بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

OSID Reflective Spotlight

چکیده

دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

 

۱. مقدمه

دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

 

۲. اصول عملکرد طول‌موج دوگانه

WhatsApp Image 2025 09 27 at 11.52.20 PM

OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

  • UV: تأثیرگذار بر ذرات ریز و درشت
  • IR: عمدتاً حساس به ذرات بزرگ‌تر

این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

 

۳. اصطلاحات کلیدی

  • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
  • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
  • خطای ورود جسم: انسداد ناگهانی شدید
  • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
  • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

 

۴. خطاهای رایج در سیستم OSID

  • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
  • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
  • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

 

۵. استقرار ایمن در محیط‌های دشوار

۵.۱ محیط‌های پرگرد‌و‌غبار

  • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
  • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

۵.۲ محیط‌های مرطوب

WhatsApp Image 2025 09 27 at 11.52.21 PM

  • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
  • WhatsApp Image 2025 09 27 at 11.52.21 PM1
  • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
  • WhatsApp Image 2025 09 27 at 11.52.21 PM2
  • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

WhatsApp Image 2025 09 27 at 11.52.22 PM

۶. تجهیزات محافظتی

WhatsApp Image 2025 09 27 at 11.52.22 PM1

  • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
  • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
  • WhatsApp Image 2025 09 27 at 11.52.23 PM
  • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
  • WhatsApp Image 2025 09 27 at 11.52.23 PM1
  • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

WhatsApp Image 2025 09 27 at 11.52.24 PM

 

۷. آلارم‌های کاذب استثنایی

با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

WhatsApp Image 2025 09 27 at 11.52.24 PM1

۸. جمع‌بندی و توصیه‌ها

  • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
  • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
  • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
  • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.

 

نوشته‌های مشابه

  • سیستم‌های اطفاء حریق دی‌اکسید کربن با کاربرد موضعی NFPA12-ANNEX F- Local Application Carbon Dioxide Systems

    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاع‌رسانی ارائه شده است.

    F.1 یک سیستم اطفاء حریق دی‌اکسید کربن با کاربرد موضعی طراحی شده است تا دی‌اکسید کربن را مستقیماً به آتش‌سوزی‌ای که می‌تواند در یک ناحیه یا فضایی بدون محصورسازی واقعی رخ دهد، اعمال کند. چنین سیستم‌هایی باید به گونه‌ای طراحی شوند که دی‌اکسید کربن را در حین عملکرد سیستم به نحوی به خطر مورد اطفاء برسانند که تمام سطوح سوختنی یا شعله‌ور را پوشش داده یا احاطه کند.

    نرخ جریان و مدت زمان کاربرد مورد نیاز بستگی به نوع ماده قابل احتراق درگیر، ماهیت خطر (اینکه آیا سطح مایع مانند مخزن غوطه‌وری یا مخزن کوئنچ است یا یک قطعه ماشین‌آلات پیچیده مانند دستگاه چاپ) و محل و فاصله اسپرینکلرهای دی‌اکسید کربن نسبت به خطر دارد.

    عوامل مهمی که در طراحی یک سیستم کاربرد موضعی باید در نظر گرفته شود عبارتند از: نرخ جریان، محدودیت‌های ارتفاع و مساحت اسپرینکلرهای استفاده‌شده، میزان دی‌اکسید کربن مورد نیاز، و سیستم لوله‌کشی. مراحل زیر برای طراحی یک سیستم لازم است:

    (۱) تعیین مساحت خطر مورد اطفاء. در تعیین این مساحت، مهم است که نقشه دقیق خطر را با نشان دادن تمام ابعاد و محدودیت‌ها جهت جانمایی اسپرینکلرها ترسیم کنید. حدود خطر باید با دقت تعریف شوند تا تمام مواد قابل احتراق که می‌توانند در خطر گنجانده شوند را شامل شود، و احتمال وجود کالا یا سایر موانع در یا نزدیک خطر باید به دقت بررسی شود.

    (۲) برای اسپرینکلرهای نوع سقفی، با توجه به محدودیت‌های ارتفاع خطر مورد اطفاء، اسپرینکلرها را به گونه‌ای جانمایی کنید که خطر را تحت پوشش قرار دهند، با استفاده از اسپرینکلرهای مختلف در محدوده‌های ارتفاع و مساحت مجاز که در لیست‌ها یا تأییدیه‌های این اسپرینکلرها بیان شده است. حدود پوشش مساحت یک اسپرینکلر برای یک ارتفاع خاص از اطلاعات لیست شده تعیین می‌شود که در قالبی مشابه شکل F.1(a) ارائه شده است. در نظر داشته باشید که تمام پوشش‌های اسپرینکلر بر اساس مربع‌های تقریبی ترسیم می‌شوند. این مرحله برای اسپرینکلرهای کنار مخزن یا خطی حذف می‌شود.

    (۳) بر اساس ارتفاع هر اسپرینکلر از سطح خطر، نرخ جریان بهینه‌ای که هر اسپرینکلر باید برای اطفاء خطر داشته باشد را تعیین کنید. این مقدار از یک نمودار مانند شکل F.1(b) که در لیست‌های جداگانه یا تأییدیه‌های اسپرینکلرها ارائه شده است، به دست می‌آید. برای اسپرینکلرهای کنار مخزن یا خطی، بر اساس شکل خطر، اسپرینکلرها را در محدوده‌های فاصله‌ای مجاز طبق تأییدیه یا لیست جانمایی کنید. بر اساس فاصله یا مساحت پوشش، نرخ جریان مناسب را از نمودارهای تأیید شده‌ای مانند شکل F.1(c) و F.1(d) انتخاب کنید. این مرحله برای اسپرینکلرهای نوع سقفی حذف می‌شود.

    (۴) مدت زمان تخلیه برای خطر را تعیین کنید. این زمان همیشه حداقل ۳۰ ثانیه خواهد بود، اما می‌تواند طولانی‌تر باشد، بسته به عواملی مانند ماهیت ماده در خطر و احتمال نیاز برخی نقاط داغ به زمان خنک‌کنندگی بیشتر.

    (۵) نرخ جریان تک‌تک اسپرینکلرها را جمع کنید تا نرخ جریان کل به دست آید و این مقدار را در مدت زمان تخلیه ضرب کنید تا مقدار کل دی‌اکسید کربن مورد نیاز برای اطفاء خطر محاسبه شود. سپس این عدد را در ۱.۴ (برای سیستم‌های پرفشار) ضرب کنید تا ظرفیت کل سیلندرهای ذخیره‌سازی به دست آید.

    (۶) محل استقرار مخزن یا سیلندرهای ذخیره‌سازی را تعیین کرده و لوله‌کشی اتصال‌دهنده اسپرینکلرها به مخازن ذخیره را طراحی کنید.

    (۷) از سیلندرهای ذخیره شروع کرده و افت فشار را در طول لوله‌کشی سیستم تا هر اسپرینکلر محاسبه کنید تا فشار نهایی در هر اسپرینکلر به دست آید (به بخش C.1 مراجعه شود). مطمئن شوید که طول معادل لوله برای اتصالات و اجزای سیستم را در محاسبات لحاظ کرده‌اید. طول‌های معادل اجزای سیستم در لیست‌ها یا تأییدیه‌های جداگانه این اجزا موجود است. شرایط ذخیره‌سازی را برای سیستم‌های پرفشار برابر با ۷۵۰ psi (۵۱۷۱kPa) و برای سیستم‌های کم‌فشار برابر با ۳۰۰ psi (۲۰۶۸ kPa) در نظر بگیرید. در طراحی اولیه، باید اندازه‌های لوله‌ها را در نقاط مختلف سیستم فرض کنید. پس از انجام محاسبات برای تعیین فشار اسپرینکلرها، ممکن است لازم باشد اندازه لوله‌ها را برای دستیابی به فشارهای بالاتر یا پایین‌تر تغییر دهید تا نرخ جریان مناسب حاصل شود.

    (۸) بر اساس فشار اسپرینکلرها از مرحله (۷) و نرخ جریان جداگانه هر اسپرینکلر از مرحله (۳)، یک اوریفیس معادل را انتخاب کنید که بیشترین تطابق را با مساحت مورد نیاز برای تولید نرخ جریان طراحی شده داشته باشد، با استفاده از جدول‌های 4.7.5.2.1، 4.7.5.3.1، و A4.7.4.4.3.

    2Q==

    IMG 1522 1 IMG 1523 IMG 1524

  • دتکتور شعله در استاندارد NFPA 86

    استاندارد NFPA 86 یکی از مهم‌ترین استانداردهای ایمنی صنعتی است که با هدف کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث در کوره‌ها و اجاق‌های صنعتی تدوین شده است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی اهمیت حیاتی دارد. با افزایش میزان تولید صنعتی و استفاده از فرآیندهای حرارتی در صنایع مختلف، رعایت این استانداردها برای تضمین ایمنی و بهینه‌سازی عملکرد تجهیزات ضروری است. این استاندارد نه‌تنها در ایمنی نقش دارد، بلکه موجب افزایش بهره‌وری و کاهش هزینه‌های تعمیرات و نگهداری نیز می‌شود.

    دتکتور شعله و عملکرد آن

    9k=

    دتکتور شعله، یکی از اصلی‌ترین تجهیزات ایمنی در فرآیندهای حرارتی صنعتی است که وظیفه شناسایی وجود شعله در محیط را بر عهده دارد. این تجهیزات به‌طور مستقیم در کاهش ریسک آتش‌سوزی و جلوگیری از انفجار نقش دارند. عدم استفاده از دتکتورهای مناسب یا نصب نادرست آن‌ها می‌تواند خسارات جبران‌ناپذیری به بار آورد.

    اهمیت دتکتور شعله

    دتکتورهای شعله برای تشخیص حضور آتش از فناوری‌های مختلفی استفاده می‌کنند که از جمله آن‌ها می‌توان به موارد زیر اشاره کرد:

    دتکتور فرابنفش (UV): این سنسورها برای شناسایی تابش فرابنفش ناشی از شعله‌های آتش به کار می‌روند.
    دتکتور مادون قرمز (IR): این سنسورها تغییرات انرژی مادون قرمز ساطع‌شده از شعله را شناسایی می‌کنند.
    دتکتور ترکیبی UV/IR: ترکیب این دو فناوری می‌تواند میزان تشخیص دقیق‌تر و کاهش هشدارهای کاذب را به همراه داشته باشد.
    دتکتور مرئی (VIS): برخی دتکتورها از حسگرهای نوری استفاده می‌کنند که در محدوده نور مرئی کار می‌کنند.

    استانداردهای نصب دتکتور شعله

    براساس بندهای 8.2.2 و 8.2.5 استاندارد NFPA 86، نصب دتکتورهای شعله باید مطابق دستورالعمل‌های سازنده و استانداردهای بین‌المللی باشد. در نظر گرفتن موارد زیر می‌تواند از بروز مشکلات جلوگیری کند:

    نصب در مکان مناسب: دتکتور باید در نقطه‌ای قرار گیرد که بیشترین میدان دید را نسبت به شعله‌های احتمالی داشته باشد.
    نگهداری و کالیبراسیون: تجهیزات باید به‌طور دوره‌ای بررسی و تنظیم شوند تا از دقت عملکرد آن‌ها اطمینان حاصل شود.
    پیشگیری از هشدارهای کاذب: برخی از منابع نوری، جرقه‌ها یا بازتاب‌های ناخواسته می‌توانند باعث هشدارهای اشتباه شوند، لذا باید محل نصب با دقت انتخاب شود.

    عملکرد سیستم‌های ایمنی احتراق

    2Q==

    علاوه بر دتکتورهای شعله، سیستم‌های ایمنی احتراق (Combustion Safeguard Systems) نیز نقش مهمی در حفاظت از فرآیندهای حرارتی دارند. این سیستم‌ها شامل مجموعه‌ای از تجهیزات نظارتی، شیرهای ایمنی و سیستم‌های کنترلی هستند که با تشخیص تغییرات غیرعادی در احتراق، عملکرد دستگاه را کنترل می‌کنند.

    اجزای کلیدی سیستم‌های ایمنی احتراق

    کنترلر احتراق: وظیفه دارد وضعیت شعله و عملکرد سوخت را بررسی کند.
    شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را متوقف می‌کنند.
    حسگرهای فشار و دما: برای اطمینان از تعادل مناسب فشار و دمای گاز یا مایع سوختی استفاده می‌شوند.

    نقش سنسورهای فرابنفش در تشخیص شعله

    سنسورهای فرابنفش (UV Sensors) یکی از ابزارهای مهم در تشخیص شعله‌های آتش هستند، اما ممکن است در اثر خرابی، دیگر قادر به تشخیص خاموش شدن شعله نباشند. به همین دلیل، استاندارد NFPA 86 توصیه می‌کند که این سنسورها دارای قابلیت خودبررسی‌کننده (Self-Checking UV Detectors) باشند یا به‌صورت دوره‌ای آزمایش شوند.

    تنظیمات دمایی و تهویه ایمنی در کوره‌ها

    Z

    کنترل دمای سوخت

    در فرآیندهای صنعتی که از سوخت‌های مایع مانند نفت یا گازوئیل استفاده می‌شود، کنترل دمای سوخت برای جلوگیری از مشکلاتی نظیر افزایش ویسکوزیته یا تبخیر ناگهانی، ضروری است.
    دمای سوخت باید در محدوده‌ای باشد که موجب احتراق یکنواخت و جلوگیری از خاموش شدن ناگهانی شعله شود.

    تنظیم محدودیت دمای اضافی

    نقطه تنظیم دمای اضافی باید بر اساس توصیه‌های سازنده تنظیم شود تا از رسیدن مواد قابل احتراق به دمای خوداشتعالی جلوگیری شود.
    این دما نباید از محدوده‌ای که می‌تواند باعث خرابی تجهیزات شود، فراتر رود.

    اهمیت تهویه ایمنی

    در صورت افزایش دمای کوره، جریان هوای خروجی کاهش یافته و احتمال تجمع گازهای اشتعال‌پذیر افزایش می‌یابد.
    کاهش تهویه مناسب می‌تواند موجب انفجار گازهای فرار شده و باعث بروز حوادث جدی شود.

    Z

    استفاده از PLC در نظارت بر دمای کوره‌ها

    امروزه استفاده از PLC (Programmable Logic Controller) برای نظارت بر دما و عملکرد تجهیزات صنعتی به‌شدت رایج شده است. این سیستم‌ها می‌توانند به‌صورت خودکار وضعیت سنسورها و تجهیزات ایمنی را تحلیل کرده و در صورت بروز هرگونه ناهنجاری، اقدامات لازم را انجام دهند. مزایای استفاده از PLC شامل:

    پایش دائمی و ارسال هشدارهای زودهنگام
    کاهش خطای انسانی در نظارت بر تجهیزات
    امکان کنترل و تنظیم خودکار دما و فشار

    نکات ایمنی در زمان قطع برق

    استاندارد NFPA 86 تأکید دارد که مدارهای الکتریکی مرتبط با فرآیندهای احتراقی، در شرایط اضطراری باید به‌صورت خودکار یا دستی قطع شوند. این موارد شامل:

    خرابی‌های سیستم که منجر به شرایط خطرناک شود.
    افزایش غیرقابل‌کنترل دما که تهدیدی برای ایمنی تجهیزات و محیط اطراف باشد.
    قطع ناگهانی برق که می‌تواند باعث از کار افتادن سیستم‌های ایمنی و احتراقی شود.

    9k=

    نتیجه‌گیری

    استاندارد NFPA 86 مجموعه‌ای از دستورالعمل‌های مهم برای ایمنی فرآیندهای صنعتی ارائه می‌دهد. استفاده صحیح از دتکتورهای شعله، سیستم‌های ایمنی احتراق، کنترل دمای کوره و تهویه مناسبمی‌تواند خطرات ناشی از آتش‌سوزی و انفجار را کاهش دهد. علاوه بر این، نظارت هوشمند با استفاده از PLC و رعایت الزامات نصب و نگهداری، نقش مهمی در بهبود عملکرد تجهیزات و افزایش طول عمر آن‌ها دارد.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    توصیه‌های نهایی:

    دتکتورهای شعله باید در مکان‌های مناسب نصب شوند تا دید کافی نسبت به شعله داشته باشند.
    سنسورهای فرابنفش باید دارای قابلیت خودبررسی باشند یا به‌صورت دوره‌ای تست شوند.
    سیستم‌های تهویه ایمنی باید همواره عملکرد مناسبی داشته باشند تا از تجمع گازهای خطرناک جلوگیری شود.
    در موارد افزایش دمای غیرمجاز، سیستم‌های کنترلی باید به‌صورت خودکار عمل کنند تا از خرابی یا حوادث ناگوار جلوگیری شود.
    نظارت مستمر بر عملکرد تجهیزات با استفاده از PLC باعث افزایش بهره‌وری و کاهش هزینه‌های نگهداری می‌شود.

    با رعایت این موارد، می‌توان ایمنی در محیط‌های صنعتی را بهبود بخشید و از وقوع حوادث جلوگیری کرد.

  • راهنمای آسان نصب دتکتور حرارتی خطی

    نصب دتکتور حرارتی خطی روی سینی کابل

    یک الگوی موج سینوسی،  باید هنگام نصب دتکتور حرارتی خطیدر کاربرد سینی کابل استفاده شود. حداکثر فاصله بین هر قله یا دره نباید از ۶ فوت (۱٫۸ متر) بیشتر باشد. سیم دتکتور در کناره‌های سینی کابل با استفاده از مناسب‌ترین گیره نصب، بر اساس ساختار سینی، در جای خود محکم می‌شود.

    9k=

    دتکتور بر روی تمامی کابل‌های برق و کنترل موجود در سینی نصب می‌شود و فاصله‌گذاری آن مطابق شکل انجام می‌گیرد. در آینده هنگامی که کابل‌های اضافی به داخل سینی کشیده می‌شوند، باید در زیر دتکتور حرارتی خطی  قرار گیرند.

    برآورد طول دتکتور حرارتی خطی برای سینی کابل
    نیاز است که دتکتور حرارتی خطی به‌صورت الگوی موج سینوسی اجرا شود، بنابراین ممکن است برآورد طول کلی مورد نیاز دتکتور حرارتی خطی برای یک مسیر مشخص دشوار باشد. محاسبه زیر به تعیین مقدار تقریبی دتکتور حرارتی خطی مورد نیاز برای نصب در سینی کابل کمک می‌کند.

    برای تعیین تعداد کلیپ یا گیره نصب در طول سینی کابل، طول سینی کابل را بر ۳ تقسیم کرده و عدد ۱ را به آن اضافه کنید.

    2Q==

    Z

    p

  • مواد نصب و نگهدارنده‌های لوله در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    پایه‌ها و آویزهای نگهدارنده
    شبکه لوله‌کشی با استفاده از پایه‌های نصب لوله، همان‌طور که در شکل ۶ در سمت چپ نشان داده شده است، به سقف یا اجزای سازه‌ای محکم نصب می‌شود. همچنین می‌توان آن را با استفاده از بست‌های ساده لوله، آویزهای یو (Clevis)، بست‌های قابل تنظیم، گیره‌های C شکل و میل‌گردهای رزوه‌شده از سقف بتنی آویزان کرد. انواع مختلفی از پایه‌ها نیز موجود است، از جمله کلیپس‌ها، بست‌های زینی یا بست‌های کمربندی، همان‌طور که در شکل ۷ در بالا نشان داده شده است. انتخاب ابزار نصب بستگی به نوع مصالح نصب، شرایط محیطی و کدها و مقررات محلی دارد.

    فواصل نصب بست‌ها و نگهدارنده‌های لوله نمونه‌برداری بر اساس دما و قطر لوله تعیین می‌شود، همان‌طور که در جدول ۱ زیر نشان داده شده است.

    نصب بست‌ها و آویزهای نگهدارنده با فواصل مشخص‌شده بسیار حائز اهمیت است تا از خم شدن لوله و ایجاد فشار در محل اتصالات، زانویی‌ها و رابط‌ها جلوگیری شود؛ چراکه این فشار ممکن است باعث ترک‌خوردگی یا شکستگی لوله گردد.

    IMG 1306

    کلیپس‌های نصب باز نباید به‌صورت وارونه استفاده شوند، به‌طوری‌که قسمت باز آن‌ها رو به پایین قرار گیرد، زیرا ممکن است لوله به‌صورت ناگهانی از کلیپس خارج شود.

    در کاربردهایی که لوله نمونه‌برداری زیر کف کاذب نصب می‌شود، می‌توان لوله را مستقیماً به پایه‌های کف کاذب با استفاده از بست‌های سیمی، بست‌های کانال یا سایر تجهیزات نصب، متصل کرد.

    برچسب‌گذاری لوله‌ها
    طبق استانداردهای شناخته‌شده‌ای مانند NFPA 72، FIA و سایر کدها و مقررات، لازم است لوله‌های سیستم اسپیراتینگ برچسب‌گذاری شوند تا از سایر لوله‌ها متمایز شده و به‌طور مشخص به‌عنوان بخشی از سیستم تشخیص حریق شناسایی گردند.

    هم شبکه لوله‌کشی نمونه‌برداری و هم هر سوراخ نمونه‌برداری باید مشخص شوند. لوله و سوراخ‌های نمونه‌برداری باید در محل‌های زیر برچسب‌گذاری شوند:

    ۱. در محل تغییر جهت یا انشعاب لوله‌کشی
    ۲. در هر دو طرف نفوذ از دیوارها، کف‌ها یا سایر موانع
    ۳. در فواصل مناسب روی لوله‌ها به‌گونه‌ای که در فضا قابل مشاهده باشند، اما فاصله بین آن‌ها بیشتر از ۶۱ متر (۲۰ فوت) نباشد
    ۴. در محل هر سوراخ نمونه‌برداری

    لوله باید با عبارتی مشابه این برچسب‌گذاری شود:
    «لوله نمونه‌برداری آشکارساز دود – از جابه‌جایی خودداری شود»
    برای مشاهده نمونه برچسب لوله و سوراخ نمونه‌برداری به شکل ۸مراجعه کنید.

    IMG 1307 IMG 1308 IMG 1309

    اجزاء نگهداری
    پیشنهاد می‌شود که یک شیر توپی ایزوله و یک اتصالات T-joint همراه با درپوش انتهایی روی لوله نمونه‌برداری نصب شود، تقریبا ۵ تا ۳۰ سانتیمتر (۶ اینچ تا ۱ فوت) از ورودی لوله آشکارسازدتکتور دودی مکشی. این شیر در طول نگهداری مکرر استفاده خواهد شد. این موضوع به‌ویژه برای سیستم‌های دتکتور دودی مکشی که از محیط‌های کثیف محافظت می‌کنند یا در مکان‌هایی که نیاز به نگهداری مکرر است، اهمیت دارد. شکل ۹ را در زیر سمت چپ مشاهده کنید.

  • طراحی سیستم اطفاء حریق با گاز دی اکسیدکربن


    اثرات بازشوها بر طراحی و عملکرد سیستم اطفاء حریق با گاز دی اکسیدکربن

    NFPA12 ANNEX-E

    ضمیمه E – آتش‌سوزی‌های سطحی
    این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

    E.1 الزامات ارائه‌شده در بخش 5.3 عوامل مختلفی را که می‌توانند بر عملکرد سامانه دی‌اکسید کربن تأثیر بگذارند، در نظر گرفته‌اند. پرسش در مورد محدودیت بازشوهایی که قابل‌بسته شدن نیستند، اغلب مطرح می‌شود و پاسخ دقیق به آن دشوار است.
    از آنجا که آتش‌سوزی‌های سطحی معمولاً از نوعی هستند که می‌توان آن‌ها را با روش‌های اطفاء موضعی خاموش کرد، انتخاب بین روش غرقاب کامل و روش کاربرد موضعی را می‌توان بر اساس مقدار دی‌اکسید کربن مورد نیاز انجام داد.

    این انتخاب در مثال‌های زیر برای فضای محصور نمایش‌داده‌شده در شکلE.1(a) نشان داده شده است.

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۱۷ پوند بر دقیقه بر فوت مربع برای غلظت ۳۴ درصد در ارتفاع ۷ فوت خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):

    17 X 5= 85 lb

    مجموع دی‌اکسید کربن مورد نیاز:

    111 + 85= 196 lb

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۸۵کیلوگرم بر دقیقه بر متر مربع برای غلظت ۳۴ درصد در ارتفاع ۲.۱ متر خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۰.۵ = ۴۲.۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۴۲.۵ = ۹۱.۱ کیلوگرم

    9k=

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۱۷ × ۱۰ = ۱۷۰ پوند
    مجموع دی‌اکسید کربن مورد نیاز:
    ۱۱۱ + ۱۷۰ = ۲۸۱ پوند
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۰.۲۵ پوند بر دقیقه بر فوت مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲۰ فوت مربع
    مساحت کل دیوارها: (۱۰ + ۱۰ + ۲۰ + ۲۰) × ۱۰ = ۶۰۰ فوت مربع
    نرخ تخلیه:
    (۲۰ ÷ ۶۰۰) × (۱۰.۲۵) + ۰.۲۵ = ۰.۲۷ پوند بر دقیقه بر فوت مکعب
    نرخ کل تخلیه:
    ۰.۲۷ × ۲۰۰۰ = ۵۴۰ پوند بر دقیقه
    مقدار دی‌اکسید کربن:
    ۵۴۰ ÷ ۲ = ۲۷۰ پوند

    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲۰ فوت مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    2Q==

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۱.۰ = ۸۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۸۵ = ۱۳۳.۶ کیلوگرم
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۴ کیلوگرم بر دقیقه بر متر مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲.۰ متر مربع
    مساحت کل دیوارها: (۳ + ۳ + ۶ + ۶) × ۳ = ۵۴ متر مربع
    نرخ تخلیه:
    (۲ ÷ ۵۴) × (۱۶۴) + ۴ = ۴.۴ کیلوگرم بر دقیقه بر متر مکعب
    نرخ کل تخلیه:
    ۴.۴ × ۵۴ = ۲۳۷.۶ کیلوگرم بر دقیقه بر متر مکعب
    مقدار دی‌اکسید کربن:
    ۲۳۷.۶ ÷ ۲ = ۱۱۸.۸ کیلوگرم
    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲.۰ متر مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    9k=

    p

  • راهکارهای سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی سیستم اطفاء آتش

    این مقاله به بررسی راهکارهای کاربرد سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی در کارخانه‌های تولید مهمات و سایر تأسیساتی که نیاز به سیستم مهار آتش آبپاشی (Deluge) با سرعت بالا دارند می‌پردازد. همچنین فناوری دتکتور شعله‌ای نوری و پیشرفت‌های اخیر در سیستمی که به کاربران در دستیابی به انطباق با کدها و استانداردهای صنعتی کمک می‌کند، مرور خواهد شد.

    ۱.۰ مقدمه
    برای برآورده‌کردن الزامات زمانی پاسخ‌دهی کل سیستم طبق کدها و استانداردهای صنعتی فوق‌سریع، سیستم دتکتور شعله‌ای و آزادسازی باید قادر باشد رویداد را شناسایی کرده و سیگنالی به سیستم آبپاشی ارسال کند که این سیستم باید ظرف ۱۰۰ میلی‌ثانیه یا کمتر از لحظه حضور منبع انرژی در مقابل دتکتور تا شروع جریان آب از نازل آبپاش واکنش نشان دهد.

    WhatsApp Image 2025 09 16 at 5.25.44 AM

    برای اینکه یک سیستم به‌عنوان «سریع» شناخته شود، باید ظرف ۵۰۰ میلی‌ثانیه یا کمتر عمل کند (ارجاع به استاندارد NFPA 15)در کاربردهایی که به این سیستم‌ها نیاز دارند، آتش بسیار سریع‌تر از آن رشد می‌کند که بتوان از دتکتورهای حرارتی یا دتکتورهای دود استفاده کرد، زیرا این دتکتورها ممکن است چندین ثانیه طول بکشند تا آتش را شناسایی کنند.

    WhatsApp Image 2025 09 16 at 5.25.45 AMWhatsApp Image 2025 09 16 at 5.25.45 AM1

    برای درک روش‌های به‌کارگیری دتکتور شعله‌ای نوری فوق‌سریع در کارخانه‌های پردازش مهمات، مرور مختصری بر اصول پایه عملکرد فناوری دتکتور شعله‌ای ضروری است.

    ۲.۰ مروری بر دتکتور شعله‌ای نوری
    دتکتورهای شعله‌ای تشخیص انرژی تابشی، آتش را از طریق حس و تحلیل تابش الکترومغناطیسی منتشر شده از آتش شناسایی می‌کنند. انواع مختلف آتش طیف‌های نوری متفاوتی منتشر می‌کنند که امکان شناسایی آن‌ها را فراهم می‌کند.
    بازه طیفی انتشار که دتکتور به آن حساس است باید به‌طور دقیق کنترل شود تا اثر تابش طیفی ناشی از نور خورشید، نور محیط، ماشین‌آلات و تجهیزات پردازش به حداقل برسد. شکل ۱ نمای کلی از طیف الکترومغناطیسی و نواحی فروسرخ (IR) و فرابنفش (UV) مطلوب برای تشخیص شعله را نشان می‌دهد.
    در ادامه شرح مختصری از هر فناوری مناسب برای تشخیص شعله فوق‌سریع (UV، IR و UV/IR) آمده است.

    ۲.۱ فناوری‌های دتکتور شعله‌ای نوری

    ۲.۱.۱ فرابنفش (UV)

    دتکتورهای شعله‌ای UV از یک دتکتور تشکیل شده‌اند که شامل لوله خلأ از نوع Geiger-Mueller است. این دتکتور معمولاً به‌گونه‌ای طراحی می‌شود که به یک باند بسیار باریک از انرژی نوری در محدوده ۱۸۵۰ تا ۲۴۵۰ آنگستروم (Å) پاسخ دهد و مدل‌های خاصی نیز وجود دارند که این محدوده را تا ۲۶۵۰Å گسترش می‌دهند. همان‌طور که در شکل ۲ نشان داده شده، محدوده حساسیت UV خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد.

    وقتی تابش UV منتشر شده از آتش با دتکتور تماس پیدا می‌کند، پالس‌های ولتاژی تولید می‌شود که فرکانس آن‌ها متناسب با شدت تابش UV است. این پالس‌ها توسط یک میکروپروسسور پردازش شده و با پارامترهای برنامه‌ریزی‌شده مقایسه می‌شوند. اگر میزان پالس‌های پردازش‌شده از آستانه تعیین‌شده فراتر رود، آلارم فعال می‌شود.

    WhatsApp Image 2025 09 16 at 5.25.45 AM2WhatsApp Image 2025 09 16 at 5.25.46 AM

    این دتکتورها قادر به تشخیص هر نوع آتش بوده و در شرایط ایده‌آل می‌توانند زمان پاسخ کمتر از ۱۵ میلی‌ثانیه داشته باشند.

    از آنجا که دتکتورهای UV می‌توانند به‌صورت ضدنور خورشید طراحی شوند و تحت تأثیر تابش حرارتی قرار نگیرند، می‌توان آن‌ها را در بسیاری از کاربردها با موفقیت به‌کار برد.

    همانند هر فناوری دتکتور دیگری، مزایا و معایبی وجود دارد. دتکتورهای شعله‌ای UV نسبت به رعد و برق، جوشکاری و پرتوهای ایکس حساس هستند. انسداد فیزیکی جزئی شعله یا وجود دود و/یا بخارات جاذب UV ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی شود. شکل ۴ را ببینید.

    WhatsApp Image 2025 09 16 at 5.25.46 AM1

    ۲.۱.۲ فروسرخ (IR)

    WhatsApp Image 2025 09 16 at 5.25.46 AM2

    دتکتورهای شعله‌ای IR از یک دتکتور پیرولکتریک تشکیل شده‌اند. درون دتکتور پیرولکتریک، یک فیلتر تداخلی نوری استفاده می‌شود تا یک ناحیه عبور باند ایجاد کند که برای تشخیص اختصاصی آتش مناسب باشد. این فیلترها بر اساس طول موج مورد نظر انتخاب می‌شوند که معمولاً بین ۴٫۲ تا ۴٫۸ میکرومتر (μm) در باند انتشار CO₂ قرار دارد. همان‌طور که در شکل ۵ نشان داده شده، محدوده حساسیت IR خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد

    .WhatsApp Image 2025 09 16 at 5.25.47 AM3

    WhatsApp Image 2025 09 16 at 5.25.47 AM1WhatsApp Image 2025 09 16 at 5.25.47 AM2WhatsApp Image 2025 09 16 at 5.25.48 AM

    دتکتورهای شعله‌ای IR (شکل ۶) می‌توانند آتش‌هایی را که پیش از آن دود ایجاد می‌کنند یا حاوی بخارات هستند، راحت‌تر از دتکتورهای مبتنی بر فناوری UV شناسایی کنند. زمان پاسخ در شرایط ایده‌آل می‌تواند کمتر از ۱۵ میلی‌ثانیه باشد. از آنجا که دتکتورهای IR می‌توانند مقاوم در برابر نور خورشید ساخته شوند و تحت تأثیر تابش UV قرار نمی‌گیرند، می‌توان آن‌ها را در بسیاری از کاربردهایی که برای دتکتورهای UV چالش‌برانگیز است، با موفقیت به کار برد.

     

    اگر انرژی الکترومغناطیسی منتشرشده شامل طول موج‌هایی باشد که از فیلتر تداخلی عبور می‌کنند، نور با یک عنصر تک‌بلوری برخورد می‌کند. این عنصر سیگنال کوچکی تولید می‌کند که دامنه و فرکانس آن متناسب با تابش الکترومغناطیسی منتشرشده از آتش است. این سیگنال سپس توسط یک میکروپروسسور پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه می‌شود و در صورت احراز شرایط، آلارم آتش فعال می‌گردد.
    دتکتورهای شعله‌ای IR ممکن است به اجسام داغ مدوله‌شده و منابع نوری حساس باشند. وجود آب، برف یا یخ بر روی لنز دتکتور نیز ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی آتش شود (شکل ۷ را ببینید).

    ۲.۱.۳ فرابنفش-فروسرخ (UVIR)
    دتکتورهای شعله‌ای UVIR ترکیبی از فناوری‌های UV و IR را در یک دتکتور شعله‌ای به کار می‌گیرند (شکل ۸). برای فعال‌شدن آلارم آتش، هر دو دتکتور UV و IR باید تابش الکترومغناطیسی منتشرشده را شناسایی کرده و هر دو سیگنال پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه شوند. شکل ۹ نواحی حساسیت الکترومغناطیسی یک دتکتور UVIR را نشان می‌دهد.
    فناوری UVIR می‌تواند عملکرد مناسب در تشخیص آتش را در حالی فراهم کند که در مقایسه با فناوری UV یا IR به‌تنهایی مقاومت بیشتری در برابر فعال‌سازی کاذب دارد. تمام مزایا و محدودیت‌های فناوری‌های UV و IR در مورد یک دتکتور شعله‌ای UVIR نیز صدق می‌کند. این ویژگی‌ها باعث شده که فناوری UVIR به‌طور گسترده پذیرفته شود.
    علاوه بر رله آلارم آتش که زمانی عمل می‌کند که هر دو دتکتور UV و IR آتش را تشخیص دهند، دتکتورهای شعله‌ای UVIR شرکتهای معتبر تولیدی  دارای یک رله کمکی قابل برنامه‌ریزی داخلی نیز هستند. این رله کمکی می‌تواند طوری پیکربندی شود که در شرایط آلارم فقط UV، فقط IR یا پیش‌آلارم UVIR تغییر وضعیت دهد و انعطاف‌پذیری بیشتری را برای دتکتور شعله‌ای در مکان‌هایی که ویژگی‌های طیفی ماده مورد نظر ممکن است متغیر باشد، فراهم کند.

    ۲.۲ حفظ عملکرد تشخیص
    در اکثر کاربردها، این احتمال وجود دارد که لنز دتکتور به‌وسیله مواد خارجی مسدود شود. آلودگی لنز دتکتور ممکن است باعث تأخیر یا حتی جلوگیری از رسیدن تابش طیفی آتش به دتکتور(های) موجود در دتکتور شعله‌ای گردد. بنابراین بسیار مهم است که دتکتور قادر به بررسی خودکار تمام سطوح نوری، دتکتورها و مدارهای داخلی خود باشد.
    دتکتور باید قادر باشد به‌طور خودکار اپراتور را در صورت تأثیر بر عملکرد آن آگاه سازد. در صورت بروز این وضعیت خطا، می‌توان یک فرآیند مشخص را متوقف کرد یا اقدامات دیگری را بر اساس نیاز انجام داد.

    WhatsApp Image 2025 09 16 at 5.25.49 AM

    برخی دتکتورهای شعله‌ای نوری دارای قابلیت یکپارچگی نوری خودکار (oiR) هستند که یک تست عملکرد کالیبره‌شده را هر یک دقیقه یک‌بار برای اطمینان از توانایی عملیاتی کامل دتکتور انجام می‌دهند (شکل ۱۰). برای انجام تست یکپارچگی نوری، منابع داخلی IR و UV کالیبره‌شده و کنترل‌شده توسط میکروپروسسور برای هر سنسور موجود در دتکتور، سیگنال‌های تست را فراهم می‌کنند. اگر دتکتور دچار آلودگی نوری یا هرگونه مشکل عملکرد داخلی شود، زمانی که کمتر از نصف محدوده تشخیص اولیه باقی مانده باشد، وضعیت خطای یکپارچگی نوری را گزارش خواهد کرد. معمولاً این خطا ناشی از کثیف بودن لنز است و با تمیز کردن، عملکرد کامل دتکتور بازگردانده می‌شود.

    برخی نواحی کارخانه مستعد گرد و غبار و آلاینده‌های معلق در هوا هستند که ممکن است باعث تجمع رسوبات روی لنز دتکتور شوند. برای این محیط‌ها، شرکت شرکت های تولیدی پیشرفته شیلدهای هوایی ارائه می‌دهد که با ایجاد جریان مداوم هوای پاک بر سطح بیرونی لنز دتکتور، تجمع آلاینده‌ها را کاهش داده و به افزایش فاصله زمانی بین سرویس‌های نگهداری کمک می‌کنند. این شیلدهای هوایی هیچ‌گونه اختلالی در نصب دتکتور، زاویه دید آن یا تست یکپارچگی نوری ایجاد نمی‌کنند.

    ۲.۳ ثبت رویدادها
    هنگام وقوع یک رویداد یا وضعیت خطا، ضروری است که اطلاعات دقیق به‌سرعت گردآوری شود. واحد کنترل اعلام حریق سرویس اطفاء، باید توانایی ارائه اطلاعات سطح بالا شامل ورودی‌های فعال‌شده یا نوع خطای رخ‌داده را داشته باشد. علاوه بر این، برای بررسی رویدادها، به‌دست آوردن جزئیات بیشتر مفید است. هر دتکتور شعله‌ای شرکت های تولیدی پیشرفته دارای قابلیت ثبت رویداد داخلی است که به‌طور خودکار برای هر رویداد یا خطای رخ‌داده، زمان و تاریخ را ثبت می‌کند. رویدادهایی مانند روشن یا خاموش شدن دستگاه، شرایط خطا، پیش‌آلارم و آلارم آتش به همراه دمای محیط و ولتاژ ورودی در زمان وقوع رویداد ذخیره می‌شوند.

    ۲.۴ انتخاب فناوری
    هنگام انتخاب فناوری برای حفاظت از افراد، فرآیندها، دارایی‌ها و ساختمان‌ها، باید نهایت دقت در طراحی سیستم به‌کار گرفته شود تا در شرایط پیش‌بینی‌شده به‌درستی عمل کند. نوع فناوری دتکتور شعله‌ای انتخابی برای یک ناحیه باید بر اساس یک ارزیابی طراحی مبتنی بر عملکرد انتخاب شود. لازم است درک کامل از اهداف عملکردی مورد انتظار برای هر دتکتور در سیستم به‌دست آید.

    برخی موارد قابل بررسی در ارزیابی طراحی مبتنی بر عملکرد شامل:

    • ترکیب آتش
    • ویژگی‌های آتش (نرخ رشد، ویژگی‌های سوختن، طیف انتشار)
    • حداقل اندازه آتشی که نیاز به تشخیص دارد
    • بخارات کاهنده UV یا گرد و غبار کاهنده IR
    • منابع غیرآتش

    دتکتورهای شعله‌ای نوری ممکن است بسته به مدل و سازنده عملکرد متفاوتی داشته باشند. تنها روش قابل اعتماد برای سنجش حساسیت دتکتور شعله‌ای نسبت به یک ماده خاص، قرار دادن آن در معرض یک رویداد کنترل‌شده واقعی است. با این حال، تولید آتش‌های آزمایشی تکرارپذیر و کاملاً یکسان دشوار است. بنابراین، معمولاً لازم است چندین بار یک ماده خاص در معرض دتکتور قرار گیرد تا داده‌های آزمایشی معتبر به‌دست آید.

    علاوه بر این، باید بین حساسیت مطلوب دتکتور به ماده مورد نظر و حساسیت آن به منابع تابش غیردر اثر آتش، تعادل برقرار شود. دتکتوری که بیش از حد به محیط اطراف حساس باشد و باعث آلارم‌های مزاحم شود، قطعاً نامطلوب است. بنابراین، دتکتور باید در معرض منابع رایج موجود در ناحیه مورد پایش قرار گیرد تا ارزیابی دقیقی از عملکرد کلی دتکتور شعله‌ای انجام شود.

    این جنبه‌ها ممکن است چالش‌های متعددی را برای مهندس مسئول اجرای ارزیابی مبتنی بر عملکرد ایجاد کنند. برنامه‌ریزی و کنترل مؤثر توسط مهندس آزمون، دقت هر اندازه‌گیری مبتنی بر عملکرد را به حداکثر می‌رساند.

    ۲.۵ ملاحظات برای ارزیابی طراحی مبتنی بر عملکرد آشکارسازی شعله نوری

    ۲.۵.۱ محل آزمون

    WhatsApp Image 2025 09 16 at 5.25.49 AM1

    • محلی برای آزمون شناسایی کنید که دسترسی، مشاهده و امکان خروج ایمن برای همه افراد درگیر را فراهم کند. امکان کنترل دسترسی به محل آزمون مطلوب است.
    • آزمون‌های آتش در محیط‌های داخلی ممکن است تحت تأثیر تجمع مواد معلق کاهنده مانند دود، گرد و غبار و بخارات حلال قرار گیرند که همگی می‌توانند عملکرد آشکارسازی شعله را منفی تحت تأثیر قرار دهند. برای دستیابی به نتایج آزمون و عملکرد آشکارسازی شعله ثابت، باید قبل و بین تمام آزمون‌های داخلی، تبادل هوای پاک فراهم شود.
    • اطمینان حاصل کنید که روش مناسبی برای خاموش کردن آتش آزمون در محل موجود باشد یا اگر ماده به راحتی خاموش نمی‌شود، تدابیری برای کنترل سوختن آن اتخاذ شده باشد.
    • اطمینان حاصل کنید که تمام مواد سوخته به طور کامل خاموش شده و تمام مواد باقی‌مانده سوخته به‌درستی دفع شوند.
    • بهتر است شرایطی که در کاربرد واقعی محل نصب دتکتورهای شعله‌ای پیش خواهد آمد، شبیه‌سازی شود. موانع احتمالی دید دتکتورهای شعله‌ای نسبت به منطقه را در نظر بگیرید.
    • در صورت امکان، دمای محیط، رطوبت، جهت و سرعت باد را کنترل کنید.

    ۲.۵.۲ فرآیند آزمون

    • پیش از شروع آزمون، دمای محیط، رطوبت، جهت و سرعت باد را ثبت کنید.
    • بسته به شرایط محیطی، آزمون‌های آتش که در فضای باز انجام می‌شوند ممکن است تحت تأثیر تغییرات در ویژگی‌های انتشار شعله قرار گیرند. فیلم‌برداری از آزمون‌های آتش در فضای باز می‌تواند برای تعیین اثرات احتمالی تغییرات جهت و سرعت باد ارزشمند باشد.
    • نوع یا انواع سوخت، اندازه‌های موردنظر آتش، فاصله‌ها و نیازمندی‌های زمانی که دتکتورهای شعله‌ای باید در کاربرد واقعی به آن‌ها پاسخ دهند را شناسایی کنید. از این داده‌ها برای تعیین شاخص‌های عملکرد مورد نظر برای کاربرد و روش ارزیابی استفاده کنید.
    • حداقل سه آزمون تکراری از هر نوع سوخت در هر فاصله انجام دهید تا داده‌های معتبر به دست آید.
    • روشی که برای اشتعال ماده استفاده می‌شود نباید باعث واکنش دتکتورهای شعله‌ای شود. اگر دتکتورها به منبع اشتعال واکنش نشان دهند، این امر ممکن است دقت اندازه‌گیری زمان را تحت تأثیر قرار دهد.
    • منابع اشتعال آتش مانند کبریت‌های برقی توصیه نمی‌شوند، زیرا ممکن است ماده قابل اشتعالی را وارد ماده مورد نظر کنند که به طور معمول وجود ندارد. این ماده ممکن است طیف گسیلی متفاوتی نسبت به طیف ماده مورد نظر تولید کند.
    • روش پذیرفته‌شده‌ای را برای تعیین سرعت واکنش دتکتور مشخص کنید. نمونه‌های معمول شامل استفاده از تایمر دیجیتال یا سیستم فیلم‌برداری با سرعت بالا هستند.
    • تمام فناوری‌ها/انواع دتکتور، شماره سریال‌ها و موقعیت‌ها (فاصله و زاویه) نسبت به آتش، همچنین تمام تنظیمات آستانه آتش دتکتورها و/یا تنظیمات تأخیر زمانی را ثبت کنید.
    • اطمینان حاصل کنید که تمام دتکتورها به‌درستی تراز شده و لنزها تمیز باشند.

    ۲.۵.۳ سوخت‌های آزمون

    • آزمون‌های آتش برای جامدات قابل اشتعال، مهمات و پیشرانه‌ها به دلیل تنوع زیاد در قابلیت اشتعال و نرخ انتشار آتش، نیازمند ملاحظات ویژه هستند. اندازه آتش ایجاد شده توسط این مواد با تعیین وزن ماده نسوخته، حجم و آرایش قبل از اشتعال مشخص می‌شود.
    • پودرها و پیشرانه‌های قابل اشتعال با نرخ‌های مختلفی می‌سوزند که به آرایش ماده بستگی دارد (مثال: ۳۰ گرم باروت به‌صورت انباشته به‌طور متفاوتی نسبت به ۳۰ گرم گسترده‌شده روی سطح ۵ سانتی‌متر مربع می‌سوزد). روش چیدمان پودرها یا پیشرانه‌های قابل اشتعال را استاندارد کرده و برای هر آزمون تکرار کنید.
    • اگر منطقه تحت نظارت شامل پردازش چندین ماده آتش‌بازی باشد، سیستم باید طوری طراحی شود که امکان آشکارسازی بدترین حالت، یعنی کندترین ماده در حال سوختن را فراهم کند.

     

    هر آزمون باید با استفاده از مواد جدید انجام شود و هرگز سوخت‌ها بیش از یک بار سوزانده نشوند، زیرا احتمال دارد ماده در صورت اشتعال مجدد ویژگی‌های متفاوتی نشان دهد.

    ۲.۶ توصیه‌های آزمون منابع هشدار مزاحم
    منابع معمول هشدار مزاحم دتکتور شعله‌ای در زیر فهرست شده‌اند. نباید هیچ واکنش هشدار حریق دتکتور شعله‌ای در اثر قرار گرفتن در معرض این منابع رخ دهد:

    • نور مستقیم خورشید
    • لامپ رشته‌ای ۳۰۰ وات در فاصله ۵ فوت
    • لامپ فلورسنت ۳۴ وات در فاصله ۱ فوت
    • لامپ هالوژن ۵۰۰ وات (با لنز پلاستیکی یا شیشه‌ای) در فاصله ۵ فوت
    • بخاری کوارتز مادون قرمز برقی (۱۵۰۰ وات) در فاصله ۱۰ فوت
    • بی‌سیم دستی دوطرفه (۵ وات) در حالت ارسال در فاصله ۳ فوت
    • مدوله کردن انرژی منبع هشدار مزاحم با نرخ تقریباً ۲ تا ۱۰ هرتز (با استفاده از یک چرخاننده بدون حرارت، نه دست) نیز نباید باعث واکنش هشدار حریق دتکتور شعله‌ای شود.
    • هر منبع هشدار مزاحم شناخته‌شده دیگر باید همان‌گونه که در کاربرد واقعی وجود دارد به دتکتورها ارائه شود تا درک مناسبی از اثر احتمالی آن‌ها به دست آید.
    • توانایی آشکارسازی شعله در حضور منابع انرژی تابشی رایج فوق. این منابع در بسیاری از کارخانه‌ها و محیط‌های تولیدی یافت می‌شوند.
      ممکن است نیازهایی وجود داشته باشد که برآورده یا کشف نشده‌اند. یک بررسی کامل که شامل بحث آزاد باشد، می‌تواند راهکارهای غیرمتعارف را آشکار کرده و به راه‌حل‌های آشکارسازی منجر شود.

    ۳.۰ رعایت کدها و استانداردها
    کدها و استانداردها، مانند آن‌هایی که توسط انجمن ملی حفاظت از آتش (NFPA) و دولت ایالات متحده تدوین شده‌اند، دانش و اطلاعات لازم برای به حداقل رساندن خطر و اثرات آتش را فراهم می‌کنند. کدهایی مانند NFPA 101 «کد ایمنی حیات»، NFPA 72 «کد ملی هشدار و اعلام حریق»، NFPA 15 «استاندارد سیستم‌های ثابت آب‌پاش برای حفاظت در برابر آتش» و معیارهای یکپارچه تسهیلات (UFC) UFC 3-600-01 از این نمونه‌ها هستند.
    همچنین مهم است که هر سیستمی که هدف آن آشکارسازی و اطفای حریق است، به‌طور کامل با تمام کدها و استانداردهای قابل اجرا مطابقت داشته باشد. بنابراین، انتخاب دتکتورهای شعله‌ای و سیستم‌های کنترلی که دارای تأییدیه از سازمان‌های شخص ثالث باشند، اهمیت دارد. انتخاب محصولات مناسب در نهایت به کاربر کمک می‌کند تا انطباق را به دست آورد.

    ۳.۱
    برای رعایت کدها و استانداردهای فعلی، خروجی‌های دتکتورهای شعله‌ای فوق‌سریع باید به یک واحد کنترل هشدار حریق خدمات آزادسازی که به‌طور خاص برای این خدمات فهرست شده باشد، متصل شوند و دتکتورها نیز باید برای استفاده با همان واحد کنترل فهرست شده باشند. این واحد کنترل عملکردهای مهمی مانند نظارت بر ورودی‌ها و خروجی‌ها را انجام می‌دهد تا اطمینان حاصل شود سیستم در زمان نیاز به‌درستی عمل می‌کند.
    HSDM برای داشتن زمان واکنش مستقل ۲ میلی‌ثانیه طراحی شده است و هنگامی که با دتکتور شعله‌ای UV، UV/IR یا IR شرکت Det-Tronics ترکیب می‌شود، سیستم ترکیبی می‌تواند در شرایط ایده‌آل پاسخی کمتر از ۱۵ میلی‌ثانیه ارائه دهد.
    HSDM با نظارت پیوسته بر تمام ورودی‌ها و خروجی‌ها، عملکرد سیستم را تضمین می‌کند و از یک شبکه محلی/مدار خط سیگنال (LON/SLC) استفاده می‌کند که نظارت کلاس X را برای اتصال بین HSDM و کنترلر سیستم ایمنی EQP فراهم می‌آورد.
    ماژول HSDM دارای شش کانال ورودی و شش کانال خروجی قابل پیکربندی است که می‌توان آن‌ها را برای عملکرد تحت نظارت یا بدون نظارت برنامه‌ریزی کرد. هر کانال ورودی، اتصالات بسته را از دستگاه‌های آشکارساز حریق مانند دتکتورهای شعله‌ای نوری، دتکتورهای حرارتی، دتکتورهای دود و شستی‌های دستی می‌پذیرد. کانال‌های خروجی برای فعال‌سازی سلونوئیدهای تأییدشده شخص ثالث که برای راه‌اندازی شیرهای سیلابی پایلوت‌دار استفاده می‌شوند، طراحی شده‌اند.
    دتکتورهای شعله‌ای نوری، ماژول سیلابی فوق‌سریع و کنترلر سیستم ایمنی به مشتریان این امکان را می‌دهند که سیستمی مطابق با الزامات UFC و NFPA طراحی کنند (شکل ۱۱).
    خروجی رله هشدار حریق از دتکتور شعله‌ای نوری UV، IR یا UV/IR به HSDM متصل می‌شود. دتکتور شعله‌ای همراه با HSDM قادر به ارائه زمان واکنش فوق‌سریع، کمتر از ۲۰ میلی‌ثانیه در شرایط ایده‌آل است.
    HSDM یک سیگنال اولویت‌دار روی کابل LON ارسال می‌کند که توسط کنترلر سیستم ایمنی EQP دریافت می‌شود. این ارتباط پرسرعت نیست. EQP از منطق از پیش برنامه‌ریزی‌شده برای تعیین اقدامات بعدی استفاده می‌کند که معمولاً شامل ارسال سیگنال به یک ماژول ورودی/خروجی مجزا و پیشرفته است که به نوبه خود برای فعال‌سازی تجهیزات اعلان هشدار استفاده می‌شود. همچنین ارتباط اضافی با نگهبانان، پلیس، آتش‌نشانی یا سایر بخش‌های مورد نیاز نیز امکان‌پذیر است.
    یک سیستم آشکارسازی شعله و آزادسازی که به‌خوبی طراحی و فهرست شده باشد، می‌تواند به کاربران کمک کند تا الزامات کدهای UFC و NFPA برای یک سیستم آب‌پاش فوق‌سریع را برآورده کنند.

    ۳.۲ رعایت نیاز زمان واکنش کمتر از ۱۰۰ میلی‌ثانیه (ms)
    در حالی که بحث سرعت واکنش دتکتورهای شعله‌ای مهم است، باید توجه داشت که اندازه‌گیری مهم‌تر، سرعت واکنش کل سیستم است که شامل دتکتور شعله‌ای، واحد کنترل هشدار حریق خدمات آزادسازی، شیرهای سلونوئیدی و یک بخش سیلابی است. یک دتکتور شعله‌ای فوق‌سریع می‌تواند آتش در حال گسترش سریع را در حدود ۲۰ میلی‌ثانیه و در شرایط ایده‌آل شناسایی کند. واحد کنترل هشدار حریق خدمات آزادسازی نیز ممکن است ظرف چند میلی‌ثانیه واکنش نشان دهد. شیر سلونوئیدی زمانی را برای تخلیه فشار پایلوت از شیر سیلابی نیاز دارد و در نهایت، آب نیز زمانی را برای عبور از لوله‌کشی تا نازل و از نازل تا آتش طی می‌کند. بنابراین، باید در نظر داشت که سرعت واکنش دتکتور و واحد کنترل تنها بخشی کوچک از کل زمان واکنش سیستم است.
    توجه دقیق باید به نصب دتکتورها در نزدیک‌ترین فاصله ممکن به خطر بالقوه و اطمینان از عدم وجود مانع بین دتکتور و منطقه تحت نظارت که می‌تواند خط دید دتکتور را مسدود کند، معطوف شود. تمام حباب‌های هوا باید از داخل لوله‌کشی سیستم هیدرولیک خارج شوند. علاوه بر این، باید سریع‌ترین سلونوئیدهای ممکن استفاده شوند و نازل‌های سیلابی نیز باید در نزدیک‌ترین فاصله ممکن به خطر بالقوه نصب شوند. رعایت دقیق این موارد، سرعت کل سیستم را به‌طور چشمگیری بهبود می‌بخشد (شکل ۱۲).

    ۴.۰ راهکارهایی برای آشکارسازی شعله نوری فوق‌سریع

    دتکتورهای شعله نوری مدرن به‌گونه‌ای طراحی شده‌اند که به کاربران در دستیابی به انطباق با کدها و استانداردهای UFC و NFPA کمک کنند. برخی شرکت‌ها مدل‌های X2200 UV، X9800 IR و X5200 UVIR از دتکتورهای شعله را ارائه می‌دهند که در صورت پیکربندی و نصب صحیح، قادر به ارائه زمان پاسخ‌دهی با سرعت بالا و فوق‌العاده سریع هستند.
    علاوه بر آزمون‌های حرارتی سختگیرانه، آزمون‌های آزمایشگاهی و شبیه‌سازی‌هایی که در کارخانه انجام می‌شود، تمامی دتکتورهای شعله پیش از ارسال به مشتریان، در مرکز آزمون مهندسی با استفاده از آتش واقعی آزمایش می‌شوند.