سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

IMG 1614

1 اطلاعات کلی
7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
7.1.4* الزامات ایمنی.

7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

7.3 محل قرارگیری و فاصله‌گذاری
7.3.1 محل قرارگیری
7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

7.3.2 فاصله‌گذاری
اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

7.4 الزامات دی‌اکسید کربن
7.4.1 نرخ و مدت زمان تخلیه
7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

7.4.3 استفاده هم‌زمان
7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

7.5 مشخصات تجهیزات
7.5.1 شلنگ
شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

7.5.2* مجموعه اسپرینکلر تخلیه
شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

7.5.3 نگهداری شلنگ
7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

7.5.4* شارژ شلنگ
7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

7.6 آموزش
7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

 

نوشته‌های مشابه

  • راهنمای نصب بیم دتکتور Thefirebeam

    WhatsApp Image 2025 09 14 at 8.43.22 AM2WhatsApp Image 2025 09 14 at 8.43.25 AMWhatsApp Image 2025 09 14 at 8.43.25 AM1WhatsApp Image 2025 09 14 at 8.43.26 AMWhatsApp Image 2025 09 14 at 8.43.26 AM1WhatsApp Image 2025 09 14 at 8.43.27 AMWhatsApp Image 2025 09 14 at 8.43.27 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM WhatsApp Image 2025 09 14 at 8.43.28 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM2 WhatsApp Image 2025 09 14 at 8.43.29 AM WhatsApp Image 2025 09 14 at 8.43.29 AM2 WhatsApp Image 2025 09 14 at 8.43.30 AM WhatsApp Image 2025 09 14 at 8.43.30 AM1 WhatsApp Image 2025 09 14 at 8.43.30 AM2 WhatsApp Image 2025 09 14 at 8.43.31 AM WhatsApp Image 2025 09 14 at 8.43.31 AM1 WhatsApp Image 2025 09 14 at 8.43.32 AM

    مشخصات فنی

    مشخصات الکتریکی:
    ولتاژ تغذیه: 10.2 تا 40 ولت DC
    جریان مصرفی: 3 میلی‌آمپر (جریان ثابت) در تمام حالات عملیاتی

    مشخصات محیطی:
    دمـا: 10- درجه سانتی‌گراد تا 55+ درجه سانتی‌گراد
    رطوبت: 10 تا 95٪ RH بدون میعان
    شاخص حفاظتی: IP65 در صورت نصب و ترمینال‌گذاری مناسب

    مشخصات مکانیکی:
    هد بیم: 180 میلی‌متر ارتفاع × 155 میلی‌متر عرض × 137 میلی‌متر عمق
    وزن: 1.1 کیلوگرم
    کنترلر: 185 میلی‌متر ارتفاع × 120 میلی‌متر عرض × 62 میلی‌متر عمق
    وزن: 0.55 کیلوگرم
    رفلکتور میان‌برد 40KIT80: 293 میلی‌متر ارتفاع × 293 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.8 کیلوگرم
    رفلکتور بلندبرد 80KIT100: 394 میلی‌متر ارتفاع × 394 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 1.8 کیلوگرم
    آداپتور: 270 میلی‌متر ارتفاع × 250 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.6 کیلوگرم (برای نصب هد بیم روی یونی‌استرات)

    مشخصات اپتیکی:
    طول موج اپتیکی: 870 نانومتر
    حداکثر تراز زاویه‌ای: ±15 درجه
    حداکثر انحراف زاویه‌ای (استاتیک بدون تراز خودکار):
    هد بیم ±0.75 درجه – رفلکتور ±2 درجه

    مشخصات عملیاتی:
    محدوده حفاظتی:
    FIREBEAM: محصول استاندارد 5 تا 40 متر
    40KIT80: کیت رفلکتور میان‌برد 40 تا 80 متر
    80KIT100: کیت رفلکتور بلندبرد 80 تا 100 متر

    سطوح حساسیت آلارم:
    25٪ (1.25dB) تا 50٪ (3dB) با افزایش 1٪ (0.05dB)
    (پیش‌فرض 35٪ (1.87dB))

    شرایط آلارم:
    کاهش عبور نور به کمتر از سطح حساسیت از پیش تعیین‌شده
    زمان رسیدن به شرایط آلارم قابل تنظیم 2 تا 30 ثانیه با افزایش 1 ثانیه
    (پیش‌فرض 10 ثانیه)

    نمایش آلارم:
    وضعیت کنترلر – FIRE
    LED قرمز چشمک‌زن کنترلر هر 0.5 ثانیه
    LED قرمز چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله آلارم CO با ظرفیت 2 آمپر @ 30 ولت DC

    ویژگی‌های تست/ریست:
    عملکرد تست بیم توسط کنترلر
    انتخاب حالت آلارم ماندگار/ریست خودکار (پیش‌فرض ریست خودکار)
    ریست آلارم در حالت ماندگار با ریست کنترلر، قطع تغذیه برای بیش از 5 ثانیه، اعمال 12 تا 24 ولت DC به ورودی ریست در هد بیم

    سطح حساسیت خطا:
    90٪

    شرایط خطا:
    کاهش عبور نور به کمتر از سطح حساسیت خطا در کمتر از 1 ثانیه
    قطع تغذیه یا ولتاژ ورودی کمتر از 9 ولت DC
    حالت‌های راه‌اندازی اولیه، پیش‌تراز و تراز خودکار
    خاموش شدن بیم در طول تعمیر و نگهداری (بازگشت خودکار پس از 8 ساعت به حالت عادی)
    زمان رسیدن به شرایط خطا قابل تنظیم 2 تا 60 ثانیه با افزایش 1 ثانیه (پیش‌فرض 10 ثانیه)

    نمایش خطا:
    وضعیت کنترلر – FAULT
    LED زرد چشمک‌زن کنترلر هر 1 ثانیه
    LED زرد چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله خطا CO با ظرفیت 2 آمپر @ 30 ولت DC

    شرایط عادی:
    سطح عبور نور بالاتر از سطح حساسیت آلارم
    وضعیت کنترلر – NORMAL
    LED سبز چشمک‌زن کنترلر هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)
    LED سبز چشمک‌زن هد هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)

    تراز خودکار/جبران آلودگی بیم:
    تراز خودکار در حین عملکرد عادی در صورت کاهش عبور نور به کمتر از 90٪ (بدون تأثیر بر حالت کاری عادی)
    جبران آلودگی بیم با مانیتورینگ 4 ساعته. داده‌های جبران در کنترلر در دسترس است.

     

  • راهنمای جامع استفاده از بیم دتکتور دودی اعلام حریق

    تشخیص نوری بیم راهکاری اقتصادی برای شناسایی دود در فضاهای باز بزرگ مانند مراکز خرید، انبارها و فرودگاه‌ها ارائه می‌دهد.

    ابتدا بیایید به دیگر روش‌های تشخیص که معمولاً استفاده می‌شوند نگاه کنیم و دلیل انتخاب بیم دتکتور دودی اعلام حریق به جای آن‌ها را بررسی کنیم.

    دتکتور نقطه‌ای اغلب استفاده می‌شود اما می‌تواند منجر به شبکه‌ای پیچیده از چندین دتکتور همپوشان گردد که نصب آن‌ها بسیار زمان‌بر، سیم‌کشی آن‌ها پرهزینه و دسترسی به آن‌ها هنگام تعمیر و نگهداری دشوار خواهد بود. یک بیم دتکتور دودی اعلام حریق نوری به طور کلی می‌تواند جایگزین حدود ۱۶ دتکتور نقطه‌ای منفرد گردد و ۱۵۰۰ متر مربع را پوشش دهد.WhatsApp Image 2025 09 18 at 2.08.33 AM

    سیستم‌های نمونه‌برداری مکشی معمولاً روی سقف نصب می‌شوند اما پیچیده و زمان‌بر برای نصب هستند. این سیستم‌ها شامل شبکه‌ای از لوله‌های نمونه‌برداری، درپوش‌ها و زانوها می‌باشند. همه این‌ها نیاز به نصب و نگهداری دارند. خود لوله‌کشی می‌تواند مزاحم باشد و نیاز به پنهان کردن در ساختار ساختمان داشته باشد.

    WhatsApp Image 2025 09 18 at 2.08.33 AM1

    WhatsApp Image 2025 09 18 at 2.08.34 AM

    برخی کدهای اجرایی نصب همچنین ارتفاعی را که دتکتور نقطه‌ای و مکشی می‌توانند استفاده شوند محدود می‌کنند زیرا هرچه سقف بالاتر باشد، چگالی ذرات کمتر خواهد شد و ممکن است زیر آستانه هشدار مورد نیاز این نوع دتکتورها قرار گیرد. بیم دتکتور دودی اعلام حریق در ارتفاع کارآمدتر است زیرا وقتی دود بالا می‌رود پخش می‌شود و ناحیه بزرگ‌تری را تحت تأثیر قرار می‌دهد و به این ترتیب مسیر بیم بیشتری تحت تأثیر قرار می‌گیرد. این مسیر تشخیص گسترده کارآمدتر از محفظه کوچک یک دتکتور نقطه‌ای است.

    WhatsApp Image 2025 09 18 at 2.08.34 AM1

    سیستم‌های تشخیص نقطه‌ای و مکشی به بالارفتن دود تا سقف وابسته هستند. مشکلاتی نیز می‌تواند به دلیل لایه‌ای موسوم به لایه استراتیفیکیشن ایجاد شود. ذرات دود سنگین‌تر از هوا هستند و توسط هوای گرم اطرافشان از میان هوای خنک‌تر بالا برده می‌شوند. این هوای خنک اطراف، ستون دود را سرد کرده و هوای گرم محبوس شده در زیر سقف یک لایه حرارتی تشکیل می‌دهد که مانع رسیدن دود به سقف می‌شود.

    WhatsApp Image 2025 09 18 at 2.08.34 AM2

    دتکتور نقطه‌ای و مکشی ممکن است به دلیل این پدیده قادر به تشخیص دود نباشند. با این حال، بیم دتکتور دودی اعلام حریق معمولاً ۶۰۰ میلی‌متر پایین‌تر از سقف نصب می‌شود (مطابق BS5839) که به این معناست کمتر احتمال دارد بالای خط استراتیفیکیشن قرار گیرد.

    تشخیص شعله و ویدئویی: نوعی بسیار تخصصی و پرهزینه از تشخیص که اغلب به عنوان یک روش ثانویه با حساسیت بالا و سریع در محیط‌های با ارزش بالا مانند تولید هواپیما استفاده می‌شود.

    انتخاب نوع دتکتور در نهایت با ارزیابی وضعیت، ویژگی‌های ساختمان، محیط، سرعت تشخیص، ارزیابی ریسک‌های بالقوه و مواد موجود تعیین می‌گردد.

    بیم دتکتور دودی اعلام حریق راهکاری همه‌کاره و مقرون‌به‌صرفه برای حفاظت از نواحی وسیع، به‌ویژه با سقف‌های بلند ارائه می‌دهد.

    انواع بیم دتکتور دودی اعلام حریق نوری: سه نوع اصلی بیم وجود دارد که باید در نظر گرفت.

    بیم دتکتور دودی اعلام حریق غیر موتوری «رفلکتیو»: این نوع به سادگی با ارسال یک پرتو نامرئی مادون قرمز که به یک رفلکتور در انتهای مقابل برخورد می‌کند کار می‌کند و سپس مسیر دید را برای انسداد مانیتور می‌کند. هر دو فرستنده و گیرنده در یک واحد قرار دارند. این نوع معمولاً استفاده می‌شود اما تنها باید در محیط مناسب استفاده گردد. فقط در فضاهایی باید استفاده شود که ساختار آن‌ها صلب بوده و فاقد هرگونه حرکت باشند. ساختمان‌ها می‌توانند به دلایل متعددی حرکت کنند، ساختمان‌های جدید می‌توانند نشست کنند، انبارهای فلزی بزرگ می‌توانند در شرایط گرم و سرد تاب بردارند و شرایط آب‌وهوایی نامساعد مانند برف می‌تواند ساختمان‌ها را تغییر شکل دهد. باید توجه داشت که یک درجه حرکت ساختمان می‌تواند باعث انحراف بیم حدود ۱.۴ متر در ۱۰۰ متر شود که منجر به آلارم کاذب در یک بیم ثابت خواهد شد. راه‌اندازی، تنظیم و نگهداری بیم فقط در ارتفاع قابل انجام است و نیاز به تجهیزات دسترسی در ارتفاع خواهد داشت.

    بیم دتکتور دودی اعلام حریق انتها به انتها: این نوع معمولاً یک کاربرد تخصصی و پرهزینه است که نیاز به شلیک پرتو از میان فضاهای کوچک دارد که ممکن است برای بیم‌های رفلکتوری مشکل‌ساز باشند زیرا احتمال بازگشت ناخواسته سیگنال از سازه‌های نزدیک وجود دارد. آن‌ها با یک فرستنده در یک انتها و یک گیرنده در انتهای مقابل کار می‌کنند که انسداد را بررسی می‌کند. این نوع تشخیص نیاز به سیم‌کشی در هر دو انتها دارد که می‌تواند به معنای اجرای پرهزینه کابل‌های ۱۰۰ متر یا بیشتر و دسترسی در ارتفاع برای راه‌اندازی، تنظیم و نگهداری باشد.

    بیم دتکتور دودی اعلام حریق موتوری: پیشرفتی که به دلیل محدودیت‌های بیم ثابت و انتها به انتها ایجاد شده است. موتوری بودن و هوشمندی بیم به این معناست که می‌توان آن‌ها را به طور خودکار هم‌تراز و راه‌اندازی کرد و این کار در سطح زمین از طریق یک کنترلر از راه دور چندزبانه با کاربری ساده انجام می‌شود. تنظیم پارامترهای بیم مانند زمان واکنش نیز می‌تواند از طریق این کنترلر انجام گیرد. هنگامی که بیم هوشمند موتوری هم‌تراز شد، در سرویس به طور مداوم هم‌ترازی خود را حفظ می‌کند، به این معنا که حرکت ساختمان دیگر مشکلی ایجاد نمی‌کند و در نتیجه صرفه‌جویی در زمان، هزینه، اعتبار و به طور مهم کاهش آلارم‌های کاذب حاصل خواهد شد.

    چه مواردی باید هنگام استفاده از بیم دتکتور دودی اعلام حریق در نظر گرفته شود؟

    بیم دتکتور دودی اعلام حریق با اندازه‌گیری انسداد سیگنال دریافتی خود کار می‌کند. ساختمان‌هایی با دیواره‌های باز یا فضاهای باز به بیرون می‌توانند نسبت به ابر و مه حساس باشند. تغییرات شدید دمای ساختمان می‌تواند باعث ایجاد میعان روی رفلکتور یا سر بیم شود که موجب قرائت‌های کاذب خواهد شد. باید مراقب سناریوهای مختلف جوی به‌ویژه در ماه‌های زمستان بود. برخی بیم‌ها دارای راه‌حل‌های ضد میعان هستند. محیط‌هایی که دود و بخار تولید می‌کنند مانند سالن‌های جوشکاری و پایانه‌های اتوبوس می‌توانند مشکل‌ساز باشند.

    بیم‌های موتوری اکنون به گزینه اصلی صنعت تبدیل شده‌اند و در سراسر جهان فروخته می‌شوند و با فراهم کردن ایمنی کار از سطح زمین موجب صرفه‌جویی در زمان و هزینه می‌شوند.

     

  • نقص سیستم حفاظت در برابر آتش با عامل گازی

    12.1 * کلیات

    12.1.1 این فصل حداقل الزامات برای برنامه نقص سیستم حفاظت در برابر آتش را ارائه می‌دهد.
    12.1.2 اقداماتی باید در هنگام بروز نقص در سیستم انجام شود تا اطمینان حاصل گردد که خطرات افزایش یافته به حداقل رسیده و مدت زمان نقص محدود باشد.

    12.2 هماهنگ‌کننده نقص

    12.2.1 مالک ملک یا نماینده منصوب باید یک هماهنگ‌کننده نقص را برای رعایت الزامات این فصل منصوب کند.
    12.2.2 در غیاب یک فرد خاص منصوب، مالک ملک یا نماینده منصوب به‌عنوان هماهنگ‌کننده نقص در نظر گرفته می‌شود.
    12.2.3 اگر قرارداد اجاره، توافق‌نامه استفاده کتبی، یا قرارداد مدیریت به‌طور خاص اختیار بازرسی، آزمایش و نگهداری سیستم‌های حفاظت در برابر آتش را به مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده اعطا کند، مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده باید یک نفر را به‌عنوان هماهنگ‌کننده نقص منصوب کند.

    12.3 سیستم برچسب نقص

    12.3.1 یک برچسب باید برای نشان دادن اینکه سیستم یا بخشی از آن از سرویس خارج شده است، استفاده شود.
    12.3.2 یک برچسب باید در جزء سیستم عامل تمیز که باعث نقص شده، واحد کنترل آزادسازی سیستم، واحد کنترل آژیر آتش‌سوزی ساختمان در صورت لزوم و سایر مکان‌های مورد نیاز توسط مقام ذی‌صلاح نصب شود تا نشان دهد کدام سیستم یا بخشی از آن از سرویس خارج شده است.

    12.4 برنامه‌های نقص پیش‌بینی‌شده

    12.4.1 تمام نقص‌های پیش‌بینی‌شده باید توسط هماهنگ‌کننده نقص مجاز شوند.
    12.4.2 نیاز به حفاظت موقتی در برابر آتش، خاتمه تمامی عملیات خطرناک و فراوانی بازرسی‌ها در نواحی درگیر باید مشخص شود.
    12.4.3 قبل از اعطای مجوز، هماهنگ‌کننده نقص مسئول است تا اطمینان حاصل کند که مراحل زیر انجام شده است:
    1. میزان و مدت زمان مورد انتظار نقص تعیین شده است.
    2. نواحی یا ساختمان‌های درگیر بازرسی شده و خطرات افزایش یافته مشخص شده‌اند.
    3. پیشنهاداتی برای کاهش خطرات افزایش یافته به مدیریت یا مالک ملک یا نماینده منصوب ارسال شده است.
    4. اگر سیستم حفاظت در برابر آتش با عامل تمیز به‌عنوان حفاظت اولیه عمل می‌کند و بیش از 10 ساعت در یک دوره 24 ساعته از سرویس خارج است، ترتیباتی برای یکی از موارد زیر انجام می‌شود:
    (a) تخلیه ساختمان یا بخش از ساختمان که تحت تأثیر سیستم خارج از سرویس قرار گرفته است.
    (b) * یک نگهبانی آتش‌نشانی تأیید شده.
    (c) * برقراری و اجرای یک برنامه تأیید شده برای حذف منابع بالقوه احتراق و محدود کردن میزان سوخت در دسترس برای آتش.
    (5) اطلاع‌رسانی به اداره آتش‌نشانی.
    (6) اطلاع‌رسانی به شرکت بیمه، شرکت آژیر، مالک ملک یا نماینده منصوب، و دیگر مقامات ذی‌صلاح.
    (7) اطلاع‌رسانی به سرپرستان در نواحی تحت تأثیر.
    (8) اجرای یک سیستم برچسب نقص. (به بخش 12.3 مراجعه کنید.)
    (9) جمع‌آوری تمام ابزارها و مواد ضروری در محل نقص.

    12.5 نقص‌های اضطراری

    12.5.1 نقص‌های اضطراری شامل، اما نه محدود به، قطع تأمین عامل تمیز، شکستگی یا آسیب لوله‌ها، خرابی تجهیزات، و از دست رفتن یکپارچگی محفظه، و شامل نقص‌هایی است که در حین بازرسی، آزمایش یا نگهداری شناسایی می‌شود.
    12.5.2 در صورت وقوع نقص اضطراری، هماهنگ‌کننده باید مراحل مشخص شده در 12.4.2 و 12.4.3 را اجرا کند.
    12.5.3 هنگامی که یک یا چند نقص در حین بازرسی، آزمایش و نگهداری شناسایی می‌شود، مالک یا نماینده مجاز مالک باید به صورت کتبی اطلاع‌رسانی شود.

    12.6 بازگرداندن سیستم‌ها به سرویس

    هنگامی که تمام تجهیزات معیوب به حالت عادی باز می‌گردد، هماهنگ‌کننده نقص باید تأیید کند که مراحل زیر اجرا شده است:
    1. هر بازرسی و آزمایش ضروری انجام شده تا اطمینان حاصل شود که سیستم‌های تحت تأثیر عملیاتی هستند.
    2. به سرپرستان اطلاع داده شده که حفاظت دوباره برقرار شده است.
    3. به اداره آتش‌نشانی اطلاع داده شده که حفاظت دوباره برقرار شده است.
    4. به مالک ملک یا نماینده منصوب، شرکت بیمه، شرکت آژیر در صورت لزوم، و دیگر مقامات ذی‌صلاح اطلاع داده شده که حفاظت دوباره برقرار شده است.
    5. تمام برچسب‌های نقص برداشته شده‌اند.

  • طراحی سیستم اطفاء حریق با گاز دی اکسید کربن به روش غرقاب کامل

    محاسبه  غلظتی از دی‌اکسید کربن  که بتواند آتش‌سوزی‌های ناشی از مواد قابل‌احتراق واقع در یک فضای بسته را خاموش کند

    NFPA12-ANNEX-D

    ضمیمه D – سامانه‌های اطفاء حریق به روش غرقاب کامل
    این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

    D.1 نظریه طراحی: از دیدگاه عملکرد، یک سامانه غرقاب کامل به‌گونه‌ای طراحی می‌شود که غلظتی از دی‌اکسید کربن ایجاد کند که بتواند آتش‌سوزی‌های ناشی از مواد قابل‌احتراق واقع در یک فضای بسته را خاموش کند. این سامانه همچنین باید بتواند غلظت مؤثر را تا زمانی که حداکثر دما به زیر نقطه شعله‌ور شدن مجدد برسد، حفظ کند.

    برای بسیاری از مواد، ممکن است نیاز به حفظ غلظت دی‌اکسید کربن برای انجام فرآیند خنک‌سازی باشد. مجاری فلزی انتقال هوا که می‌توانند به‌سرعت و به‌طور قابل‌توجهی گرم شوند، مثالی هستند که در آن حفظ غلظت برای خنک‌سازی می‌تواند ضروری باشد.

    غلظت مورد نیاز دی‌اکسید کربن بستگی به نوع ماده قابل‌احتراق دارد. غلظت لازم برای بیشتر آتش‌سوزی‌های سطحی، به‌ویژه آن‌هایی که شامل مایعات و گازها هستند، به‌دقت تعیین شده است. بیشتر این اطلاعات توسط اداره معادن ایالات متحده آمریکا به‌دست آمده است. برای آتش‌سوزی‌های عمیق، غلظت بحرانی مورد نیاز برای اطفاء دقیق مشخص نیست و به‌طور کلی از طریق آزمایش‌های عملی تعیین شده است.

    حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت مشخص، بیشتر از حجم نهایی باقی‌مانده در فضای بسته خواهد بود. در اغلب موارد، دی‌اکسید کربن باید به‌گونه‌ای اعمال شود که باعث اختلاط تدریجی جو شود. هوای جابجا شده از اتاق سرور، در هنگام تزریق دی‌اکسید کربن، از طریق شکاف‌های کوچک یا دریچه‌های خاص به‌راحتی تخلیه می‌شود. بنابراین مقداری از دی‌اکسید کربن همراه با هوای تخلیه‌شده از دست می‌رود. این میزان از دست رفتن، در غلظت‌های بالا بیشتر می‌شود. این روش کاربرد، غرقاب با جریان آزاد نام دارد.

    در شرایط فوق، حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت معین در جو، توسط معادلات زیر بیان می‌شود:

    vjTHIQAAAABJRU5ErkJggg==

    جایی که:

    e = 2.718 (پایه لگاریتم طبیعی)
    X = حجم دی‌اکسید کربن افزوده‌شده به ازای هر واحد حجم فضا

    از معادلات قبلی، حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت مشخص قابل محاسبه است. این مقدار دی‌اکسید کربن را می‌توان بر حسب فوت مکعب (متر مکعب) فضای محافظت‌شده به ازای هر پوند (کیلوگرم) دی‌اکسید کربن یا پوند (کیلوگرم) دی‌اکسید کربن به ازای هر ۱۰۰ فوت مکعب (۰.۲۸ متر مکعب) بیان کرد. این نتایج محاسبه و برای مراجعه آسان ترسیم شده‌اند.

    یکی از این منحنی‌ها در شکل D.1(a) نشان داده شده است. در این منحنی فرض شده که دی‌اکسید کربن به حجمی برابر با ۹فوت مکعب بر پوند (۰.۵۶ متر مکعب بر کیلوگرم) در دمای ۸۶درجه فارنهایت (۳۰ درجه سلسیوس) منبسط می‌شود. منحنی بالایی (جابجایی کامل) و منحنی پایینی (بدون خروجی) حالت‌های نظری افراطی هستند که صرفاً برای مقایسه ترسیم شده‌اند. منحنی میانی (جریان آزاد) که باید از آن استفاده شود، باید با در نظر گرفتن ضرایب ایمنی مناسب، اصلاح گردد.

    اطلاعات مشابهی نیز در شکل D.1(b) به صورت نمودار ناموگراف ارائه شده است. ستون A محتوای اکسیژن در مخلوط‌های هوا-دی‌اکسید کربن را نشان می‌دهد؛ ستون B وزن دی‌اکسید کربن در مخلوط‌های هوا-دی‌اکسید کربن را نشان می‌دهد؛ و ستون C حجم فوت مکعب بر پوند دی‌اکسید کربن در این مخلوط‌ها را نشان می‌دهد. در این مورد، فرض شده که دمای نهایی حدود ۵۰ درجه فارنهایت (۱۰ درجه سلسیوس) باشد، که حجمی برابر با ۸.۳۵ فوت مکعب بر پوند (۰.۵۲ متر مکعب بر کیلوگرم) دی‌اکسید کربن ایجاد می‌کند. بنابراین این ناموگراف، مقادیر بیشتری از دی‌اکسید کربن را برای یک غلظت یکسان نشان می‌دهد. داده‌های فصل‌های ۴ تا ۶ بر اساس انبساط ۹ فوت مکعب بر پوند (۰.۵۶ متر مکعب بر کیلوگرم) دی‌اکسید کربن تهیه شده‌اند.

    شایان ذکر است که در برخی محفظه‌های کاملاً عایق‌شده، مانند فریزرها و اتاق‌های تست بی‌پژواک، تبخیر کامل و سریع دی‌اکسید کربن آزادشده ممکن است رخ ندهد. در چنین موارد غیرمعمولی، باید با سازنده مشورت شود.

    مدت زمان لازم برای خنک‌سازی تا زیر نقطه شعله‌ور شدن مجدد، بستگی به نوع آتش‌سوزی و اثر عایقی ماده قابل‌احتراق دارد. برای آتش‌سوزی‌های سطحی می‌توان فرض کرد که آتش تقریباً بلافاصله پس از دستیابی به غلظت مورد نظر، خاموش می‌شود. فضای بسته باید البته برای مدتی پس از تزریق دی‌اکسید کربن، غلظت مناسبی را حفظ کند، که این خود یک عامل ایمنی اضافی فراهم می‌کند.

    برای آتش‌سوزی‌های عمیق، غلظت باید برای مدت زمان بیشتری حفظ شود، چرا که مواد داغ به‌آرامی خنک می‌شوند. مدت زمان خنک‌سازی به‌شدت بسته به نوع ماده متغیر است. چون زمان خنک‌سازی معمولاً طولانی است، باید توجه ویژه‌ای به موضوع حفظ غلظت مؤثر اطفاء داشت.

    آتش‌سوزی‌های سطحی و آتش‌سوزی‌های عمیق اساساً با یکدیگر متفاوت هستند و باید با اهداف متفاوتی به آن‌ها پرداخته شود.

    نمونه‌هایی از خطراتی که توسط سامانه‌های غرقاب کامل محافظت می‌شوند عبارت‌اند از: اتاق‌ها، گاوصندوق‌ها، ماشین‌آلات بسته، کانال‌ها، کوره‌ها، مخازن و محتویات آن‌ها.

    D.2 منابع اضافی: طراحی یک سامانه اطفاء حریق دی‌اکسید کربن به روش غرقاب کامل می‌تواند کاری چالش‌برانگیز باشد. نیاز به در نظر گرفتن ضرایب تبدیل مواد، تغییرات دمایی و بازشوهایی که قابل‌بسته شدن نیستند، تنها برخی از موانع این طراحی هستند. نشریه FSSA با عنوان راهنمای طراحی برای کاربردهای غرقاب کامل با دی‌اکسید کربن، کاربر را گام‌به‌گام در طراحی یک سامانه CO₂ همراه با مثال‌هایی راهنمایی می‌کند.

  • نحوه اتصال بیم دتکتور به سیستم اعلام حریق آدرس پذیر

     

    انواع بیم دتکتور از نظر نوع اتصال

    1. ساده (Conventional Beam Detector):
      • فقط دو خروجی رله دارد (Alarm / Fault)
      • آدرس‌پذیر نیست و نیاز به واسط دارد
    2. آدرس‌پذیر (Addressable Beam Detector):
      • مستقیماً قابل اتصال به لوپ آدرس‌پذیر است
      • آدرس مختص به خود دارد

     

     اتصال بیم دتکتور متعارف به سیستم آدرس‌پذیر توسط ماژول ورودی

    با استفاده از یک ماژول آدرس پذیر که با پنل مرکزی آدرس پذیر دارای پروتکل ارتباطی یکسان می باشد ( هر دو یک برند باشند ) میتوان یک بیم دتکتور متعارف را به پنل آدرس پذیر متصل نمود.

    ماژول های ورودی یا ماژول مانیتور ها دو دسته هستند. دسته اول ماژول های ورودی آدرس پذیر 4 سیمه هستند که تامین برق آنها توسط تابلوی اعلام حریق آدرس پذیر تامین می شود. ماژول های ورودی آدرس پذیر 4 سیمه، همانطور که از اسم آن پیداست از 4 سیم استفاده میکنند که دو سیم آن برق 24 ولت و دو سیم دیگر جهت اتصال به لوپ یا حلقه یا مدار سیستم اعلام حریق آدرس پذیر است.

    نوع دوم ماژول های ورودی آدرس پذیر 2 سیمه هستند و برق آنها توسط برق لوپ، پنل اعلام حریق آدرس پذیر تامین میشود. این ماژول ها بخاطر صرفه جویی در هزینه کابل کشی بسیار به صرفه تر هستند و همچنین نصب آنها راحت تر است.

    حالت 1: تشخیص ورودی معمولاً باز:

    WhatsApp Image 2025 09 29 at 11.39.02 PM


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 3 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد، ماژول می‌تواند سه حالت را در ترمینال‌های ورودی تشخیص دهد: عادی، مدار باز و هشدار (اتصال کوتاه)

    حالت 2: تشخیص ورودی معمولاً بسته:

    WhatsApp Image 2025 09 29 at 11.39.02 PM1


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 4 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد..

     

    نحوه اتصال بیم دتکتور متعارف به تابلوی اعلام حریق آدرس پذیر توسط ماژول ورودی 2 سیمه

    WhatsApp Image 2025 09 29 at 11.39.03 PM

    در شکل بالا از یک ماژول ورودی آدرس پذیر 2 سیمه جهت اتصال بیم دتکتور متعارف به پنل کنترل اعلام حریق آدرس پذیر استفاده شده است. تنها تفاوت ماژول های ورودی 2 سیمه و 4 سیمه فقط در نحوه تغذیه ماژول می باشد. در سیستم 4 سیمه ، احتیاج به 2 سیم اضافه جهت اتصال به ترمینال 24 ولت کمکی تابلوی اعلام حریق آدرس پذیر می باشد ولی در سیستم 2 سیمه ،به علت مصرف الکتریکی کم، برق خود را از طریق برق لوپ یا حلقه تابلوی اعلام حریق آدرس پذیر تامین می کند.

     

    نکات مهم:

    • حتماً باید بین منبع تغذیه و بیم دتکتور، ایزولاسیون مناسب رعایت شود.
    • بهتر است از ماژول‌هایی استفاده شود که قابلیت نظارت بر مدار باز یا اتصال کوتاه را دارند.

     

    1. استفاده از بیم دتکتور آدرس‌پذیر اختصاصی

    در این روش، از بیم دتکتورهای تولید شده توسط برند سازنده‌ی سیستم اعلام حریق استفاده می‌شود که مستقیماً قابل اتصال به لوپ هستند و بدون نیاز به ماژول واسط، قادر به اتصال به پنل آدرس‌پذیر هستند.

    در این مورد کافی است تا بیم دتکتور در حال نصب را نیز همانند بقیه آیتم های اعلام حریق در حال نصب،( مانند دتکتور ها و شستی ها و آژیرها) آدرس دهی شود . آدرس دهی معمولا از توسط پروگرامر دستی یا بصورت اتوماتیک از طریق پنل انجام می پذیرد.

    کافیست بیم دتکتور را آدرس دهی کرده و به عنوان آدرس یک ورودی، به پنل اعلام حریق معرفی کنیم. در سیستم های اعلام حریق آدرس پذیر قابلیت تنظیم ورودی ها و خروجی ها بصورت علت و معلول نیز وجود دارد و میتوان توسط پنل کنترل سیستم اعلام حریق آدرس پذیر طوری برنامه نویسی کرد که با شروع عمل بیم دتکتور، عملیات های مربوطه مثل بستن پرده های دودبند یا باز کردن درب های اضطراری یا حتی عملیات خودکار اطفاء آتش بصورت خودکار شروع به کار کند.

     

     

    مزایا:

    • کاهش خطاهای اتصال
    • یکپارچگی بیشتر با پنل اعلام حریق
    • نمایش دقیق وضعیت آلارم و خطا در مانیتور پنل

    معایب:

    • قیمت بالاتر
    • وابستگی به برند خاص
    • محدودیت در تأمین یا تعمیر در پروژه‌های بلندمدت

    WhatsApp Image 2025 09 29 at 11.39.03 PM1

  • روش طراحی سیستم دتکتور دودی مکشی یا اسپیراتینگ ها

    در زمان طراحی شبکه لوله نمونه‌برداری، عوامل متعددی باید مدنظر قرار گیرد. لازم است محل نصب به‌دقت بررسی و بیشترین اطلاعات ممکن جمع‌آوری شود.

    نیازمندی‌ها
    اولین گام، تعیین دقیق نیازهای نصب است. پس از مشخص شدن نیازها، نوع موقعیت قابل بررسی خواهد بود.

    فعالیت‌ها
    نوع فعالیت‌هایی که در فضا انجام می‌شود بسیار اهمیت دارد. یک فضای عمومی با شکل خاص ممکن است نیازهای سیستمی متفاوتی نسبت به یک انبار با همان شکل داشته باشد. اطلاعاتی مانند ساعات فعالیت، حضور یا عدم حضور افراد در فضا، و وجود آلودگی یا هوای آلوده نیز باید در نظر گرفته شود.

    ویژگی‌های فیزیکی
    پس از بررسی نوع کلی نصب، ویژگی‌های فیزیکی فضا باید بررسی شود:

    • آیا فضا، اتاق، فضای خالی، کابینت یا محفظه است؟
    • آیا فضای خالی در کف یا سقف وجود دارد؟ در صورت وجود، چگونه تقسیم‌بندی شده‌اند؟
    • آیا کانال‌هایی وجود دارد؟ کاربرد آن‌ها چیست و آیا خدماتی در آن‌ها قرار دارد؟
    • ابعاد دقیق فضا چیست؟
    • از چه مصالحی استفاده شده و آیا مناطقی وجود دارد که باید از قرارگیری شبکه در آن‌ها اجتناب شود؟
    • آیا سیستم‌های اعلام حریق دیگری وجود دارند؟ در صورت وجود، در چه موقعیتی نصب شده‌اند؟

    شرایط محیطی
    شرایط محیطی داخل فضا می‌تواند تأثیر بسیار مهمی بر روش نمونه‌برداری مناسب برای حفاظت از آن داشته باشد.
    همان‌طور که پیش‌تر اشاره شد، آزمایش دود برای جمع‌آوری این اطلاعات حیاتی است. این آزمایش می‌تواند الگوهای حرکت هوا، نرخ گردش آن، و اینکه آیا در نقطه‌ای جریان هوا ساکن است یا خیر را مشخص کند.

    سایر موارد قابل بررسی شامل موارد زیر است:

    • در صورت ورود هوای تازه، نرخ و میزان آن چقدر است؟
    • آیا به دلیل آلودگی، استفاده از یک دتکتور مرجع لازم است؟
    • دما و رطوبت نسبی چقدر هستند و آیا این مقادیر ثابت یا متغیرند؟
    • آیا فعالیت‌هایی در محیط وجود دارند که دود، گرد و غبار، بخار یا شعله تولید کنند و این فعالیت‌ها چند وقت یک‌بار انجام می‌شوند؟

    ارزیابی ریسک
    در هر نصب، احتمال دارد برخی نواحی نیاز به حفاظت بیشتری نسبت به سایر بخش‌ها داشته باشند. این امر ممکن است به دلیل وجود تجهیزات گران‌قیمت یا نواحی خاصی مانند انبار مواد قابل اشتعال باشد. این نواحی آسیب‌پذیر باید همراه با هرگونه خطرات ساختاری مانند مواد مصنوعی، فوم‌ها یا جداکننده‌های چوب نرم مورد توجه قرار گیرند.

    مکان‌های ممکن برای نصب دستگاه
    در انتخاب محل نصب واحد دتکتور نیز عوامل متعددی باید در نظر گرفته شود. هدف اصلی در تعیین موقعیت دستگاه، ایجاد یک سیستم متعادل است؛ به این معنا که طول لوله‌ها تا حد امکان برابر باشد. همچنین باید تلاش شود تا زمان پاسخ‌دهی و میزان رقیق‌سازی به حداقل برسد.

    واحد دتکتور نیاز به منبع تغذیه دارد و باید دسترسی جهت انجام تعمیرات و نگهداری وجود داشته باشد. همچنین ممکن است دلایل زیبایی‌شناختی باعث شود مکان خاصی برای نصب مناسب نباشد.

    لوله خروجی
    لوله خروجی واحد دتکتور دودی مکشی، در صورت نیاز، می‌تواند دارای لوله‌کشی اضافه شود؛ برای مثال، اگر نیاز باشد هوای عبوری از دتکتور به منبع خود بازگردد. همچنین، لوله‌کشی اضافی می‌تواند برای کاهش صدای فن مورد استفاده قرار گیرد.