راهنمای آسان نصب دتکتور حرارتی خطی

IMG 1340

نصب دتکتور حرارتی خطی روی سینی کابل

یک الگوی موج سینوسی،  باید هنگام نصب دتکتور حرارتی خطیدر کاربرد سینی کابل استفاده شود. حداکثر فاصله بین هر قله یا دره نباید از ۶ فوت (۱٫۸ متر) بیشتر باشد. سیم دتکتور در کناره‌های سینی کابل با استفاده از مناسب‌ترین گیره نصب، بر اساس ساختار سینی، در جای خود محکم می‌شود.

9k=

دتکتور بر روی تمامی کابل‌های برق و کنترل موجود در سینی نصب می‌شود و فاصله‌گذاری آن مطابق شکل انجام می‌گیرد. در آینده هنگامی که کابل‌های اضافی به داخل سینی کشیده می‌شوند، باید در زیر دتکتور حرارتی خطی  قرار گیرند.

برآورد طول دتکتور حرارتی خطی برای سینی کابل
نیاز است که دتکتور حرارتی خطی به‌صورت الگوی موج سینوسی اجرا شود، بنابراین ممکن است برآورد طول کلی مورد نیاز دتکتور حرارتی خطی برای یک مسیر مشخص دشوار باشد. محاسبه زیر به تعیین مقدار تقریبی دتکتور حرارتی خطی مورد نیاز برای نصب در سینی کابل کمک می‌کند.

برای تعیین تعداد کلیپ یا گیره نصب در طول سینی کابل، طول سینی کابل را بر ۳ تقسیم کرده و عدد ۱ را به آن اضافه کنید.

2Q==

Z

p

نوشته‌های مشابه

  • طراحی سیستم اطفاء حریق گازپایه برای اتاق سرور

    ۶.۱ مشخصات، نقشه‌ها و تأییدیه‌ها

    ۶.۱.۱ مشخصات

    ۶.۱.۱.۱ مشخصات سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی، باید تحت نظارت فردی تهیه شود که دارای تجربه کامل و صلاحیت لازم در طراحی این‌گونه سیستم‌ها بوده و با مشورت مرجع ذی‌صلاح انجام گیرد.

    ۶.۱.۱.۲ مشخصات باید شامل تمام موارد مربوط و لازم برای طراحی صحیح سیستم باشد، از جمله تعیین مرجع ذی‌صلاح، تفاوت‌های مجاز نسبت به استاندارد به‌تأیید مرجع ذی‌صلاح، معیارهای طراحی، توالی عملکرد سیستم، نوع و گستره آزمون‌های تأییدی که پس از نصب سیستم باید انجام شود، و الزامات آموزش مالک.

    ۶.۱.۲ نقشه‌های اجرایی

    ۶.۱.۲.۱ نقشه‌های اجرایی و محاسبات باید پیش از شروع نصب یا بازسازی سیستم برای تأیید به مرجع ذی‌صلاح ارائه شوند.

    ۶.۱.۲.۲ نقشه‌های اجرایی و محاسبات باید فقط توسط افرادی تهیه شوند که دارای تجربه کامل و صلاحیت لازم در طراحی سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی هستند.

    ۶.۱.۲.۳ هرگونه انحراف از نقشه‌های اجرایی نیاز به کسب اجازه از مرجع ذی‌صلاح دارد.

    ۶.۱.۲.۴ نقشه‌های اجرایی باید با مقیاس مشخص رسم شوند.

    ۶.۱.۲.۵ نقشه‌های اجرایی باید موارد زیر را که مرتبط با طراحی سیستم هستند نشان دهند:
    (۱) نام مالک و ساکن

    طراحی سیستم ۲۰۰۱-۱۹

    (۲) مکان، شامل آدرس خیابانی
    (۳) نقطه قطب‌نما و نمادهای توضیحی
    (۴) مکان و ساختار دیوارها و تقسیمات حفاظتی
    (۵) مکان دیوارهای آتش‌بر
    (۶) برش مقطع enclosure، به صورت دیاگرام کامل یا شماتیک، شامل مکان و ساختار مجموعه‌های کف-سقف ساختمان در بالا و پایین، کف‌های با دسترسی بلند، و سقف‌های معلق
    (۷) نوع عامل مورد استفاده
    (۸) غلظت عامل در کمترین و بالاترین دمایی که enclosure محافظت می‌شود
    (۹) شرح اشغال‌ها و خطراتی که محافظت می‌شوند، مشخص کردن اینکه آیاenclosure معمولاً اشغال شده است یا خیر
    (۱۰) برای enclosure محافظت شده با سیستم اطفاء حریق با گاز پاک، تخمین فشار مثبت حداکثر و فشار منفی حداکثر، نسبت به فشار محیطی، که انتظار می‌رود پس از تخلیه عامل توسعه یابد
    (۱۱) شرح مواجهات اطراف enclosure
    (۱۲) شرح ظروف ذخیره‌سازی عامل مورد استفاده، شامل حجم داخلی، فشار ذخیره‌سازی، و ظرفیت اسمی بیان شده بر اساس واحدهای جرم یا حجم عامل در شرایط استاندارد دما و فشار
    (۱۳) شرح نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، و مساحت معادل روزنه
    (۱۴) شرح لوله‌ها و اتصالات مورد استفاده، شامل مشخصات مواد، درجه، و رتبه فشار
    (۱۵) شرح سیم یا کابل مورد استفاده، شامل طبقه‌بندی، اندازه [آمریکاییAWG]، شیلدینگ، تعداد رشته‌ها در هادی، ماده هادی، و برنامه کدگذاری رنگ؛ الزامات جداسازی هادی‌های مختلف سیستم؛ و روش مورد نیاز برای ایجاد اتصال‌های سیم
    (۱۶) شرح روش نصب دتکتورها
    (۱۷) برنامه تجهیزات یا فهرست مواد برای هر دستگاه یا وسیله نشان‌دهنده نام دستگاه، سازنده، مدل یا شماره قطعه، تعداد و شرح
    (۱۸) نمای نقشه‌ای از منطقه محافظت‌شده نشان‌دهنده تقسیماتenclosure (تمام و جزئی ارتفاع)، سیستم توزیع عامل، شامل ظروف ذخیره‌سازی عامل، لوله‌ها و نازل‌ها؛ نوع آویز لوله‌ها و نگهدارنده‌های لوله‌های سخت؛ سیستم‌های شناسایی، هشدار و کنترل، شامل تمام دستگاه‌ها و شماتیک اتصالات سیمی بین آن‌ها؛ مکان‌های دستگاه‌های پایان خط؛ مکان دستگاه‌های کنترل‌شده مانند دمپرها و پرده‌ها؛ و مکان علائم آموزشی
    (۱۹) نمای ایزومتریک از سیستم توزیع عامل نشان‌دهنده طول و قطر هر بخش لوله؛ شماره‌های مرجع گره‌ها مربوط به محاسبات جریان؛ اتصالات، شامل کاهنده‌ها، تغییرات، و جهت‌گیری تکیه‌گاه‌ها؛ و نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، نرخ جریان، و مساحت معادل روزنه
    (۲۰) نقشه مقیاس‌دار از طرح گرافیکی پنل اعلان در صورتی که از سوی مرجع ذی‌صلاح درخواست شده باشد
    (۲۱) جزئیات هر پیکربندی منحصر به فرد از نگهدارنده لوله‌های سخت، نشان‌دهنده روش اتصال به لوله و ساختار ساختمان
    (۲۲) جزئیات روش اتصال ظروف، نشان‌دهنده روش اتصال به ظرف و ساختار ساختمان
    (۲۳) شرح کامل گام به گام توالی عملیات سیستم، شامل عملکرد سوئیچ‌های هشدار و نگهداری، تایمرهای تأخیر، و خاموشی اضطراری برق
    (۲۴) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به پنل کنترل سیستم و پنل گرافیکی اعلان
    (۲۵) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به رله‌های خارجی یا اضافی
    (۲۶) محاسبات کامل برای تعیین حجم enclosure، مقدار عامل پاک، و اندازه باتری‌های پشتیبان؛ روش استفاده‌شده برای تعیین تعداد و مکان دستگاه‌های شناسایی صوتی و بصری؛ و تعداد و مکان دتکتورها
    (۲۷) جزئیات ویژگی‌های خاص
    (۲۸) منطقه شیر فشار اطمینان یا مساحت معادل نشت برای enclosure محافظت‌شده جهت جلوگیری از توسعه اختلاف فشار در مرزهای enclosure که بیش از حد مجاز فشار enclosure مشخص‌شده در هنگام تخلیه سیستم باشد

    ۶.۱.۲.۶ جزئیات سیستم باید شامل اطلاعات و محاسبات در مورد مقدار عامل؛ فشار ذخیره‌سازی ظرف؛ حجم داخلی ظرف؛ مکان، نوع، و نرخ جریان هر نازل، شامل مساحت معادل روزنه؛ مکان، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ‌ها؛ و مکان و اندازه تأسیسات ذخیره‌سازی باشد.
    ۶.۱.۲.۶.۱ کاهش اندازه لوله و جهت‌گیری تکیه‌گاه‌ها باید مشخص شود.
    ۶.۱.۲.۶.۲ اطلاعات مربوط به مکان و عملکرد دستگاه‌های شناسایی، دستگاه‌های عملیاتی، تجهیزات کمکی، و مدارهای الکتریکی، در صورت استفاده، باید ارائه شود.
    ۶.۱.۲.۶.۳ دستگاه‌ها و وسایل استفاده‌شده باید شناسایی شوند.
    ۶.۱.۲.۶.۴ هر ویژگی خاص باید توضیح داده شود.
    ۶.۱.۲.۶.۵ سیستم‌های پیش‌مهندسی شده نیازی به مشخص کردن حجم داخلی ظرف، نرخ‌های جریان نازل، طول معادل لوله‌ها، اتصالات و شیلنگ‌ها، یا محاسبات جریان ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده می‌شوند.
    ۶.۱.۲.۶.۶ برای سیستم‌های پیش‌مهندسی شده، اطلاعات مورد نیاز توسط دفترچه طراحی سیستم فهرست‌شده باید برای تأیید سیستم بر اساس محدودیت‌های فهرست‌شده به مرجع ذی‌صلاح ارائه شود.
    ۶.۱.۲.۷ یک دفترچه راهنمای “طبق ساخت” و نگهداری که شامل توالی کامل عملیات و مجموعه کاملی از نقشه‌ها و محاسبات باشد باید در سایت نگهداری شود.
    ۶.۱.۲.۸ محاسبات جریان
    ۶.۱.۲.۸.۱ محاسبات جریان همراه با نقشه‌های اجرایی باید برای تأیید به مرجع ذی‌صلاح ارائه شوند.
    ۶.۱.۲.۸.۲ نسخه برنامه محاسبات جریان باید در چاپ خروجی محاسبات کامپیوتری مشخص شود.
    ۶.۱.۲.۸.۳ زمانی که شرایط میدانی نیاز به تغییرات مادی از نقشه‌های تأیید شده داشته باشد، تغییر باید برای تأیید ارائه شود.
    ۶.۱.۲.۸.۴ زمانی که تغییرات مادی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اصلاح‌شده “طبق ساخت” باید ارائه شوند.

    ۶.۱.۳ تأیید نقشه‌ها

    ۶.۱.۳.۱ نقشه‌ها و محاسبات باید قبل از نصب تأیید شوند.

    ۶.۱.۳.۲ در صورتی که شرایط میدانی نیاز به هرگونه تغییر اساسی از نقشه‌های تأیید شده داشته باشد، تغییر باید قبل از اجرایی شدن برای تأیید ارسال شود.
    ۶.۱.۳.۳ زمانی که چنین تغییرات اساسی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اجرایی باید به‌روزرسانی شوند تا سیستم نصب‌شده را به‌طور دقیق نشان دهند.

    ۶.۲ محاسبات جریان سیستم
    ۶.۲.۱ محاسبات جریان سیستم باید با استفاده از روش محاسباتی فهرست‌شده یا تأیید شده توسط مرجع ذی‌صلاح انجام شود.
    ۶.۲.۱.۱ طراحی سیستم باید در محدوده محدودیت‌های فهرست‌شده سازنده باشد.
    ۶.۲.۱.۲ طراحی‌هایی که شامل سیستم‌های پیش‌مهندسی شده هستند، نیازی به ارائه محاسبات جریان مطابق با بند ۶.۱.۲.۸ ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده شوند.

    ۶.۲.۲ شیرها و اتصالات باید برای طول معادل بر اساس اندازه لوله یا لوله‌کشی که با آن‌ها استفاده خواهند شد، ارزیابی شوند.
    ۶.۲.۲.۱ طول معادل شیر ظرف باید فهرست شده باشد.
    ۶.۲.۲.۲ طول معادل شیر ظرف باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۶.۲.۳ طول‌های لوله‌کشی و جهت‌گیری اتصالات و نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده سازنده باشد.

    ۶.۲.۴ اگر نصب نهایی از نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدید که نصب “طبق ساخت” را نشان دهند باید تهیه شوند

  • دفترچه مهندسان برای بیم دتکتور دودی اعلام حریق

    بخش ۱ – اصول عملکرد
    بیم دتکتور دودی اعلام حریق با پرتو بازتابی شامل یک واحد فرستنده/گیرنده است که یک پرتو را به سمت ناحیه تحت حفاظت ارسال، پایش و دریافت می‌کند.WhatsApp Image 2025 09 16 at 1.20.16 AM

    بیم دتکتور بر اساس اصل تضعیف نور کار می‌کند. عنصر حساس به نور در شرایط عادی، نوری که توسط واحد فرستنده/گیرنده تولید می‌شود را دریافت می‌کند. واحد فرستنده/گیرنده بر اساس درصدی از تضعیف کل نور، روی یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول پرتو و فاصله بین واحد فرستنده/گیرنده و رفلکتور تعیین می‌گردد. برای بیم دتکتورهای دارای تأییدیه UL، تنظیم حساسیت باید با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق» مطابقت داشته باشد.
    بیم دتکتورهای دودی اعلام حریق بر اساس اصل تضعیف عمل می‌کنند. هنگامی که میدان دود تشکیل می‌شود، بیم دتکتور تضعیف تجمعی — درصد مسدود شدن نور ناشی از ترکیب غلظت دود و فاصله خطی میدان دود در طول پرتو — را تشخیص می‌دهد. آستانه معمولاً توسط سازنده و بر اساس شرایط نصب تعیین می‌شود.
    انتخاب حساسیت مناسب، احتمال آلارم‌های مزاحم ناشی از انسداد پرتو به‌وسیله یک جسم جامد که به‌طور ناخواسته در مسیر قرار گرفته را به حداقل می‌رساند. از آنجا که انسداد ناگهانی و کامل پرتو نوری مشخصه معمول دود نیست، بیم دتکتور این حالت را به‌عنوان وضعیت خطا تشخیص می‌دهد نه آلارم.
    همچنین تغییرات بسیار کوچک و آهسته در کیفیت منبع نور مشخصه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گرد و غبار و آلودگی بر روی مجموعه اپتیکی واحد فرستنده/گیرنده یا سطح بازتابی رخ دهد.

    WhatsApp Image 2025 09 16 at 1.20.17 AM

    وقتی بیم دتکتور برای اولین بار روشن و برنامه راه‌اندازی آن اجرا می‌شود، سطح سیگنال نوری آن لحظه را به‌عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، کنترل خودکار بهره (AGC) این تغییر را جبران می‌کند. با این حال، سرعت جبران محدود است تا اطمینان حاصل شود که بیم دتکتور همچنان به آتش‌سوزی‌های تدریجی یا دودکردن حساس می‌ماند. هنگامی که AGC دیگر قادر به جبران کاهش سیگنال نباشد، مثلاً به علت تجمع بیش از حد گرد و غبار، بیم دتکتور وضعیت خطا را اعلام می‌کند.

    WhatsApp Image 2025 09 16 at 1.20.17 AM1

    لوازم جانبی
    لوازم جانبی بیم دتکتور دودی اعلام حریق با پرتو بازتابی ممکن است شامل تابلوی اعلام از راه دور و ایستگاه‌های تست از راه دور باشد که امکان تست دوره‌ای الکترونیکی و/یا حساسیت بیم دتکتور را فراهم می‌کنند. سیستم‌های هوشمند اعلام حریق می‌توانند یک آدرس اختصاصی به بیم دتکتور بدهند تا مکان دقیق آتش بهتر مشخص شود.

    WhatsApp Image 2025 09 16 at 1.20.18 AM

    سایر لوازم جانبی قابل استفاده شامل کیت نصب سطحی، کیت نصب چندحالته، و کیت برد بلند هستند. کیت نصب سطحی برای زمانی است که سیم‌کشی به‌صورت روکار انجام شود. کیت نصب چندحالته امکان نصب بیم دتکتور و رفلکتور را بر روی دیوار یا سقف فراهم می‌کند و برای نصب این کیت بر روی بیم دتکتور باید از کیت نصب سطحی نیز استفاده شود. کیت برد بلند امکان نصب بیم دتکتور را در فاصله‌های بیشتر از رفلکتور، معمولاً بین ۷۰ تا ۱۰۰ متر (۲۳۰ تا ۳۲۸ فوت) فراهم می‌کند.
    هیترها باعث می‌شوند سطح اپتیکی بیم دتکتور و رفلکتور دمایی کمی بالاتر از دمای هوای اطراف داشته باشد، که به کاهش میعان در محیط‌هایی با تغییرات دمایی کمک می‌کند.

    بخش ۲ – مقایسه بیم دتکتور دودی اعلام حریق با دتکتورهای نقطه‌ای دود
    بیم دتکتورها تحت استاندارد UL و NFPA 72، 2013، بخش A.17.7.3.7 قرار دارند. لازم است طراحان این الزامات را به‌طور کامل در انتخاب و کاربرد بیم دتکتورها برای سیستم‌های اعلام حریق در نظر بگیرند.

    پوشش‌دهی
    بیم دتکتورهای دودی اعلام حریق می‌توانند سطحی را پوشش دهند که نیازمند بیش از یک دوجین دتکتور نقطه‌ای باشد. تعداد کمتر دستگاه به معنی هزینه نصب و نگهداری کمتر است.
    این دتکتورها معمولاً حداکثر برد ۱۰۰ متر (۳۳۰ فوت) و حداکثر فاصله بین دو دتکتور ۱۸ متر (۶۰ فوت) دارند، که پوشش تئوریک ۱۸۳۹ مترمربع (۱۹,۸۰۰ فوت مربع) ایجاد می‌کند. توصیه‌های سازنده و عواملی مانند شکل اتاق ممکن است این مقدار را در عمل کاهش دهند.
    دتکتورهای نقطه‌ای دود حداکثر پوشش ۸۳ مترمربع (۹۰۰ فوت مربع) دارند. حداکثر فاصله بین دو دتکتور ۱۲.۵ متر (۴۱ فوت) است، زمانی که عرض ناحیه تحت حفاظت بیش از ۳ متر (۱۰ فوت) نباشد، مانند یک راهرو.

    ارتفاع سقف
    اگرچه زمان پاسخ دتکتور نقطه‌ای دود معمولاً با افزایش فاصله آن از آتش/کف افزایش می‌یابد، این موضوع لزوماً در مورد بیم دتکتورهای دودی اعلام حریق صدق نمی‌کند، زیرا این دتکتورها برای سقف‌های بلند ایده‌آل هستند. با این حال، برخی سازندگان ممکن است با افزایش ارتفاع سقف، به دتکتورهای اضافی نیاز داشته باشند، که این امر به دلیل رفتار مورد انتظار ستون دود است.

    آتش‌سوزی‌ها معمولاً در نزدیکی یا در سطح کف آغاز می‌شوند. هنگامی که این اتفاق می‌افتد، دود به سمت بالا یا نزدیک سقف حرکت می‌کند. به طور معمول، ستون دود در مسیر حرکت از نقطه شروع خود، شروع به گسترش کرده و به شکل یک مخروط وارونه در می‌آید.

    WhatsApp Image 2025 09 16 at 1.20.18 AM1

    تراکم میدان دود می‌تواند تحت تأثیر سرعت رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند تراکم یکنواخت‌تری ایجاد کنند نسبت به آتش‌های کندسوز، که در آن ممکن است در بخش‌های بالایی میدان دود رقیق‌سازی رخ دهد. در برخی کاربردها، به ویژه جایی که سقف‌های بلند وجود دارد، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های کند یا دودزا واکنش‌پذیرتر از دتکتورهای نقطه‌ای باشند، زیرا آنها کل میدان دود را در طول پرتو بررسی می‌کنند. دتکتورهای نقطه‌ای تنها دود را در «نقطه» خاص خود نمونه‌برداری می‌کنند. دودی که وارد محفظه می‌شود ممکن است آن‌قدر رقیق باشد که به سطح لازم برای فعال کردن آلارم نرسد.

    WhatsApp Image 2025 09 16 at 1.20.19 AM

    یکی از محدودیت‌های بیم دتکتور دودی اعلام حریق این است که به عنوان دستگاه‌های خط دید، در معرض تداخل هر جسم یا شخصی هستند که وارد مسیر پرتو شود. بنابراین، استفاده از آنها در بیشتر مناطق اشغال‌شده با ارتفاع سقف معمولی عملی نیست.

    با این حال، بیم دتکتور دودی اعلام حریق اغلب انتخاب اصلی در مکان‌هایی با سقف بلند، مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، آشیانه‌های هواپیما و تالارهای کلیسا، همچنین کارخانه‌ها و انبارها هستند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و حتی مشکلات بیشتری را برای نگهداری صحیح آنها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این مناطق ممکن است مشکلات را کاهش دهد، زیرا به دستگاه‌های کمتری نیاز است و این دستگاه‌ها می‌توانند روی دیوارها که دسترسی به آنها آسان‌تر از سقف‌هاست، نصب شوند.

    کاربردها برای مناطق با سقف بلند در NFPA 92، راهنمای سیستم‌های کنترل دود توصیف شده‌اند. برای اطلاعات بیشتر به پیوست B این راهنما مراجعه کنید.
    بیم دتکتور: ۱۹٬۸۰۰ فوت مربع (۳۳۰ فوت × ۶۰ فوت)
    حداکثر پوشش تئوریک

    سرعت بالای جریان هوا
    مناطق با جریان هوای بالا مشکل ویژه‌ای برای دتکتورهای نقطه‌ای ایجاد می‌کنند، زیرا انتشار دود که در شرایط عادی رخ می‌دهد ممکن است اتفاق نیفتد. از آنجا که سرعت بالای هوا ممکن است دود را از محفظه تشخیص خارج کند، باید عملکرد دتکتور نقطه‌ای زمانی که سرعت هوا بیش از ۱٬۵۰۰ فوت در دقیقه یا زمانی که نرخ تعویض هوا در منطقه محافظت‌شده بیش از ۷٫۵ بار در ساعت است، به دقت بررسی شود. محدوده تشخیص بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (حداکثر محدوده پرتو معمولاً ۳۳۰ فوت است)، در مقایسه با ابعاد یک یا دو اینچی محفظه تشخیص دتکتور نقطه‌ای. بنابراین، احتمال اینکه دود از محدوده تشخیص بیم دتکتور دودی اعلام حریق خارج شود کمتر است. از آنجا که جریان هوای بالا تأثیر زیادی بر بیم دتکتور ندارد، معمولاً نیاز نیست که برای این نوع محیط‌ها فهرست‌شده باشند.

    لایه‌بندی (Stratification)

    WhatsApp Image 2025 09 16 at 1.20.19 AM1

    لایه‌بندی زمانی رخ می‌دهد که دود حاصل از مواد دودزا یا در حال سوختن گرم شده و از هوای خنک‌تر اطراف خود کمتر متراکم شود. دود بالا می‌رود تا زمانی که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد (به NFPA 2013، A.17.7.1.10 مراجعه کنید). بنابراین، لایه‌بندی ممکن است در مکان‌هایی رخ دهد که دمای هوا در سطح سقف بالا باشد، به ویژه جایی که تهویه وجود ندارد.

    روی سقف‌های صاف، بیم دتکتور دودی اعلام حریق عموماً باید در محدوده فاصله مشخص‌شده نصب شوند. در برخی موارد، محل و حساسیت دتکتورها باید نتیجه یک ارزیابی مهندسی باشد که شامل موارد زیر است:

    • ویژگی‌های سازه‌ای
    • اندازه و شکل اتاق‌ها و دهانه‌ها
    • نوع استفاده و اشغال فضا
    • ارتفاع سقف
    • شکل سقف
    • سطح و موانع
    • تهویه
    • شرایط محیطی
    • ویژگی‌های سوختن مواد قابل احتراق موجود
    • چیدمان محتویات منطقه تحت حفاظت

    نتایج ارزیابی مهندسی ممکن است نیاز به نصب در فاصله بیشتری از سقف و در ارتفاع‌های متفاوت برای مقابله با اثرات لایه‌بندی یا موانع دیگر داشته باشد.

    پیش‌لایه‌بندی / نرخ آزادسازی حرارت
    پیش‌لایه‌بندی باید در نظر گرفته شود، زیرا این یک عامل غالب در آتریوم‌هایی با سقف شیشه‌ای است. در دوره‌های آفتابی، گرما می‌تواند در بالای آتریوم تجمع پیدا کند و پیش از آغاز آتش‌سوزی یک لایه لایه‌بندی‌شده در سطح سقف ایجاد کند. عمق این لایه هوای گرم بسته به دمای بیرون و شدت تابش خورشید بر سقف تغییر می‌کند. گرمای ناشی از آتش می‌تواند به این لایه هوای گرم اضافه شده و عمق آن را افزایش دهد (به شکل‌های ۵ تا ۷ مراجعه کنید).

    نرخ آزادسازی حرارت یک آتش تعیین می‌کند که دود تا چه ارتفاعی در آتریوم بالا می‌رود. نرخ آزادسازی حرارت بسته به ماده در حال سوختن، جرم آن و متغیرهای دیگر متفاوت است.

    هنگام تعیین ارتفاع نصب بیم دتکتور دودی اعلام حریق، باید سناریوهای مختلف آتش در نظر گرفته شوند. سناریوهای آتش باید نه تنها بر اساس اشیای معمول موجود در محل، بلکه بر اساس خطرات موقت مانند وسایل مورد استفاده در بازسازی یا در طول دوره جابه‌جایی مستأجران نیز باشند.

    کاربردهای ویژه
    یکی از مهم‌ترین محدودیت‌های دتکتورهای دودی نقطه‌ای، ناتوانی آنها در کارکرد در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. هرچند بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد، اما در بسیاری موارد یک جایگزین مناسب به شمار می‌رود، زیرا محدوده دمای کاری آنها ممکن است بسیار وسیع‌تر از دتکتورهای دودی نقطه‌ای باشد. کاربردهای احتمالی بیم دتکتور شامل فریزرها، انبارهای نگهداری مواد سرد، انبارهای حمل‌ونقل، پارکینگ‌های سرپوشیده، سالن‌های کنسرت و اصطبل‌ها می‌شود.

    WhatsApp Image 2025 09 16 at 1.31.00 AM

    با این حال، بیم دتکتور نباید در محیط‌هایی نصب شود که فاقد کنترل دما هستند و احتمال تشکیل میعان یا یخ‌زدگی وجود دارد. اگر در این مکان‌ها رطوبت بالا و تغییرات سریع دما پیش‌بینی شود، احتمال تشکیل میعان وجود دارد و این شرایط برای کاربرد بیم دتکتور مناسب نیست. همچنین، بیم دتکتور نباید در محل‌هایی نصب شود که واحد فرستنده-گیرنده، رفلکتور یا مسیر نوری بین آنها ممکن است در معرض شرایط جوی بیرونی مانند باران، برف، تگرگ یا مه قرار گیرد. این شرایط عملکرد صحیح دتکتور را مختل می‌کند.

     

    بخش ۳ – ملاحظات طراحی
    عوامل زیادی بر عملکرد دتکتورهای دودی تأثیر می‌گذارند. نوع و مقدار مواد قابل احتراق، سرعت رشد آتش، فاصله دتکتور از آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق دارای تأییدیه UL تحت استاندارد UL 268 (دتکتورهای دود برای سیستم‌های اعلان حریق حفاظتی) هستند و باید طبق NFPA 72 (کد ملی اعلان حریق) و دستورالعمل سازنده نصب و نگهداری شوند.

    حساسیت
    هر سازنده مشخص می‌کند که حساسیت دتکتور باید با توجه به طول پرتو مورد استفاده در یک کاربرد خاص تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول پرتو مجاز طبق دستورالعمل سازنده نصب شود، که این مقادیر توسط فهرست UL محدود شده‌اند.

    محل و فاصله‌گذاری
    پارامترهای محل نصب و فاصله‌گذاری توسط سازندگان توصیه می‌شود. به‌عنوان مثال، در سقف‌های صاف، فاصله افقی بین پرتوهای پیش‌بینی‌شده نباید بیش از ۶۰ فوت (۱۸٫۳ متر) باشد و فاصله بین پرتو و دیوار کناری (دیوار موازی مسیر پرتو) می‌تواند حداکثر نصف این مقدار باشد. هرچند این مثال حداکثر فاصله ۶۰ فوت را مجاز می‌داند، برخی سازندگان ممکن است محدودیت بیشتری اعمال کنند.

    در سقف‌های صاف، بیم دتکتور دودی اعلام حریق باید حداقل ۱۲ اینچ (۰٫۳ متر) پایین‌تر از سطح سقف یا زیر موانع سازه‌ای مانند تیرها، خرپاها، کانال‌های هوا و غیره نصب شود. همچنین، بیم دتکتور باید حداقل ۱۰ فوت (۳٫۰ متر) بالاتر از کف نصب شود تا از موانع رایج ناشی از استفاده روزمره ساختمان دور باشد.

    ملاحظات نصب بیم دتکتور بازتابی
    برای عملکرد صحیح، بیم دتکتور به یک سطح نصب پایدار نیاز دارد. سطحی که حرکت کند، جابه‌جا شود، دچار لرزش یا تغییر شکل شود، باعث آلارم‌های کاذب یا بروز خطا خواهد شد. در فواصل طولانی، جابه‌جایی تنها ۰٫۵ درجه در فرستنده باعث می‌شود نقطه مرکزی پرتو تقریباً ۳ فوت (۰٫۹ متر) تغییر مکان دهد.

    دتکتور باید روی سطوح نصب پایدار مانند آجر، بتن، دیوار باربر محکم، ستون نگهدارنده، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود دچار لرزش یا جابه‌جایی شود، نصب شود. دتکتور نباید روی دیوار فلزی موج‌دار، دیوار فلزی نازک، پوشش خارجی ساختمان، نمای خارجی، سقف معلق، خرپای فلزی باز، تیرهای غیرباربر، الوار یا سطوح مشابه نصب شود. در مواردی که تنها یک سطح پایدار قابل استفاده است، واحد فرستنده-گیرنده باید روی سطح پایدار نصب شود و رفلکتور روی سطح کمتر پایدار قرار گیرد، زیرا رفلکتور نسبت به محل نصب ناپایدار تحمل بیشتری دارد.

    WhatsApp Image 2025 09 16 at 1.20.20 AM

    از آنجا که بیم دتکتور دودی اعلام حریق دستگاه خط دید است و در صورت قطع کامل و ناگهانی سیگنال وارد وضعیت خطا می‌شود، باید همیشه از وجود هرگونه مانع مات در مسیر پرتو جلوگیری کرد.

    «در برخی موارد، پروژکتور پرتو نوری (همان فرستنده/گیرنده) در یک دیوار انتهایی نصب می‌شود و گیرنده پرتو نوری (همان رفلکتور) در دیوار مقابل نصب می‌شود. با این حال، همچنین مجاز است که پروژکتور و گیرنده از سقف آویزان شوند، به شرطی که فاصله آنها از دیوارهای انتهایی بیش از یک‌چهارم فاصله انتخاب‌شده نباشد.» — NFPA 72-2013, A.17.7.3.7

    همچنین باید نیاز به واکنش سریع به دلیل عوامل ایمنی جانی یا ارزش بالای دارایی‌های محافظت‌شده در نظر گرفته شود. در این شرایط، فاصله‌گذاری باید کاهش یابد، یا زمانی که آتش پیش‌بینی‌شده دود کمی به‌ویژه در مراحل اولیه تولید می‌کند. برای مثال، دتکتورهای نصب‌شده روی سقف یک آتریوم بسیار بلند در یک هتل ممکن است نیاز به تکمیل با دتکتورهای اضافی در ارتفاعات پایین‌تر داشته باشند.

    در کاربردهایی که نیاز به کاهش فاصله‌گذاری است، باید دقت شود که دو پرتو موازی به حداقل فاصله از یکدیگر برسند تا گیرنده یک دتکتور نتواند منبع نور دتکتور دیگر را ببیند. در مواردی که دو یا چند دتکتور با پرتوهایی در زوایا نصب می‌شوند، باید اطمینان حاصل شود که گیرنده هر دتکتور تنها نور فرستنده خودش را تشخیص دهد. رعایت روش‌های آزمون ذکرشده در دفترچه راهنمای سازنده بسیار مهم است.

    ملاحظات تکمیلی نصب برای بیم دتکتور دودی اعلام حریق بازتابی

    WhatsApp Image 2025 09 16 at 1.20.20 AM1 1

    باید یک خط دید شفاف و دائمی بین دتکتور و رفلکتور وجود داشته باشد. اجسام بازتابنده نباید در نزدیکی خط دید بین دتکتور و رفلکتور قرار گیرند. اجسام بازتابنده‌ای که بیش از حد به خط دید نزدیک باشند می‌توانند پرتو نور را از فرستنده به گیرنده منعکس کنند. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. اجسام بازتابنده باید حداقل ۱۵ اینچ (۳۸٫۱ سانتی‌متر) از خط دید بین دتکتور و رفلکتور فاصله داشته باشند.

    منابع نوری با شدت بسیار زیاد، مانند نور خورشید و لامپ‌های هالوژن، اگر مستقیماً به سمت گیرنده هدایت شوند، می‌توانند تغییرات شدیدی در سیگنال ایجاد کرده و باعث بروز سیگنال خطا یا آلارم شوند. برای جلوگیری از این مشکل، باید از تابش مستقیم نور خورشید به واحد فرستنده-گیرنده اجتناب شود. حداقل زاویه ۱۰ درجه بین مسیر منبع نور (نور خورشید) و دتکتور، و خط دید بین دتکتور و رفلکتور باید رعایت شود.

    باید از عملکرد دتکتور از طریق شیشه اجتناب شود. از آنجا که بیم دتکتور تک‌سَر بر اساس اصل بازتاب عمل می‌کند، یک شیشه که به‌طور عمود بر خط دید بین دتکتور و رفلکتور قرار گرفته باشد، می‌تواند پرتو نور را از فرستنده به گیرنده بازتاب دهد. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. شیشه همچنین مقداری از نور را هنگام عبور جذب می‌کند. این جذب نور فاصله مجاز نصب بین دتکتور و رفلکتور را کاهش می‌دهد.

    در مواردی که اجتناب از عبور پرتو از شیشه ممکن نیست، برخی شیوه‌های خاص نصب می‌توانند اثرات شیشه را به حداقل برسانند. این روش‌ها شامل خودداری از عبور پرتو از چندین لایه شیشه، قرار دادن شیشه به‌گونه‌ای که به‌طور عمود بر خط دید بین دتکتور و رفلکتور نباشد (حداقل ۱۰ درجه انحراف از حالت عمود توصیه می‌شود) و اطمینان از شفاف، صاف و محکم بودن شیشه است. آزمون مسدودسازی کامل رفلکتور می‌تواند برای تعیین قابل قبول بودن نصب استفاده شود.

    در مکان‌هایی که ارتفاع سقف بیش از ۳۰ فوت (۹٫۱ متر) است، ممکن است نیاز به نصب بیم دتکتور دودی اعلام حریق اضافی در ارتفاع‌های مختلف برای تشخیص دود در سطوح پایین‌تر باشد. برای اطلاعات بیشتر به بخش لایه‌بندی در این راهنما مراجعه کنید.

    پیوست A – واژه‌نامه اصطلاحات

    پنل اعلان (Annunciator)
    دستگاهی که وضعیت یا شرایطی مانند حالت عادی، خطا یا آلارم دتکتور دودی یا سیستم را به صورت دیداری یا شنیداری نمایش می‌دهد.

    کنترل خودکار بهره (Automatic Gain Control – AGC)
    قابلیت بیم دتکتور دودی اعلام حریق برای جبران افت سیگنال نوری ناشی از گردوغبار یا آلودگی. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان به آتش‌های کند و دودزا حساس باقی می‌ماند.

    بیم دتکتور دودی اعلام حریق (بازتابی)
    دستگاهی که با ارسال یک پرتو نور از واحد فرستنده-گیرنده به سمت یک رفلکتور که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند، وجود دود را تشخیص می‌دهد. ورود دود به مسیر پرتو باعث کاهش سیگنال نور شده و آلارم فعال می‌شود.

    برد بیم (Beam Range)
    فاصله بین فرستنده-گیرنده و رفلکتور.

    پوشش دتکتور (Detector Coverage)
    منطقه‌ای که یک دتکتور دود یا دتکتور حرارت قادر به تشخیص مؤثر دود و/یا حرارت است. این منطقه توسط فهرست‌ها و کدهای مربوطه محدود می‌شود.

    لیست‌شده (Listed)
    قرار گرفتن یک دستگاه در فهرست منتشرشده توسط یک سازمان آزمون معتبر که نشان می‌دهد دستگاه با موفقیت طبق استانداردهای پذیرفته‌شده آزمایش شده است.

    تیرگی (انسداد تجمعی) (Obscuration / Cumulative Obscuration)
    کاهش توانایی عبور نور از یک نقطه به نقطه دیگر به دلیل وجود مواد جامد، مایع، گاز یا ذرات معلق. انسداد تجمعی ترکیبی از چگالی این ذرات مانع نور به ازای هر فوت و فاصله خطی‌ای است که این ذرات اشغال می‌کنند، یعنی چگالی دود ضرب‌در فاصله خطی میدان دود. (معمولاً با واحدهایی مانند درصد بر فوت یا درصد بر متر بیان می‌شود).

    رفلکتور (Reflector)
    دستگاهی که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند.

    حساسیت (Sensitivity)
    توانایی یک دتکتور دود برای واکنش به یک سطح مشخص دود.

    دود (Smoke)
    محصولات جامد و گازی حاصل از احتراق که در هوا معلق هستند.

    رنگ دود (Smoke Color)
    روشنی یا تیرگی نسبی دود که از نامرئی تا سفید، خاکستری و سیاه متغیر است.

    چگالی دود (Smoke Density)
    مقدار نسبی محصولات جامد و گازی حاصل از احتراق در یک حجم معین.

    دتکتور نقطه‌ای (Spot-Type Detector)
    دستگاهی که تنها در محل نصب خود دود و/یا حرارت را تشخیص می‌دهد. دتکتورهای نقطه‌ای دارای یک محدوده تعریف‌شده پوشش هستند.

    لایه‌بندی (Stratification)
    اثری که زمانی رخ می‌دهد که دود، که از هوای اطراف خود گرم‌تر است، بالا می‌رود تا به دمای برابر با هوای اطراف برسد و در نتیجه، از بالا رفتن بازمی‌ایستد.

    فرستنده-گیرنده (Transceiver)
    دستگاهی در یک بیم دتکتور دودی اعلام حریق بازتابی که نور را به سمت فضای تحت حفاظت می‌تاباند و آن را پایش می‌کند.

    صفحات شفاف (فیلترها) (Transparencies / Filters)
    صفحه‌ای از شیشه یا پلاستیک با سطح مشخص تیرگی که می‌تواند برای آزمودن سطح حساسیت صحیح بیم دتکتور دودی اعلام حریق استفاده شود.

    وضعیت خطا (Trouble Condition)
    وضعیتی از یک دستگاه یا سیستم که عملکرد صحیح آن را مختل می‌کند، مانند مدار باز در حلقه شروع‌کننده. اعلان وضعیت خطا که روی پنل کنترل یا پنل اعلان نمایش داده می‌شود یک «سیگنال خطا» است.

     

    پیوست B – استاندارد NFPA 92 برای سیستم‌های کنترل دود (ویرایش ۲۰۱۲)

    A.6.4.4.1.5(1)
    هدف از استفاده از یک پرتو رو به بالا برای تشخیص لایه دود، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند پرتو باید با زاویه رو به بالا به گونه‌ای هدف‌گیری شوند که لایه دود را بدون توجه به سطح لایه‌بندی دود قطع کنند. باید از بیش از یک بیم دتکتور دودی اعلام حریق استفاده شود. هنگام استفاده از این دستگاه‌ها برای این کاربرد، باید توصیه‌های سازندگان بررسی شود. دستگاه‌هایی که به این روش نصب می‌شوند ممکن است نیازمند فعالیت نگهداری بیشتری باشند.

    A.6.4.4.1.5(2)
    هدف از استفاده از پرتوهای افقی برای تشخیص لایه دود در سطوح مختلف، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند بیم دتکتور در سقف نصب می‌شوند. دتکتورهای اضافی در سطوح پایین‌تر حجم فضا نصب می‌شوند. موقعیت دقیق پرتوها تابعی از طراحی خاص است، اما باید شامل پرتوهایی در پایین هر فضای بدون تهویه (هوای مرده) شناسایی‌شده و در محل یا نزدیک به ارتفاع طراحی لایه دود، به همراه موقعیت‌های میانی پرتوها در سایر سطوح باشد.

  • فناوری های تشخیص گاز

    WhatsApp Image 2025 09 25 at 2.25.53 AM

    WhatsApp Image 2025 09 25 at 2.26.01 AM

    دسته‌بندی‌های پایش گاز:

    1. گازهای قابل احتراق / اشتعال‌پذیر
      • خطر انفجار.
      • برای جلوگیری از انفجار، باید سطح گاز در هوا کمتر از حد پایین انفجار (LEL) برای هر گاز نگه داشته شود یا اکسیژن از محیط حذف شود.
      • معمولاً در بازه ۰ تا ۱۰۰ درصد از حد پایین انفجار یا در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شود.
      • دتکتورهای گاز قابل احتراق به‌گونه‌ای طراحی شده‌اند که پیش از وقوع شرایط بالقوه انفجاری هشدار دهند.
    2. گازهای سمی / محرک
      • برای سلامت انسان خطرناک‌اند؛ باید میزان تماس کارکنان با این گازها پایش شود.
      • معمولاً در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شوند.
      • دتکتورهای گاز سمی به‌گونه‌ای طراحی شده‌اند که پیش از رسیدن سطح گاز به غلظت زیان‌آور به کارکنان هشدار دهند.
      • برخی از دتکتورهای گاز سمی می‌توانند میانگین تماس در طول زمان را محاسبه کرده و مقادیر حد تماس کوتاه‌مدت (STEL) و میانگین وزنی زمان‌دار (TWA) را ارائه دهند.
    3. اکسیژن
      • محیط‌هایی با میزان کم اکسیژن (کمتر از ۱۹.۵ درصد حجمی اکسیژن) «کم‌اکسیژن» تلقی شده و تنفس طبیعی انسان را مختل می‌کنند.
      • محیط‌هایی با میزان زیاد اکسیژن (بیش از ۲۵ درصد حجمی اکسیژن) «غنی از اکسیژن» تلقی شده و خطر انفجار در آن‌ها افزایش می‌یابد.
      • در بازه درصد حجمی اندازه‌گیری می‌شود (درصد طبیعی اکسیژن در هوا در سطح دریا ۲۰.۸ درصد حجمی است).
      • دتکتورهای اکسیژن به‌طور کلی به‌گونه‌ای تنظیم می‌شوند که در صورت کم بودن یا زیاد بودن بیش از حد اکسیژن در محیط، هشدار دهند.

     

    فضاهای قابل احتراق

    برای ایجاد شعله، وجود سه شرط ضروری است:
    • یک منبع سوخت (مانند گاز متان یا بخارات بنزین)
    • مقدار کافی اکسیژن (بیش از ۱۰ تا ۱۵ درصد) برای اکسید شدن یا سوختن سوخت
    • یک منبع گرما (جرقه) برای شروع فرآیند

    نمونه‌هایی از منابع گرما و جرقه:
    • شعله‌های باز مانند شعله‌های فندک، مشعل، کبریت و مشعل‌های جوشکاری، رایج‌ترین منابع جرقه هستند.
    • تابش در قالب نور خورشید یا سطوح داغ
    • جرقه‌های ناشی از منابع مختلف مانند روشن یا خاموش کردن وسایل برقی، بیرون کشیدن دوشاخه‌ها، الکتریسیته ساکن یا کلیدهای الکتریکی

    فضاهای قابل احتراق
    عوامل مؤثر در فضاهای قابل احتراق

    بخار در برابر گاز
    اگرچه اصطلاحات «بخار» و «گاز» اغلب به‌جای یکدیگر استفاده می‌شوند، اما معانی یکسانی ندارند. واژه «بخار» به ماده‌ای اطلاق می‌شود که اگرچه در حالت گازی وجود دارد، اما به‌طور معمول در دمای اتاق به صورت مایع یا جامد است. وقتی می‌گوییم یک ماده مایع یا جامد در حال سوختن است، در واقع بخار آن ماده است که می‌سوزد. «گاز» به ماده‌ای گفته می‌شود که به‌طور طبیعی در دمای اتاق در حالت گازی است.

    فشار بخار و نقطه جوش
    فشار بخار، فشاری است که زمانی ایجاد می‌شود که یک جامد یا مایع با بخار خودش در حالت تعادل قرار دارد. این فشار به‌طور مستقیم با دما مرتبط است. مثالی از فشار بخار، فشاری است که توسط بخار یک مایع در یک ظرف بسته نیمه‌پر ایجاد می‌شود. بسته به دما، فشار بخار تا یک آستانه مشخص افزایش می‌یابد. وقتی این آستانه برسد، فضا «اشباع‌شده» در نظر گرفته می‌شود.

    فشار بخار و نقطه جوش یک ماده شیمیایی تعیین می‌کنند که چه میزان از آن احتمال دارد وارد هوا شود. فشار بخار پایین به معنای مولکول‌های کمتری از آن ماده در هواست که قابل اشتعال باشند، بنابراین به‌طور کلی خطر کمتری وجود دارد. این همچنین به این معناست که مولکول‌های کمتری برای آشکارسازی وجود دارد و ممکن است آشکارسازی دشوارتر شده و نیاز به تجهیزات با حساسیت بیشتر باشد. با افزایش فشار بخار و کاهش نقطه جوش، احتمال تبخیر افزایش می‌یابد. اگر ظروف حاوی این نوع مواد شیمیایی باز بمانند یا بر روی سطوح بزرگ پخش شوند، احتمال خطر بیشتری به‌وجود می‌آید.

    نقطه اشتعال (Flashpoint)
    یک ماده قابل اشتعال تا زمانی که به نقطه اشتعال خود نرسد، بخار یا گاز کافی برای شروع آتش تولید نمی‌کند. نقطه اشتعال، پایین‌ترین دمایی است که در آن یک مایع بخار کافی برای ایجاد شعله تولید می‌کند. اگر دما پایین‌تر از این مقدار باشد، مایع بخار کافی برای اشتعال تولید نمی‌کند. اگر نقطه اشتعال برسد و یک منبع خارجی اشتعال مانند جرقه وجود داشته باشد، ماده آتش خواهد گرفت. سند NFPA-325M از آژانس ملی حفاظت در برابر آتش (NFPA) تحت عنوان ویژگی‌های خطر آتش مواد قابل اشتعال، گازها و حلال‌های فرّار، نقطه اشتعال بسیاری از مواد رایج را فهرست کرده است.

    نقطه اشتعال اهمیت دارد زیرا نشان‌دهنده میزان خطر ناشی از یک مایع قابل اشتعال است. به‌طور کلی، هرچه نقطه اشتعال پایین‌تر باشد، تشکیل مخلوط‌های قابل اشتعال سوخت و هوا آسان‌تر بوده و در نتیجه خطر بیشتر است.

    دمای خوداشتعالی
    اگر ماده‌ای تا دمای مشخصی—یعنی دمای اشتعال خودبه‌خودی (یا «خوداشتعالی»)—گرم شود، بیشتر مواد شیمیایی قابل اشتعال می‌توانند بدون وجود منبع خارجی اشتعال، تنها با انرژی گرمایی خود، به‌طور خودبه‌خودی آتش بگیرند.

    چگالی بخار
    چگالی بخار نسبت وزن یک حجم از بخار قابل اشتعال به حجم مساوی از هوا است. بیشتر بخارهای قابل اشتعال سنگین‌تر از هوا هستند، بنابراین به سمت زمین حرکت کرده و در نواحی پایین‌تر تجمع می‌یابند. گاز یا بخاری که چگالی بخار آن بیشتر از ۱ باشد ممکن است در سطوح پایین حرکت کرده و به دنبال یک منبع اشتعال بگردد (برای مثال: هگزان با چگالی بخار ۳.۰). گاز یا بخاری که چگالی بخار آن کمتر از ۱ باشد تمایل دارد به سمت بالا حرکت کند (برای مثال: متان با چگالی بخار ۰.۶). چگالی بخار در تعیین محل بهینه نصب دتکتور اهمیت دارد، زیرا به پیش‌بینی محل احتمالی تجمع گاز یا بخار در یک اتاق یا فضا کمک می‌کند.

    حدود انفجار
    برای ایجاد شعله، مقدار کافی گاز یا بخار باید وجود داشته باشد؛ اما مقدار بیش‌ازحد گاز می‌تواند اکسیژن موجود در فضا را جابه‌جا کرده و مانع از احتراق شود. به همین دلیل، برای غلظت‌های پایین و بالا، حد مشخصی وجود دارد که در آن احتراق می‌تواند رخ دهد. این حدود به عنوان حد پایین انفجار (LEL) و حد بالای انفجار (UEL) شناخته می‌شوند. این‌ها همچنین به عنوان حد پایین اشتعال‌پذیری (LFL) و حد بالای اشتعال‌پذیری (UFL) نیز شناخته می‌شوند.

    برای حفظ احتراق، محیط باید ترکیب مناسبی از سوخت و اکسیژن (هوا) داشته باشد. LEL حداقل مقدار گاز مورد نیاز برای احتراق و UEL حداکثر مقدار آن را نشان می‌دهد. مقادیر دقیق LEL برای گازهای مختلف متفاوت است و به صورت درصد حجمی در هوا اندازه‌گیری می‌شوند. مقادیر LEL و UEL گازها در سند NFPA 325 درج شده‌اند.

    LEL معمولاً بین ۱.۴٪ تا ۵٪ حجمی است. با افزایش دما، انرژی کمتری برای ایجاد احتراق مورد نیاز است و درصد گاز لازم برای رسیدن به ۱۰۰٪ LEL کاهش یافته و در نتیجه خطر افزایش می‌یابد. محیطی با سطح اکسیژن بالاتر باعث افزایش UEL گاز، همچنین نرخ و شدت گسترش شعله می‌شود. از آنجا که مخلوطی از چندین گاز شرایط را پیچیده می‌کند، LEL دقیق آن‌ها باید از طریق آزمایش مشخص شود.

    بیشتر ابزارهای اندازه‌گیری گازهای قابل احتراق در محدوده LEL کار می‌کنند و قرائت گاز را به صورت درصدی از LEL نمایش می‌دهند. برای مثال: عدد ۵۰٪ LEL به این معناست که مخلوط گاز نمونه‌برداری‌شده شامل نیمی از مقدار گاز مورد نیاز برای حمایت از احتراق است.

    هر غلظتی از گاز یا بخار که بین این دو حد قرار گیرد، در محدوده قابل اشتعال (انفجاری) قرار دارد. مواد مختلف دارای پهنای متفاوتی از محدوده اشتعال‌پذیری هستند — برخی بسیار گسترده و برخی دیگر باریک‌تر هستند. موادی که محدوده اشتعال‌پذیری وسیع‌تری دارند، معمولاً خطرناک‌تر محسوب می‌شوند، زیرا سطوح بیشتری از غلظت آن‌ها می‌تواند دچار اشتعال شود.

    فضاهایی که در آن‌ها سطح غلظت گاز پایین‌تر از LEL است (سوخت کافی برای اشتعال وجود ندارد)، «لاغر» (lean) و غیرقابل اشتعال نامیده می‌شوند؛ و فضاهایی که سطح گاز بالاتر از UEL است (اکسیژن کافی برای اشتعال وجود ندارد)، «غلیظ» (rich) و غیرقابل اشتعال تلقی می‌شوند.

    فضاهای سمی

    پایش گازهای سمی
    گاز سمی به گازی گفته می‌شود که توانایی آسیب رساندن به بافت‌های زنده، اختلال در سیستم عصبی مرکزی، ایجاد بیماری‌های شدید یا—در موارد حاد—مرگ را دارد، زمانی که از طریق بلع، تنفس یا جذب از راه پوست یا چشم وارد بدن شود. میزان لازم برای ایجاد این اثرات به‌طور گسترده‌ای با توجه به ماهیت ماده و مدت زمان تماس متفاوت است. «سمیت حاد» به تماس کوتاه‌مدت مانند یک مواجهه‌ی لحظه‌ای اشاره دارد. «سمیت مزمن» به تماس بلندمدت مانند مواجهه‌های مکرر یا طولانی اشاره دارد.

    پایش گازهای سمی اهمیت دارد زیرا برخی از این مواد قابل مشاهده یا بوییدن نیستند و اثرات فوری ندارند. بنابراین شناسایی خطر گاز از طریق حواس فرد معمولاً خیلی دیر و پس از رسیدن غلظت به سطح زیان‌آور انجام می‌شود.

    اثرهای سمی گازها از بی‌ضرر تا بسیار سمی متغیر است. برخی در مواجهه‌های کوتاه و در سطح پایین نیز تهدیدکننده‌ی زندگی هستند، در حالی که برخی دیگر تنها در مواجهه‌های مکرر و با غلظت بالا خطرناک‌اند. میزان خطری که یک ماده برای یک کارگر ایجاد می‌کند، به عوامل مختلفی بستگی دارد که شامل سطح غلظت گاز و مدت زمان تماس است.

    حدود تماس مجاز
    کنفرانس آمریکایی متخصصان بهداشت صنعتی دولتی (ACGIH) فهرستی سالانه و بازبینی‌شده از حدود مجاز تماس با ترکیبات صنعتی رایج منتشر می‌کند که با عنوان «مقادیر حد آستانه (TLV) و شاخص‌های تماس زیستی (BEI) بر اساس مستندات حدود آستانه مواد شیمیایی و عوامل فیزیکی» شناخته می‌شود. (برای سفارش نسخه‌ای از آن به www.acgih.org مراجعه کنید).
    ACGIH مفهوم مقدار حد آستانه (TLV) را تعریف کرده است؛ TLV به غلظت مجاز یک ماده آلاینده در هوا گفته می‌شود که تصور می‌شود تقریباً همه کارگران بتوانند به‌طور مکرر و روزانه در طول عمر کاری خود در معرض آن قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. این مقادیر بر اساس ترکیبی از تجربه صنعتی و مطالعات انسانی و حیوانی تعیین شده‌اند.

    میانگین‌های وزنی زمانی (TWA)
    مقادیر TLV معمولاً به‌صورت میانگین وزنی ۸ ساعته در نظر گرفته می‌شوند. جنبه میانگین‌گیری به این معناست که مواجهه‌هایی بالاتر از حد مجاز قابل‌قبول است، به شرطی که با دوره‌هایی از تماس کمتر از حد مجاز جبران شوند.

    محدودیت‌های تماس کوتاه‌مدت (STEL)
    محدودیت‌های تماس کوتاه‌مدت غلظت‌هایی هستند که بالاتر از میانگین ۸ ساعته‌اند و کارگران می‌توانند برای مدت زمان کوتاه در معرض آن‌ها قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. (اگر غلظت به اندازه کافی بالا باشد، حتی یک بار تماس نیز می‌تواند اثرات مضر بر سلامت داشته باشد.)
    STEL برای موقعیت‌هایی به‌کار می‌رود که در آن کارگر در معرض غلظت بالای گاز قرار دارد اما فقط برای مدت کوتاهی. این محدودیت‌ها به‌صورت میانگین وزنی ۱۵ دقیقه‌ای تعریف می‌شوند که نباید حتی در صورتی که میانگین ۸ ساعته کمتر از مقدار TLV باشد، از آن فراتر رود.

    غلظت‌های سقفی (Ceiling Concentrations)
    برای برخی از گازهای سمی، حتی یک تماس که از TLV فراتر رود می‌تواند برای سلامت کارگر خطرناک باشد. در این موارد، از غلظت‌های سقفی استفاده می‌شود تا سطوحی را مشخص کند که هرگز نباید از آن‌ها عبور شود.

    حدود مجاز تماس (PELs)
    حدود مجاز تماس (Permissible Exposure Limits) توسط اداره ایمنی و بهداشت شغلی ایالات متحده (OSHA) تدوین و اجرا می‌شوند. بخش ۱۹۱۰.۱۰۰۰ از بخش ۲۹ کد مقررات فدرال (CFR) این استانداردها را شامل می‌شود که مشابه مقادیر TLV سازمان ACGIH هستند، با این تفاوت که PEL به‌صورت قانونی الزام‌آور است نه صرفاً توصیه‌شده. با این حال، دقیق‌ترین مقادیر PEL معمولاً در برگه‌های اطلاعات ایمنی مواد (MSDS) درج شده‌اند.

    شرایط فوری خطرناک برای زندگی و سلامت (IDLH)
    مؤسسه ملی ایمنی و بهداشت شغلی (NIOSH) شرایط تماس IDLH را به‌عنوان شرایطی تعریف می‌کند که در آن، قرار گرفتن در معرض آلاینده‌های هوابرد می‌تواند منجر به مرگ، اثرات مضر فوری یا تأخیری دائمی بر سلامت شود یا مانع از فرار فرد از آن محیط گردد.
    از آنجا که مقادیر IDLH برای تضمین توانایی کارگر در فرار از محیط خطرناک در صورت از کار افتادن تجهیزات حفاظت تنفسی تعیین شده‌اند، این مقادیر عمدتاً برای تعیین نوع مناسب وسایل حفاظت تنفسی مطابق با استانداردهای OSHA به‌کار می‌روند.

    کاهش یا افزایش سطح اکسیژن

    کمبود اکسیژن (Oxygen Deficiency)
    هوای طبیعی محیط دارای غلظت ۲۰.۸ درصد حجمی اکسیژن است. زمانی که سطح اکسیژن به کمتر از ۱۹.۵ درصد از کل ترکیب هوا کاهش یابد، آن فضا «کم‌اکسیژن» در نظر گرفته می‌شود. در چنین محیط‌هایی، اکسیژن لازم برای ادامه‌ی حیات ممکن است با گازهای دیگری مانند دی‌اکسید کربن جایگزین شود. این امر منجر به ایجاد فضایی می‌شود که در صورت تنفس، می‌تواند خطرناک یا کشنده باشد.

    کمبود اکسیژن همچنین ممکن است بر اثر زنگ‌زدگی، خوردگی، تخمیر یا سایر اشکال اکسایش که اکسیژن مصرف می‌کنند، ایجاد شود. در فرآیند تجزیه مواد، اکسیژن از جو برای تأمین واکنش اکسایش مصرف می‌شود.

    تأثیرات کمبود اکسیژن ممکن است تدریجی یا ناگهانی باشد، که این موضوع به غلظت کلی اکسیژن و همچنین سطوح دیگر گازهای موجود در فضا بستگی دارد. به‌طور کلی، کاهش سطح اکسیژن محیط باعث بروز علائم فیزیولوژیکی زیر می‌شود:

    درصد اکسیژن اثرات فیزیولوژیکی
    ۱۹.۵ تا ۱۶ بدون اثر قابل مشاهده
    ۱۶ تا ۱۲ افزایش سرعت تنفس، افزایش ضربان قلب، اختلال در تمرکز، تفکر و هماهنگی حرکتی
    ۱۴ تا ۱۰ قضاوت نادرست، ضعف در هماهنگی عضلانی، خستگی سریع در اثر فعالیت، تنفس متناوب
    ۱۰ تا ۶ تهوع و استفراغ، ناتوانی در انجام حرکات شدید یا از دست دادن توان حرکتی، بیهوشی و در ادامه مرگ
    کمتر از ۶ دشواری در تنفس، حرکات تشنجی، مرگ

    غنی شدن اکسیژن (Oxygen Enrichment)
    زمانی که غلظت اکسیژن در فضا به بالاتر از ۲۰.۸ درصد حجمی افزایش یابد، آن محیط «غنی از اکسیژن» محسوب می‌شود و مستعد ناپایداری خواهد بود. در نتیجه افزایش سطح اکسیژن، احتمال و شدت آتش‌سوزی ناگهانی یا انفجار به‌شدت افزایش می‌یابد.

     

    فناوری‌های آشکارسازی گاز

    امروزه انواع مختلفی از فناوری‌های آشکارسازی گاز مورد استفاده قرار می‌گیرند. از جمله رایج‌ترین آن‌ها می‌توان به موارد زیر اشاره کرد:

    • کاتالیستی مهره‌ای (Catalytic Bead)
      • نیمه‌رسانای اکسید فلز (که با عنوان «حالت جامد» نیز شناخته می‌شود)
      • مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
      • مادون قرمز باز با مسیر بلند (Open (Long Path) Infrared)
      • مادون قرمز فوتواکوستیک (Photoacoustic Infrared)
      • الکتروشیمیایی برای آشکارسازی گازهای سمی
      • الکتروشیمیایی برای آشکارسازی اکسیژن
      • رسانایی گرمایی (Thermal Conductivity)
      • یونیزاسیون نوری (Photoionization)
      • مادون قرمز غیرپراکندگی (NDIR)

    جدول‌ها و نمودارهای صفحات بعدی عملکرد هر یک از این فناوری‌ها را به‌صورت خلاصه نمایش می‌دهند.

    فناوری: کاتالیستی مهره‌ای (Catalytic Bead)

    WhatsApp Image 2025 09 25 at 2.26.03 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    اصل عملکرد:
    از یک مهره کاتالیستی برای اکسید کردن گاز قابل احتراق استفاده می‌کند؛ پل ویتستون تغییر مقاومت ایجاد شده را به سیگنال الکتریکی دتکتور تبدیل می‌کند.

    توضیح دقیق:
    یک سیم پیچ با پوشش ماده‌ای شیشه‌ای یا سرامیکی که روی آن کاتالیزور قرار دارد، به صورت الکتریکی تا دمایی گرم می‌شود که بتواند گاز تحت پایش را بسوزاند (اکسید کند). این فرآیند گرما تولید کرده و دمای سیم را افزایش می‌دهد. با افزایش دمای سیم، مقاومت الکتریکی آن نیز افزایش می‌یابد. این مقاومت توسط مدار پل ویتستون اندازه‌گیری شده و این اندازه‌گیری به سیگنال الکتریکی تبدیل می‌شود که توسط دتکتور گاز استفاده می‌شود. سنسور دوم به نام جبران‌کننده برای جبران تغییرات دما، فشار و رطوبت به کار می‌رود.

    محدوده اندازه‌گیری:
    درصدی از حد پایین انفجار (% LEL)

    مزایا:
    طول عمر بالا، حساسیت کمتر به تغییرات دما، رطوبت، تراکم و فشار؛ دقت بالا؛ پاسخ سریع؛ توانایی پایش گستره وسیعی از گازها و بخارهای قابل احتراق در هوا.

    معایب:
    مستعد مسمومیت سنسور؛ نیاز به هوا یا اکسیژن؛ طول عمر کاهش‌یافته در مواجهه‌های مکرر یا مداوم با غلظت‌های بالای LEL.

    فناوری: نیمه‌رسانای اکسید فلز (Metal Oxide Semiconductor)

    WhatsApp Image 2025 09 25 at 2.26.09 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق؛ گازهای سمی

    اصل عملکرد:
    این دتکتور از اکسید فلزی ساخته شده است که در واکنش به حضور گاز، مقاومت آن تغییر می‌کند؛ این تغییر مقاومت اندازه‌گیری شده و به مقدار غلظت گاز تبدیل می‌شود.

    توضیح دقیق:
    یک ماده نیمه‌رسانا (اکسید فلز) روی یک بستر عایق بین دو الکترود قرار می‌گیرد.
    بستر تا دمایی گرم می‌شود که حضور گاز می‌تواند باعث تغییر برگشت‌پذیر در رسانایی ماده نیمه‌رسانا شود. وقتی گازی وجود ندارد، اکسیژن به صورت یون روی سطح جذب شده و سنسور نیمه‌رسانا می‌شود؛ وقتی مولکول‌های گاز مورد نظر حضور دارند، جایگزین یون‌های اکسیژن شده و مقاومت بین الکترودها کاهش می‌یابد. این تغییر به‌صورت الکتریکی اندازه‌گیری شده و متناسب با غلظت گاز است.

    محدوده اندازه‌گیری:
    قسمت در میلیون (PPM)

    مزایا:
    حساسیت بالا (قادر به تشخیص غلظت‌های پایین)؛ دامنه دمای عملکرد وسیع؛ عمر طولانی.

    معایب:
    غیر اختصاصی (حساسیت متقاطع به ترکیبات دیگر)؛ خروجی غیرخطی؛ حساس به تغییرات رطوبت؛ مستعد مسمومیت.

     

     

    فناوری: مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
    (همچنین با نام مادون قرمز غیرپخشی یا NDIR شناخته می‌شود)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

     

    اصل عملکرد:
    این فناوری از قابلیت جذب پرتو مادون قرمز توسط گازها استفاده می‌کند. دو نمونه گاز شامل گاز مورد نظر و یک گاز مرجع بی‌اثر در معرض تابش مادون قرمز قرار می‌گیرند. میزان عبور نور از هر نمونه اندازه‌گیری شده و با هم مقایسه می‌شود تا غلظت گاز هدف تعیین گردد.

     

    توضیح دقیق:
    از یک منبع مادون قرمز با مدولاسیون الکتریکی و دو آشکارساز استفاده می‌شود که انرژی مادون قرمز را به سیگنال‌های الکتریکی تبدیل می‌کنند. هر آشکارساز به دامنه خاصی از طول موج مادون قرمز حساس است.
    پرتو ساطع‌شده از منبع از طریق یک پنجره وارد حجم باز محفظه می‌شود. ممکن است از یک آینه در انتهای مسیر برای بازتاب انرژی و هدایت آن به سمت آشکارسازها استفاده شود.

    وجود گاز قابل احتراق باعث کاهش شدت پرتو دریافتی توسط آشکارساز تحلیلی می‌شود، اما شدت پرتو دریافت‌شده توسط آشکارساز مرجع تغییر نمی‌کند.
    میکروپروسسور نسبت این دو سیگنال را بررسی کرده و آن را به درصد حد پایین انفجار (%LEL) تبدیل می‌کند.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار (%LEL)

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)
    نسبت به دتکتورهای مسیر باز، اندازه‌گیری دقیق در محل نقطه‌ای

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست.

     

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    WhatsApp Image 2025 09 25 at 2.26.09 AM1

    اصل عملکرد:
    عملکرد مشابه دتکتورهای مادون قرمز نقطه‌ای دارد، با این تفاوت که منبع مادون قرمز از آشکارساز جدا شده است.

     

    توضیح دقیق:
    دتکتورهای مسیر باز مادون قرمز، مفهوم تشخیص نقطه‌ای را به مسیرهایی با طول تا ۱۰۰ متر گسترش می‌دهند. مانند نمونه‌های نقطه‌ای، این دتکتورها از دو پرتو استفاده می‌کنند:

    • پرتو “نمونه” در طول موجی از مادون قرمز قرار دارد که توسط هیدروکربن‌ها جذب می‌شود.
    • پرتو “مرجع” در طول موجی خارج از محدوده جذب گاز قرار دارد.

    نسبت بین این دو پرتو به‌طور پیوسته مقایسه می‌شود:
    در حالت بدون گاز، نسبت سیگنال‌ها ثابت باقی می‌ماند.
    وقتی ابر گاز از مسیر عبور می‌کند، پرتو نمونه به نسبت غلظت گاز جذب یا تضعیف می‌شود، اما پرتو مرجع بدون تغییر باقی می‌ماند.
    سیستم، حاصل‌ضرب غلظت متوسط گاز در عرض ابر گاز را محاسبه کرده و مقدار را به‌صورت درصد حد پایین انفجار بر متر (%LEL/m) نمایش می‌دهد.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار بر متر (%LEL/m)

     

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست
    برخلاف فناوری نقطه‌ای، محل نشت گاز را به‌طور دقیق مشخص نمی‌کند
    نیاز به مسیر باز و بدون مانع بین منبع و آشکارساز دارد

    WhatsApp Image 2025 09 25 at 2.26.10 AM2

    WhatsApp Image 2025 09 25 at 2.26.10 AM1

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال (Combustible gases)

     

    اصل عملکرد:
    مشابه دتکتورهای مادون قرمز نقطه‌ای (Point IR) عمل می‌کند، با این تفاوت که منبع تابش مادون قرمز و آشکارساز از یکدیگر جدا هستند.

     

    توضیح تفصیلی:
    دتکتورهای مسیر باز مادون قرمز، روش تشخیص نقطه‌ای را به مسیری با طول حداکثر ۱۰۰ متر گسترش می‌دهند. مانند فناوری نقطه‌ای، این سیستم از دو پرتو استفاده می‌کند:

    • پرتو نمونه (Sample Beam): در طول موج مادون قرمز قرار دارد که توسط گازهای هیدروکربنی جذب می‌شود.
    • پرتو مرجع (Reference Beam): خارج از محدوده جذب گاز قرار دارد و تحت تأثیر حضور گاز نیست.

    نسبت شدت این دو پرتو به‌صورت پیوسته مقایسه می‌شود:
    اگر گازی وجود نداشته باشد، نسبت دو سیگنال ثابت می‌ماند.
    وقتی ابری از گاز از مسیر عبور می‌کند، شدت پرتو نمونه کاهش می‌یابد، ولی پرتو مرجع ثابت باقی می‌ماند.
    سیستم با مقایسه این نسبت، مقدار حاصل‌ضرب میانگین غلظت گاز و عرض ابر گاز را محاسبه می‌کند.

    واحد اندازه‌گیری: درصد حد انفجار پایین در واحد متر (%LEL/m)

     

    مزایا:

    • دقت و گزینش‌پذیری بالا
    • دامنه وسیع اندازه‌گیری
    • نیاز به نگهداری بسیار کم
    • مقاوم در برابر مسمومیت شیمیایی
    • نیاز نداشتن به هوا یا اکسیژن محیط
    • پایداری بسیار خوب در کالیبراسیون (عدم نیاز به کالیبراسیون منظم)
    • طراحی Fail-to-safe (ایمن در صورت بروز خطا)

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

    WhatsApp Image 2025 09 25 at 2.26.11 AM 1

    WhatsApp Image 2025 09 25 at 2.26.11 AM1

    • نسبت به فناوری نقطه‌ای، توانایی تعیین دقیق محل نشت گاز را ندارد
    • نیاز به مسیر مستقیم و بدون مانع بین منبع و آشکارساز دارد

     

     

    فناوری: مادون قرمز فوتواکوستیک (Photoacoustic Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی (Combustible gases; Toxic gases)

     

    اصل عملکرد:
    از توانایی جذب پرتو مادون قرمز توسط گاز و تغییرات فشار ناشی از آن استفاده می‌شود.

     

    توضیح تفصیلی:
    نمونه گاز در معرض نور مادون قرمز قرار می‌گیرد. زمانی که مولکول‌های گاز نور را جذب می‌کنند، ضربان یا پالس فشاری تولید می‌شود.
    مقدار این پالس فشاری مستقیماً نشان‌دهنده غلظت گاز موجود است.
    این تغییرات فشار توسط میکروفون یا سنسور حساس به فشار تشخیص داده می‌شود و به سیگنال الکتریکی تبدیل می‌گردد.

    واحدهای اندازه‌گیری:

    • درصد حد انفجار پایین (%LEL)
    • درصد حجمی (% by volume)
    • قسمت در میلیون (PPM)
    • قسمت در میلیارد (PPB)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • استفاده آسان
    • مقاوم در برابر مسمومیت سنسور
    • پایداری بلندمدت

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

     

    فناوری: الکتروشیمیایی برای گازهای سمی (Electrochemical Toxic Gases)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (Toxic gases)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت گاز است.

     

    توضیح تفصیلی:
    سنسور شامل یک محفظه با ژل یا الکترولیت و دو الکترود فعال است:

    • الکترود اندازه‌گیری (آند)
    • الکترود متقابل (کاتد)
      یک الکترود سوم (مرجع) ولتاژ ثابت بین آند و کاتد را حفظ می‌کند.

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.

    در آند واکنش اکسیداسیون و در کاتد واکنش کاهش رخ می‌دهد.
    در نتیجه، یون‌های مثبت به سمت کاتد و یون‌های منفی به سمت آند حرکت می‌کنند.
    این جریان الکتریکی متناسب با غلظت گاز سمی تولید می‌شود.

    واحد اندازه‌گیری:
    قسمت در میلیون (PPM) برای گازهای سمی

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان

     

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش طول عمر در محیط‌های بسیار خشک یا بسیار گرم

     

     

     

     

    دتکتور گاز الکتروشیمیائی گازهای سمی

    Electrochemical Toxic Sensor

     

     

    فناوری: الکتروشیمیایی برای سنجش اکسیژن (Electrochemical Oxygen)

     

    نوع گاز قابل تشخیص:
    کمبود یا غنی‌شدگی اکسیژن (O₂)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت اکسیژن است.

     

    توضیح تفصیلی:
    سنسور شامل محفظه‌ای حاوی ژل یا الکترولیت و دو الکترود است:

    • الکترود اندازه‌گیری (آند)
    • الکترود مرجع/متقابل (معمولاً از جنس سرب)

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.
    واکنش اکسیداسیون در آند و واکنش کاهش در کاتد رخ می‌دهد.
    جریان یونی ایجادشده، متناسب با غلظت اکسیژن، یک جریان الکتریکی تولید می‌کند که توسط دستگاه اندازه‌گیری می‌شود.

    واحد اندازه‌گیری:
    درصد حجمی اکسیژن (% Volume)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان
    • مقاوم در برابر سمّی شدن سنسور

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش عمر در محیط‌های بسیار خشک یا بسیار گرم، یا در شرایط اکسیژن غنی‌شده

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM

     

     

    دتکتور گاز الکتروشیمیائی گاز اکسیژن

    Typical Electrochemical Oxygen Sensor

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM1

     

    دتکتور گاز  رسانایی حرارتی معمولی

    Typical Thermal Conductivity Sensor

     

    فناوری: رسانش گرمایی (Thermal Conductivity)

    WhatsApp Image 2025 09 25 at 2.26.13 AM

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی

     

    اصل عملکرد:
    سنجش توانایی گاز برای انتقال حرارت با مقایسه آن با یک گاز مرجع (معمولاً هوا)

    توضیح تفصیلی:
    در این روش از دو سنسور استفاده می‌شود:

    • سنسور آشکارساز (Detecting Sensor)
    • سنسور جبران‌کننده (Compensating Sensor)

    هر دو سنسور در یک پل ویتستون (Wheatstone Bridge) قرار دارند.
    سنسور آشکارساز در معرض گاز موردنظر قرار دارد، در حالی که سنسور جبران‌کننده در محفظه‌ای با هوای تمیز مهر و موم شده است.
    وقتی گاز وارد سنسور آشکارساز می‌شود، باعث خنک شدن آن می‌گردد که این امر مقاومت الکتریکی را تغییر می‌دهد.
    این تغییر مقاومت متناسب با غلظت گاز است.
    سنسور جبران‌کننده تضمین می‌کند که تغییر دما ناشی از خود گاز است نه دمای محیط یا عوامل دیگر.

    واحد اندازه‌گیری:
    PPM تا ۱۰۰٪ حجمی

     

    مزایا:

    • دامنه وسیع اندازه‌گیری

     

    معایب:

    • غیر اختصاصی (به سایر ترکیبات نیز واکنش نشان می‌دهد)
    • برای گازهایی با رسانش گرمایی نزدیک به یک (مانند هوا، NH₃، CO، NO، O₂، N₂) مناسب نیست
    • اندازه‌گیری گازهایی با رسانش گرمایی کمتر از یک دشوارتر است
    • خروجی سیگنال همیشه خطی نیست

     

    فناوری: یونیزاسیون نوری (Photoionization – PID)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (ترکیبات آلی)

     

    اصل عملکرد:
    مبنای آشکارسازی بر اساس یونیزه کردن گاز با استفاده از پرتو فرابنفش (UV)

     

    توضیح تفصیلی:
    دتکتور یونیزاسیون نوری (PID) از یک لامپ فرابنفش برای یونیزه کردن ترکیب موردنظر استفاده می‌کند.
    مولکول‌های گاز تحت تابش فرابنفش یونیزه شده و یون‌ها تولید می‌شوند.
    این یون‌ها روی یک الکترود جمع‌آوری می‌گردند و جریان الکتریکی ایجاد می‌کنند.
    مقدار این جریان متناسب با غلظت گاز است و به‌صورت عددی در واحد PPM یا مقادیر زیر PPM (sub-ppm) روی نمایشگر دستگاه نشان داده می‌شود.

     

    واحد اندازه‌گیری:
    PPM و زیر PPM

     

    مزایا:

    • سرعت پاسخ‌دهی بسیار بالا
    • توانایی تشخیص در سطوح بسیار پایین
    • قابلیت تشخیص طیف گسترده‌ای از ترکیبات

     

    معایب:

    • هزینه بالا
    • نیاز به نگهداری بیشتر
    • نیاز به کالیبراسیون مکرر
    • غیر اختصاصی بودن (عدم تمایز دقیق بین ترکیبات مشابه)
    • حساسیت به رطوبت

     

    دتکتور گاز فوتویونیزاسیون

    Photoionization Sensor Design

    WhatsApp Image 2025 09 25 at 2.26.13 AM1

    روش‌های نمونه‌برداری گاز

    سه روش اصلی برای نمونه‌برداری از گاز وجود دارد:

    ۱. نمونه‌برداری به روش انتشار (Diffusion Sampling)
    ۲. نمونه‌برداری با پمپ (Pumped Sampling)
    ۳. نمونه‌برداری با مکش (Aspirated Sampling)

     

    نمونه‌برداری به روش انتشار (Diffusion Sampling)

    در این روش، انتقال گاز به سمت حسگر از طریق حرکت طبیعی مولکول‌ها از ناحیه‌ای با غلظت بالا به ناحیه‌ای با غلظت پایین صورت می‌گیرد.
    واژه «انتشار» به فرایندی اشاره دارد که در آن مولکول‌ها یا ذرات دیگر به دلیل حرکت حرارتی تصادفی خود با یکدیگر مخلوط می‌شوند.
    شرایط محیطی مانند دما، جریان‌های هوا و سایر عوامل محیطی بر میزان و سرعت انتشار تأثیر می‌گذارند.

     

    مزایا:

    • نصب دتکتور دقیقاً در نقطه موردنظر برای نمونه‌گیری انجام می‌شود.
    • پاسخ‌دهی سریع به دلیل عدم نیاز به انتقال نمونه
    • عدم نیاز به پمپ یا فیلتر و در نتیجه نگهداری ساده‌تر

     

    نمونه‌برداری با پمپ (Pumped Sampling)

    در این روش، یک پمپ برای مکش نمونه گاز از یک مکان دوردست به داخل یا از میان حسگر به‌کار گرفته می‌شود.
    با استفاده از نمونه‌برداری پمپی، امکان جمع‌آوری نمونه‌ها به‌صورت همزمان از دو یا چند محل مختلف وجود دارد.

     

    مزایا:

    • قابلیت نمونه‌گیری از فواصل دور
    • امکان پایش هم‌زمان چند نقطه
    • مناسب برای کاربردهایی که در آن حسگر نمی‌تواند مستقیماً در محل نمونه‌برداری نصب شود

     

    توجه:

    • این روش نیاز به تجهیزات مکانیکی (پمپ) دارد که ممکن است نیازمند نگهداری منظم باشند.
    • ممکن است به زمان انتقال نمونه نیاز داشته باشد که باعث تاخیر در پاسخ‌دهی شود.

     

    شرایط مناسب برای نمونه‌برداری پمپی (Pumped Sampling):

    مواردی که این روش توصیه می‌شود:

    • نقطه نمونه‌برداری بسیار گرم یا بسیار سرد است.
    • دسترسی به محل نمونه‌برداری دشوار است.
    • بخارهای سنگین وجود دارد که به‌خوبی با نیروهای طبیعی پخش نمی‌شوند.
    • در برخی کاربردها، استفاده از پمپ می‌تواند سیستم را از کلاس ضدانفجار (XP) به کلاس کاربرد عمومی (GP) تبدیل کند.
      (در این حالت، ممکن است نیاز به نصب مهارکننده شعله (Flashback Arrestor) بین ورودی نمونه و حسگر باشد.)
    • مناسب برای فضاهای بسته و محدود (Confined Spaces)

     

    نمونه‌برداری آسپیره (Aspirated Sampling)

    در این روش، نمونه گاز با استفاده از مکش غیرفعال یا جریان طبیعی به داخل یا از میان حسگر کشیده می‌شود.

     

    مزایای نمونه‌برداری آسپیره نسبت به پمپی:

    • هزینه پایین‌تر
    • نگهداری کمتر به‌دلیل نبود قطعات متحرک
      (در مقایسه با پمپ که نیاز به تعمیرات دوره‌ای دارد)

     

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.

     

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

  • اصول عملکرد بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.31 AM

    این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

    فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

    بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

    WhatsApp Image 2025 09 14 at 9.19.31 AM1

    بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

    از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM

    تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

    لوازم جانبی  بیم دتکتور دودی اعلام حریق

    لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

    ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

    برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

    کاربرد صحیح بیم دتکتور دودی اعلام حریق

    مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

    اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

    دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

    بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

    ارتفاع سقف در بیم دتکتور دودی اعلام حریق

    حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

    اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

    در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

    محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

    با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

    تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

    مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

    بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

    استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.32 AM1
    استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM2

    محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

    یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

    WhatsApp Image 2025 09 14 at 9.19.33 AM

    اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

    WhatsApp Image 2025 09 14 at 9.19.33 AM1

    عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

    حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.34 AM

    هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

    مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

    استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

    • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
      (NFPA 72-1999, 2-3.4.5.2)
    • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
      (NFPA 72-1999, 2-3.4.4)
    • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
      (NFPA 72-1999, 2-3.4.4)
    • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
    • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
      (NFPA 72-1999, 2-3.4.6.1)

    نصب  بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

    از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

    این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

    فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

    • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
    • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

    با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

    در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

    توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

    سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

    • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
    • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
    • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
    • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
    • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
    • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
    • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

    در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.