پروتکل آزمون دتکتورهای گازهای سمی

Gas D holding.jpg

این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

تجهیزات و گاز آزمون
۱. هوای صفر برای کالیبراسیون صفر
در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
ب. هوای صفر در بطری Lecture

۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

WhatsApp Image 2025 09 20 at 11.35.20 PM

ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

ج. دستگاه نفوذی یا پخش‌کننده
دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

آزمون زمان پاسخ (Time Response)
برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

بیشتر بخوانید: رفع خطای سیستم اعلام حریق

آزمون دما و رطوبت (Temperature and Humidity Test)
برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

آزمون پایداری (Drift Test)
دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

آزمون تکرارپذیری (Repeatability Test)
گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

آزمون بازیابی (Recovery Test)
پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

آزمون نشانگر خرابی (Fault Indication Test)
در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

تکمیل برگه کاری (Test Record Sheet)
تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

نوشته‌های مشابه

  • الزامات طراحی سیستم اطفاء حریق به روش غرقه سازی کلی یا TOTAL FLOODING با گاز دی اکسید کربن

    1. فصل ۵ – سیستم‌های غرقه‌سازی کلی

    ۵.۱ اطلاعات عمومی (همچنین به پیوست D مراجعه شود)
    ۵.۱.۱ توصیف: یک سیستم غرقه‌سازی کلی باید شامل منبع ثابت دی‌اکسید کربن باشد که به صورت دائم به لوله‌کشی ثابت متصل شده و دارای نازل‌های ثابت برای تخلیه دی‌اکسید کربن به داخل فضای بسته یا اتاق سرور پیرامون خطر باشد.

    ۵.۱.۲ کاربردها: سیستم غرقه‌سازی کلی باید در مواردی استفاده شود که یک محفظه دائمی اطراف خطر وجود دارد و امکان ایجاد و حفظ غلظت لازم دی‌اکسید کربن برای مدت زمان مورد نیاز را فراهم می‌کند.

    ۵.۱.۳ الزامات کلی: سیستم‌های غرقه‌سازی کلی باید طبق الزامات مربوطه در فصل ۴ و همچنین الزامات اضافی ذکرشده در این فصل طراحی، نصب، آزمون و نگهداری شوند.

    ۵.۱.۴ الزامات ایمنی: به بندهای ۴.۳ و ۴.۵.۶ مراجعه شود.

    ۵.۲ مشخصات خطر

    ۵.۲.۱ محفظه

    ۵.۲.۱.۱ برای آتش‌های سطحی یا شعله‌ای، مانند آتش‌هایی که در مایعات قابل اشتعال رخ می‌دهند، هرگونه بازشدگی غیرقابل‌بسته شدن باید طبق بند ۵.۳.۵.۱ با مقدار بیشتری دی‌اکسید کربن جبران شود.

    ۵.۲.۱.۲ اگر مقدار دی‌اکسید کربن موردنیاز برای جبران بازشدگی‌ها از مقدار پایه موردنیاز برای غرقه‌سازی بدون نشت بیشتر باشد، طراحی سیستم به‌صورت کاربرد موضعی طبق فصل ۶ مجاز است.

    ۵.۲.۱.۳ برای آتش‌های عمیق‌ریشه مانند آنچه در جامدات رخ می‌دهد، بازشدگی‌های غیرقابل‌بسته شدن باید به آن‌هایی محدود شوند که در سقف یا مجاور سقف قرار دارند، در صورتی که اندازه این بازشدگی‌ها از الزامات تهویه فشار تعیین‌شده در بند ۵.۶.۲ بیشتر باشد.

    ۵.۲.۱.۴ برای جلوگیری از گسترش آتش از طریق بازشدگی‌ها به خطرات مجاور یا مناطق کاری که ممکن است منابع دوباره اشتعال باشند، این بازشدگی‌ها باید دارای بسته‌شونده‌های خودکار یا نازل‌های کاربرد موضعی باشند.

    ۵.۲.۱.۴.۱ گاز موردنیاز برای چنین حفاظت‌هایی باید علاوه بر مقدار معمول برای غرقه‌سازی کلی فراهم شود. (به بند ۶.۴.۳.۶مراجعه شود)

    ۵.۲.۱.۴.۲ اگر هیچ‌کدام از روش‌های ذکرشده در بندهای ۵.۲.۱.۴و ۵.۲.۱.۴.۱ عملی نباشد، حفاظت باید به خطرات یا مناطق کاری مجاور نیز گسترش یابد.

    ۵.۲.۱.۵ در مورد مخازن فرآیندی و ذخیره‌سازی که تهویه ایمن بخارات و گازهای قابل اشتعال امکان‌پذیر نیست، استفاده از سیستم‌های کاربرد موضعی بیرونی طبق بند ۶.۴.۳.۶ الزامی است.

    ۵.۲.۲ نشت و تهویه

    از آنجا که کارایی سیستم‌های دی‌اکسید کربن به حفظ غلظت خاموش‌کننده گاز بستگی دارد، نشت گاز از فضای موردنظر باید به حداقل رسیده و با افزودن گاز اضافی جبران شود.

    ۵.۲.۲.۱ در صورت امکان، بازشدگی‌هایی مانند درها، پنجره‌ها و … باید طوری طراحی شوند که پیش از تخلیه دی‌اکسید کربن یا همزمان با آن به‌طور خودکار بسته شوند یا الزامات بندهای ۵.۳.۵.۱ و ۵.۴.۴.۱ رعایت شوند. (برای ایمنی افراد، به بند ۴.۳مراجعه شود)

    ۵.۲.۲.۲ در مواردی که سیستم تهویه با هوای فشرده درگیر باشد، این سیستم‌ها ترجیحاً باید پیش از تخلیه دی‌اکسید کربن یا همزمان با آن خاموش یا بسته شوند، یا گاز جبرانی اضافی فراهم گردد. (به بند ۵.۳.۵.۲ مراجعه شود)

    ۵.۲.۳ انواع آتش

    آتش‌هایی که با روش غرقه‌سازی کلی قابل خاموش‌سازی هستند، به دو دسته زیر تقسیم می‌شوند:

    ۱. آتش‌های سطحی شامل مایعات، گازها و جامدات قابل اشتعال
    ۲. آتش‌های عمیق‌ریشه شامل جامداتی که قابلیت دودزایی و شعله‌ور شدن دارند

    ۵.۲.۳.۱ آتش‌های سطحی

    برای آتش‌های سطحی، دی‌اکسید کربن باید به‌سرعت در محفظه تزریق شود تا نشت جبران شده و غلظت خاموش‌کننده برای مواد خاص ایجاد گردد.

    ۵.۲.۳.۲ آتش‌های عمیق‌ریشه

    برای آتش‌های عمیق‌ریشه، غلظت طراحی‌شده باید برای مدت زمانی حفظ شود تا دودزایی خاموش و مواد تا نقطه‌ای خنک شوند که پس از از بین رفتن جو بی‌اثر، مجدداً مشتعل نشوند.

    ۵.۳ نیازمندی‌های دی‌اکسید کربن برای آتش‌های سطحی

    ۵.۳.۱ کلیات

    ۵.۳.۱.۱ مقدار دی‌اکسید کربن برای آتش‌های سطحی باید بر اساس شرایط متوسط و با فرض خاموش شدن نسبتاً سریع در نظر گرفته شود.

    ۵.۳.۱.۲ اگرچه یک حاشیه ایمن برای نشت معمولی در عوامل حجمی پایه لحاظ شده است، اما باید اصلاحاتی بر اساس نوع ماده درگیر و سایر شرایط خاص صورت گیرد.

    ۵.۳.۲ مواد قابل اشتعال

    ۵.۳.۲.۱ باید مقدار غلظت طراحی‌شده دی‌اکسید کربن متناسب با نوع ماده قابل اشتعال موجود در خطر تعیین گردد.

    ۵.۳.۲.۱.۱ این غلظت باید با افزودن ضریب ۲۰ درصد به حداقل غلظت مؤثر محاسبه شود.

    ۵.۳.۲.۱.۲ در هیچ حالتی نباید از غلظتی کمتر از ۳۴ درصد استفاده شود.

    ۵.۳.۲.۲ جدول ۵.۳.۲.۲ باید برای تعیین حداقل غلظت‌های دی‌اکسید کربن برای مایعات و گازهای مندرج در جدول استفاده شود.

    ۵.۳.۲.۳ برای موادی که در جدول ۵.۳.۲.۲ ذکر نشده‌اند، غلظت تئوریک حداقل دی‌اکسید کربن باید از منبعی معتبر به‌دست آید یا با آزمون مشخص گردد.

    ۵.۳.۲.۴ در صورت وجود اطلاعاتی از مقادیر اکسیژن باقی‌مانده مجاز، غلظت تئوریک دی‌اکسید کربن باید با استفاده از فرمول زیر محاسبه شود:

    ۵.۳.۳ ضریب حجم

    ضریب حجمی که برای تعیین مقدار پایه دی‌اکسید کربن جهت حفاظت از یک محفظه حاوی ماده‌ای با نیاز به غلظت طراحی‌شده ۳۴ درصد استفاده می‌شود، باید مطابق جدول‌های ۵.۳.۳(a) و ۵.۳.۳(b) باشد.

    ۵.۳.۳.۱ در محاسبه ظرفیت خالص مکعبی که باید محافظت شود، اجازه داده می‌شود که برای ساختارهای دائمی، غیرقابل جابجایی و نفوذناپذیر که حجم را به‌طور قابل توجهی کاهش می‌دهند، کسر حجمی در نظر گرفته شود.

    ۵.۳.۳.۲ حجم‌های به‌هم‌پیوسته

    ۵.۳.۳.۲.۱ در دو یا چند حجم به‌هم‌پیوسته که جریان آزاد دی‌اکسید کربن بین آن‌ها ممکن است، مقدار دی‌اکسید کربن باید برابر با مجموع مقادیر محاسبه‌شده برای هر حجم، با استفاده از ضریب حجم متناظر از جدول‌های ۵.۳.۳(a) یا ۵.۳.۳(b) باشد.

    ۵.۳.۳.۲.۲ اگر یکی از حجم‌ها به غلظت بیشتری از مقدار نرمال نیاز داشته باشد (به بند ۵.۳.۴ مراجعه شود)، باید همان غلظت بالاتر برای تمام حجم‌های به‌هم‌پیوسته استفاده شود.

    p

  • ملاحظات مربوط به اسپیراتینگ ها یا دتکتورهای دودی مکشی بر اساس اصول عملکرد آن‌ها

    اثر رقیق‌سازی
    حساسیت یک سامانه تشخیص مکشی به دو عامل اصلی بستگی دارد: تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی و آستانه‌های قابل برنامه‌ریزی تشخیص دود. تعداد سوراخ‌های نمونه‌برداری می‌تواند بر میزان رقیق‌سازی هوای بازگشتی به محفظه حسگر تأثیر بگذارد.
    برای مثال، زمانی که دود از یک سوراخ نمونه‌برداری وارد می‌شود، غلظت دود به‌دلیل عبور از سایر سوراخ‌هایی که هوای پاک (بدون دود) را جذب می‌کنند، کاهش می‌یابد. زمانی که این هوای تمیز با هوای آلوده به دود ترکیب می‌شود و به محفظه تشخیص وارد می‌گردد، هوای آلوده به دود رقیق می‌شود. به این پدیده «اثر رقیق‌سازی» گفته می‌شود (شکل ۷ در پایین).

    در شکل ۷، رنگ خاکستری نشان‌دهنده دودی است که از دورترین سوراخ نمونه‌برداری در لوله وارد می‌شود. این دود در حین عبور از لوله با هوای پاک ترکیب شده و غلظت آن کاهش می‌یابد. اثر رقیق‌سازی به‌طور مستقیم با تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی مرتبط است. هرچه تعداد سوراخ‌ها بیشتر باشد، حجم هوایی که به سمت ASD منتقل می‌شود نیز بیشتر شده و در نتیجه دود معلق در هوا بیشتر رقیق می‌شود.
    برای مثال، اگر لوله نمونه‌برداری ۵۰ متر (۱۶۴ فوت) طول داشته باشد و در هر ۵ متر (۱۶ فوت) یک سوراخ تعبیه شده باشد، در مجموع ۱۰ سوراخ از جمله درپوش انتهایی خواهیم داشت.

    در این مثال ساده، فرض می‌شود که هر سوراخ مقدار تقریباً برابری از هوا را وارد می‌کند. اگر یک منبع دود با غلظت ۲٪ انسداد بر متر (obs/m) در انتهای لوله قرار گیرد و از سایر سوراخ‌ها دود وارد نشود، دود در مسیر حرکت خود با هوای پاک ترکیب می‌شود. زمانی که نمونه به آشکارساز می‌رسد، غلظت آن به ۰.۲٪ obs/m، یا یک‌دهم مقدار اولیه کاهش یافته است. بنابراین، اگر آستانه هشدار اولیه روی ۰.۲٪ obs/m تنظیم شده باشد، غلظت دود در خارج از سوراخ باید بیش از ۲٪ obs/m باشد تا هشدار به صدا درآید.

    در نتیجه، هرچه طول لوله و تعداد سوراخ‌های نمونه‌برداری بیشتر باشد، سامانه بیشتر در معرض اثر رقیق‌سازی قرار می‌گیرد. در این شرایط، بهتر است بر اساس بدترین حالت ممکن طراحی صورت گیرد.
    در واقعیت، محاسبه رقیق‌سازی به سادگی مثال بالا نیست و عوامل بیشتری دخیل‌اند. هر سامانه ویژگی‌های متفاوتی دارد، بنابراین محاسبه دقیق آن بسیار پیچیده است. عواملی که بر نرخ رقیق‌سازی تأثیر می‌گذارند شامل اندازه و تعداد سوراخ‌ها، سه‌راهی‌ها و زانویی‌ها در شبکه لوله‌کشی، قطر لوله، و عوامل محیطی مانند دما، فشار و رطوبت هوا می‌شوند.

     

    زمان انتقال

    زمان انتقال، مدت‌زمانی است که ذرات دود برای رسیدن به محفظه حسگر در دتکتور دودی مکشی نیاز دارند. این زمان (بر حسب ثانیه) از لحظه ورود ذرات به نقطه نمونه‌برداری تا رسیدن آن‌ها به محفظه تشخیص اندازه‌گیری می‌شود. این زمان‌ها با استفاده از نرم‌افزار طراحی دتکتور دودی مکشی محاسبه شده و در فرآیند راه‌اندازی و تأیید نهایی در میدان، به‌صورت عملی ارزیابی و تأیید می‌گردند.

    WhatsApp Image 2025 09 30 at 3.50.36 PM

    چندین پارامتر در تعیین زمان انتقال تأثیرگذار هستند، از جمله:

    • اندازه و تعداد سوراخ‌های نمونه‌برداری
    • تنظیم سرعت مکنده (دور بر دقیقه)
    • تنظیم حساسیت آشکارساز
    • مقدار کل و چیدمان لوله‌های نمونه‌برداری

    استانداردها و آیین‌نامه‌های مدرن، زمان‌های انتقال مشخصی را برای کلاس‌های مختلف دتکتورهای دودی مکشی الزام می‌کنند. حداکثر زمان انتقال ممکن است بسته به نوع کاربرد، از ۶۰ ثانیه برای دتکتورهای بسیار زودهنگام، ۹۰ ثانیه برای دتکتورهای زودهنگام، یا ۱۲۰ ثانیه برای دتکتورهای استاندارد متغیر باشد.

    برای تعیین زمان‌های مجاز انتقال، به استانداردهای EN 54-20، NFPA 72، NFPA 76 و آیین‌نامه‌های محلی مربوطه مراجعه شود.

     

  • الزامات طراحی سیستم اطفاء حریق بصورت کاربرد محلی با گاز دی اکسیدکربن

    1 شرح. سیستم کاربرد محلی باید شامل یک منبع ثابت دی‌اکسید کربن باشد که به‌طور دائم به یک سیستم لوله‌کشی ثابت متصل شده و نازل‌ها به‌گونه‌ای چیده شده باشند که مستقیماً به درون آتش تخلیه شوند.

    6.1.2 کاربردها. سیستم‌های کاربرد محلی باید برای اطفاء حریق‌های سطحی در مایعات قابل اشتعال، گازها و جامدات کم‌عمق استفاده شوند، در شرایطی که خطر محصور نشده باشد یا محفظه با الزامات سیلاب کامل مطابقت نداشته باشد.

    6.1.3 الزامات عمومی. سیستم‌های کاربرد محلی باید مطابق با الزامات مربوطه در فصل‌های قبلی و همچنین الزامات اضافی مشخص‌شده در این فصل، طراحی، نصب، آزمایش و نگهداری شوند.

    6.1.4 الزامات ایمنی.

    6.2 مشخصات خطر.

    6.2.1 گستره خطر. خطر باید به‌گونه‌ای از سایر خطرات یا مواد قابل اشتعال جدا شده باشد که آتش به بیرون از ناحیه محافظت‌شده گسترش نیابد.

    6.2.1.1 کل ناحیه خطر باید تحت حفاظت قرار گیرد.

    6.2.1.2 ناحیه خطر باید شامل تمام مناطقی باشد که با مایعات قابل اشتعال یا پوشش‌های جامد کم‌عمق پوشیده شده‌اند یا ممکن است پوشیده شوند، مانند مناطقی که در معرض نشت، تراوش، چکه کردن، پاشیدن یا میعان هستند.

    6.2.1.3 ناحیه خطر همچنین باید شامل تمام مواد یا تجهیزات مرتبط مانند قطعات تازه پوشش‌داده‌شده، صفحات تخلیه، هودها، کانال‌ها و غیره باشد که می‌توانند باعث گسترش آتش به بیرون یا هدایت آن به داخل ناحیه محافظت‌شده شوند.

    6.2.1.4 مجموعه‌ای از خطرات مرتبط به یکدیگر می‌تواند با تأیید مرجع صلاحیت‌دار به گروه‌ها یا بخش‌های کوچکتری تقسیم شود.

    6.2.1.5 سیستم‌های مربوط به چنین خطراتی باید به گونه‌ای طراحی شوند که در صورت نیاز، حفاظت مستقل و فوری برای گروه‌ها یا بخش‌های مجاور فراهم کنند.

    6.2.2 محل خطر.

    6.2.2.1 خطر می‌تواند در داخل اتاق سرور، به‌صورت نیمه‌پوشیده یا کاملاً در فضای باز قرار داشته باشد.

    6.2.2.2 ضروری است که تخلیه دی‌اکسید کربن به گونه‌ای انجام شود که باد یا جریان‌های شدید هوا موجب کاهش اثربخشی حفاظت نشوند.

    6.3 الزامات مربوط به دی‌اکسید کربن.

    6.3.1 کلیات. مقدار دی‌اکسید کربن مورد نیاز برای سیستم‌های کاربرد محلی باید بر اساس نرخ کلی تخلیه مورد نیاز برای پوشش‌دهی ناحیه یا حجم محافظت‌شده و مدت زمانی که باید تخلیه حفظ شود تا اطفاء کامل انجام گیرد، تعیین شود.

    6.3.1.1 ذخیره‌سازی پرفشار.

    6.3.1.1.1 برای سیستم‌هایی با ذخیره‌سازی پرفشار، مقدار محاسبه‌شده دی‌اکسید کربن باید ۴۰ درصد افزایش یابد تا ظرفیت نامی سیلندرهای ذخیره‌سازی تعیین شود، زیرا تنها بخش مایع در فرآیند تخلیه مؤثر است.

    6.3.1.1.2 این افزایش ظرفیت ذخیره‌سازی سیلندر برای بخش سیلاب کامل در سیستم‌های ترکیبی کاربرد محلی سیلاب کاملالزامی نیست.

    6.3.1.2 مقدار دی‌اکسید کربن موجود در ذخیره باید به اندازه‌ای افزایش یابد که بخار شدن مایع در حین خنک‌سازی لوله‌ها را جبران کند.

    6.3.2 نرخ تخلیه. نرخ تخلیه نازل‌ها باید با استفاده از روش سطحی طبق بخش 6.4 یا روش حجمی طبق بخش 6.5 تعیین شود.

    6.3.2.1 نرخ کلی تخلیه سیستم باید برابر با مجموع نرخ‌های تخلیه تک‌تک نازل‌ها یا تجهیزات تخلیه استفاده‌شده در سیستم باشد.

    6.3.2.2 برای سیستم‌های کم‌فشار، اگر بخشی از ناحیه خطر قرار است با سیلاب کامل محافظت شود، نرخ تخلیه آن بخش باید به‌گونه‌ای باشد که غلظت مورد نیاز را در مدت‌زمانی برابر یا کمتر از زمان تخلیه بخش کاربرد محلی تأمین کند.

    6.3.2.3 برای سیستم‌های پرفشار، اگر بخشی از ناحیه خطر قرار است با سیلاب کامل محافظت شود، نرخ تخلیه برای آن بخش باید با تقسیم مقدار مورد نیاز برای سیلاب کامل بر ضریب 1.4 و مدت‌زمان تخلیه کاربرد محلی به دقیقه، طبق معادله زیر، محاسبه شود:

    AAAAAElFTkSuQmCC

    جایی که:

    Qₜₒₜ = نرخ جریان برای بخش سیلاب کامل [پوند/دقیقه (کیلوگرم/دقیقه)]
    Wₜₒₜ = مقدار کل دی‌اکسید کربن برای بخش سیلاب کامل [پوند (کیلوگرم)]
    t = زمان تخلیه مایع برای بخش کاربرد محلی (دقیقه)

    6.3.3 مدت‌زمان تخلیه.

    6.3.3.1 حداقل زمان تخلیه مایع از تمام نازل‌ها باید ۳۰ ثانیه باشد.

    6.3.3.2 تمام نازل‌های کاربرد محلی که یک خطر واحد را محافظت می‌کنند باید به‌صورت همزمان برای مدتی که کمتر از حداقل زمان تخلیه مایع نباشد، مایع را تخلیه کنند.

    6.3.3.3 زمان حداقل باید برای جبران شرایط خطری که به دوره خنک‌سازی طولانی‌تری برای اطمینان از اطفاء کامل نیاز دارد، افزایش یابد.

    6.3.3.4 در صورتی که احتمال دارد فلز یا مواد دیگر به دمایی بالاتر از دمای اشتعال سوخت برسند، زمان مؤثر تخلیه باید افزایش یابد تا مدت زمان کافی برای خنک‌سازی فراهم شود.

    6.3.3.5 اگر سوخت دارای نقطه خوداشتغالی پایین‌تر از نقطه جوش باشد، مانند موم پارافین و روغن‌های پخت‌وپز، زمان مؤثر تخلیه باید افزایش یابد تا امکان خنک‌سازی سوخت و جلوگیری از آتش‌گیری مجدد فراهم شود.

    6.3.3.5.1 حداقل زمان تخلیه مایع باید ۳ دقیقه باشد.

    6.4 روش نرخ به‌ازای مساحت.

    6.4.1 کلیات. روش طراحی سیستم بر اساس مساحت باید در مواردی استفاده شود که خطر آتش‌سوزی عمدتاً شامل سطوح صاف یا اشیاء کم‌ارتفاع مرتبط با سطوح افقی باشد.

    6.4.1.1 طراحی سیستم باید بر اساس داده‌های فهرست‌شده یا مورد تأیید برای نازل‌های منفرد باشد.

    6.4.1.2 استفاده از این داده‌ها در مقادیر بالاتر یا پایین‌تر از حدود تعیین‌شده مجاز نیست.

    6.4.2 نرخ تخلیه نازل. نرخ طراحی تخلیه از طریق نازل‌های منفرد باید بر اساس موقعیت یا فاصله پاشش مطابق با تأییدیه‌ها یا فهرست‌های مشخص تعیین شود.

    6.4.2.1 نرخ تخلیه برای نازل‌های نوع سقفی باید صرفاً بر اساس فاصله از سطحی که هر نازل از آن محافظت می‌کند، تعیین شود.

    6.4.2.2 نرخ تخلیه برای نازل‌های کنار مخزن باید صرفاً بر اساس پرتاب یا فاصله مورد نیاز برای پوشش سطح مورد محافظت توسط هر نازل تعیین شود.

    6.4.3 مساحت به‌ازای هر نازل. حداکثر مساحتی که توسط هر نازل محافظت می‌شود باید بر اساس موقعیت یا فاصله پاشش و نرخ طراحی تخلیه، مطابق با تأییدیه‌ها یا فهرست‌های مشخص تعیین شود.

    6.4.3.1 همان عواملی که برای تعیین نرخ طراحی تخلیه استفاده شده‌اند باید برای تعیین حداکثر مساحت محافظت‌شده توسط هر نازل نیز استفاده شوند.

    6.4.3.2 بخش خطر تحت حفاظت نازل‌های نوع سقفی منفرد باید به‌عنوان یک ناحیه مربعی در نظر گرفته شود.

    6.4.3.3 بخش خطر تحت حفاظت نازل‌های کنار مخزن یا خطی منفرد باید مطابق با محدودیت‌های فاصله‌گذاری و تخلیه در تأییدیه‌ها یا فهرست‌های مشخص، به‌صورت ناحیه‌ای مستطیلی یا مربعی در نظر گرفته شود.

    6.4.3.4 هنگامی که غلتک‌های پوشش‌داده‌شده یا اشکال نامنظم مشابه قرار است محافظت شوند، مساحت خیس‌شده پیش‌بینی‌شده باید برای تعیین پوشش نازل استفاده شود.

    6.4.3.5 در مواردی که سطوح پوشش‌داده‌شده باید محافظت شوند، مساحت به‌ازای هر نازل می‌تواند تا حداکثر ۴۰ درصد بیشتر از مقادیر مشخص‌شده در تأییدیه‌ها یا فهرست‌ها افزایش یابد.

    6.4.3.5.1 سطوح پوشش‌داده‌شده به سطوحی اطلاق می‌شود که برای تخلیه طراحی شده‌اند و به‌گونه‌ای ساخته و نگهداری می‌شوند که تجمع مایع در سطحی بیش از ۱۰ درصد از ناحیه محافظت‌شده رخ ندهد.

    6.4.3.5.2 بند 6.4.3.5 در مواردی که باقیمانده مواد به‌صورت سنگین تجمع یافته باشد، اعمال نمی‌شود. (به 6.1.2 مراجعه شود.)

    6.4.3.6 در مواردی که نازل‌های کاربرد محلی برای محافظت از عرض دهانه‌هایی استفاده می‌شوند که در بندهای 5.2.1.4 و 5.2.1.5 تعریف شده‌اند، مساحت به‌ازای هر نازل طبق تأییدیه خاص می‌تواند تا حداکثر ۲۰ درصد افزایش یابد.

    6.4.3.7 در مواردی که آتش‌سوزی‌های مایعات قابل اشتعال با لایه عمیق قرار است محافظت شوند، باید حداقل فضای آزاد(freeboard) به اندازه 6 اینچ (152 میلی‌متر) در نظر گرفته شود، مگر اینکه در تأییدیه یا فهرست نازل به شکل دیگری ذکر شده باشد.

    6.4.4 موقعیت و تعداد نازل‌ها. تعداد کافی از نازل‌ها باید برای پوشش کامل ناحیه خطر بر اساس واحدهای سطحی محافظت‌شده توسط هر نازل استفاده شود.

    6.4.4.1 نازل‌های کنار مخزن یا خطی باید مطابق با محدودیت‌های فاصله‌گذاری و نرخ تخلیه مشخص‌شده در تأییدیه‌ها یا فهرست‌های خاص نصب شوند.

    6.4.4.2 نازل‌های نوع سقفی باید عمود بر ناحیه خطر نصب شده و در مرکز ناحیه تحت حفاظت آن نازل قرار گیرند.

    6.4.4.2.1 نصب نازل‌های نوع سقفی با زاویه‌ای بین ۴۵ درجه تا ۹۰ درجه نسبت به سطح ناحیه خطر، مطابق با بند 6.4.4.3 نیز مجاز است.

    6.4.4.2.2 ارتفاعی که برای تعیین نرخ جریان مورد نیاز و پوشش سطح استفاده می‌شود باید فاصله از نقطه هدف روی سطح محافظت‌شده تا سطح جلویی نازل، در امتداد محور نازل، باشد.

    6.4.4.3 نصب نازل با زاویه.

    6.4.4.3.1 زمانی که نازل‌ها با زاویه نصب می‌شوند، باید به نقطه‌ای هدف‌گیری شوند که از سمت نزدیک ناحیه تحت حفاظت توسط نازل اندازه‌گیری شده باشد.

    6.4.4.3.2 این موقعیت باید با ضرب عامل هدف‌گیری کسری موجود در جدول 6.4.4.3.2 در عرض ناحیه تحت حفاظت توسط نازل، محاسبه شود.

    2Q==

    6.4.4.4 اسپرینکلرها باید به‌گونه‌ای نصب شوند که از هرگونه مانعی که ممکن است باعث اختلال در پاشش دی‌اکسید کربن شود، دور باشند.

    6.4.4.5* اسپرینکلرها باید به‌گونه‌ای نصب شوند که اتمسفر اطفاء حریق را بر روی مواد پوشش‌داده‌شده‌ای که بالاتر از سطح محافظت‌شده قرار دارند، ایجاد کنند.

    6.4.4.6 تأثیرات احتمالی جریان هوا، باد و جریان‌های اجباری باید با محل قرارگیری اسپرینکلرها یا افزودن اسپرینکلرهای اضافی برای محافظت از نواحی بیرونی خطر جبران شود.

    6.5 روش بر اساس حجم

    6.5.1* کلیات. روش طراحی سامانه بر اساس حجم زمانی استفاده می‌شود که خطر آتش‌سوزی شامل اشیای سه‌بعدی و نامنظمی باشد که به‌راحتی قابل تبدیل به سطوح معادل نیستند.

    6.5.2 محفظه فرضی. نرخ کل تخلیه سامانه باید بر اساس حجم یک محفظه فرضی که به‌طور کامل خطر را در بر می‌گیرد، تعیین شود.

    6.5.2.1 این محفظه فرضی باید بر پایه یک کف بسته واقعی باشد، مگر اینکه تمهیدات خاصی برای شرایط کف در نظر گرفته شده باشد.

    6.5.2.2 دیواره‌ها و سقف محفظه فرضی باید حداقل ۲ فوت (۰٫۶متر) از خطر اصلی فاصله داشته باشند، مگر اینکه دیواره‌های واقعی وجود داشته باشند، و این محفظه باید تمام نواحی احتمال نشت، پاشش یا ریختن مواد را پوشش دهد.

    6.5.2.3 هیچ‌گونه کاهشی در محاسبه حجم برای اشیای جامد موجود در داخل این فضا نباید اعمال شود.

    6.5.2.4 حداقل بُعد ۴ فوت (۱٫۲ متر) باید در محاسبه حجم محفظه فرضی لحاظ شود.

    6.5.2.5 اگر خطر در معرض باد یا جریان‌های اجباری قرار دارد، حجم فرضی باید به اندازه‌ای افزایش یابد که زیان‌های سمت بادگیر جبران شود.

    6.5.3 نرخ تخلیه سامانه

    6.5.3.1 نرخ کل تخلیه برای سامانه پایه باید معادل ۱ پوند در دقیقه بر فوت مکعب (۱۶ کیلوگرم در دقیقه بر متر مکعب) از حجم فرضی باشد.

    6.5.3.2* اگر محفظه فرضی دارای کف بسته بوده و بخشی از آن با دیواره‌های دائمی و پیوسته‌ای که حداقل ۲ فوت (۰٫۶ متر) بالاتر از خطر قرار دارند (در شرایطی که دیواره‌ها به‌طور معمول بخشی از خطر نباشند) تعریف شده باشد، نرخ تخلیه می‌تواند به‌صورت متناسب کاهش یابد، به شرطی که این کاهش از ۰٫۲۵پوند در دقیقه بر فوت مکعب (۴ کیلوگرم در دقیقه بر متر مکعب) برای دیواره‌های واقعی که محفظه را کاملاً احاطه کرده‌اند، کمتر نباشد.

    6.5.4 محل و تعداد اسپرینکلرها. تعداد کافی از اسپرینکلرها باید بر اساس نرخ تخلیه سامانه و حجم فرضی برای پوشش کامل حجم خطر استفاده شود.

    6.5.4.1 اسپرینکلرها باید به‌گونه‌ای قرار داده و هدایت شوند که با همکاری بین اسپرینکلرها و اشیای داخل حجم خطر، گاز دی‌اکسید کربن در داخل فضای خطر باقی بماند.

    6.5.4.2 اسپرینکلرها باید به‌گونه‌ای نصب شوند که تأثیرات احتمالی جریان هوا، باد یا جریان‌های اجباری جبران شود.

    6.5.4.3 نرخ طراحی تخلیه از طریق اسپرینکلرهای منفرد باید بر اساس محل نصب یا فاصله پرتاب، مطابق با تأییدیه‌ها یا فهرست‌های خاص مربوط به آتش‌سوزی‌های سطحی تعیین شود.

    6.6 سیستم توزیع
    6.6.1 کلیات. سامانه باید به‌گونه‌ای طراحی شود که تخلیه مؤثر دی‌اکسید کربن را به‌سرعت و پیش از آنکه مقادیر زیادی گرما توسط مواد داخل اتاق سرور جذب شود، فراهم کند.
    6.6.1.1 منبع دی‌اکسید کربن باید تا حد ممکن نزدیک به اتاق سرور قرار گیرد، اما در معرض آتش نباشد، و مسیر لوله‌کشی نیز باید تا حد امکان مستقیم و با حداقل پیچ‌وخم باشد تا دی‌اکسید کربن به‌سرعت به محل آتش برسد.
    6.6.1.2 سامانه باید برای عملکرد خودکار طراحی شود، مگر اینکه مقامات ذی‌صلاح اجازه عملکرد دستی را صادر کرده باشند.

    6.6.2* سامانه‌های لوله‌کشی. لوله‌کشی باید طبق بند 4.7.5 طراحی شود تا نرخ مورد نیاز تخلیه را در هر اسپرینکلر تأمین کند.

    6.6.3 اسپرینکلرهای تخلیه. اسپرینکلرهای مورد استفاده باید برای نرخ تخلیه، برد مؤثر، و الگوی یا محدوده پوشش تأیید شده یا دارای لیست معتبر باشند.
    6.6.3.1 اندازه معادل اوریفیس استفاده شده در هر اسپرینکلر باید مطابق با بند 4.7.5 برای تطابق با نرخ طراحی تخلیه تعیین شود.
    6.6.3.2 اسپرینکلرها باید با دقت و طبق نیازهای طراحی سامانه، مطابق با بخش‌های 6.4 و 6.5، نصب و جهت‌دهی شوند.

  • دفترچه مهندسان برای بیم دتکتور دودی اعلام حریق

    بخش ۱ – اصول عملکرد
    بیم دتکتور دودی اعلام حریق با پرتو بازتابی شامل یک واحد فرستنده/گیرنده است که یک پرتو را به سمت ناحیه تحت حفاظت ارسال، پایش و دریافت می‌کند.WhatsApp Image 2025 09 16 at 1.20.16 AM

    بیم دتکتور بر اساس اصل تضعیف نور کار می‌کند. عنصر حساس به نور در شرایط عادی، نوری که توسط واحد فرستنده/گیرنده تولید می‌شود را دریافت می‌کند. واحد فرستنده/گیرنده بر اساس درصدی از تضعیف کل نور، روی یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول پرتو و فاصله بین واحد فرستنده/گیرنده و رفلکتور تعیین می‌گردد. برای بیم دتکتورهای دارای تأییدیه UL، تنظیم حساسیت باید با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق» مطابقت داشته باشد.
    بیم دتکتورهای دودی اعلام حریق بر اساس اصل تضعیف عمل می‌کنند. هنگامی که میدان دود تشکیل می‌شود، بیم دتکتور تضعیف تجمعی — درصد مسدود شدن نور ناشی از ترکیب غلظت دود و فاصله خطی میدان دود در طول پرتو — را تشخیص می‌دهد. آستانه معمولاً توسط سازنده و بر اساس شرایط نصب تعیین می‌شود.
    انتخاب حساسیت مناسب، احتمال آلارم‌های مزاحم ناشی از انسداد پرتو به‌وسیله یک جسم جامد که به‌طور ناخواسته در مسیر قرار گرفته را به حداقل می‌رساند. از آنجا که انسداد ناگهانی و کامل پرتو نوری مشخصه معمول دود نیست، بیم دتکتور این حالت را به‌عنوان وضعیت خطا تشخیص می‌دهد نه آلارم.
    همچنین تغییرات بسیار کوچک و آهسته در کیفیت منبع نور مشخصه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گرد و غبار و آلودگی بر روی مجموعه اپتیکی واحد فرستنده/گیرنده یا سطح بازتابی رخ دهد.

    WhatsApp Image 2025 09 16 at 1.20.17 AM

    وقتی بیم دتکتور برای اولین بار روشن و برنامه راه‌اندازی آن اجرا می‌شود، سطح سیگنال نوری آن لحظه را به‌عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، کنترل خودکار بهره (AGC) این تغییر را جبران می‌کند. با این حال، سرعت جبران محدود است تا اطمینان حاصل شود که بیم دتکتور همچنان به آتش‌سوزی‌های تدریجی یا دودکردن حساس می‌ماند. هنگامی که AGC دیگر قادر به جبران کاهش سیگنال نباشد، مثلاً به علت تجمع بیش از حد گرد و غبار، بیم دتکتور وضعیت خطا را اعلام می‌کند.

    WhatsApp Image 2025 09 16 at 1.20.17 AM1

    لوازم جانبی
    لوازم جانبی بیم دتکتور دودی اعلام حریق با پرتو بازتابی ممکن است شامل تابلوی اعلام از راه دور و ایستگاه‌های تست از راه دور باشد که امکان تست دوره‌ای الکترونیکی و/یا حساسیت بیم دتکتور را فراهم می‌کنند. سیستم‌های هوشمند اعلام حریق می‌توانند یک آدرس اختصاصی به بیم دتکتور بدهند تا مکان دقیق آتش بهتر مشخص شود.

    WhatsApp Image 2025 09 16 at 1.20.18 AM

    سایر لوازم جانبی قابل استفاده شامل کیت نصب سطحی، کیت نصب چندحالته، و کیت برد بلند هستند. کیت نصب سطحی برای زمانی است که سیم‌کشی به‌صورت روکار انجام شود. کیت نصب چندحالته امکان نصب بیم دتکتور و رفلکتور را بر روی دیوار یا سقف فراهم می‌کند و برای نصب این کیت بر روی بیم دتکتور باید از کیت نصب سطحی نیز استفاده شود. کیت برد بلند امکان نصب بیم دتکتور را در فاصله‌های بیشتر از رفلکتور، معمولاً بین ۷۰ تا ۱۰۰ متر (۲۳۰ تا ۳۲۸ فوت) فراهم می‌کند.
    هیترها باعث می‌شوند سطح اپتیکی بیم دتکتور و رفلکتور دمایی کمی بالاتر از دمای هوای اطراف داشته باشد، که به کاهش میعان در محیط‌هایی با تغییرات دمایی کمک می‌کند.

    بخش ۲ – مقایسه بیم دتکتور دودی اعلام حریق با دتکتورهای نقطه‌ای دود
    بیم دتکتورها تحت استاندارد UL و NFPA 72، 2013، بخش A.17.7.3.7 قرار دارند. لازم است طراحان این الزامات را به‌طور کامل در انتخاب و کاربرد بیم دتکتورها برای سیستم‌های اعلام حریق در نظر بگیرند.

    پوشش‌دهی
    بیم دتکتورهای دودی اعلام حریق می‌توانند سطحی را پوشش دهند که نیازمند بیش از یک دوجین دتکتور نقطه‌ای باشد. تعداد کمتر دستگاه به معنی هزینه نصب و نگهداری کمتر است.
    این دتکتورها معمولاً حداکثر برد ۱۰۰ متر (۳۳۰ فوت) و حداکثر فاصله بین دو دتکتور ۱۸ متر (۶۰ فوت) دارند، که پوشش تئوریک ۱۸۳۹ مترمربع (۱۹,۸۰۰ فوت مربع) ایجاد می‌کند. توصیه‌های سازنده و عواملی مانند شکل اتاق ممکن است این مقدار را در عمل کاهش دهند.
    دتکتورهای نقطه‌ای دود حداکثر پوشش ۸۳ مترمربع (۹۰۰ فوت مربع) دارند. حداکثر فاصله بین دو دتکتور ۱۲.۵ متر (۴۱ فوت) است، زمانی که عرض ناحیه تحت حفاظت بیش از ۳ متر (۱۰ فوت) نباشد، مانند یک راهرو.

    ارتفاع سقف
    اگرچه زمان پاسخ دتکتور نقطه‌ای دود معمولاً با افزایش فاصله آن از آتش/کف افزایش می‌یابد، این موضوع لزوماً در مورد بیم دتکتورهای دودی اعلام حریق صدق نمی‌کند، زیرا این دتکتورها برای سقف‌های بلند ایده‌آل هستند. با این حال، برخی سازندگان ممکن است با افزایش ارتفاع سقف، به دتکتورهای اضافی نیاز داشته باشند، که این امر به دلیل رفتار مورد انتظار ستون دود است.

    آتش‌سوزی‌ها معمولاً در نزدیکی یا در سطح کف آغاز می‌شوند. هنگامی که این اتفاق می‌افتد، دود به سمت بالا یا نزدیک سقف حرکت می‌کند. به طور معمول، ستون دود در مسیر حرکت از نقطه شروع خود، شروع به گسترش کرده و به شکل یک مخروط وارونه در می‌آید.

    WhatsApp Image 2025 09 16 at 1.20.18 AM1

    تراکم میدان دود می‌تواند تحت تأثیر سرعت رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند تراکم یکنواخت‌تری ایجاد کنند نسبت به آتش‌های کندسوز، که در آن ممکن است در بخش‌های بالایی میدان دود رقیق‌سازی رخ دهد. در برخی کاربردها، به ویژه جایی که سقف‌های بلند وجود دارد، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های کند یا دودزا واکنش‌پذیرتر از دتکتورهای نقطه‌ای باشند، زیرا آنها کل میدان دود را در طول پرتو بررسی می‌کنند. دتکتورهای نقطه‌ای تنها دود را در «نقطه» خاص خود نمونه‌برداری می‌کنند. دودی که وارد محفظه می‌شود ممکن است آن‌قدر رقیق باشد که به سطح لازم برای فعال کردن آلارم نرسد.

    WhatsApp Image 2025 09 16 at 1.20.19 AM

    یکی از محدودیت‌های بیم دتکتور دودی اعلام حریق این است که به عنوان دستگاه‌های خط دید، در معرض تداخل هر جسم یا شخصی هستند که وارد مسیر پرتو شود. بنابراین، استفاده از آنها در بیشتر مناطق اشغال‌شده با ارتفاع سقف معمولی عملی نیست.

    با این حال، بیم دتکتور دودی اعلام حریق اغلب انتخاب اصلی در مکان‌هایی با سقف بلند، مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، آشیانه‌های هواپیما و تالارهای کلیسا، همچنین کارخانه‌ها و انبارها هستند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و حتی مشکلات بیشتری را برای نگهداری صحیح آنها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این مناطق ممکن است مشکلات را کاهش دهد، زیرا به دستگاه‌های کمتری نیاز است و این دستگاه‌ها می‌توانند روی دیوارها که دسترسی به آنها آسان‌تر از سقف‌هاست، نصب شوند.

    کاربردها برای مناطق با سقف بلند در NFPA 92، راهنمای سیستم‌های کنترل دود توصیف شده‌اند. برای اطلاعات بیشتر به پیوست B این راهنما مراجعه کنید.
    بیم دتکتور: ۱۹٬۸۰۰ فوت مربع (۳۳۰ فوت × ۶۰ فوت)
    حداکثر پوشش تئوریک

    سرعت بالای جریان هوا
    مناطق با جریان هوای بالا مشکل ویژه‌ای برای دتکتورهای نقطه‌ای ایجاد می‌کنند، زیرا انتشار دود که در شرایط عادی رخ می‌دهد ممکن است اتفاق نیفتد. از آنجا که سرعت بالای هوا ممکن است دود را از محفظه تشخیص خارج کند، باید عملکرد دتکتور نقطه‌ای زمانی که سرعت هوا بیش از ۱٬۵۰۰ فوت در دقیقه یا زمانی که نرخ تعویض هوا در منطقه محافظت‌شده بیش از ۷٫۵ بار در ساعت است، به دقت بررسی شود. محدوده تشخیص بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (حداکثر محدوده پرتو معمولاً ۳۳۰ فوت است)، در مقایسه با ابعاد یک یا دو اینچی محفظه تشخیص دتکتور نقطه‌ای. بنابراین، احتمال اینکه دود از محدوده تشخیص بیم دتکتور دودی اعلام حریق خارج شود کمتر است. از آنجا که جریان هوای بالا تأثیر زیادی بر بیم دتکتور ندارد، معمولاً نیاز نیست که برای این نوع محیط‌ها فهرست‌شده باشند.

    لایه‌بندی (Stratification)

    WhatsApp Image 2025 09 16 at 1.20.19 AM1

    لایه‌بندی زمانی رخ می‌دهد که دود حاصل از مواد دودزا یا در حال سوختن گرم شده و از هوای خنک‌تر اطراف خود کمتر متراکم شود. دود بالا می‌رود تا زمانی که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد (به NFPA 2013، A.17.7.1.10 مراجعه کنید). بنابراین، لایه‌بندی ممکن است در مکان‌هایی رخ دهد که دمای هوا در سطح سقف بالا باشد، به ویژه جایی که تهویه وجود ندارد.

    روی سقف‌های صاف، بیم دتکتور دودی اعلام حریق عموماً باید در محدوده فاصله مشخص‌شده نصب شوند. در برخی موارد، محل و حساسیت دتکتورها باید نتیجه یک ارزیابی مهندسی باشد که شامل موارد زیر است:

    • ویژگی‌های سازه‌ای
    • اندازه و شکل اتاق‌ها و دهانه‌ها
    • نوع استفاده و اشغال فضا
    • ارتفاع سقف
    • شکل سقف
    • سطح و موانع
    • تهویه
    • شرایط محیطی
    • ویژگی‌های سوختن مواد قابل احتراق موجود
    • چیدمان محتویات منطقه تحت حفاظت

    نتایج ارزیابی مهندسی ممکن است نیاز به نصب در فاصله بیشتری از سقف و در ارتفاع‌های متفاوت برای مقابله با اثرات لایه‌بندی یا موانع دیگر داشته باشد.

    پیش‌لایه‌بندی / نرخ آزادسازی حرارت
    پیش‌لایه‌بندی باید در نظر گرفته شود، زیرا این یک عامل غالب در آتریوم‌هایی با سقف شیشه‌ای است. در دوره‌های آفتابی، گرما می‌تواند در بالای آتریوم تجمع پیدا کند و پیش از آغاز آتش‌سوزی یک لایه لایه‌بندی‌شده در سطح سقف ایجاد کند. عمق این لایه هوای گرم بسته به دمای بیرون و شدت تابش خورشید بر سقف تغییر می‌کند. گرمای ناشی از آتش می‌تواند به این لایه هوای گرم اضافه شده و عمق آن را افزایش دهد (به شکل‌های ۵ تا ۷ مراجعه کنید).

    نرخ آزادسازی حرارت یک آتش تعیین می‌کند که دود تا چه ارتفاعی در آتریوم بالا می‌رود. نرخ آزادسازی حرارت بسته به ماده در حال سوختن، جرم آن و متغیرهای دیگر متفاوت است.

    هنگام تعیین ارتفاع نصب بیم دتکتور دودی اعلام حریق، باید سناریوهای مختلف آتش در نظر گرفته شوند. سناریوهای آتش باید نه تنها بر اساس اشیای معمول موجود در محل، بلکه بر اساس خطرات موقت مانند وسایل مورد استفاده در بازسازی یا در طول دوره جابه‌جایی مستأجران نیز باشند.

    کاربردهای ویژه
    یکی از مهم‌ترین محدودیت‌های دتکتورهای دودی نقطه‌ای، ناتوانی آنها در کارکرد در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. هرچند بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد، اما در بسیاری موارد یک جایگزین مناسب به شمار می‌رود، زیرا محدوده دمای کاری آنها ممکن است بسیار وسیع‌تر از دتکتورهای دودی نقطه‌ای باشد. کاربردهای احتمالی بیم دتکتور شامل فریزرها، انبارهای نگهداری مواد سرد، انبارهای حمل‌ونقل، پارکینگ‌های سرپوشیده، سالن‌های کنسرت و اصطبل‌ها می‌شود.

    WhatsApp Image 2025 09 16 at 1.31.00 AM

    با این حال، بیم دتکتور نباید در محیط‌هایی نصب شود که فاقد کنترل دما هستند و احتمال تشکیل میعان یا یخ‌زدگی وجود دارد. اگر در این مکان‌ها رطوبت بالا و تغییرات سریع دما پیش‌بینی شود، احتمال تشکیل میعان وجود دارد و این شرایط برای کاربرد بیم دتکتور مناسب نیست. همچنین، بیم دتکتور نباید در محل‌هایی نصب شود که واحد فرستنده-گیرنده، رفلکتور یا مسیر نوری بین آنها ممکن است در معرض شرایط جوی بیرونی مانند باران، برف، تگرگ یا مه قرار گیرد. این شرایط عملکرد صحیح دتکتور را مختل می‌کند.

     

    بخش ۳ – ملاحظات طراحی
    عوامل زیادی بر عملکرد دتکتورهای دودی تأثیر می‌گذارند. نوع و مقدار مواد قابل احتراق، سرعت رشد آتش، فاصله دتکتور از آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق دارای تأییدیه UL تحت استاندارد UL 268 (دتکتورهای دود برای سیستم‌های اعلان حریق حفاظتی) هستند و باید طبق NFPA 72 (کد ملی اعلان حریق) و دستورالعمل سازنده نصب و نگهداری شوند.

    حساسیت
    هر سازنده مشخص می‌کند که حساسیت دتکتور باید با توجه به طول پرتو مورد استفاده در یک کاربرد خاص تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول پرتو مجاز طبق دستورالعمل سازنده نصب شود، که این مقادیر توسط فهرست UL محدود شده‌اند.

    محل و فاصله‌گذاری
    پارامترهای محل نصب و فاصله‌گذاری توسط سازندگان توصیه می‌شود. به‌عنوان مثال، در سقف‌های صاف، فاصله افقی بین پرتوهای پیش‌بینی‌شده نباید بیش از ۶۰ فوت (۱۸٫۳ متر) باشد و فاصله بین پرتو و دیوار کناری (دیوار موازی مسیر پرتو) می‌تواند حداکثر نصف این مقدار باشد. هرچند این مثال حداکثر فاصله ۶۰ فوت را مجاز می‌داند، برخی سازندگان ممکن است محدودیت بیشتری اعمال کنند.

    در سقف‌های صاف، بیم دتکتور دودی اعلام حریق باید حداقل ۱۲ اینچ (۰٫۳ متر) پایین‌تر از سطح سقف یا زیر موانع سازه‌ای مانند تیرها، خرپاها، کانال‌های هوا و غیره نصب شود. همچنین، بیم دتکتور باید حداقل ۱۰ فوت (۳٫۰ متر) بالاتر از کف نصب شود تا از موانع رایج ناشی از استفاده روزمره ساختمان دور باشد.

    ملاحظات نصب بیم دتکتور بازتابی
    برای عملکرد صحیح، بیم دتکتور به یک سطح نصب پایدار نیاز دارد. سطحی که حرکت کند، جابه‌جا شود، دچار لرزش یا تغییر شکل شود، باعث آلارم‌های کاذب یا بروز خطا خواهد شد. در فواصل طولانی، جابه‌جایی تنها ۰٫۵ درجه در فرستنده باعث می‌شود نقطه مرکزی پرتو تقریباً ۳ فوت (۰٫۹ متر) تغییر مکان دهد.

    دتکتور باید روی سطوح نصب پایدار مانند آجر، بتن، دیوار باربر محکم، ستون نگهدارنده، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود دچار لرزش یا جابه‌جایی شود، نصب شود. دتکتور نباید روی دیوار فلزی موج‌دار، دیوار فلزی نازک، پوشش خارجی ساختمان، نمای خارجی، سقف معلق، خرپای فلزی باز، تیرهای غیرباربر، الوار یا سطوح مشابه نصب شود. در مواردی که تنها یک سطح پایدار قابل استفاده است، واحد فرستنده-گیرنده باید روی سطح پایدار نصب شود و رفلکتور روی سطح کمتر پایدار قرار گیرد، زیرا رفلکتور نسبت به محل نصب ناپایدار تحمل بیشتری دارد.

    WhatsApp Image 2025 09 16 at 1.20.20 AM

    از آنجا که بیم دتکتور دودی اعلام حریق دستگاه خط دید است و در صورت قطع کامل و ناگهانی سیگنال وارد وضعیت خطا می‌شود، باید همیشه از وجود هرگونه مانع مات در مسیر پرتو جلوگیری کرد.

    «در برخی موارد، پروژکتور پرتو نوری (همان فرستنده/گیرنده) در یک دیوار انتهایی نصب می‌شود و گیرنده پرتو نوری (همان رفلکتور) در دیوار مقابل نصب می‌شود. با این حال، همچنین مجاز است که پروژکتور و گیرنده از سقف آویزان شوند، به شرطی که فاصله آنها از دیوارهای انتهایی بیش از یک‌چهارم فاصله انتخاب‌شده نباشد.» — NFPA 72-2013, A.17.7.3.7

    همچنین باید نیاز به واکنش سریع به دلیل عوامل ایمنی جانی یا ارزش بالای دارایی‌های محافظت‌شده در نظر گرفته شود. در این شرایط، فاصله‌گذاری باید کاهش یابد، یا زمانی که آتش پیش‌بینی‌شده دود کمی به‌ویژه در مراحل اولیه تولید می‌کند. برای مثال، دتکتورهای نصب‌شده روی سقف یک آتریوم بسیار بلند در یک هتل ممکن است نیاز به تکمیل با دتکتورهای اضافی در ارتفاعات پایین‌تر داشته باشند.

    در کاربردهایی که نیاز به کاهش فاصله‌گذاری است، باید دقت شود که دو پرتو موازی به حداقل فاصله از یکدیگر برسند تا گیرنده یک دتکتور نتواند منبع نور دتکتور دیگر را ببیند. در مواردی که دو یا چند دتکتور با پرتوهایی در زوایا نصب می‌شوند، باید اطمینان حاصل شود که گیرنده هر دتکتور تنها نور فرستنده خودش را تشخیص دهد. رعایت روش‌های آزمون ذکرشده در دفترچه راهنمای سازنده بسیار مهم است.

    ملاحظات تکمیلی نصب برای بیم دتکتور دودی اعلام حریق بازتابی

    WhatsApp Image 2025 09 16 at 1.20.20 AM1 1

    باید یک خط دید شفاف و دائمی بین دتکتور و رفلکتور وجود داشته باشد. اجسام بازتابنده نباید در نزدیکی خط دید بین دتکتور و رفلکتور قرار گیرند. اجسام بازتابنده‌ای که بیش از حد به خط دید نزدیک باشند می‌توانند پرتو نور را از فرستنده به گیرنده منعکس کنند. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. اجسام بازتابنده باید حداقل ۱۵ اینچ (۳۸٫۱ سانتی‌متر) از خط دید بین دتکتور و رفلکتور فاصله داشته باشند.

    منابع نوری با شدت بسیار زیاد، مانند نور خورشید و لامپ‌های هالوژن، اگر مستقیماً به سمت گیرنده هدایت شوند، می‌توانند تغییرات شدیدی در سیگنال ایجاد کرده و باعث بروز سیگنال خطا یا آلارم شوند. برای جلوگیری از این مشکل، باید از تابش مستقیم نور خورشید به واحد فرستنده-گیرنده اجتناب شود. حداقل زاویه ۱۰ درجه بین مسیر منبع نور (نور خورشید) و دتکتور، و خط دید بین دتکتور و رفلکتور باید رعایت شود.

    باید از عملکرد دتکتور از طریق شیشه اجتناب شود. از آنجا که بیم دتکتور تک‌سَر بر اساس اصل بازتاب عمل می‌کند، یک شیشه که به‌طور عمود بر خط دید بین دتکتور و رفلکتور قرار گرفته باشد، می‌تواند پرتو نور را از فرستنده به گیرنده بازتاب دهد. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. شیشه همچنین مقداری از نور را هنگام عبور جذب می‌کند. این جذب نور فاصله مجاز نصب بین دتکتور و رفلکتور را کاهش می‌دهد.

    در مواردی که اجتناب از عبور پرتو از شیشه ممکن نیست، برخی شیوه‌های خاص نصب می‌توانند اثرات شیشه را به حداقل برسانند. این روش‌ها شامل خودداری از عبور پرتو از چندین لایه شیشه، قرار دادن شیشه به‌گونه‌ای که به‌طور عمود بر خط دید بین دتکتور و رفلکتور نباشد (حداقل ۱۰ درجه انحراف از حالت عمود توصیه می‌شود) و اطمینان از شفاف، صاف و محکم بودن شیشه است. آزمون مسدودسازی کامل رفلکتور می‌تواند برای تعیین قابل قبول بودن نصب استفاده شود.

    در مکان‌هایی که ارتفاع سقف بیش از ۳۰ فوت (۹٫۱ متر) است، ممکن است نیاز به نصب بیم دتکتور دودی اعلام حریق اضافی در ارتفاع‌های مختلف برای تشخیص دود در سطوح پایین‌تر باشد. برای اطلاعات بیشتر به بخش لایه‌بندی در این راهنما مراجعه کنید.

    پیوست A – واژه‌نامه اصطلاحات

    پنل اعلان (Annunciator)
    دستگاهی که وضعیت یا شرایطی مانند حالت عادی، خطا یا آلارم دتکتور دودی یا سیستم را به صورت دیداری یا شنیداری نمایش می‌دهد.

    کنترل خودکار بهره (Automatic Gain Control – AGC)
    قابلیت بیم دتکتور دودی اعلام حریق برای جبران افت سیگنال نوری ناشی از گردوغبار یا آلودگی. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان به آتش‌های کند و دودزا حساس باقی می‌ماند.

    بیم دتکتور دودی اعلام حریق (بازتابی)
    دستگاهی که با ارسال یک پرتو نور از واحد فرستنده-گیرنده به سمت یک رفلکتور که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند، وجود دود را تشخیص می‌دهد. ورود دود به مسیر پرتو باعث کاهش سیگنال نور شده و آلارم فعال می‌شود.

    برد بیم (Beam Range)
    فاصله بین فرستنده-گیرنده و رفلکتور.

    پوشش دتکتور (Detector Coverage)
    منطقه‌ای که یک دتکتور دود یا دتکتور حرارت قادر به تشخیص مؤثر دود و/یا حرارت است. این منطقه توسط فهرست‌ها و کدهای مربوطه محدود می‌شود.

    لیست‌شده (Listed)
    قرار گرفتن یک دستگاه در فهرست منتشرشده توسط یک سازمان آزمون معتبر که نشان می‌دهد دستگاه با موفقیت طبق استانداردهای پذیرفته‌شده آزمایش شده است.

    تیرگی (انسداد تجمعی) (Obscuration / Cumulative Obscuration)
    کاهش توانایی عبور نور از یک نقطه به نقطه دیگر به دلیل وجود مواد جامد، مایع، گاز یا ذرات معلق. انسداد تجمعی ترکیبی از چگالی این ذرات مانع نور به ازای هر فوت و فاصله خطی‌ای است که این ذرات اشغال می‌کنند، یعنی چگالی دود ضرب‌در فاصله خطی میدان دود. (معمولاً با واحدهایی مانند درصد بر فوت یا درصد بر متر بیان می‌شود).

    رفلکتور (Reflector)
    دستگاهی که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند.

    حساسیت (Sensitivity)
    توانایی یک دتکتور دود برای واکنش به یک سطح مشخص دود.

    دود (Smoke)
    محصولات جامد و گازی حاصل از احتراق که در هوا معلق هستند.

    رنگ دود (Smoke Color)
    روشنی یا تیرگی نسبی دود که از نامرئی تا سفید، خاکستری و سیاه متغیر است.

    چگالی دود (Smoke Density)
    مقدار نسبی محصولات جامد و گازی حاصل از احتراق در یک حجم معین.

    دتکتور نقطه‌ای (Spot-Type Detector)
    دستگاهی که تنها در محل نصب خود دود و/یا حرارت را تشخیص می‌دهد. دتکتورهای نقطه‌ای دارای یک محدوده تعریف‌شده پوشش هستند.

    لایه‌بندی (Stratification)
    اثری که زمانی رخ می‌دهد که دود، که از هوای اطراف خود گرم‌تر است، بالا می‌رود تا به دمای برابر با هوای اطراف برسد و در نتیجه، از بالا رفتن بازمی‌ایستد.

    فرستنده-گیرنده (Transceiver)
    دستگاهی در یک بیم دتکتور دودی اعلام حریق بازتابی که نور را به سمت فضای تحت حفاظت می‌تاباند و آن را پایش می‌کند.

    صفحات شفاف (فیلترها) (Transparencies / Filters)
    صفحه‌ای از شیشه یا پلاستیک با سطح مشخص تیرگی که می‌تواند برای آزمودن سطح حساسیت صحیح بیم دتکتور دودی اعلام حریق استفاده شود.

    وضعیت خطا (Trouble Condition)
    وضعیتی از یک دستگاه یا سیستم که عملکرد صحیح آن را مختل می‌کند، مانند مدار باز در حلقه شروع‌کننده. اعلان وضعیت خطا که روی پنل کنترل یا پنل اعلان نمایش داده می‌شود یک «سیگنال خطا» است.

     

    پیوست B – استاندارد NFPA 92 برای سیستم‌های کنترل دود (ویرایش ۲۰۱۲)

    A.6.4.4.1.5(1)
    هدف از استفاده از یک پرتو رو به بالا برای تشخیص لایه دود، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند پرتو باید با زاویه رو به بالا به گونه‌ای هدف‌گیری شوند که لایه دود را بدون توجه به سطح لایه‌بندی دود قطع کنند. باید از بیش از یک بیم دتکتور دودی اعلام حریق استفاده شود. هنگام استفاده از این دستگاه‌ها برای این کاربرد، باید توصیه‌های سازندگان بررسی شود. دستگاه‌هایی که به این روش نصب می‌شوند ممکن است نیازمند فعالیت نگهداری بیشتری باشند.

    A.6.4.4.1.5(2)
    هدف از استفاده از پرتوهای افقی برای تشخیص لایه دود در سطوح مختلف، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند بیم دتکتور در سقف نصب می‌شوند. دتکتورهای اضافی در سطوح پایین‌تر حجم فضا نصب می‌شوند. موقعیت دقیق پرتوها تابعی از طراحی خاص است، اما باید شامل پرتوهایی در پایین هر فضای بدون تهویه (هوای مرده) شناسایی‌شده و در محل یا نزدیک به ارتفاع طراحی لایه دود، به همراه موقعیت‌های میانی پرتوها در سایر سطوح باشد.

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن

    1 مقدمه: مواد ضمیمه زیر برای نشان دادن مثال‌های معمول از نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن ثابت ارائه شده است. لازم به ذکر است که روش‌های توضیح داده‌شده به‌عنوان تنها روش‌های قابل استفاده در نظر گرفته نمی‌شوند. این روش‌ها فقط به منظور کمک به تفسیر و توضیح اهداف استاندارد در مواردی که ممکن است کاربرد صحیح آن‌ها مورد سوال باشد، به‌کار می‌روند.

    B.2 پخت غذا در صنایع/تجاری (سرخ‌کن‌های روغن داغ): سرخ‌کن‌های بزرگ روغن داغ که برای پخت مداوم غذاهایی مانند گوشت، ماهی و تنقلات استفاده می‌شوند، خطرات آتش‌سوزی دارند که نیاز به توجه ویژه هنگام طراحی سیستم اطفاء حریق دی‌اکسید کربن برای حفاظت از آن‌ها دارد.
    اگر روغن پخت بیش از حد گرم شود، پیش از آنکه به جوش بیاید، به دمای خودآتش‌زنی می‌رسد. بنابراین، آتش‌سوزی که شامل بخارات روغن پخت است، ممکن است پس از تخلیه اولیه دی‌اکسید کربن با دمای بالای روغن داغ در مخزن پخت دوباره شعله‌ور شود، مگر اینکه روغن تا زیر دمای آتش‌زنی خنک شود. طراحی بهینه و انرژی‌ساز مخازن پخت مدرن باعث می‌شود که فرایند خنک‌سازی کند باشد.
    چیدمان تجهیزات برای محافظت از آن‌ها برای طراحی صحیح سیستم از اهمیت ویژه‌ای برخوردار است.
    اولاً، استفاده از سرخ‌کن ممکن است شامل گرم‌کردن خارجی روغن با چرخش مجدد روغن از طریق مخزن پخت باشد. این مورد را می‌توان به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثانیاً، برخی از سرخ‌کن‌ها به‌گونه‌ای طراحی شده‌اند که هود بخار و نقاله توسط یک سیستم هیدرولیکی بالا و پایین می‌روند. مایعات هیدرولیکی قابل اشتعال و سازگار با غذا که برای این کار استفاده می‌شوند، ناحیه دیگری از حفاظت را به‌وجود می‌آورند و می‌توان آن‌ها را به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثالثاً، نگرانی‌هایی وجود دارد که یک عملیات با تولید بالا ممکن است سیستم تهویه‌ای داشته باشد که شامل سیستم حذف بخار باشد. این نگرانی باید به‌عنوان بخشی از خطر در نظر گرفته شود. (به 6.2.1 مراجعه کنید.)
    صفحه تخلیه، زمانی که در معرض چکه روغن در انتهای خروجی نقاله قرار دارد، باید پوشانده شود. (به 6.2.1 مراجعه کنید.)
    در نهایت، مخزن بزرگ‌ترین مساحت برای محافظت و بیشترین نیاز به خنک‌سازی کافی را به‌وجود می‌آورد.

    B.2.1 خلاصه‌ای از حفاظت: موارد زیر یک مرجع سریع برای معیارهای حفاظت در طراحی سیستم است.

    B.2.1.1 مخزن: زمانی که مخزن دارای هود متحرک باشد، حفاظت از طریق سیل‌کردن کامل زیر هود طبق 5.1.2 مجاز نیست، مگر اینکه شرایط زیر رعایت شود: (1) هود نباید در حین عملیات پخت بالا برده شود که این به‌معنای موارد زیر است: (a) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قطع می‌شود هنگامی که هود بالا می‌رود (مثلاً برای نگهداری یا تمیزکاری). (b) یک سوئیچ حد دمایی مکانیکی باید استفاده شود که هر زمان که دمای روغن بیشتر از حد دمای تنظیم‌شده به میزان بیش از 20 درصد (درجه فارنهایت یا درجه سلسیوس) از دمای حداکثر معمولی روغن افزایش یابد، عمل کند. این عمل باید موجب موارد زیر شود: i. قطع برق به سیستم گرم‌کننده روغن ii. جلوگیری از بالا بردن هودهای الکتریکی iii. فعال‌سازی آلارم‌های شنیداری و دیداری برای هشدار به عدم بالا بردن هود به‌صورت دستی (c) سوئیچ باید دارای یک دمای بازنشانی خودکار باشد که از 60°F (33.3°C) کمتر از دمای خودآتش‌زنی روغن پخت باشد.

    (2) قبل از اینکه هود بالا برده شود (برای نگهداری و تمیزکاری)،باید یک شیر قطع کن نظارتی بسته شود تا از تخلیه سیستم دی‌اکسید کربن جلوگیری شود. بسته شدن شیر قطع کن باید باعث فعال شدن آلارم دوگانه نظارتی در واحد کنترل شود. (3) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قبل از تخلیه سیستم یا همزمان با آن قطع می‌شود. (4) مقدار دی‌اکسید کربن و مدت زمان تخلیه باید کافی باشد تا یک جو بی‌اکسیژن در مخزن حفظ شود تا دمای روغن پخت کاهش یابد و از شعله‌ور شدن مجدد جلوگیری شود طبق 5.3.5.6. توصیه می‌شود که دما حداقل 60°F (33.3°C) پایین‌تر از دمای خودآتش‌زنی روغن باشد. (5) طراحی سیستم باید بر اساس آزمایش‌های تخلیه برای مدل خاص سرخ‌کن انجام شود تا نشان دهد که با بند B.2.1.1 (4) تطابق دارد. مستندات آزمایش باید در صورت درخواست مقامات ذی‌صلاح یا کاربر نهایی در دسترس باشد. (6) شناسایی حرارتی باید سیستم دی‌اکسید کربن را زمانی که دما برابر یا پایین‌تر از دمای خودآتش‌زنی روغن پخت باشد، فعال کند.

    B.2.1.2 محفظه دائمی: سیستم کاربرد محلی باید به‌گونه‌ای طراحی شود که هود در موقعیت کامل بالا باشد.

    B.2.1.3 تخته تخلیه: استفاده از سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت طبق بخش 6.4 مناسب است.

    B.2.1.4 سیستم تهویه بخار و حذف بخار: سیل کردن کامل با استفاده از غلظت 65 درصد طبق 5.4.2.1 مناسب است.

    B.2.1.5 گرم‌کن روغن خارجی: سیستم کاربرد محلی برای تجهیزات و فیلترهای چرخشی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)، بسته به پیکربندی تجهیزات، مناسب است.

    B.2.1.6 سیستم روغن هیدرولیک: سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)،بسته به پیکربندی تجهیزات، مناسب است.
    زیرا مخزن به حداقل 3 دقیقه تخلیه مایع نیاز دارد (به 6.3.3.5.1 مراجعه کنید)، طراحی سیستم دی‌اکسید کربن می‌تواند شامل دو سیستم لوله‌کشی تخلیه باشد، یکی برای مخزن و دیگری برای خطرات متقابل دیگر.

    B.2.1.7 خاموش کردن تجهیزات: (به بند 4.5.4.9 مراجعه کنید.) همچنین باید به ایمنی شخصی (به بخش 4.3 مراجعه کنید) در هنگام طراحی سیستم توجه شود.

    B.3 هودهای اجاق رستوران، کانال‌های متصل و خطرات مرتبط: حفاظت از هودهای اجاق در آشپزخانه و کانال‌ها با ترکیبی از سیستم‌های سیل کردن کامل و سیستم‌های کاربرد محلی انجام می‌شود. کانال یا دودکش و منطقه پلومن بالای فیلترها می‌توانند با سیل کردن کامل محافظت شوند. سطح زیرین فیلترها و هرگونه خطر خاص مانند سرخ‌کن‌های روغن داغ می‌توانند با کاربرد محلی محافظت شوند. ممکن است لازم باشد که حفاظت کاربرد محلی به سطوح زیر هود و سطوح اجاق گسترش یابد اگر خطر تجمع چربی یا چکه کردن از هود یا کانال در شرایط آتش‌سوزی وجود داشته باشد.
    در حفاظت از کانال با استفاده از ضریب سیل کردن توصیه‌شده 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) حجم کانال، در نظر گرفتن یک دمپر در بالای یا پایین کانال ضروری است، با فراهم آوردن شرایط برای بسته شدن خودکار دمپر در ابتدای تخلیه دی‌اکسید کربن. برای کانال‌هایی که ارتفاع آن‌ها بیشتر از 20 فوت (6.1 متر) یا مسیر افقی آن‌ها بیشتر از 50 فوت (15.3 متر) است، گاز در نقاط میانه معرفی می‌شود تا توزیع مناسب آن تضمین شود. با یک دمپر در بالای دودکش، باید یک نازل درست زیر آن نصب شود و نازل‌های اضافی در بالای آن نصب شوند اگر مسیر کانال از دمپر عبور کند. معمولاً یک نازل در منطقه پلومن مورد نیاز است.

    نازل‌ها باید برای پوشش سطح زیرین فیلترها و تخلیه به مدت 30 ثانیه با نرخ سطح پوشش مشخص‌شده در 6.4.3.5 فراهم شوند. در غیر این صورت، مقدار دی‌اکسید کربن مورد نیاز و نرخ‌های کاربردی می‌توانند با استفاده از نازل‌ها یا روش‌های ویژه‌ای که برای این منظور تأیید یا فهرست شده‌اند، تعیین شوند. اگر سطح زیرین هود عمدتاً با یک جداکننده یا سینی چکه‌ای بسته شده باشد، حفاظت می‌تواند با سیل کردن کامل به‌وسیله ضریب 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) انجام شود و مساحت محیط باز جبران گردد. (به 5.3.5 مراجعه کنید.)

    مقادیر مورد نیاز برای حفاظت از سرخ‌کن‌های روغن داغ یا سایر خطرات آتش‌سوزی خاص، یا هر دو، زیر هود باید علاوه بر الزامات قبلی باشد. تمام خطرات در حال تهویه از طریق یک کانال مشترک باید به‌طور همزمان محافظت شوند.

    شناسایی آتش‌سوزی به‌طور خودکار و فعال‌سازی سیستم برای فضاهای پنهان بالای فیلتر و در سیستم کانال الزامی است. همچنین باید در زیر فیلترها بر روی هر سرخ‌کن روغن داغ، تشخیص‌دهنده‌هایی قرار داده شوند.

    شناسایی آتش‌سوزی قابل مشاهده و فعال‌سازی دستی (به بند 4.5.4.5 مراجعه کنید) می‌تواند برای بخش‌های نمایان خطر قابل قبول باشد؛ با این حال، فعال‌سازی از طریق هر یک از روش‌های خودکار یا دستی باید موجب تخلیه کامل سیستم شود. توجه ویژه باید به انتخاب حسگرهای حرارتی صورت گیرد، با در نظر گرفتن سطح دمای عملیاتی عادی و شرایط افزایش دما در تجهیزات اجاق.

    فعال‌سازی سیستم باید به‌طور خودکار دمپرها را ببندد، فن‌های تهویه اجباری را خاموش کند، و شیر اصلی سوخت یا کلید برق را برای تمام تجهیزات پخت مرتبط با هود قطع کند. این دستگاه‌ها باید از نوعی باشند که نیاز به بازنشانی دستی دارند. (به بند 4.5.4.9 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، باید مراقبت ویژه‌ای برای تمیز نگه داشتن حسگرهای حرارتی و نازل‌های تخلیه از تجمع چربی صورت گیرد. به‌طور کلی، مهر و موم‌ها یا درپوش‌های نازل برای جلوگیری از انسداد روزنه‌های نازل مورد نیاز هستند.

    برای اطلاعات بیشتر، به NFPA 96 مراجعه کنید.

    B.4 دستگاه‌های چاپ روزنامه و دستگاه‌های چاپ روتوگراور: دستگاه‌های چاپ روزنامه، روتوگراور و مشابه آن‌ها خطرات زیادی ایجاد می‌کنند به‌دلیل استفاده از حلال‌های بسیار قابل اشتعال در جوهرها، حضور کاغذ خردشده یا غبار اشباع‌شده با جوهر، روان‌کننده‌ها و غیره. علاوه بر واحدهای چاپ، ممکن است کانال‌های تخلیه، تجهیزات ترکیب جوهر و خطرات الکتریکی مرتبط نیز وجود داشته باشند که نیاز به حفاظت دارند. دستگاه‌های چاپ روتوگراور جوهرهای قابل اشتعال‌تری نسبت به دستگاه‌های چاپ روزنامه استفاده می‌کنند و به همراه درام‌های خشک‌کن حرارتی یا دیگر وسایل خشک‌کن طراحی شده‌اند و خطر بیشتری ایجاد می‌کنند. با این حال، روش حفاظت اصلی برای هر دو دستگاه چاپ روتوگراور و روزنامه مشابه است.

    دستگاه‌های چاپ معمولاً به‌صورت ردیفی (خطی) با پوشه‌هایی که به‌طور متناوب قرار می‌گیرند، مرتب شده‌اند. کاغذ می‌تواند از هر دو طرف پوشه‌ها از واحدهای چاپ عبور کند. جرقه‌های الکتریسیته ساکن یک منبع رایج برای ایجاد آتش‌سوزی هستند. گسترش شعله می‌تواند از واحدهای چاپ به سمت پوشه‌ها یا از پوشه‌ها به سمت واحدهای چاپ باشد.

    دستگاه‌های چاپ “باز” یا “بسته” هستند، بسته به اینکه آیا از محافظت‌کننده‌های مه یا پوشش‌ها استفاده می‌شود. در دستگاه‌های چاپ باز، معمولاً یک سیستم تهویه برای حذف مه جوهر از دستگاه مورد نیاز است و این سیستم تهویه نیاز به حفاظت همزمان دارد.

    اتاق‌های چاپ می‌توانند توسط سیستم‌های سیل کامل محافظت شوند؛ با این حال، سیستم‌های نوع کاربرد محلی معمولاً استفاده می‌شوند. اگرچه خط‌های چاپ و واحدهای چاپ فردی یک سری خطرات در معرض هم هستند، تقسیم‌بندی به‌صورت خط‌ها یا گروه‌بندی مناسب درون خطوط برای دلایل اقتصادی معمول است. کانال‌های تهویه، اتاق‌های ذخیره‌سازی جوهر و اتاق‌های کنترل معمولاً با روش‌های سیل کامل مدیریت می‌شوند.

    تمام خطوط چاپ می‌توانند با روش‌های کاربرد محلی محافظت شوند. یک خط چاپ می‌تواند به گروه‌ها تقسیم شود. در همه موارد، سیستم‌ها باید قادر باشند حفاظت خودکار همزمان و مستقل را برای گروه‌های مجاور از خطوط دیگر و همچنین گروه‌های درون‌خطی که ممکن است آتش به آن‌ها گسترش یابد، ارائه دهند. حفاظت باید به‌گونه‌ای طراحی شود که در صورت وقوع آتش نزدیک به محل اتصال گروه‌های مجاور، سیستم‌های محافظت‌کننده هر دو گروه به‌طور همزمان تخلیه شوند.

    در گروه‌های چاپ فردی، نرخ کاربرد دی‌اکسید کربن می‌تواند بر اساس روش نرخ بر مساحت یا نرخ بر حجم باشد. (به بخش‌های 6.4 و 6.5 مراجعه کنید.)

    اگر از روش نرخ بر مساحت برای دستگاه‌های چاپ استفاده شود، مساحت بر اساس طول کامل رول‌ها، شامل فریم‌های انتهایی، و ارتفاع کامل انبار رول‌ها، شامل مخزن جوهر، محاسبه می‌شود. هر دو طرف انبار رول‌ها باید در نظر گرفته شود. دسته‌های رنگی باید به‌طور مشابه محاسبه شوند. در صورتی که از مخازن جوهر خارجی استفاده شود، حفاظت بر اساس مساحت افقی مخزن است. مساحت کف زیر دستگاه چاپ نیز باید محافظت شود.

    در دستگاه‌های چاپ روتوگراور، خشک‌کن‌ها و کانال‌های اتصال با سیل کردن به میزان 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) که در 30 ثانیه تخلیه می‌شوند، محافظت می‌شوند. هنگامی که از روش نرخ بر مساحت برای تعیین مقدار دی‌اکسید کربن مورد نیاز برای پوشه‌ها استفاده می‌شود، دی‌اکسید کربن باید از هر دو طرف درایو و طرف عملیاتی در دو سطح اعمال شود. هر نازل باید مساحتی به عرض 4 فوت (1.2 متر) و ارتفاع 4 فوت (1.2 متر) را پوشش دهد.

    هنگامی که از روش نرخ بر حجم استفاده می‌شود، کل گروه دستگاه‌های چاپی که باید به‌عنوان یک بخش محافظت شوند، می‌تواند به‌عنوان یک حجم در نظر گرفته شود. نیازی به افزودن 2 فوت (0.6 متر) به طرفین هر دستگاه چاپ نیست زمانی که فریم به‌عنوان مانع طبیعی عمل می‌کند. یک پوشه منفرد می‌تواند در این حجم گنجانده شود؛ اما یک پوشه دوطبقه نیاز به یک بلوک حجم اضافی برای گنجاندن طبقه بالایی دارد.

    نازل‌ها باید به‌گونه‌ای قرار داده شوند که سطوح پوشش داده شده را پوشش دهند؛ با این حال، ممکن است قرار دادن دقیق آن‌ها مطابق با فهرست‌ها یا تأییدها امکان‌پذیر نباشد. نازل‌ها باید به‌گونه‌ای قرار داده شوند که از هر دو انتهای رول‌های چاپ تخلیه شوند تا دی‌اکسید کربن را در داخل حجم دستگاه چاپ حفظ کنند. این موضوع در مورد پوشه‌ها نیز صدق می‌کند.

    حفاظت باید به‌گونه‌ای تنظیم شود که زمانی که محافظت‌کننده‌های مه در محل یا خارج از محل قرار دارند، مؤثر باشد.

    مقدار دی‌اکسید کربن مورد نیاز برای یک گروه واحد بر اساس تخلیه با نرخ محاسبه‌شده به مدت 30 ثانیه است. ذخیره‌سازی اضافی باید حداقل به اندازه کافی باشد تا از تمام گروه‌های مجاور که ممکن است درگیر شوند محافظت کند، شامل ذخیره‌ای برای گروهی که آتش در آن شروع می‌شود. در سیستم‌های فشار بالا، یک بانک ذخیره واحد می‌تواند به‌عنوان ذخیره برای چندین بانک اصلی استفاده شود؛ با این حال، بانک اصلی برای یک گروه نمی‌تواند به‌عنوان ذخیره برای گروه دیگر استفاده شود، مگر اینکه به‌طور خاص توسط مرجع صلاحیت تأیید شده باشد.

    تمام سیستم‌ها باید به‌گونه‌ای تنظیم شوند که قابلیت فعال‌سازی خودکار را داشته باشند و وسیله‌ای برای فعال‌سازی دستی کمکی فراهم باشد. حداقل یک حسگر حرارتی باید در هر واحد چاپ و پوشه قرار گیرد، بسته به طراحی واحد خاص.

    به‌دلیل ارتعاشات ذاتی مرتبط با دستگاه‌های چاپ، توجه ویژه‌ای باید به وسایل نصب داده شود تا از آسیب‌های ارتعاشی به لوله‌کشی یا سیم‌کشی سیستم شناسایی جلوگیری شود.

    تشخیص فوری به‌ویژه در حفاظت گروهی اهمیت دارد تا از گسترش آتش به سایر گروه‌ها جلوگیری شود. به‌دلیل نیاز به تشخیص سریع برای جلوگیری از گسترش آتش به گروه‌های مجاور یا فعال‌سازی حسگرهای مجاور، یا هر دو، سیستم تشخیص باید از حسگرهای سریع‌العمل با نرخ افزایش، نرخ جبران‌شده یا معادل آن‌ها استفاده کند. خاموشی کامل دستگاه‌های چاپ، تهویه، پمپ‌ها و منابع حرارتی باید همزمان با عملکرد سیستم انجام شود.

    آلارم‌های صوتی در اتاق چاپ و در هر زیرزمین، چاه یا سطوح پایین‌تری که دی‌اکسید کربن ممکن است در آن‌ها جریان پیدا کند، باید همزمان با عملکرد سیستم به صدا درآید. (به بخش A.4.3 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، توجه ویژه‌ای باید به اطمینان از ادامه موقعیت و هم‌راستایی صحیح اسپرینکلرها در طول فرآیندهای نگهداری معمول دستگاه‌های چاپ داشته باشیم. توجه ویژه‌ای نیز باید به تأثیرات ارتعاش دستگاه‌های چاپ بر روی فعال‌کننده‌های حرارتی و لوله‌کشی یا سیم‌کشی‌های متصل به آن‌ها داشت.

    B.5 چاه‌های باز:
    چاه‌های باز با عمق تا 4 فوت (1.2 متر) یا عمق برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، باید بر اساس کاربرد محلی محافظت شوند. مساحت مورد نظر برای تعیین مقدار دی‌اکسید کربن، مساحت کل کف چاه است به‌جز هر مساحتی که توسط تانک یا تجهیزات دیگری که به‌طور همزمان محافظت می‌شوند و برای آن‌ها مقدار جداگانه محاسبه شده، پوشش داده شده است. اسپرینکلرها باید به‌گونه‌ای قرار داده شوند که پوشش مناسب برای منطقه محافظت‌شده فراهم کنند، طبق داده‌های فهرست یا تأییدیه‌ها. بنابراین، ممکن است لازم باشد اسپرینکلرهای اضافی در مرکز چاه قرار داده شوند.

    چاه‌های باز که عمق آن‌ها از 4 فوت (1.2 متر) بیشتر است یا عمقی برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، می‌توانند بر اساس مساحت با استفاده از نرخ تخلیه 4 پوند/دقیقه-فوت مربع (19.5 کیلوگرم/دقیقه-متر مربع) از مساحت کف و زمان تخلیه 30 ثانیه محافظت شوند. اسپرینکلرها باید در اطراف چاه قرار داده شوند تا دی‌اکسید کربن به‌طور یکنواخت از تمام طرف‌ها اعمال شود. باید دقت شود که تعداد مناسبی از اسپرینکلرها با پرتاب کافی برای رسیدن به نواحی مرکزی چاه‌های بزرگ استفاده شود. به‌طور جایگزین، ممکن است بهتر باشد برخی از اسپرینکلرها به‌گونه‌ای قرار داده شوند که مستقیماً در داخل چاه روی تجهیزات نیازمند حفاظت، مانند پمپ‌ها، موتورها یا سایر تجهیزات حیاتی تخلیه شوند.

    تانک‌های غوطه‌وری با دهانه باز باید به‌طور جداگانه توسط کاربرد محلی محافظت شوند، به‌ویژه زمانی که سطح مایع کمتر از 4 فوت (1.2 متر) یا یک‌چهارم عرض چاه از دهانه باز چاه باشد. نواحی چنین تانک‌هایی که به‌طور جداگانه در داخل چاه محافظت می‌شوند، می‌توانند از مساحت چاه کسر شوند. اشیاءی که از دهانه چاه بالا می‌روند باید با استفاده از مساحت سطح یا روش‌های محصورسازی فرضی محافظت شوند.

    اگر دهانه چاه به‌طور جزئی پوشانده شود به‌طوری که مساحت باز کمتر از 3 درصد حجم مکعبی به‌صورت فوت مربع باشد، مقدار دی‌اکسید کربن مورد نیاز می‌تواند بر اساس روش سیل کامل تعیین شود، با استفاده از مقدار اضافی گاز برای جبران نشت برابر با 1 پوند/فوت مربع (5 کیلوگرم/متر مربع) از مساحت باز.

    برای چاه‌های عمیق‌تر از حداقل عمق مشخص‌شده، اسپرینکلرها باید در سطح دو‌سوم از کف قرار داده شوند، مشروط بر اینکه عامل نرخ تخلیه در برابر فاصله از حد مجاز تجاوز نکند، به‌طوری که خطر پاشش مایعاتی که ممکن است موجود باشند، وجود نداشته باشد. در هر صورت، بهتر است اسپرینکلرها زیر دهانه باز قرار گیرند تا از ورود هوای اضافی به داخل چاه جلوگیری شود. اگر عمق چاه از 20 فوت (6.1 متر) بیشتر باشد، مطلوب است که اسپرینکلرها کمی بالاتر از سطح دو‌سوم از کف قرار گیرند تا از اختلاط مناسب در چاه اطمینان حاصل شود.

    زمانی که مقدار دی‌اکسید کربن بر اساس روش‌های سیل کامل معمول محاسبه می‌شود، اسپرینکلر باید سرعت و اثرات آشفتگی کافی تولید کند تا حجم چاه به‌طور کامل با جو دی‌اکسید کربن و هوا به‌طور کامل پر شود.

    B.6 زیر کف‌های بلند
    استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن به روش سیل کامل برای حفاظت از فضاهای زیرکف که معمولاً در اتاق‌های کامپیوتر و مراکز مشابه الکترونیکی یافت می‌شود، سال‌هاست که به‌طور رایج مورد استفاده قرار می‌گیرد. تجربیات نشان داده است که یک مشکل احتمالی در این نوع حفاظت، نشت بیش‌ازحد مرتبط با فضای زیرکف وجود دارد که می‌تواند به‌دلیل ترکیب کاشی‌های کف سوراخ‌دار و آشفتگی ناشی از تخلیه گاز باشد. بنابراین، مهم است که سیستم به‌گونه‌ای طراحی شود که نشت را جبران کند و تخلیه‌ای نرم برای کاهش آشفتگی فراهم آورد. برای راهنمایی دقیق، باید از تولیدکننده سیستم مشاوره گرفته شود.

    دی‌اکسید کربن، به‌دلیل سنگین‌تر بودن از هوا، تمایل دارد که در فضا باقی بماند و می‌تواند خطراتی برای پرسنلی که برای انجام تعمیرات پس از آتش‌سوزی وارد فضای زیرکف می‌شوند، ایجاد کند. پس از تخلیه سیستم، لازم است که دی‌اکسید کربن به‌طور کامل از فضای زیرکف تخلیه شود پس از آنکه آتش خاموش شد.

    علاوه بر این، اگر هرگونه خدمات یا نگهداری در فضای زیرکف انجام شود، سیستم دی‌اکسید کربن باید قفل شود تا از تخلیه گاز جلوگیری شود.