • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
    • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
    • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

    اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

    ۲. استفاده از جعبه تقسیم:
    هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

    💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
    در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

    در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

    مراحل اتصال درون‌خطی:

    ۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

    ۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

    ۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

    ۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    ۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    🧪تست عملکردی (TESTING):

    تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

    مراحل تست:

    ۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

    ۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

    ۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

    نگهداری
    کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

    🔧 آسیب به کابل دتکتور:
    در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
    برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

    • بررسی چشمی
    • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
    • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
      در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
      حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

    🔥 پس از وقوع آتش‌سوزی:
    از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
    اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.

  • دتکتورهای دودی مکشی یا ایرسمپلینگ ها یا اسپیرتینگ ها

    دتکتورهای مکشی: چشم‌های همیشه بیدار تشخیص دود

    IMG 1322

    در دنیای امروز، حفاظت از جان و مال در برابر آتش‌سوزی اهمیت زیادی دارد. یکی از پیشرفته‌ترین و هوشمندترین فناوری‌های موجود در این زمینه، دتکتورهای مکشی دود یا همان Aspirating Smoke Detectors (ASD) هستند. این سیستم‌ها که گاهی به آن‌ها ایرسمپلینگ (Air Sampling Detectors) نیز گفته می‌شود، نوعی از دتکتورهای بسیار حساس و دقیق هستند که برای تشخیص زودهنگام دود به‌کار می‌روند، آن هم در زمانی که شاید حتی بوی دود هم احساس نشده باشد!

    IMG 1323

    🛠 دتکتور مکشی چگونه کار می‌کند؟

    برخلاف دتکتورهای معمولی که فقط در صورت رسیدن دود به آن‌ها فعال می‌شوند، سیستم‌های ASD به‌صورت فعال عمل می‌کنند. آن‌ها با کمک یک فن داخلی، هوا را از محیط به داخل خود می‌مکند و از طریق لوله‌هایی که به شکل شبکه در فضا پخش شده‌اند، نمونه‌های هوای محیط را جمع‌آوری می‌کنند.

    Z

    هوای نمونه‌برداری‌شده، وارد یک اتاقک تشخیص دود بسیار حساس می‌شود که در آن از فناوری‌های پیشرفته‌ای مانند لیزریا نور مادون قرمز استفاده می‌شود تا حتی ریزترین ذرات دودهم تشخیص داده شوند.

    2Q==

    🔍 مزایای استفاده از دتکتورهای مکشی

    1. تشخیص بسیار زودهنگام

    از مهم‌ترین مزایای این سیستم‌ها، توانایی تشخیص دود در مراحل اولیه احتراق است. درواقع، قبل از اینکه شعله‌ای شکل بگیرد یا هشدارهای دیگر فعال شوند، دتکتور مکشی هشدار می‌دهد.

    2. قابل استفاده در محیط‌های خاص

    در جاهایی مثل:

    مراکز داده (Data Centers)
    اتاق‌های سرور
    موزه‌ها و کتابخانه‌ها
    سردخانه‌ها و اتاق‌های تمیز (Clean Rooms)
    سوله‌ها با سقف بلند یا محیط‌های پر گرد و غبار
    دتکتورهای معمولی عملکرد درستی ندارند، اما سیستم ASD با طراحی انعطاف‌پذیر خود به‌راحتی قابل استفاده است.

    3. پنهان و زیبا

    در فضاهای لوکس یا تاریخی که زیبایی‌شناسی اهمیت دارد، می‌توان تنها سوراخ‌های ریز نمونه‌برداری را روی دیوار یا سقف ایجاد کرد و دتکتور را در اتاق یا تابلو برق پنهان نمود.

    4. قابلیت مانیتورینگ دقیق

    سیستم‌های مکشی می‌توانند به‌صورت دیجیتال میزان ذرات دود موجود در هوا را نشان دهند. این ویژگی باعث می‌شود بتوان تغییرات کیفی هوا را نیز تحت نظر داشت، نه فقط حالت هشدار.

    📏 اجزای اصلی سیستم ASD چیست؟

    1. پنل اصلی یا واحد پردازشگر
    که شامل فن مکش، سنسور دود، و نمایشگر است.
    2. شبکه لوله‌کشی
    معمولاً از جنس PVC یا CPVC ساخته می‌شود و وظیفه آن نمونه‌برداری از نقاط مختلف فضا است.
    3. سوراخ‌های نمونه‌برداری
    در فواصل معین و با قطر مشخص روی لوله ایجاد می‌شوند تا هوا را از محیط جمع‌آوری کنند.
    4. ماژول اعلام موقعیت دود (در مدل‌های پیشرفته)
    که محل دقیق بروز دود را روی لوله مشخص می‌کند.

    📐 نکات طراحی و نصب بر اساس استانداردها

    طبق استاندارد NFPA 72، هر سوراخ نمونه‌برداری باید به عنوان یک دتکتور نقطه‌ای دود در نظر گرفته شود. همچنین، زمان رسیدن دود از دورترین سوراخ به دتکتور نباید بیش از 120 ثانیه طول بکشد. در برخی محیط‌ها مثل اتاق‌های سرور که طبق NFPA 75 طراحی می‌شوند، استفاده از این سیستم برای حفاظت زودهنگام بسیار توصیه شده است.

    در مراکز مخابراتی هم طبق NFPA 76 دو سطح از حساسیت تعریف شده:

    زودهنگام (EWFD): هر سوراخ تا 37 متر مربع
    بسیار زودهنگام (VEWFD): هر سوراخ تا 18 متر مربع

    🔧 نگهداری و تعمیرات سیستم‌های ASD

    یکی از نکات مهم در سیستم‌های ASD، نگهداری دوره‌ایاست. با وجود اینکه این سیستم‌ها بسیار قابل اعتماد هستند، باید:

    لوله‌ها تمیز نگه داشته شوند
    فن مکش بررسی شود
    سوراخ‌ها مسدود نباشند
    کالیبراسیون سنسورها طبق برنامه انجام شود

    چه زمانی باید از دتکتور مکشی استفاده کنیم؟

    اگر با یکی از شرایط زیر مواجه هستید، سیستم ASD گزینه‌ای ایده‌آل است:

    نیاز به تشخیص سریع‌تر از حالت نرمال
    سقف خیلی بلند دارید (مثلاً در سوله‌ها)
    شرایط محیطی نامناسب است (گرد و غبار، سرمای شدید، یا جریان هوا)
    تجهیزات حساس دارید که حتی دود کم می‌تواند به آن‌ها آسیب بزند
    می‌خواهید دتکتورهای شما دیده نشوند!

    🧠 جمع‌بندی

    دتکتورهای مکشی مانند نگهبانان نامرئی اما هوشیاری هستند که دائم در حال تحلیل وضعیت هوای محیط‌اند. آن‌ها می‌توانند تفاوت بین یک اتفاق ساده و یک فاجعه تمام‌عیار را رقم بزنند. در دنیای امروز که سرعت، دقت، و حفاظت اهمیت بالایی دارد، سیستم‌های ایرسمپلینگ ابزاری بسیار مهم و حیاتی محسوب می‌شوند.

  • الزامات طراحی سیستم اطفاء حریق به روش غرقه سازی کلی یا TOTAL FLOODING با گاز دی اکسید کربن

    1. فصل ۵ – سیستم‌های غرقه‌سازی کلی

    ۵.۱ اطلاعات عمومی (همچنین به پیوست D مراجعه شود)
    ۵.۱.۱ توصیف: یک سیستم غرقه‌سازی کلی باید شامل منبع ثابت دی‌اکسید کربن باشد که به صورت دائم به لوله‌کشی ثابت متصل شده و دارای نازل‌های ثابت برای تخلیه دی‌اکسید کربن به داخل فضای بسته یا اتاق سرور پیرامون خطر باشد.

    ۵.۱.۲ کاربردها: سیستم غرقه‌سازی کلی باید در مواردی استفاده شود که یک محفظه دائمی اطراف خطر وجود دارد و امکان ایجاد و حفظ غلظت لازم دی‌اکسید کربن برای مدت زمان مورد نیاز را فراهم می‌کند.

    ۵.۱.۳ الزامات کلی: سیستم‌های غرقه‌سازی کلی باید طبق الزامات مربوطه در فصل ۴ و همچنین الزامات اضافی ذکرشده در این فصل طراحی، نصب، آزمون و نگهداری شوند.

    ۵.۱.۴ الزامات ایمنی: به بندهای ۴.۳ و ۴.۵.۶ مراجعه شود.

    ۵.۲ مشخصات خطر

    ۵.۲.۱ محفظه

    ۵.۲.۱.۱ برای آتش‌های سطحی یا شعله‌ای، مانند آتش‌هایی که در مایعات قابل اشتعال رخ می‌دهند، هرگونه بازشدگی غیرقابل‌بسته شدن باید طبق بند ۵.۳.۵.۱ با مقدار بیشتری دی‌اکسید کربن جبران شود.

    ۵.۲.۱.۲ اگر مقدار دی‌اکسید کربن موردنیاز برای جبران بازشدگی‌ها از مقدار پایه موردنیاز برای غرقه‌سازی بدون نشت بیشتر باشد، طراحی سیستم به‌صورت کاربرد موضعی طبق فصل ۶ مجاز است.

    ۵.۲.۱.۳ برای آتش‌های عمیق‌ریشه مانند آنچه در جامدات رخ می‌دهد، بازشدگی‌های غیرقابل‌بسته شدن باید به آن‌هایی محدود شوند که در سقف یا مجاور سقف قرار دارند، در صورتی که اندازه این بازشدگی‌ها از الزامات تهویه فشار تعیین‌شده در بند ۵.۶.۲ بیشتر باشد.

    ۵.۲.۱.۴ برای جلوگیری از گسترش آتش از طریق بازشدگی‌ها به خطرات مجاور یا مناطق کاری که ممکن است منابع دوباره اشتعال باشند، این بازشدگی‌ها باید دارای بسته‌شونده‌های خودکار یا نازل‌های کاربرد موضعی باشند.

    ۵.۲.۱.۴.۱ گاز موردنیاز برای چنین حفاظت‌هایی باید علاوه بر مقدار معمول برای غرقه‌سازی کلی فراهم شود. (به بند ۶.۴.۳.۶مراجعه شود)

    ۵.۲.۱.۴.۲ اگر هیچ‌کدام از روش‌های ذکرشده در بندهای ۵.۲.۱.۴و ۵.۲.۱.۴.۱ عملی نباشد، حفاظت باید به خطرات یا مناطق کاری مجاور نیز گسترش یابد.

    ۵.۲.۱.۵ در مورد مخازن فرآیندی و ذخیره‌سازی که تهویه ایمن بخارات و گازهای قابل اشتعال امکان‌پذیر نیست، استفاده از سیستم‌های کاربرد موضعی بیرونی طبق بند ۶.۴.۳.۶ الزامی است.

    ۵.۲.۲ نشت و تهویه

    از آنجا که کارایی سیستم‌های دی‌اکسید کربن به حفظ غلظت خاموش‌کننده گاز بستگی دارد، نشت گاز از فضای موردنظر باید به حداقل رسیده و با افزودن گاز اضافی جبران شود.

    ۵.۲.۲.۱ در صورت امکان، بازشدگی‌هایی مانند درها، پنجره‌ها و … باید طوری طراحی شوند که پیش از تخلیه دی‌اکسید کربن یا همزمان با آن به‌طور خودکار بسته شوند یا الزامات بندهای ۵.۳.۵.۱ و ۵.۴.۴.۱ رعایت شوند. (برای ایمنی افراد، به بند ۴.۳مراجعه شود)

    ۵.۲.۲.۲ در مواردی که سیستم تهویه با هوای فشرده درگیر باشد، این سیستم‌ها ترجیحاً باید پیش از تخلیه دی‌اکسید کربن یا همزمان با آن خاموش یا بسته شوند، یا گاز جبرانی اضافی فراهم گردد. (به بند ۵.۳.۵.۲ مراجعه شود)

    ۵.۲.۳ انواع آتش

    آتش‌هایی که با روش غرقه‌سازی کلی قابل خاموش‌سازی هستند، به دو دسته زیر تقسیم می‌شوند:

    ۱. آتش‌های سطحی شامل مایعات، گازها و جامدات قابل اشتعال
    ۲. آتش‌های عمیق‌ریشه شامل جامداتی که قابلیت دودزایی و شعله‌ور شدن دارند

    ۵.۲.۳.۱ آتش‌های سطحی

    برای آتش‌های سطحی، دی‌اکسید کربن باید به‌سرعت در محفظه تزریق شود تا نشت جبران شده و غلظت خاموش‌کننده برای مواد خاص ایجاد گردد.

    ۵.۲.۳.۲ آتش‌های عمیق‌ریشه

    برای آتش‌های عمیق‌ریشه، غلظت طراحی‌شده باید برای مدت زمانی حفظ شود تا دودزایی خاموش و مواد تا نقطه‌ای خنک شوند که پس از از بین رفتن جو بی‌اثر، مجدداً مشتعل نشوند.

    ۵.۳ نیازمندی‌های دی‌اکسید کربن برای آتش‌های سطحی

    ۵.۳.۱ کلیات

    ۵.۳.۱.۱ مقدار دی‌اکسید کربن برای آتش‌های سطحی باید بر اساس شرایط متوسط و با فرض خاموش شدن نسبتاً سریع در نظر گرفته شود.

    ۵.۳.۱.۲ اگرچه یک حاشیه ایمن برای نشت معمولی در عوامل حجمی پایه لحاظ شده است، اما باید اصلاحاتی بر اساس نوع ماده درگیر و سایر شرایط خاص صورت گیرد.

    ۵.۳.۲ مواد قابل اشتعال

    ۵.۳.۲.۱ باید مقدار غلظت طراحی‌شده دی‌اکسید کربن متناسب با نوع ماده قابل اشتعال موجود در خطر تعیین گردد.

    ۵.۳.۲.۱.۱ این غلظت باید با افزودن ضریب ۲۰ درصد به حداقل غلظت مؤثر محاسبه شود.

    ۵.۳.۲.۱.۲ در هیچ حالتی نباید از غلظتی کمتر از ۳۴ درصد استفاده شود.

    ۵.۳.۲.۲ جدول ۵.۳.۲.۲ باید برای تعیین حداقل غلظت‌های دی‌اکسید کربن برای مایعات و گازهای مندرج در جدول استفاده شود.

    ۵.۳.۲.۳ برای موادی که در جدول ۵.۳.۲.۲ ذکر نشده‌اند، غلظت تئوریک حداقل دی‌اکسید کربن باید از منبعی معتبر به‌دست آید یا با آزمون مشخص گردد.

    ۵.۳.۲.۴ در صورت وجود اطلاعاتی از مقادیر اکسیژن باقی‌مانده مجاز، غلظت تئوریک دی‌اکسید کربن باید با استفاده از فرمول زیر محاسبه شود:

    ۵.۳.۳ ضریب حجم

    ضریب حجمی که برای تعیین مقدار پایه دی‌اکسید کربن جهت حفاظت از یک محفظه حاوی ماده‌ای با نیاز به غلظت طراحی‌شده ۳۴ درصد استفاده می‌شود، باید مطابق جدول‌های ۵.۳.۳(a) و ۵.۳.۳(b) باشد.

    ۵.۳.۳.۱ در محاسبه ظرفیت خالص مکعبی که باید محافظت شود، اجازه داده می‌شود که برای ساختارهای دائمی، غیرقابل جابجایی و نفوذناپذیر که حجم را به‌طور قابل توجهی کاهش می‌دهند، کسر حجمی در نظر گرفته شود.

    ۵.۳.۳.۲ حجم‌های به‌هم‌پیوسته

    ۵.۳.۳.۲.۱ در دو یا چند حجم به‌هم‌پیوسته که جریان آزاد دی‌اکسید کربن بین آن‌ها ممکن است، مقدار دی‌اکسید کربن باید برابر با مجموع مقادیر محاسبه‌شده برای هر حجم، با استفاده از ضریب حجم متناظر از جدول‌های ۵.۳.۳(a) یا ۵.۳.۳(b) باشد.

    ۵.۳.۳.۲.۲ اگر یکی از حجم‌ها به غلظت بیشتری از مقدار نرمال نیاز داشته باشد (به بند ۵.۳.۴ مراجعه شود)، باید همان غلظت بالاتر برای تمام حجم‌های به‌هم‌پیوسته استفاده شود.

    p