دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

thermocabcable

WhatsApp Image 2025 09 14 at 9.31.18 AM

کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

WhatsApp Image 2025 09 14 at 9.31.19 AM

  • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
  • تولید دود کم و بدون هالوژن (LS0H)
  • ساختار مقاوم برای استفاده در محیط‌های سخت
  • نصب آسان با گزینه‌های متنوع برای نصب
  • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
  • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

WhatsApp Image 2025 09 14 at 9.31.19 AM1

  • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
  • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
  • طیف گسترده‌ای از کاربردهای اثبات‌شده

WhatsApp Image 2025 09 14 at 9.31.20 AM

اصول عملکرد

دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

WhatsApp Image 2025 09 14 at 9.31.20 AM1

این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

رجوع شود به:
«ویژگی‌ها به عنوان کابل تشخیص آتش»

کاربردها

دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

کاربردهای رایج:

  • تونل‌ها، کانال‌ها و سقف‌های کاذب
  • پله‌های برقی و مسیرهای متحرک
  • مخازن ذخیره‌سازی پتروشیمی
  • سالن‌های رنگ و اتاقک‌های اسپری
  • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
  • فضاهای سقفی و زیرشیروانی
  • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
  • مناطق تأسیسات نیروگاه هسته‌ای
  • انبارهای سرد و سردخانه‌ها
  • تابلوهای کنترل و کلیدهای برق
  • قفسه‌های مرتفع انبارها
  • سکوهای نفتی دریایی
  • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
  • سیلوهای غلات و انبارهای کشاورزی
  • محفظه‌های موتور خودروهای جاده‌ای / ریلی
  • نشت بخار و خطاهای گرمایش ردیابی‌شده
  • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
  • فضاهای زیرکفی اتاق‌های کامپیوتر

ویژگی‌ها به عنوان کابل تشخیص آتش

در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

  • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
  • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

WhatsApp Image 2025 09 14 at 9.31.21 AM

همچنین به مثال ارائه‌شده رجوع شود.

مثال

این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

  • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
  • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
  • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

عملکرد دو مرحله‌ای

اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

.  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

مشخصات پایه

  • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
  • رنگ: قرمز
  • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
  • بافت: سیم مسی قلع‌زده
  • دی‌الکتریک داخلی: سفید
  • رسانای مرکزی: فولاد با روکش مس
  • استحکام کششی: ۲۰۰ نیوتن

WhatsApp Image 2025 09 14 at 9.31.21 AM1

دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

پیکربندی سیستم و سازگاری تجهیزات

دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

نوشته‌های مشابه

  • الزامات طراحی سیستم اطفاء حریق به روش غرقه سازی کلی یا TOTAL FLOODING با گاز دی اکسید کربن

    1. فصل ۵ – سیستم‌های غرقه‌سازی کلی

    ۵.۱ اطلاعات عمومی (همچنین به پیوست D مراجعه شود)
    ۵.۱.۱ توصیف: یک سیستم غرقه‌سازی کلی باید شامل منبع ثابت دی‌اکسید کربن باشد که به صورت دائم به لوله‌کشی ثابت متصل شده و دارای نازل‌های ثابت برای تخلیه دی‌اکسید کربن به داخل فضای بسته یا اتاق سرور پیرامون خطر باشد.

    ۵.۱.۲ کاربردها: سیستم غرقه‌سازی کلی باید در مواردی استفاده شود که یک محفظه دائمی اطراف خطر وجود دارد و امکان ایجاد و حفظ غلظت لازم دی‌اکسید کربن برای مدت زمان مورد نیاز را فراهم می‌کند.

    ۵.۱.۳ الزامات کلی: سیستم‌های غرقه‌سازی کلی باید طبق الزامات مربوطه در فصل ۴ و همچنین الزامات اضافی ذکرشده در این فصل طراحی، نصب، آزمون و نگهداری شوند.

    ۵.۱.۴ الزامات ایمنی: به بندهای ۴.۳ و ۴.۵.۶ مراجعه شود.

    ۵.۲ مشخصات خطر

    ۵.۲.۱ محفظه

    ۵.۲.۱.۱ برای آتش‌های سطحی یا شعله‌ای، مانند آتش‌هایی که در مایعات قابل اشتعال رخ می‌دهند، هرگونه بازشدگی غیرقابل‌بسته شدن باید طبق بند ۵.۳.۵.۱ با مقدار بیشتری دی‌اکسید کربن جبران شود.

    ۵.۲.۱.۲ اگر مقدار دی‌اکسید کربن موردنیاز برای جبران بازشدگی‌ها از مقدار پایه موردنیاز برای غرقه‌سازی بدون نشت بیشتر باشد، طراحی سیستم به‌صورت کاربرد موضعی طبق فصل ۶ مجاز است.

    ۵.۲.۱.۳ برای آتش‌های عمیق‌ریشه مانند آنچه در جامدات رخ می‌دهد، بازشدگی‌های غیرقابل‌بسته شدن باید به آن‌هایی محدود شوند که در سقف یا مجاور سقف قرار دارند، در صورتی که اندازه این بازشدگی‌ها از الزامات تهویه فشار تعیین‌شده در بند ۵.۶.۲ بیشتر باشد.

    ۵.۲.۱.۴ برای جلوگیری از گسترش آتش از طریق بازشدگی‌ها به خطرات مجاور یا مناطق کاری که ممکن است منابع دوباره اشتعال باشند، این بازشدگی‌ها باید دارای بسته‌شونده‌های خودکار یا نازل‌های کاربرد موضعی باشند.

    ۵.۲.۱.۴.۱ گاز موردنیاز برای چنین حفاظت‌هایی باید علاوه بر مقدار معمول برای غرقه‌سازی کلی فراهم شود. (به بند ۶.۴.۳.۶مراجعه شود)

    ۵.۲.۱.۴.۲ اگر هیچ‌کدام از روش‌های ذکرشده در بندهای ۵.۲.۱.۴و ۵.۲.۱.۴.۱ عملی نباشد، حفاظت باید به خطرات یا مناطق کاری مجاور نیز گسترش یابد.

    ۵.۲.۱.۵ در مورد مخازن فرآیندی و ذخیره‌سازی که تهویه ایمن بخارات و گازهای قابل اشتعال امکان‌پذیر نیست، استفاده از سیستم‌های کاربرد موضعی بیرونی طبق بند ۶.۴.۳.۶ الزامی است.

    ۵.۲.۲ نشت و تهویه

    از آنجا که کارایی سیستم‌های دی‌اکسید کربن به حفظ غلظت خاموش‌کننده گاز بستگی دارد، نشت گاز از فضای موردنظر باید به حداقل رسیده و با افزودن گاز اضافی جبران شود.

    ۵.۲.۲.۱ در صورت امکان، بازشدگی‌هایی مانند درها، پنجره‌ها و … باید طوری طراحی شوند که پیش از تخلیه دی‌اکسید کربن یا همزمان با آن به‌طور خودکار بسته شوند یا الزامات بندهای ۵.۳.۵.۱ و ۵.۴.۴.۱ رعایت شوند. (برای ایمنی افراد، به بند ۴.۳مراجعه شود)

    ۵.۲.۲.۲ در مواردی که سیستم تهویه با هوای فشرده درگیر باشد، این سیستم‌ها ترجیحاً باید پیش از تخلیه دی‌اکسید کربن یا همزمان با آن خاموش یا بسته شوند، یا گاز جبرانی اضافی فراهم گردد. (به بند ۵.۳.۵.۲ مراجعه شود)

    ۵.۲.۳ انواع آتش

    آتش‌هایی که با روش غرقه‌سازی کلی قابل خاموش‌سازی هستند، به دو دسته زیر تقسیم می‌شوند:

    ۱. آتش‌های سطحی شامل مایعات، گازها و جامدات قابل اشتعال
    ۲. آتش‌های عمیق‌ریشه شامل جامداتی که قابلیت دودزایی و شعله‌ور شدن دارند

    ۵.۲.۳.۱ آتش‌های سطحی

    برای آتش‌های سطحی، دی‌اکسید کربن باید به‌سرعت در محفظه تزریق شود تا نشت جبران شده و غلظت خاموش‌کننده برای مواد خاص ایجاد گردد.

    ۵.۲.۳.۲ آتش‌های عمیق‌ریشه

    برای آتش‌های عمیق‌ریشه، غلظت طراحی‌شده باید برای مدت زمانی حفظ شود تا دودزایی خاموش و مواد تا نقطه‌ای خنک شوند که پس از از بین رفتن جو بی‌اثر، مجدداً مشتعل نشوند.

    ۵.۳ نیازمندی‌های دی‌اکسید کربن برای آتش‌های سطحی

    ۵.۳.۱ کلیات

    ۵.۳.۱.۱ مقدار دی‌اکسید کربن برای آتش‌های سطحی باید بر اساس شرایط متوسط و با فرض خاموش شدن نسبتاً سریع در نظر گرفته شود.

    ۵.۳.۱.۲ اگرچه یک حاشیه ایمن برای نشت معمولی در عوامل حجمی پایه لحاظ شده است، اما باید اصلاحاتی بر اساس نوع ماده درگیر و سایر شرایط خاص صورت گیرد.

    ۵.۳.۲ مواد قابل اشتعال

    ۵.۳.۲.۱ باید مقدار غلظت طراحی‌شده دی‌اکسید کربن متناسب با نوع ماده قابل اشتعال موجود در خطر تعیین گردد.

    ۵.۳.۲.۱.۱ این غلظت باید با افزودن ضریب ۲۰ درصد به حداقل غلظت مؤثر محاسبه شود.

    ۵.۳.۲.۱.۲ در هیچ حالتی نباید از غلظتی کمتر از ۳۴ درصد استفاده شود.

    ۵.۳.۲.۲ جدول ۵.۳.۲.۲ باید برای تعیین حداقل غلظت‌های دی‌اکسید کربن برای مایعات و گازهای مندرج در جدول استفاده شود.

    ۵.۳.۲.۳ برای موادی که در جدول ۵.۳.۲.۲ ذکر نشده‌اند، غلظت تئوریک حداقل دی‌اکسید کربن باید از منبعی معتبر به‌دست آید یا با آزمون مشخص گردد.

    ۵.۳.۲.۴ در صورت وجود اطلاعاتی از مقادیر اکسیژن باقی‌مانده مجاز، غلظت تئوریک دی‌اکسید کربن باید با استفاده از فرمول زیر محاسبه شود:

    ۵.۳.۳ ضریب حجم

    ضریب حجمی که برای تعیین مقدار پایه دی‌اکسید کربن جهت حفاظت از یک محفظه حاوی ماده‌ای با نیاز به غلظت طراحی‌شده ۳۴ درصد استفاده می‌شود، باید مطابق جدول‌های ۵.۳.۳(a) و ۵.۳.۳(b) باشد.

    ۵.۳.۳.۱ در محاسبه ظرفیت خالص مکعبی که باید محافظت شود، اجازه داده می‌شود که برای ساختارهای دائمی، غیرقابل جابجایی و نفوذناپذیر که حجم را به‌طور قابل توجهی کاهش می‌دهند، کسر حجمی در نظر گرفته شود.

    ۵.۳.۳.۲ حجم‌های به‌هم‌پیوسته

    ۵.۳.۳.۲.۱ در دو یا چند حجم به‌هم‌پیوسته که جریان آزاد دی‌اکسید کربن بین آن‌ها ممکن است، مقدار دی‌اکسید کربن باید برابر با مجموع مقادیر محاسبه‌شده برای هر حجم، با استفاده از ضریب حجم متناظر از جدول‌های ۵.۳.۳(a) یا ۵.۳.۳(b) باشد.

    ۵.۳.۳.۲.۲ اگر یکی از حجم‌ها به غلظت بیشتری از مقدار نرمال نیاز داشته باشد (به بند ۵.۳.۴ مراجعه شود)، باید همان غلظت بالاتر برای تمام حجم‌های به‌هم‌پیوسته استفاده شود.

    p

  • مزایای دتکتور دودی مکشی یا اسپیراتینگ برای کاربری های متنوع

    زمانی‌که تشخیص دود در مرحله ابتدایی حریق حیاتی است، سیستم‌های دتکتور دودی مکشی مزایای زیادی دارند.

    سطوح اولیه تشخیص
    توانایی سیستم‌های دتکتور دودی مکشی در تشخیص ذرات دود در سطح بسیار پایین کاهش دید، آن‌ها را برای مناطقی که نیاز به سریع‌ترین تشخیص ممکن دارند (پیش از آغاز احتراق و آسیب)، ایده‌آل می‌کند. کاربردهای معمول شامل موزه‌ها، ساختمان‌های تاریخی، اماکن با ارزش فرهنگی، و مراکز حیاتی مانند دیتا سنترها هستند. همچنین محدوده‌های حساسیت قابل برنامه‌ریزی، امکان سفارشی‌سازی سیستم دتکتور دودی مکشی بر اساس خطر خاص موجود را فراهم می‌کند، که به مالک انعطاف‌پذیری بیشتری می‌دهد.

    تشخیص قابل اعتماد
    نرم‌افزار تشخیص در سیستم دتکتور دودی مکشی این امکان را می‌دهد که محفظه حسگر بین ذرات دود و ذرات گردوغبار معلق در هوای نمونه‌برداری‌شده تمایز قائل شود. این فناوری باعث مقاومت سیستم در برابر هشدارهای کاذب شده و از هشدارهای ناخواسته‌ای که ممکن است منجر به خاموش شدن غیرضروری تجهیزات، توقف فعالیت‌ها یا تخلیه زودهنگام ساختمان شوند، جلوگیری می‌کند.

    تأثیرناپذیری از جریان هوای بالا
    اتاق‌هایی با جریان هوای بالا، مانند دیتا سنترها، مراکز مخابراتی و اتاق‌های تمیز، یک چالش رایج هستند. جریان هوای بالا باعث ایجاد تغییرات مکرر در هوای محیط و رقیق شدن دود می‌شود، که تشخیص دود را دشوارتر می‌کند.

    سرعت بالای جریان هوا
    سرعت بالای جریان هوا، ذرات دود را از دتکتورهای دودی نقطه‌ای نصب‌شده روی سقف دور کرده و به سمت واحدهای تهویه (HVAC) منتقل می‌کند. ذرات بزرگ‌تر در واحد تهویه فیلتر می‌شوند، اما ذرات ریز از فیلتر عبور کرده و به داخل فضا بازمی‌گردند. در این حالت، ذرات دود به بخشی از هوای محیط تبدیل می‌شوند، اما چون دتکتور دودی مکشی به‌صورت فعال از هوای فضای حفاظت‌شده نمونه‌برداری می‌کند، می‌تواند آن‌ها را تشخیص دهد.

    عدم تأثیر بر زیبایی فضا و مقاوم در برابر دستکاری
    یکی دیگر از مزایای سیستم دتکتور دودی مکشی، امکان پنهان‌سازی لوله نمونه‌برداری و نصب دتکتور در مکانی دور از دید است. این ویژگی آن را برای محیط‌هایی که احتمال دستکاری وجود دارد (مانند زندان‌ها یا مدارس) مناسب می‌سازد. همچنین برای فضاهایی که زیبایی ظاهری اهمیت دارد (مانند اماکن تاریخی یا فرهنگی) نیز ایده‌آل است.

    قابل استفاده در محیط‌های سخت
    در محیط‌های سخت یا آلوده، ذرات بزرگ می‌توانند به مدارهای الکترونیکی دتکتورهای سنتی آسیب وارد کنند و ذرات کوچک نیز می‌توانند هشدارهای کاذب ایجاد کنند. سیستم دتکتور دودی مکشی از هوای فضای حفاظت‌شده نمونه‌برداری کرده و ذرات آسیب‌زننده را فیلتر می‌کند، که این ویژگی آن را برای نصب در چنین محیط‌هایی مناسب می‌سازد. همچنین، چون دتکتور در خارج از فضای حفاظت‌شده نصب می‌شود، این سیستم برای فضاهایی با دمای بسیار بالا یا پایین (مانند سردخانه‌ها و فریزرها) نیز مناسب است.

    نگهداری آسان
    پس از نصب دتکتور دودی مکشی و لوله نمونه‌برداری، زمان‌های انتقال و فشار هوای داخل لوله باید ثبت شود. سپس، نگهداری سالیانه شامل تست دورترین منفذ نمونه‌گیری و مقایسه زمان انتقال آن با مستندات اولیه می‌باشد. در مواقعی که لوله در سقف بلند یا زیر کف نصب شده، می‌توان یک نقطه نمونه‌برداری در سطح زمین تعبیه کرد تا آزمایش سالیانه آسان‌تر و هزینه‌های نگهداری کمتر شود.

    هر شبکه لوله‌کشی که برای استفاده با سیستم FAAST طراحی می‌شود، باید با استفاده از نرم‌افزار PipeIQ تأیید گردد.

  • ملاحظات برای جانمایی مؤثر دتکتور گاز

    دتکتورهای گاز هشدارهایی را به کارکنان تأسیسات درباره نشت گاز قابل اشتعال ارائه می‌دهند تا اقدامات لازم، چه به‌صورت خودکار و چه دستی، برای کنترل نشت قبل از بروز خسارت جدی انجام گیرد. این اقدامات می‌توانند شامل خاموش کردن سیستم فرآیند، فعال‌سازی سامانه‌های سرکوب یا کاهش اثرات باشند. یک دتکتور گاز که به‌درستی طراحی و نصب شده باشد، سطح ایمنی تأسیسات را افزایش می‌دهد.

    تعیین هدف از نصب دتکتور گاز در آغاز طراحی و استفاده از مدل‌سازی انتشار و پراکندگی گاز برای ایجاد یک طرح مؤثر ضروری است. مگر آن‌که بودجه‌ای نامحدود داشته باشید و بتوانید در هر نقطه‌ی ممکن از نشت، یک دتکتور نصب کنید، استفاده از مدل‌سازی‌های رایانه‌ای می‌تواند در تعیین محل دتکتورها به‌صورت مقرون‌به‌صرفه کمک کند. دامنه و هدف دتکتور گاز باید از ابتدا مشخص شود تا در طول طراحی، سازگاری در انتخاب تجهیزات و نحوه نصب حفظ گردد.

    WhatsApp Image 2025 09 22 at 12.57.03 AM

    هدف دتکتور گاز
    هدف اصلی از استفاده از دتکتور گاز باید کاهش احتمال آتش‌سوزی و/یا انفجار و پیشگیری از خسارات گسترده به تجهیزات، توقف تولید، آسیب به افراد و تلفات جانی باشد. عامل مهم دیگر، خطر سمیت ناشی از نشت گازهایی است که هم خاصیت سمی و هم خاصیت قابل اشتعال دارند.

    هدف از نصب دتکتور گاز باید در ابتدای پروژه به‌صورت شفاف تعریف شود تا تحلیل خطرات، انتخاب نوع دتکتور و محل نصب آن‌ها متناسب با هدف نصب باشد. این پارامترها بسته به منطقه مورد نظر در تأسیسات متفاوت هستند. برای مثال، در ناحیه ذخیره‌سازی گاز مایع، دتکتورها ممکن است فقط جهت ایجاد هشدار به‌کار روند، زیرا منابع احتراق وجود ندارد و آن ناحیه از سایر فرآیندها جدا است. در مقابل، در بخش‌های دیگر کارخانه ممکن است هدف از نصب دتکتور، خاموش‌سازی فرآیند یا فعال‌سازی سامانه‌های پاشش آب برای رقیق‌سازی نشت گاز باشد.

    WhatsApp Image 2025 09 22 at 12.57.04 AM

    بخشی از طراحی کامل سیستم باید شامل رویه‌هایی باشد که اقدامات کارکنان تأسیسات را هنگام فعال شدن هشدار دتکتور گاز مشخص می‌کند. این رویه‌ها باید شامل اقداماتی باشند که در هر سطح هشدار انجام می‌شوند، واکنش‌های لازم در بخش‌های مختلف کارخانه، و تأثیر شرایط کاری کارخانه (حالت عادی، توقف، یا ناپایداری) بر تصمیمات عملیاتی را نیز در بر گیرند.

    ویژگی‌های شیمیایی و شرایط فرآیندی

    پس از تعیین هدف از نصب دتکتور گاز، مرحله بعدی جمع‌آوری داده‌هاست. موادی که قرار است توسط دتکتور شناسایی شوند باید مشخص گردند. شناسایی نشت شامل ارزیابی ویژگی‌های شیمیایی و فیزیکی مواد مورد نظر و همچنین شرایط فرآیندی حاکم است. این ویژگی‌ها و شرایط در محاسبات مدل‌سازی برای تعیین خصوصیات مختلف نشت مانند نرخ نشت ماده و شکل و اندازه‌ی ابر نشت مورد استفاده قرار می‌گیرند.

    دامنه‌ی اشتعال‌پذیری مواد بررسی می‌شود. این ویژگی اطلاعاتی درباره‌ی احتمال اشتعال نشت قبل از پراکنده شدن آن فراهم می‌کند. نقطه‌ی جوش و گرمای نهان تبخیر هر ماده در سناریوهای مشخص‌شده بررسی می‌شود. این ویژگی‌های فیزیکی برای ارزیابی میزان فرّاری بودن مواد در شرایط استفاده شده، مفید هستند.

    موادی که در شرایط محیطی به صورت گازهای قابل اشتعال وجود دارند، در صورت نشت به عنوان گاز در نظر گرفته می‌شوند. موادی که در دمای محیط به صورت مایع هستند، بسته به شرایط فرآیندی، ممکن است به‌صورت مایع یا بخار ارزیابی شوند.

    پارامترهای فرآیندی شامل دما، فشار و نرخ جریان همراه با ویژگی‌های ماده برای ارزیابی احتمال آتش‌سوزی و انفجار بررسی می‌شوند. برای مثال، یک مایع قابل اشتعال که دمای آن پایین‌تر از نقطه اشتعال باشد، ممکن است در صورت نشت مشکلی ایجاد نکند؛ اما اگر از بخشی از فرآیند با دمایی ۱۰۰ درجه فارنهایت بالاتر از نقطه اشتعال نشت کند، مشکل‌ساز خواهد بود. این پارامترها به همراه مقدار ماده‌ای که ممکن است نشت کند، برای ارزیابی اندازه احتمالی نشت در نظر گرفته می‌شوند. همچنین این اطلاعات برای تعیین ماهیت نشت‌ها در سناریوهای مشخص کاربرد دارند.

    WhatsApp Image 2025 09 22 at 12.57.04 AM1

    در ادامه نمونه‌ای از معیارهای انتخاب سناریوی نشت در یکی از پروژه‌های اخیر آورده شده است. بخش‌هایی از فرآیند که باید از نظر جانمایی دتکتور گاز بررسی شوند، شامل تجهیزاتی هستند که یکی از شرایط زیر در آن‌ها وجود دارد:

    • گازهای قابل اشتعال به‌صورت مایع‌شده در فرآیند درگیر هستند
    • مواد قابل اشتعال/احتراق در دمایی بالاتر از نقطه اشتعال خود قرار دارند
    • گازهای قابل اشتعال/احتراق در فشاری بیش از ۵۰۰ psig قرار دارند

    این معیارها صرفاً یک نمونه هستند. باید محدوده‌ی تحلیلی مورد نظر مشخص شود. اگر این محدوده بیش از حد گسترده باشد، تحلیل پیچیده و دشوار می‌شود؛ و اگر بیش از حد محدود باشد، احتمال نادیده گرفتن سناریوهای نشت مهم وجود دارد.

    اکثر ویژگی‌های مواد و شرایط فرآیندی در تحلیل خطر فرآیند (PHA) قابل دسترسی هستند. اگر تحلیل PHA انجام نشده یا اطلاعات کافی نداشته باشد، داده‌ها می‌توانند از نقشه‌های فرآیند (P&ID) و نمودارهای جریان فرآیند استخراج شوند. مهندسان فرآیند و اپراتورهای واحد، مطلع‌ترین افراد نسبت به فرآیند خاص هستند و می‌توانند اطلاعات ارزشمندی در این زمینه ارائه دهند.

    WhatsApp Image 2025 09 22 at 12.57.05 AM

    انتخاب حالت‌های خرابی

    باید نوع نقاط احتمالی نشت که قرار است تحلیل شوند مشخص گردد. فرض بر این است که خرابی‌های معقول می‌توانند رخ دهند. تحلیل سناریویی مانند پارگی آنی یک مخزن بزرگ یا شکست کامل لوله‌ی فولادی جوش‌خورده برای تعیین محل نصب دتکتور گاز منطقی نیست. اگرچه این رخدادهای فاجعه‌آمیز ممکن‌اند اتفاق بیفتند، اما تشخیص مؤثر باید بر رویدادهای محتمل‌تر تمرکز داشته باشد؛ یعنی همان نشت‌های کوچک‌تری که اگر به‌موقع شناسایی شوند و اقدام مناسب انجام شود، می‌توان آن‌ها را کنترل کرد.

    نمونه‌هایی از خرابی‌هایی که باید در نظر گرفته شوند عبارت‌اند از:

    • خرابی آب‌بند پمپ یا کمپرسور
    • خرابی فلنج‌ها
    • خرابی اتصالات لوله‌کشی
    • خرابی اتصالات ابزار دقیق
    • خرابی شیلنگ‌ها و اتصالات انعطاف‌پذیر

    WhatsApp Image 2025 09 22 at 12.57.05 AM1

    مکان‌های نشت

    گام بعدی تعیین مکان‌های احتمالی نشت است. این مکان‌ها جایی هستند که نوع ماده، شرایط ماده و نوع خرابی معمول در آن نقطه با یکدیگر تطابق دارند. هر مکان نشت باید به‌صورت جداگانه تحلیل شود تا داده‌های مورد نیاز برای مدل‌سازی نشت و پراکندگی جمع‌آوری شود. این اطلاعات شامل اندازه دهانه، ارتفاع و جهت‌گیری آن و همچنین پارامترهای فرآیندی در محل نشت خواهد بود.

    سناریوهای نشت و موقعیت آن‌ها باید پیش از آغاز مدل‌سازی اولیه توسط افرادی که مستقیماً با واحد یا کارخانه درگیر هستند، بررسی و تأیید شوند. مهندس فرآیند و اپراتور واحد اطلاعات دقیقی درباره منطقه مورد نظر دارند و می‌توانند اطلاعاتی ارائه دهند که اعتبار سناریوهای نشت انتخاب‌شده را افزایش دهد. در صورت امکان، بهتر است از ابتدا این افراد در تیم پروژه حضور داشته باشند.

    ملاحظات هواشناسی

    پیش از شروع مدل‌سازی پراکندگی، شرایط هواشناسی محل باید بررسی شود. پارامترهای هواشناسی شامل سرعت باد غالب، جهت باد، آشفتگی جو و شرایط حرارتی باید مدنظر قرار گیرد. پارامترهایی انتخاب می‌شوند که بدترین شرایط ممکن برای معیارهای نصب دتکتور را نشان دهند. ممکن است بدترین شرایط هواشناسی برای تشخیص، همان شرایط غالب در محل نباشند، اما باید در محدوده شرایط قابل وقوع در آن محل باشند.

    مدل‌سازی نشت و پراکندگی

    پس از گردآوری تمام اطلاعات مربوط به سناریوهای نشت و ترکیب آن با اطلاعات فیزیکی خاص هر محل نشت، مرحله مدل‌سازی آغاز می‌شود. مدل پراکندگی اطلاعاتی در خصوص اندازه و غلظت گاز پراکنده‌شده در زمان‌های مختلف نشت ارائه می‌دهد.

    مدل کامپیوتری می‌تواند نرخ نشت ماده و شرایط آن در نقطه نشت را مشخص کند. ماده ممکن است به‌صورت بخار، مایع یا مایع فوران‌کننده (flashing liquid) آزاد شود. سرمایش ناشی از انبساط ممکن است دمای ماده را تغییر داده باشد که می‌تواند تأثیر قابل توجهی بر نحوه پراکندگی داشته باشد. این مدل اطلاعات لازم برای تعیین میزان خطر ناشی از نشت را فراهم می‌کند.

    گروه‌بندی نشت‌های مشابه

    نشت‌های مشابه باید در یک گروه قرار گیرند تا از انجام مدل‌سازی‌های غیرضروری جلوگیری شود. برای مثال، اگر هفت نشت احتمالی از یک ماده وجود دارد که فقط در دمای آن‌ها ۲۰ درجه فارنهایت اختلاف است، اجرای مدل پراکندگی برای هر هفت مورد سود چندانی نخواهد داشت. باید بررسی حساسیت نتایج مدل پراکندگی انجام شود تا تأثیر پارامترهای ورودی متغیر مانند شرایط آب‌وهوایی و جهت‌گیری نشت بر نتایج پراکندگی مشخص شود.

    بسیاری از مدل‌ها در تخمین غلظت گاز در نزدیکی محل نشت (منبع نشت) دقت بالایی ندارند، اما می‌توانند اطلاعاتی درباره وسعت خطر ارائه دهند. این اطلاعات می‌توانند برای ارزیابی و مقایسه میزان خطر نشت‌ها به تأسیسات و/یا جوامع اطراف مورد استفاده قرار گیرند. برای مثال، یک نشت ممکن است فقط در همان محل تأثیر داشته باشد، در حالی که نشت دیگری ممکن است ابری از گاز قابل اشتعال ایجاد کند که تا بخاری‌های شعله‌دار مجاور گسترش می‌یابد. حالت دوم خطر بیشتری دارد، زیرا احتمال رسیدن مخلوط قابل احتراق به منبع جرقه وجود دارد. مدل‌سازی می‌تواند در اولویت‌بندی محل نصب دتکتور گاز کمک کند.

    نرم‌افزارهای مدل‌سازی نشت و پراکندگی

    نرم‌افزارهای متعددی برای مدل‌سازی پراکندگی گاز وجود دارند. هدف این متن بررسی این نرم‌افزارها نیست، بلکه اشاره به این است که چگونه می‌توان از آن‌ها برای تعیین محل نصب دتکتور گاز استفاده کرد. برخی از این نرم‌افزارها عبارت‌اند از:

    • SuperChems® از شرکت A. D. Little
    • CHARM® از شرکت Radian
    • نرم‌افزارهای متن‌باز مانند ARCHIE، DEGADIS، CAMEO و SLAB

    هر برنامه مزایا و معایب خاص خود را از نظر سهولت استفاده، گزینه‌های خروجی و توانمندی مدل‌سازی دارد. برخی مدل‌ها می‌توانند نشت و پراکندگی را در یک مرحله مدل‌سازی کنند، در حالی که برخی دیگر نیاز دارند که مدل نشت و مدل پراکندگی به‌صورت جداگانه اجرا شوند و خروجی مدل نشت به مدل پراکندگی وارد شود. باید بررسی شود که مدل انتخاب‌شده برای شرایط خاص پروژه مناسب است یا خیر.

    تعیین محل نصب دتکتور

    معیارهای نصب دتکتور گاز بر اساس شناسایی نشت قبل از تشکیل ابری از بخار قابل احتراق است که می‌تواند منجر به انفجار شود. اگرچه برای یک انفجار، حداقل پنج تن ماده نیاز است، اما حتی مقادیر بسیار کمتر نیز می‌توانند باعث آتش‌سوزی‌های شدید شوند. بنابراین، شناسایی نشت باید در سریع‌ترین زمان ممکن انجام شود تا پیش از تشکیل ابر بخار، فرصت انجام اقدامات اصلاحی فراهم باشد.

    برای نواحی مختلف یک تأسیسات معمولاً معیارهای متفاوتی جهت مکان‌یابی دتکتورها تدوین می‌شود. به‌عنوان مثال، در نواحی فرآیندی نیاز به تشخیص سریع‌تر حتی مقادیر کم گاز وجود دارد، اما در نواحی ذخیره‌سازی این الزام کمتر است. در نواحی فرآیندی، منابع احتراق متعددی وجود دارند. اگر بخار قابل احتراق به منبع احتراقی با انرژی کافی برخورد کند، آتش‌سوزی سریع رخ خواهد داد. همچنین ازدحام تجهیزات در این مناطق می‌تواند منجر به تسریع گسترش آتش شود. بنابراین، در نواحی فرآیندی تشخیص سریع مقادیر کم گاز مناسب و ضروری است.

     

    نشت‌های بزرگ‌تر معمولاً در نواحی ذخیره‌سازی قابل‌تحمل‌تر هستند، زیرا در این نواحی منابع احتراق محدودتری وجود دارد، تجهیزات و سازه‌ها کمتر متراکم هستند و جرم بیشتر تجهیزات و سازه‌ها، زمان بیشتری برای جذب اثرات حرارتی در هنگام آتش‌سوزی فراهم می‌کند. در نتیجه، در این مناطق می‌توان نشت‌های بزرگ‌تری را مدنظر قرار داد.

    مثال

    یک نمونه از شناسایی سناریوی نشت، مدل‌سازی پراکندگی گاز و معیارهای تعیین محل نصب دتکتور گاز که در یک پروژه اخیر به‌کار گرفته شده، بر پایه تشخیص در سطح غلظت ۲۰ درصد حد انفجار پایین (LEL) از یک ماده است که از فرآیند از طریق یک روزنه به قطر یک‌چهارم اینچ در مدت یک دقیقه یا قبل از آزاد شدن ۱۰۰۰ پوند ماده نشت می‌کند. این معیار به‌منظور ایجاد زمان کافی برای اقدام اصلاحی توسط کارکنان بهره‌بردار جهت کاهش میزان ماده نشت‌شده در نظر گرفته شده است. همچنین این معیار از نصب دتکتورهایی که بیش از حد حساس بوده و منجر به هشدارهای مزاحم می‌شوند جلوگیری می‌کند.

    مکان‌یابی دتکتورها در این پروژه وابسته به جهت باد نیست. در این حالت، جهت غالب باد متغیر است. معیار تعیین محل دتکتور گاز در این پروژه، نصب دتکتورها در ناحیه‌ای است که توسط پهنای ایزوپلت غلظت پراکندگی در نقطه نشت تعریف می‌شود. پهنای ایزوپلت در نقطه نشت یک ناحیه دایره‌ای را تعریف می‌کند که فاصله احتمالی گسترش نشت در خلاف جهت باد را مشخص می‌سازد. این رویکرد منجر به نصب دتکتورها با احتمال بالاتر شناسایی نشت در شرایط مختلف جهت باد می‌شود و اتکا به جهت غالب باد را کاهش می‌دهد. قانون مورفی بیان می‌کند که اگر نشت رخ دهد و مکان دتکتور بر اساس جهت غالب باد تعیین شده باشد، احتمال زیادی وجود دارد که باد از جهت مخالف (۱۸۰ درجه) بوزد.

    استفاده از روش‌های مدرن جمع‌آوری داده، مدل‌سازی رایانه‌ای و تجهیزات دتکتور گاز جایگزین قضاوت منطقی نمی‌شود. هنگام نصب دتکتورها، باید دقت شود که در مکان‌هایی قرار نگیرند که از منبع نشت گاز پنهان باشند.

    اجزای سیستم دتکتور گاز و عملکرد آن‌ها

    یک سیستم دتکتور گاز قابل اشتعال از چند جزء تشکیل شده است، از جمله دتکتور، مانیتورهای نمایش‌دهنده، آلارم‌های صوتی و آلارم‌های نوری. این سیستم ممکن است قابلیت اتصال به سایر سیستم‌های کنترل و پایش تأسیسات را نیز داشته باشد.

    سیستم‌های دتکتور گاز قابل اشتعال معمولاً به‌گونه‌ای طراحی می‌شوند که در دو سطح متفاوت از غلظت گاز هشدار دهند. این سیستم می‌تواند دستگاه‌های هشداردهنده خروجی را فعال کرده و همچنین نشان دهد که سطح خاصی از گاز قابل اشتعال وجود دارد. دو نقطه هشدار رایج ۲۰ درصد LEL و ۴۰ درصد LEL هستند. در سطح ۲۰ درصد LEL، سیستم چراغ هشدار را روی پنل روشن کرده و آلارم محلی را در ناحیه‌ای که دتکتور فعال شده ایجاد می‌کند. این کار می‌تواند منجر به تخلیه منطقه، افزایش نرخ تهویه و/یا بررسی فوری منطقه توسط پرسنل مجرب شود.

    در سطح ۴۰ درصد LEL، سیستم هشدار دیگری را فعال کرده، آلارم‌های صوتی و نوری را به فراتر از منطقه محلی گسترش می‌دهد، تجهیزات فرآیندی را به‌صورت خودکار خاموش یا تخلیه می‌کند، سامانه‌های پراکندگی بخار را فعال کرده و پرسنل اضطراری را مطلع می‌سازد تا اقدامات لازم را انجام دهند.

    فارغ از چیدمان خاص سیستم، اجزای ضروری آن شامل قابلیت تشخیص دتکتوری است که آلارم را فعال کرده (و در نتیجه موقعیت آن)، گازی که شناسایی شده، و غلظت گاز. بدون این اطلاعات، اقدامات مؤثر محدود خواهند بود. روش‌های متعددی برای سازمان‌دهی این اطلاعات و بازیابی آن در مواقع نیاز وجود دارد. برچسب‌گذاری ساده می‌تواند برای سامانه‌های کوچک کافی باشد. برای برخی دیگر، استفاده از برگه‌های داده جمع‌آوری‌شده کاربرد دارد. با این حال، در اغلب نصب‌های امروزی از سامانه‌های منطقی قابل برنامه‌ریزی استفاده می‌شود که قابلیت اتصال به تجهیزات دتکتور گاز را دارند. بدین ترتیب، قابلیت‌های مناسبی برای بازیابی اطلاعات فراهم می‌شود. بنابراین، پس از شناسایی گاز قابل اشتعال توسط یک دتکتور، کلیه اطلاعات مربوط به حادثه می‌تواند به‌صورت فوری بر روی صفحه‌نمایش رایانه نشان داده شود.

    انواع دتکتور گاز

    امروزه دو نوع دتکتور گاز برای گازهای قابل اشتعال استفاده می‌شود: نوع نقطه‌ای و نوع بیم. هر دو نوع کاربردها، مزایا و معایب خاص خود را دارند.

    در نوع نقطه‌ای از یک مهره کاتالیستی به‌عنوان دتکتور استفاده می‌شود. این مهره گرم می‌شود تا زمانی‌که گاز قابل اشتعال در مجاورت آن قرار گیرد، بسوزد و دمای مهره افزایش یابد. این افزایش دما باعث تغییر مقاومت الکتریکی در مهره می‌شود. این تغییر مقاومت با مهره مرجع در داخل دتکتور مقایسه می‌شود تا شرایط محیطی در نظر گرفته شود. سیستم این تغییر مقاومت را به‌صورت درصدی از حد انفجار پایین (LEL) تفسیر می‌کند.

    دتکتورهای نوع بیم بر اساس این اصل عمل می‌کنند که هیدروکربن‌ها تابش مادون قرمز را در طول موج‌های مشخصی جذب می‌کنند. دتکتور نوع بیم، یک پرتو آشکارساز و یک پرتو مرجع را در فضا منتشر می‌کند. این پرتو یا به یک گیرنده جداگانه می‌رسد یا در صورت ترکیب فرستنده/گیرنده، از آینه بازتاب داده می‌شود. این پرتو می‌تواند تا فاصله ۱۰۰ متر (۳۲۸ فوت) ارسال شود.

    مشخصات معمول هر دو نوع دتکتور در ادامه آمده است. این ویژگی‌ها بسته به سازنده خاص دتکتور ممکن است متفاوت باشد. هر یک از این عوامل باید هنگام انتخاب دستگاه مناسب مورد توجه قرار گیرد.

    دتکتورهای نوع نقطه‌ای:
    − مناسب برای پایش در محل‌های خاص یا اجزای تجهیزات، مانند ورودی هوای اتاق‌های کنترل یا تجهیزات مجزا
    − اندازه‌گیری کمی غلظت گاز در یک مکان معین
    − قیمت نسبتاً پایین
    − تعویض دتکتور ساده است
    − مستعد مسمومیت توسط برخی مواد مانند ترکیبات سیلیکونی
    − گاز باید به دتکتور برسد (در صورت قرارگیری نادرست یا کم‌بودن تعداد دتکتورها، دقت کاهش می‌یابد)
    − احتمال قرائت نادرست به دلیل تداخل‌ها وجود دارد
    − نیاز به نگهداری مکرر جهت بررسی کالیبراسیون
    − طول عمر عملکردی ممکن است در حضور گازهای پس‌زمینه دائمی کاهش یابد

     

    دتکتورهای نوع بیم:
    − ممکن است در صورتی‌که محل‌های بالقوه نشت در یک خط قرار داشته باشند (مانند ردیفی از پمپ‌ها در امتداد یک مسیر لوله‌کشی)، از نظر هزینه نسبت به دتکتورهای نقطه‌ای مقرون‌به‌صرفه‌تر باشند
    − نیاز به نگهداری کم، زیرا تجهیزات در معرض مسمومیت قرار نمی‌گیرند
    − پایش نشت گاز در یک منطقه وسیع را فراهم می‌کند
    − تحت تأثیر سطوح بالای گاز پس‌زمینه قرار نمی‌گیرد
    − میانگین غلظت در یک فاصله کوتاه را ارائه می‌دهد (غلظت دقیق در یک نقطه خاص را نشان نمی‌دهد)
    − فرستنده پرتو باید دید مستقیم با گیرنده یا بازتاب‌دهنده داشته باشد (فعالیت در یک ناحیه ممکن است پرتو را مختل کرده و باعث شود آن منطقه بدون پایش باقی بماند)
    − سرویس‌دهی پرهزینه و زمان‌بر است، زیرا تعویض دتکتورهای معیوب نیاز به تکنسین‌های ماهر دارد

    استفاده از دتکتورهای نقطه‌ای در مقایسه با دتکتورهای نوع بیم ممکن است برای مناطقی مناسب‌تر باشد که در آن، همپوشانی دایره‌های پراکنش، امکان شناسایی نشت از بیش از یک منبع را با یک دتکتور فراهم می‌کند. دتکتور نوع بیم زمانی مناسب‌تر است که یک سری نقاط نشت احتمالی در یک خط مستقیم قرار دارند یا زمانی که هدف، شناسایی نشت گاز پیش از عبور از مرز یک واحد فرایندی باشد. یک سیستم کامل ممکن است شامل استفاده از هر دو نوع دتکتور به‌صورت متناسب با شرایط باشد.

    خلاصه
    در ابتدای تحلیل باید هدف مشخصی برای سیستم دتکتور گاز تعیین شود. آنچه که انتظار دارید به آن دست یابید باید مشخص شود تا بتوان برنامه‌ای برای رسیدن به این هدف تدوین کرد.

    استفاده از مدل‌های نشت و پراکنش می‌تواند در مکان‌یابی مؤثر دتکتور گاز مفید باشد، زیرا اطلاعاتی در مورد اندازه نشت بر اساس نوع خرابی‌های فرض‌شده ارائه می‌دهد. ممکن است مدل نشان دهد که برخی از خرابی‌های احتمالی در یک منطقه، مقدار گاز کافی برای ایجاد نگرانی فوری را آزاد نمی‌کنند. به این ترتیب می‌توان تلاش‌ها را بر روی نشت‌های مهم‌تر متمرکز کرد و بودجه را به‌صورت مؤثرتری خرج نمود.

    نصب دتکتور گاز در ناحیه‌ای که با چند ایزوپلت غلظت پراکنش همزمان باشد می‌تواند تعداد نقاط مورد نیاز برای شناسایی را کاهش دهد. یک دستگاه در موقعیتی قرار می‌گیرد که می‌تواند نشت را از چند محل نزدیک شناسایی کند. به‌عنوان مثال، دتکتوری که بین دو پمپ مجاور قرار دارد، بسته به فاصله بین آن‌ها، می‌تواند نشت از هر دو پمپ را شناسایی کند.

    استفاده از روش‌های پیشرفته جمع‌آوری داده، مدل‌سازی رایانه‌ای، و تجهیزات دتکتور گاز، جایگزینی برای قضاوت فنی نیست. مدل‌سازی فقط تقریب شرایطی است که ممکن است رخ دهد. حتماً نظر افرادی که با کارخانه آشنایی دارند را جویا شوید، زیرا ممکن است اطلاعاتی داشته باشند که با فرض‌های اشتباه، نتایج پیشرفته‌ترین مدل‌ها را بی‌اثر کند.

    دتکتورهای نوع بیم و نقطه‌ای هر دو کاربردهای مناسب خود را دارند که بسته به موقعیت، متفاوت خواهد بود. یک راه‌حل مقرون‌به‌صرفه نیازمند بررسی همه گزینه‌های موجود برای شناسایی است. آنچه که در یک بخش از کارخانه مؤثر است، ممکن است در بخشی دیگر کاملاً ناکارآمد باشد.

  • راهنمای دتکتورهای دودی مکشی یا اسپیراتینگ ها برای مهندسین

    دتکتور دود مکشی (Aspirating Smoke Detector)

    تمام سیستم‌های دتکتور دود مکشی (ASD) دارای تجهیزات مشابهی هستند، اما نوع فناوری تشخیص آن‌ها متفاوت است. در حال حاضر چند نوع فناوری تشخیص وجود دارد:

    سیستم‌های مبتنی بر لیزر (دارای فیلتر)

    در این روش، از لیزر به‌عنوان منبع نوری در داخل محفظه تشخیص استفاده می‌شود. ابتدا هوا از یک سیستم فیلتراسیون عبور می‌کند تا ذرات بزرگ حذف شوند. سپس نمونه‌ی هوای فیلتر شده از مقابل لیزر عبور داده می‌شود و پراکندگی نور ناشی از ذرات دود توسط یک کلکتور نوری اندازه‌گیری می‌شود. الکترونیک پیشرفته‌ی دتکتور، میزان ذرات دود موجود در محفظه را تعیین می‌کند.

    سیستم‌های مبتنی بر لیزر (بدون فیلتر)

    این روش که معمولاً با عنوان “شمارش ذرات” شناخته می‌شود نیز از لیزر به عنوان منبع نوری استفاده می‌کند. اما در این پیکربندی، هوا بدون عبور از فیلتر مستقیماً وارد محفظه حسگر می‌شود. با عبور هوا از مقابل لیزر، کلکتور نوری تعداد ذرات در اندازه میکرونی مشخص را شمارش می‌کند تا تعیین شود که آیا میزان کافی از ذرات دود وجود دارد یا خیر. الکترونیک پیشرفته این فناوری قادر است بین ذرات معلق گرد و غبار و ذرات دود در نمونه تفاوت قائل شود.

    اتاقک ابری (Cloud Chamber)

    این روش قدیمی‌ترین و ابتدایی‌ترین فناوری مکشی تشخیص دود است. عنصر حسگر آن یک محفظه‌ی مهر و موم‌شده حاوی بخار آب بسیار متراکم است. هنگامی که یک ذره دود باردار با بخار آب متراکم برخورد می‌کند، یونیزه می‌شود. یون‌های ایجاد شده به عنوان هسته‌های تراکم عمل می‌کنند که مه در اطراف آن‌ها شکل می‌گیرد (زیرا بخار آب بسیار متراکم بوده و در آستانه‌ی چگالش قرار دارد). این فرآیند باعث بزرگ‌تر شدن اندازه ذره می‌شود، به‌طوری که از حالت نامرئی (زیر طول موج نور) به حالتی می‌رسد که قابل شناسایی توسط سلول نوری درون محفظه می‌شود.

    حسگر با منبع دوگانه (Dual Source Sensor)

    در این روش، از یک LED آبی برای شناسایی غلظت‌های بسیار پایین دود و از یک لیزر مادون قرمز برای تشخیص موارد مزاحم مانند گرد و غبار استفاده می‌شود که ممکن است باعث آلارم‌های اشتباه شوند. الگوریتم‌های پیشرفته سیگنال‌های هر دو منبع را تفسیر می‌کنند تا مشخص شود که نمونه‌ی هوا حاوی دود است یا فقط گرد و غبار معلق. سطح تشخیص ذرات می‌تواند تا حداقل 0.0015% بر متر (یا 0.00046% بر فوت) کاهش یابد.

    اصول اگزاست (تخلیه هوا) در دتکتور دود مکشی

    در کاربردهای عادی، معمولاً فشار هوا در فضای حفاظت‌شده با فشار هوا (APS) برابر با فشار هوای فضای نصب دتکتور است، و لوله اگزاست از خروجی فشار اگزاست دتکتور (AES) خارج می‌شود. به همین دلیل، نرم‌افزار طراحی که زمان انتقال و حساسیت دتکتور را محاسبه می‌کند، فرض می‌کند که فشار هوای دو فضا برابر است.

    اندازه سوراخ‌های نمونه‌برداری، اندازه لوله، زمان انتقال و سرعت فن مکنده همگی تابعی از حجم هوایی هستند که از محفظه نمونه‌برداری عبور می‌کند. محفظه حسگر برای تشخیص ذرات دود طراحی شده که با سرعت مشخص فن از درون آن عبور می‌کنند.

    • اگر فشار APS بیشتر از AES باشد، سرعت ورود هوا به محفظه حسگر ممکن است بیشتر از سرعت نامی فن شود که می‌تواند بر دقت تشخیص دود اثر مستقیم بگذارد.
    • مهم: اگر AES بیشتر از APS باشد، فشار هوا در حال فشار آوردن به هوای خروجی است و در نتیجه باعث ایجاد مقاومت و کند شدن فن می‌شود. این امر موجب افزایش زمان انتقال و کاهش حجم هوای ورودی به محفظه حسگر می‌گردد.

    نکته: برای حذف تفاوت فشار، باید هوای خروجی دوباره به همان اتاقی که از آن نمونه‌برداری شده بازگردانده شود (مطابق شکل 6 صفحه بعد).

    می‌توان لوله‌ای را به پورت خروجی متصل کرد تا هوای خروجی را از محل واحد دور کند؛ به‌عنوان مثال برای کاهش نویز، کاهش خطر تداخل یا انسداد عمدی، یا بهبود حفاظت محیطی. باید از لوله‌ای با مشخصات مشابه لوله‌های نمونه‌برداری استفاده شود و در تعیین محل خروجی جدید دقت شود تا مسدود شدن تصادفی یا عمدی آن رخ ندهد.

    روش‌های نمونه‌برداری دتکتور حرارتی خطی (ASD)

    برای هدف این راهنما، پنج روش نمونه‌برداری قابل قبول برای تمام کاربردهای ممکن وجود دارد:

    نمونه‌برداری اولیه (Primary Sampling)

    نام این روش گمراه‌کننده است؛ زیرا معمولاً به‌عنوان یک سیستم تکمیلی استفاده می‌شود و نه سیستم تشخیص اصلی. در نمونه‌برداری اولیه، نمونه‌گیری هوا از یک محل خاص یا جایی انجام می‌شود که احتمال حرکت هوا در آن بیشتر است. برای مناطقی با جریان هوای بالا، مانند دیتاسنترها یا اتاق‌های تمیز، محل نمونه‌برداری اولیه در دریچه‌های برگشت هوا، واحدهای هواساز (AHU) یا کانال‌های برگشت هوا قرار دارد.

    نمونه‌برداری ثانویه (Secondary Sampling)

    در این روش، سوراخ‌های نمونه‌برداری در سطح سقف و در مکان‌هایی مشابه با دتکتورهای نقطه‌ای دود نصب می‌شوند. فاصله‌گذاری بین سوراخ‌ها باید مطابق با استاندارد یا آیین‌نامه مربوطه باشد.

    نمونه‌برداری موضعی (Localised Sampling)

    WhatsApp Image 2025 09 30 at 3.50.37 PM

    این روش شامل حفاظت از تجهیزات یا نواحی خاص در یک فضای باز بزرگ است. نمونه‌برداری موضعی ممکن است در سیستم نمونه‌برداری رک‌ها (Rack Sampling) در یک انبار بزرگ باز استفاده شود.

    نمونه‌برداری داخل کابینت
    در این نوع روش نمونه‌برداری، سوراخ‌های مکش هوا به‌گونه‌ای نصب می‌شوند که تجهیزات خاصی را در یک فضای باز بزرگ‌تر پایش کنند. این روش با نمونه‌برداری موضعی متفاوت است، زیرا حجم تحت حفاظت بسیار کوچک‌تر بوده و تجهیز مورد نظر معمولاً به‌صورت خودکفا درون یک کابینت یا رک رایانه‌ای قرار دارد. سامانه تشخیص مکشی (ASD) هوایی را که برای خنک‌سازی تجهیزات استفاده می‌شود، پایش می‌کند. این نوع نمونه‌برداری معمولاً بر روی تجهیزاتی نصب می‌شود که آسیب دیدن آن‌ها در اثر آتش می‌تواند نتایج فاجعه‌باری به دنبال داشته باشد.

    نمونه‌برداری درون کانال
    در این نوع نمونه‌برداری، به‌جای استفاده از آشکارسازهای دود کانال‌نصب سنتی، از سامانه تشخیص مکشی (ASD) استفاده می‌شود تا در صورت وقوع آتش‌سوزی، سامانه تهویه مطبوع (HVAC) مرتبط خاموش شده یا دمپرها بسته شوند تا از گسترش دود جلوگیری گردد. همچنین می‌توان از آن برای تشخیص ذرات دود موجود در هوای خروجی (یا ورودی) استفاده کرد، به‌ویژه زمانی که آشکارسازی با حساسیت بیشتر مورد نیاز است.

  • سیستم اعلام حریق با توجه به بودجه

    IMG 1621

    مقدمه

    سیستم اعلام حریق، نخستین خط دفاعی در برابر آتش‌سوزی است. عملکرد سریع و دقیق این سیستم می‌تواند جان افراد و سرمایه‌های کلان را نجات دهد. اما انتخاب سیستم مناسب نیازمند درک درستی از بودجه، نیاز پروژه، و اعتبار برندهاست. بسیاری از پروژه‌ها با محدودیت بودجه روبرو هستند و در چنین شرایطی، مسئله “مقرون‌به‌صرفه بودن در مقابل قابل اطمینان بودن” مطرح می‌شود. در این مقاله به بررسی سیستم‌های اعلام حریق با توجه به این چالش‌ها می‌پردازیم.

    برندهای ایرانی: اقتصادی اما بدون تأییدیه جهانی

    برندهای ایرانی مانند سنس، آریاک، ماویگارد، افق، و زتا ایران بیشتر در پروژه‌های اقتصادی و مسکونی کوچک استفاده می‌شوند. مزیت اصلی این برندها، قیمت پایین، در دسترس بودن، و پشتیبانی نسبی در بازار داخلی است. اما در مقابل، این برندها هیچ‌گونه تأییدیه بین‌المللی نظیر UL، LPCB، VdS یا EN54ندارند و در آزمایشگاه های معتبر تحت تست قرار نگرفته اند و شرکت های بیمه ایرانی سخت گیری ویژه ای بر وجود یا عدم وجود تاییدیه های معتبر بین المللی برای محیط های حفاظت شده نشان داده اند و وجود تایدیه های معتبر مانند LPCB,Vds و UL باعث کمتر شدن هزینه بیمه مکان حفاظت شده خواهد شد.

    متاسفانه یا خوشبختانه مسائل مربوط به “حمایت از تولیدات داخل” باعث شده است تا پای بسیاری از مونتاژ کارهای ایرانی( به زعم خودشان تولید کننده داخلی) به بازار اعلام حریق ایران و در نتیجه به خانه های ایرانیان باز شود.

    از آنجا که درحال حاضر هیچ لابراتوار پیشرفته ای در کشور ما نیست و شرایط تست عملکرد دستگاه های اعلام حریق در داخل ایران وجود ندارد ولی در هنگام حریق، جان انسان ها بستگی به عملکرد درست سیستم اعلام حریق دارد، کارشناسان ما استفاده از این محصولات را به هیچ عنوان توصیه نمیکنند. بهتر است با صرف مبلغی بیشتر از سیستم های اعلام حریق دارای حداقل یکی از تاییدیه های ( آمریکا UL) یا ( انگلستان LPCB) یا ( آلمان Vds) استفاده کنید.

    در پروژه‌هایی که نیازمند رعایت استانداردهای جهانی هستند، مانند بیمارستان‌ها، فرودگاه‌ها، مراکز خرید بزرگ یا پروژه‌های صادراتی، این برندها به‌هیچ‌وجه قابل اعتماد نیستند. حتی برخی از مهندسین مشاور و سازمان‌های بیمه، استفاده از برندهای فاقد گواهی بین‌المللی را رد می‌کنند.

    در عمل، برندهای ایرانی بیشتر برای پروژه‌هایی با بودجه بسیار محدود، و حساسیت پایین به کار می‌روند. اما باید آگاه بود که سطح کیفی این سیستم‌ها به هیچ‌وجه با برندهای معتبر جهانی قابل مقایسه نیست، به‌خصوص در دقت در شناسایی حریق، پایداری در طول زمان، و مدیریت خطاهای سیستم.

    برندهای چینی: تنوع بالا، کیفیت متغیر

    بازار چین پر است از برندهای اعلام حریق، از برندهای بسیار ارزان و بی‌نام‌ونشان گرفته تا برندهایی با کیفیت قابل‌قبول نظیرTanda و TC, برخی از این برندها توانسته‌اند تأییدیه‌هایی مانند CE یا EN54 یا حتی LPCB را دریافت کنند، که اعتبار متوسطی در بازار جهانی دارند. با این حال، اغلب برندهای چینی فاقد گواهی‌های مهمی چون UL یا LPCB هستند و بیشتر برای پروژه‌های کم‌ریسک در کشورهای در حال توسعه مورد استفاده قرار می‌گیرند.

    برخی برندهای چینی نیز با استفاده از طراحی یا تکنولوژی اروپایی، محصولات نسبتاً بهتری تولید می‌کنند، اما همچنان کیفیت ساخت، دوام بلندمدت و خدمات پس از فروش آن‌ها چالش‌برانگیز است. استفاده از این برندها در پروژه‌های نیمه‌حرفه‌ای که نیاز به دقت بالا ندارند، می‌تواند راه‌حل اقتصادی مناسبی باشد. اما برای پروژه‌های حیاتی، انتخاب برند چینیبدون تاییدیه LPCB با ریسک همراه است. قبل از خرید جنس، آن رااز لحاظ تأییدیه‌ها به‌دقت بررسی شده کنید.

    برندهای اروپایی: تعادل میان کیفیت، قیمت و استاندارد

    برندهای اروپایی مانند Zeta (انگلستان)، Siemens، Bosch وEsser (آلمان)، Global Fire Equipment (پرتغال) از پیشگامان صنعت اعلام حریق هستند. این برندها معمولاً دارای تأییدیه‌های معتبر جهانی نظیر LPCB (انگلستان)، VdS(آلمان)، و EN54 (اتحادیه اروپا) هستند که نشانه انطباق آن‌ها با الزامات ایمنی بین‌المللی است.

    این برندها علاوه‌بر کیفیت بالا، پایداری و خدمات قابل اتکایی نیز ارائه می‌دهند. Zeta به‌عنوان یک برند میان‌رده، قیمت قابل‌قبولی دارد و در بسیاری از پروژه‌های داخل ایران نیز استفاده می‌شود. GFE پرتغالی نیز با وجود قیمت نسبتاً پایین‌تر، تأییدیه‌های معتبر دارد و یکی از گزینه‌های مناسب در پروژه‌های با بودجه متوسط است.

    در سمت دیگر، برندهایی چون Siemens و Bosch، بسیار حرفه‌ای و پیشرفته هستند. آن‌ها معمولاً در پروژه‌های بزرگ مانند بیمارستان‌ها، برج‌های بلند و مراکز صنعتی مورد استفاده قرار می‌گیرند. قیمت این برندها بالاست، اما برای پروژه‌هایی با حساسیت ایمنی بالا، ارزش سرمایه‌گذاری را دارند.

    برندهای آمریکایی: پیشرفته، دقیق و بسیار قابل اعتماد

    در صدر برندهای جهانی، برندهای آمریکایی مانند Notifier، Simplex، Fire-Lite و Edwards قرار دارند. این برندها معمولاً دارای تأییدیه‌های بسیار معتبر مانند UL (Underwriters Laboratories)، FM (Factory Mutual) و ULC (کانادا) هستند که استاندارد طلایی ایمنی در صنعت جهانی محسوب می‌شوند.

    این سیستم‌ها بسیار هوشمند، سریع، و قابل مدیریت هستند و در پروژه‌هایی مانند فرودگاه‌ها، پالایشگاه‌ها، مراکز داده و پروژه‌های بین‌المللی کاربرد دارند. البته قیمت این برندها بالا است و نصب و راه‌اندازی آن‌ها نیز نیازمند دانش فنی دقیق و تجربه بالاست. با این حال، برای پروژه‌هایی که هزینه حریق می‌تواند میلیاردی باشد، استفاده از برندهای آمریکایی یک الزام واقعی است.

    جمع‌بندی

    اگر پروژه‌ای با بودجه محدود دارید، استفاده از برندهای ایرانی مثل سنس یا آریاک می‌تواند راه‌حلی موقت باشد، ولی باید بدانید این برندها فاقد هرگونه تأییدیه معتبر بین‌المللیهستند و شرایط کارکرد صحیح آنها در آزمایشگاه های معتبر و مجهز جهانی تایید نشده است و فقط برای پروژه‌های کوچک بدون الزام قانونی کاربرد دارند.

    در صورتی‌که بودجه شما در سطح متوسط است و پروژه در کلاس مدارس، مراکز درمانی محلی یا ادارات قرار دارد، برندهای چینی با تأییدیه‌های حداقلی مانند Tandaیا برندهای اروپایی اقتصادی مثل GST، گزینه‌های مناسب‌تری خواهند بود.

    اما اگر پروژه شما حساس، بزرگ یا نیازمند اخذ تأییدیه بیمه، گواهی آتش‌نشانی یا صادراتی است، باید به سراغ برندهای معتبر اروپایی یا آمریکایی بروید. سیستم‌هایی مانندSiemens، Bosch، Notifier و Simplex تضمین امنیت و کیفیت هستند و دارای تأییدیه‌هایی هستند که در سراسر جهان شناخته‌شده و قابل استناد هستند.

  • دتکتورهای شعله: کلید یک سیستم مؤثر اطفای حریق

    اولین گام در مقابله با آتش‌سوزی، شناسایی به موقع وقوع آن است که بهترین راه برای این کار، انتخاب و به‌کارگیری دتکتورهای مناسب برای تشخیص شعله و در عین حال نادیده گرفتن شرایط هشدار کاذب می‌باشد.

    مقدمه
    بسیاری از کارخانه‌ها و تاسیسات فرآیندی مقادیر زیادی مایعات و گازهای قابل اشتعال و حتی انفجاری به عنوان محصولات، مواد اولیه یا سوخت‌ها دارند. حتی وقتی بهترین روش‌ها به دقت رعایت شوند، گاهی خطاهای تجهیزات یا اپراتورها باعث می‌شود این مواد از محفظه خود خارج شده و با هوا مخلوط شوند که منجر به آتش‌سوزی می‌شود.

    در حالی که اکثر مردم درباره فجایع انفجار و آتش‌سوزی‌های بزرگ شنیده‌اند، بسیاری از حوادث بالقوه در همان مراحل اولیه با فعال شدن دتکتور شعله و آغاز سیستم خودکار اطفای حریق مهار می‌شوند. این سیستم منبع سوخت را قطع کرده و آتش را خاموش می‌کند، معمولاً با استفاده از فومی خاص، تا حداقل آسیب به تجهیزات، صدمات جانی و اثرات زیست‌محیطی را فراهم کند. دتکتور شعله همچنین پرسنل پاسخ‌دهنده اولیه را مطلع می‌کند تا سریعاً به محل حادثه برسند.

    دستیابی به چنین نتیجه مثبتی مستلزم سیستم‌های ایمنی مؤثر و آموزش پرسنل است. در اولویت قرار دادن این موضوع، این سیستم‌ها باید بتوانند به سرعت شروع حریق را تشخیص دهند و به‌موقع مراحل اصلاحی صحیح را فعال کنند تا حادثه فرصت تشدید نیابد

     

    تشخیص شعله‌ها
    انسان‌ها آتش را با دیدن نور مرئی آن و احساس حرارت تابیده شده تشخیص می‌دهند. اما هر کسی که ماهیت آتش را مطالعه کرده باشد می‌داند که سوخت‌های مختلف می‌توانند انواع بسیار متفاوتی از آتش ایجاد کنند. الکل در حال سوختن نسبت به نفت در حال سوختن تقریباً نامرئی است. خوشبختانه، ابزارهایی که برای تشخیص شعله طراحی شده‌اند محدودیت چشم انسان را ندارند. دتکتورشعله‌ها می‌توانند تابش‌های داغ حاصل از محصولات احتراق، رادیکال‌ها و گونه‌های دیگر را در بخش‌های مختلف طیف الکترومغناطیسی جستجو کنند و در صورت قرارگیری مؤثر، ظرف چند ثانیه واکنش نشان دهند.

    اکثر محصولاتی که به عنوان قابل اشتعال شناخته می‌شوند حاوی کربن هستند و بنابراین دی‌اکسید کربن را به عنوان محصول اصلی تولید می‌کنند. با این حال، کربن لازم نیست که سوخت باشد، همانطور که در محصولاتی غیرآلی مانند هیدروژن، آمونیاک، اکسیدهای فلزی، سیلان و غیره دیده می‌شود. بسیاری از اینها حاوی هیدروژن بوده و بنابراین بخار آب تولید می‌کنند. الکل‌ها، هیدروکربن‌ها و بسیاری از سوخت‌های دیگر هم هیدروژن و هم کربن دارند و بنابراین هر دو محصول را تولید می‌کنند.

    صرف‌نظر از منبع سوخت، شعله‌ها و گازهای داغ حاصل تابش الکترومغناطیسی در طول‌موج‌های مختلف (شکل ۲) از فرابنفش (UV)، طیف مرئی تا مادون قرمز (IR) ایجاد می‌کنند. مقدار و طول‌موج این تابش بستگی به منبع سوخت دارد. دی‌اکسید کربن داغ دارای قله شدید در ۴.۲ تا ۴.۵ میکرومتر و بخار آب داغ در ۲.۷ میکرومتر است. دتکتورشعله‌ها معمولاً برای تشخیص تابش نوری در این طول‌موج‌ها طراحی می‌شوند که الگوهای شدت آنها در شعله‌های باز رایج است.

     

    کارخانه‌های قدیمی بیشتر به اپراتورهای انسانی برای اعلام هشدار و شروع عملیات اطفای حریق وابسته بودند، اغلب به دلیل کمبود دتکتورهای شعله مؤثر. اما با کاهش تعداد کارکنان در اکثر کارخانه‌ها و بهبود چشمگیر دتکتورهای شعله، سیستم‌های خودکار به بهترین روش برای آغاز عملیات تبدیل شده‌اند.

    فناوری‌های تشخیص حریق اشکال مختلفی دارند. در فضاهای مسکونی و تجاری، دتکتورهای دود وجود دارند که به دنبال محصولات خاص احتراق یا تیرگی هوا می‌گردند، اما این دتکتورها به فضاهای بسته نیاز دارند تا میزان کافی از دود یا ذرات به حد قابل تشخیص برسد که زمان‌بر است. دتکتورهای حرارتی نیز همین مشکل را دارند. از آنجایی که کارخانه‌های فرآیندی اغلب باز به فضای بیرون هستند، دتکتورهای دود ممکن است برای هشدار زودهنگام مناسب نباشند.

    سریع‌ترین روش برای تشخیص حریق، شناسایی شعله است. شعله‌ها بلافاصله هنگام سوختن گازها یا مایعات شکل می‌گیرند و نیازی به انتظار برای تجمع محصولات احتراق یا افزایش حرارت نیست. اگرچه این مفهوم ساده است، اما توانایی شناسایی دقیق شعله با سرعت پاسخ‌دهی بالا چالش‌برانگیز است.

    WhatsApp Image 2025 09 24 at 3.21.18 AM

    اجتناب از هشدارهای کاذب
    شرایطی که دتکتورشعله به آن‌ها واکنش نشان می‌دهد همیشه محدود به نوع آتش‌سوزی‌هایی نیست که تأسیسات نگران آن هستند. دی‌اکسید کربن و بخار آب داغ ممکن است توسط اگزوز کامیون یا موتور ثابت ایجاد شوند. نور فرابنفش می‌تواند توسط جوشکار یا بازتاب نور خورشید تولید شود. اگر دتکتورشعله این موارد را به اشتباه به عنوان آتش واقعی تشخیص دهد و منجر به صدور هشدار و فعال‌سازی خودکار سیستم‌های کنترل برای خاموش کردن آتش شود، این واکنش می‌تواند بسیار پرهزینه و مزاحم باشد و احتمالاً منجر به ثبت یک حادثه شود.

    علاوه بر پاکسازی، تولید متوقف می‌شود و در بسیاری از موارد برای مدت طولانی پس از آماده شدن تمام سیستم‌ها، به دلیل دوره انتظار برای تحقیقات علت ریشه‌ای، گزارش‌های نظارتی و سایر مجوزهای لازم برای راه‌اندازی مجدد، توقف ادامه می‌یابد. به دلیل این موارد و الزامات دیگر، هشدار کاذب می‌تواند تقریباً به اندازه یک آتش واقعی مزاحمت ایجاد کند.

    این واقعیت باعث توسعه دتکتورشعله‌هایی شده که قادر به تشخیص و رد هشدارهای کاذب هستند و نیاز به تنظیمات نادرست و نامناسب توسط پرسنل را کاهش می‌دهند. یکی از رایج‌ترین، اگرچه نامناسب‌ترین روش‌ها، کاهش حساسیت دتکتورشعله است که به منظور کاهش احتمال هشدار کاذب انجام می‌شود. این کار پوشش تشخیص را کاهش می‌دهد و در یک حادثه در حال پیشرفت، آتش باید به حدی برسد که دتکتور تنظیم‌شده پایین‌تر فعال شود، که مبارزه و خاموش کردن آن را سخت‌تر می‌کند.

    راه‌حل بهتر اما پرهزینه‌تر، استفاده از روش اثبات شده به کارگیری چندین دتکتورشعله در قالب یک سیستم رأی‌گیری است. این روش در سایر سیستم‌های حیاتی ایمنی متداول است اما هزینه پیاده‌سازی و یکپارچه‌سازی آن بالا است. با این وجود، به کارگیری چند دتکتور و سیستم‌های پشتیبان معمولاً هزینه کمتری نسبت به مدیریت یک هشدار کاذب واحد دارد.

    نیاز به استفاده از این روش‌ها با پیشرفت سیستم‌های پردازش سیگنال دتکتورشعله و توانایی آن‌ها در تمایز بین آتش واقعی و منابع احتمالی دیگر کاهش یافته است

    WhatsApp Image 2025 09 24 at 3.21.16 AM

    برای مثال، آیا منبع تابش فرابنفش تشخیص داده شده از یک شعله است یا یک جوشکار؟ اگرچه هر دو ممکن است در طول‌موج‌های مشابه تابش داشته باشند، ماهیت خروجی از نظر شدت و نوسان بسیار متفاوت است و یک دتکتور هوشمند می‌تواند تفاوت آن‌ها را تشخیص دهد.

    زمان پاسخ سریع که با دتکتورشعله حساس و پیشرفته امکان‌پذیر است می‌تواند تفاوت بین یک حادثه فاجعه‌بار و یک آتش خاموش شده با حداقل تأثیر باشد. این نوع دتکتورها همچنین می‌توانند از توقف تولید ناشی از هشدارهای کاذب جلوگیری کنند.

    دتکتورشعله‌ها براساس مقاومتشان در برابر منابع خاص هشدار کاذب ارزیابی می‌شوند، بنابراین در ارزیابی هر محصول باید این موارد به دقت بررسی شود. این دسته‌بندی‌ها شامل مواردی مانند چراغ‌های فلورسنت، چراغ‌های هالوژنی، کویل‌های داغ درخشان، جوشکاری قوسی، نور خورشید و غیره است. اکثر آن‌ها فاصله‌ای برای مقاومت در برابر این منابع را مشخص می‌کنند.