راهنمای آسان نصب دتکتور حرارتی خطی

IMG 1340

نصب دتکتور حرارتی خطی روی سینی کابل

یک الگوی موج سینوسی،  باید هنگام نصب دتکتور حرارتی خطیدر کاربرد سینی کابل استفاده شود. حداکثر فاصله بین هر قله یا دره نباید از ۶ فوت (۱٫۸ متر) بیشتر باشد. سیم دتکتور در کناره‌های سینی کابل با استفاده از مناسب‌ترین گیره نصب، بر اساس ساختار سینی، در جای خود محکم می‌شود.

9k=

دتکتور بر روی تمامی کابل‌های برق و کنترل موجود در سینی نصب می‌شود و فاصله‌گذاری آن مطابق شکل انجام می‌گیرد. در آینده هنگامی که کابل‌های اضافی به داخل سینی کشیده می‌شوند، باید در زیر دتکتور حرارتی خطی  قرار گیرند.

برآورد طول دتکتور حرارتی خطی برای سینی کابل
نیاز است که دتکتور حرارتی خطی به‌صورت الگوی موج سینوسی اجرا شود، بنابراین ممکن است برآورد طول کلی مورد نیاز دتکتور حرارتی خطی برای یک مسیر مشخص دشوار باشد. محاسبه زیر به تعیین مقدار تقریبی دتکتور حرارتی خطی مورد نیاز برای نصب در سینی کابل کمک می‌کند.

برای تعیین تعداد کلیپ یا گیره نصب در طول سینی کابل، طول سینی کابل را بر ۳ تقسیم کرده و عدد ۱ را به آن اضافه کنید.

2Q==

Z

p

نوشته‌های مشابه

  • تأسیس تأسیسات سیستم های اطفاء حریق گاز پایه

    10.1 ایمنی

    بایستی در حین نصب، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک و مخازن عامل، از روش‌های ایمن پیروی شود.

    10.2 عمومی

    10.2.1 سیستم تکمیل‌شده باید توسط پرسنلی که دانش و تجربه لازم در زمینه الزامات این استاندارد، تجهیزات نصب‌شده و راهنمای طراحی، نصب و نگهداری سازنده را دارند، بازبینی و آزمایش شود.
    10.2.2 تنها از تجهیزات و دستگاه‌های فهرست‌شده باید در سیستم‌ها استفاده شود.

    10.2.3 آزمایش پذیرش سیستم

    10.2.3.1 سیستم باید مطابق با الزامات این استاندارد و راهنمای طراحی، نصب و نگهداری سازنده آزمایش شود.
    10.2.3.2 تجهیزات باید بررسی شوند تا تأیید شود که مطابق با دستورالعمل‌های سازنده و اسناد طراحی سیستم نصب شده‌اند.
    10.2.3.3 ابعاد واقعی خطر باید با ابعادی که در نقشه‌های سیستم مشخص شده‌اند، بررسی شوند تا مقدار عامل تأیید شود.
    10.2.3.4 در صورتی که آزمایش تخلیه انجام شود، مخازن عامل باید قبل و بعد از آزمایش تخلیه وزن شوند.
    10.2.3.5 وزن عامل در مخازن باید از طریق وزن‌کشی یا روش‌های تأیید شده دیگر تأیید شود.
    10.2.3.6 برای عوامل گاز بی‌اثر، فشار مخزن باید قبل و بعد از آزمایش تخلیه ثبت شود.
    10.2.3.7 در صورتی که برای عملکرد سیستم لازم باشد، زمان کاهش سرعت فن و زمان بسته شدن دمپر باید تأیید شود که مطابق با معیارهای طراحی سیستم است.

    10.2.4 آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه

    زمانی که توسط مشخصات پروژه الزامی است، آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شود.

    10.3 گزارش آزمایش پذیرش

    10.3.1 آزمایش پذیرشی که در 10.2.3 الزامی است باید در یک گزارش آزمایش مستند شود.
    10.3.2 گزارش آزمایش پذیرش باید توسط مالک سیستم برای تمام مدت عمر سیستم نگهداری شود.

    10.4 بازبینی اجزای مکانیکی

    10.4.1 سیستم توزیع لوله‌کشی باید بازبینی شود تا تأیید شود که با اسناد طراحی و نصب مطابقت دارد.
    10.4.2 اندازه نازل‌ها و لوله‌ها باید مطابق با نقشه‌های سیستم باشد.
    10.4.3 روش‌های کاهش اندازه لوله و وضعیت اتصالات انشعاب باید برای تطابق با طراحی بررسی شوند.
    10.4.4 مفاصل لوله‌کشی، نازل‌های تخلیه و تکیه‌گاه‌های لوله باید به‌طور ایمن بسته شوند تا از حرکت عمودی یا جانبی ناخواسته در حین تخلیه جلوگیری شود.
    10.4.5 نازل‌های تخلیه باید به‌گونه‌ای نصب شوند که لوله‌کشی نتواند در حین تخلیه از اتصال خارج شود.
    10.4.6 در حین مونتاژ، سیستم توزیع لوله‌کشی باید به‌طور داخلی بازبینی شود تا احتمال هرگونه آلودگی با روغن یا ذرات که ممکن است منطقه خطر را آلوده کرده یا توزیع عامل را تحت تأثیر قرار دهد (به دلیل کاهش در مساحت اوریفیس نازل) شناسایی شود.
    10.4.7 نازل تخلیه باید مطابق با فهرست نازل نصب شود.
    10.4.8 اگر محافظ‌های نازل نصب شده‌اند، باید طبق فهرست تجهیزات نصب شوند.
    10.4.9 نازل‌های تخلیه، لوله‌کشی و براکت‌های نصب باید به‌گونه‌ای نصب شوند که خطر آسیب به پرسنل نداشته باشند.
    10.4.10 عامل نباید مستقیماً به نواحی‌ای که ممکن است پرسنل در آن‌ها حضور داشته باشند در منطقه کاری برخورد کند.
    10.4.11 عامل نباید مستقیماً به هیچ جسم رها شده‌ای یا قفسه‌ها، سطوح بالای کابینت‌ها یا سطوح مشابه که ممکن است اشیاء رها شده در آن‌ها وجود داشته باشد و به ش projectiles تبدیل شوند، برخورد کند.

    10.4.12 تمامی مخازن ذخیره عامل باید مطابق با مجموعه تأسیسات تایید شده از نقشه‌های سیستم نصب شوند.

    10.4.13 تمامی مخازن و براکت‌های نصب باید مطابق با الزامات سازنده به‌طور ایمن نصب شوند.

    10.4.14 سیستم لوله‌کشی باید در یک مدار بسته با استفاده از نیتروژن یا گاز خشک فشار آزمایی شود.

    10.4.14.1 لوله باید به حداقل فشار 40 psi (276 kPa) فشار وارد شود.
    10.4.14.2 پس از برداشتن منبع گاز فشار، فشار در لوله نباید کمتر از 80 درصد فشار آزمایش پس از 10 دقیقه باشد.
    10.4.14.3 آزمایش فشار در صورتی که سیستم لوله‌کشی تنها یک تغییر جهت بین مخزن ذخیره‌سازی و نازل تخلیه داشته باشد و تمامی لوله‌ها از نظر سفت بودن فیزیکی بررسی شده باشند، مجاز است که حذف شود.

    10.4.15* آزمایش جریان با استفاده از نیتروژن یا گاز بی‌اثر باید بر روی شبکه لوله‌کشی انجام شود تا تأیید شود که جریان به‌طور مداوم وجود دارد.

    10.5 بازبینی یکپارچگی محفظه

    10.5.1 باید تأیید شود که محفظه حفاظت‌شده به‌طور کلی با اسناد ساخت مطابقت دارد.
    10.5.2 تمامی سیستم‌های سیلاب‌کامل باید مورد بازبینی و آزمایش قرار گیرند تا درزهای هوایی قابل توجهی که می‌توانند منجر به شکست محفظه در نگه‌داشتن سطح غلظت عامل مشخص شده برای مدت زمان مشخص شده شوند، شناسایی و به‌طور مؤثر مهر و موم شوند.
    10.5.3* نتایج کمی باید به‌دست آید و ثبت شود تا تأیید شود که غلظت عامل مشخص‌شده برای مدت زمان مشخص‌شده حفاظت مطابق با بخش 7.4 است، با استفاده از واحد فن دمنده تایید شده یا روش‌های دیگری که توسط مرجع نظارتی تایید شده باشد. (برای راهنمایی، به پیوست D مراجعه کنید.)

    10.6 بازبینی اجزای الکتریکی

    10.6.1 تمامی سیستم‌های سیم‌کشی باید مطابق با کدهای محلی و نقشه‌های سیستم نصب شوند.
    10.6.2 سیم‌کشی جریان متناوب (ac) و مستقیم (dc) نباید در یک لوله یا مسیر مشترک ترکیب شوند، مگر اینکه از شیلدینگ و زمین‌گذاری استفاده شده باشد.
    10.6.3 تمامی مدارهای میدانی باید از خطاهای زمینی و اتصالات کوتاه آزاد باشند.
    o 10.6.3.1 هنگامی که مدارهای میدانی اندازه‌گیری می‌شوند، تمامی اجزای الکترونیکی مانند تشخیص‌دهنده‌های دود و شعله یا تجهیزات الکترونیکی ویژه برای سایر تشخیص‌دهنده‌ها یا پایه‌های نصب آن‌ها باید حذف شده و پل‌ها نصب شوند تا از احتمال آسیب به این دستگاه‌ها جلوگیری شود.
    o 10.6.3.2 اجزای حذف‌شده مطابق با 10.6.3.1 باید پس از اندازه‌گیری‌ها جایگزین شوند.
    10.6.4 تأمین برق به واحد کنترل باید از یک منبع اختصاصی جداگانه باشد که در هنگام راه‌اندازی سیستم قطع نشود.
    10.6.5 منابع انرژی اصلی و 24 ساعته حداقل باید برای تأمین نیازهای عملکردی تشخیص، سیگنال‌دهی، کنترل و فعال‌سازی سیستم قابل اعتماد و کافی باشند.
    10.6.6* تمامی عملکردهای کمکی مانند دستگاه‌های آلارم، نمایشگرها، اعلان‌کننده‌های از راه دور، خاموشی سیستم تهویه و خاموشی برق باید برای عملکرد مطابق با الزامات سیستم و مشخصات طراحی بررسی شوند.
    10.6.7 خاموش کردن آلارم‌ها، در صورت مجاز بودن، نباید تأثیری بر سایر عملکردهای کمکی داشته باشد.
    10.6.8 دستگاه‌های تشخیص باید برای نوع و مکان مطابق با نقشه‌های سیستم بررسی شوند.
    10.6.9* تشخیص‌دهنده‌ها نباید در نزدیکی موانع یا تجهیزات تهویه و خنک‌کننده هوا نصب شوند که می‌تواند ویژگی‌های واکنش آن‌ها را تحت تأثیر قرار دهد.
    10.6.10* طراحی سیستم تشخیص باید حجم تغییرات هوای داخل منطقه حفاظت‌شده را در نظر بگیرد.
    10.6.11 تشخیص‌دهنده‌ها باید مطابق با داده‌های فنی سازنده و الزامات NFPA 72 نصب شوند.
    10.6.12 ایستگاه‌های دستی کشیدن (Manual Pull Stations)
    o 10.6.12.1 ایستگاه‌های دستی کشیدن باید به‌طور ایمن نصب شوند.
    o 10.6.12.2 قسمت قابل استفاده ایستگاه دستی کشیدن باید حداقل 42 اینچ (1.07 متر) و حداکثر 48 اینچ (1.22 متر) از کف تمام‌شده باشد.
    o 10.6.12.3 ایستگاه‌های دستی کشیدن باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.
    o 10.6.12.4 تمامی ایستگاه‌های دستی کشیدن باید به‌طور واضح شناسایی شوند که به کدام خطر حفاظت می‌کنند، عملکرد آن‌ها چیست و روش عملیات آن‌ها چگونه است.
    o 10.6.12.5 تمامی ایستگاه‌های دستی که برای آزادسازی عامل‌ها استفاده می‌شوند باید نیاز به دو اقدام مجزا و متمایز برای عملکرد داشته باشند.
    10.6.13 سیستم‌های با قابلیت اصلی/رزرو
    o 10.6.13.1 برای سیستم‌هایی با قابلیت اصلی/رزرو، سوئیچ اصلی/رزرو باید مطابق با دستورالعمل‌های طراحی، نصب و نگهداری سازنده سیستم و نقشه‌های سیستم نصب شود.
    o 10.6.13.2 اگر نصب شده باشد، سوئیچ اصلی/رزرو باید شناسایی شود.
    10.6.14 سیستم‌هایی که از سوئیچ‌های انصراف استفاده می‌کنند
    o 10.6.14.1 سوئیچ‌های انصراف باید از نوع “deadman” باشند که نیاز به فشار دستی مداوم دارند.
    o 10.6.14.2 سوئیچ‌هایی که در موقعیت انصراف باقی می‌مانند زمانی که آزاد شوند، نباید برای این منظور استفاده شوند.
    o 10.6.14.3 سوئیچ‌های انصراف باید به‌گونه‌ای نصب شوند که در داخل منطقه خطر به‌راحتی قابل دسترس باشند.
    o 10.6.14.4 سوئیچ‌های انصراف باید به‌طور ایمن نصب شوند.
    o 10.6.14.5 ایستگاه‌های انصراف باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.

    10.6.14.6 قسمت قابل استفاده از سوئیچ انصراف نباید کمتر از 42 اینچ (1.07 متر) و بیشتر از 48 اینچ (1.22 متر) از کف تمام‌شده باشد.

    10.6.14.7 ایستگاه‌های دستی کشیدن همیشه باید سوئیچ‌های انصراف را لغو کنند.

    10.6.15 واحد کنترل آزادسازی باید مطابق با مستندات سیستم نصب شده و به‌راحتی قابل دسترس باشد.

    10.7 آزمایش عملکردی

    10.7.1 آزمایش‌های عملکردی مقدماتی

    10.7.1.1 اگر سیستم به یک دفتر دریافت آلارم متصل باشد، دفتر دریافت آلارم باید اطلاع داده شود که آزمایش سیستم آتش‌نشانی قرار است انجام شود و پاسخ اضطراری از سوی آتش‌نشانی یا پرسنل ایستگاه آلارم ضروری نیست.
    10.7.1.2 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید مطلع شوند که آزمایشی قرار است انجام شود.
    10.7.1.3 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید دستورالعمل‌هایی دریافت کنند که به آن‌ها توضیح داده شود چه اتفاقاتی ممکن است در حین آزمایش سیستم اطفاء حریق رخ دهد.
    10.7.1.4* مکانیزم آزادسازی هر مخزن ذخیره عامل باید غیرفعال شده یا با یک دستگاه عملیاتی جایگزین شود به‌طوری‌که فعال‌سازی مدار آزادسازی منجر به آزادسازی عامل نشود.
    10.7.1.5 هر تشخیص‌دهنده باید برای عملکرد آزمایش شود.
    10.7.1.6 تمامی دستگاه‌های آلارم قطبی‌شده و رله‌های کمکی باید برای قطبیت مطابق با دستورالعمل‌های سازنده بررسی شوند.
    10.7.1.7 مدارهای شروع و اعلان باید برای دستگاه‌های انتهای خط، در صورت لزوم، بررسی شوند.
    10.7.1.8 تمامی مدارهای تحت نظارت باید برای پاسخ به مشکلات آزمایش شوند.

    10.7.2 آزمایش عملکرد عملیاتی سیستم

    10.7.2.1 هر مدار شروع تشخیص باید اجرا شود تا تأیید شود که تمامی عملکردهای آلارم مطابق با مشخصات طراحی رخ می‌دهند.
    10.7.2.2 هر آزادسازی دستی باید اجرا شود تا تأیید شود که عملکرد آزادسازی دستی مطابق با مشخصات طراحی انجام می‌شود.
    10.7.2.3 هر مدار سوئیچ انصراف باید اجرا شود تا تأیید شود که عملکرد انصراف مطابق با مشخصات طراحی انجام می‌شود و سیگنال‌های نظارتی بصری و صوتی در پنل کنترل اعلام می‌شود.
    10.7.2.4 تمامی شیرهای خودکار باید برای تأیید عملکرد آزمایش شوند، مگر اینکه آزمایش شیر منجر به آزادسازی عامل یا آسیب به شیر (آزمایش تخریبی) شود.
    10.7.2.5 تجهیزات پنوماتیک، در صورت نصب، باید برای یکپارچگی آزمایش شوند تا از عملکرد صحیح آن‌ها اطمینان حاصل شود.

    10.7.3 عملیات نظارت از راه دور

    10.7.3.1 هر نوع دستگاه شروع باید در حالت برق پشتیبان اجرا شود تا تأیید شود که پس از فعال شدن دستگاه، سیگنال آلارم در پنل از راه دور دریافت می‌شود.

    10.7.3.2 یک وضعیت خطا باید به هر مدار شروع یا اعلان اعمال شود تا تأیید شود که وضعیت مشکل در ایستگاه از راه دور دریافت شده است.

    10.7.3.3 هر دستگاه تحت نظارت باید اجرا شود تا تأیید شود که وضعیت نظارتی در ایستگاه از راه دور دریافت شده است.

    10.7.4 منبع قدرت اصلی پنل کنترل

    یک قطع برق اصلی باید مطابق با مشخصات سازنده آغاز شود تا تأیید شود که سیستم بر روی برق پشتیبان کار می‌کند.

    10.7.5 بازگرداندن سیستم به وضعیت عملیاتی

    10.7.5.1 هنگامی که آزمایش‌های عملکردی به پایان رسید، سیستم باید به وضعیت عملیاتی کامل بازگردانده شود.
    10.7.5.2 دفتر دریافت آلارم و تمامی پرسنل مربوطه در تأسیسات کاربر نهایی باید مطلع شوند که آزمایش سیستم آتش‌نشانی تکمیل شده است و سیستم به وضعیت کامل خدمات بازگشته است.

    10.8 مستندات مالک

    10.8.1 نسخه‌های کاغذی یا الکترونیکی تمامی گزارش‌های آزمایش و مستندات مربوطه باید به مالک سیستم ارائه شود.
    10.8.2 مالک سیستم باید این گزارش‌ها را برای مدت زمان عمر سیستم نگه‌داری کند.

    10.9 آموزش

    10.9.1 تمامی افرادی که احتمالاً مجبور به استفاده از سیستم‌های اطفاء حریق هستند باید آموزش دیده و آموزش‌های خود را در زمینه عملکردهایی که باید انجام دهند، به‌روز نگه دارند.
    10.9.2* پرسنلی که در یک اتاق سرور که توسط عامل پاک‌کننده محافظت می‌شود کار می‌کنند باید آموزش‌هایی در خصوص مسائل ایمنی عامل دریافت کنند.

  • مکان‌های مناسب برای نصب دتکتور گاز

    مکان نصب دتکتور گاز بسته به ویژگی‌های خاص گاز مورد پایش متفاوت است. توضیحات زیر برای هر نوع دتکتور، با در نظر گرفتن این ویژگی‌ها، راهنمایی ارائه می‌دهد.

    گاز طبیعی / متان (CH₄) و هیدروژن (H₂)
    دتکتورهای گاز طبیعی (متان، CH₄) و هیدروژن (H₂) باید در ارتفاع بالا، تقریباً ۱۵۰ میلی‌متر از سقف نصب شوند. باید از گوشه‌ها و نقاطی که ممکن است هوای ساکن داشته باشند، اجتناب شود.

    WhatsApp Image 2025 09 22 at 1.05.30 AM
    نکات کلیدی:

    • ارتفاع نصب: دتکتور گاز طبیعی نباید پایین‌تر از ارتفاع بالای در نصب شود. چون گاز طبیعی کمی از هوا سبک‌تر است، به سمت بالا حرکت کرده و از سقف به پایین پخش می‌شود. در نتیجه، ممکن است از قسمت بالای در به اتاق‌های مجاور نشت کند.
    • زمان پاسخ: اگر دتکتورها پایین‌تر از این ارتفاع نصب شوند، زمان بیشتری طول می‌کشد تا گاز به دتکتور برسد که می‌تواند زمان واکنش در صورت نشت گاز را به تأخیر بیندازد. جانمایی صحیح باعث می‌شود دتکتور سریع‌تر غلظت گاز در حال افزایش را شناسایی کند.
    • نکات نصب: دتکتورها باید دور از سامانه‌های تهویه و موانعی که ممکن است جریان گاز را مختل کنند، نصب شوند. نگهداری و آزمون منظم دتکتورها نیز برای اطمینان از عملکرد مناسب توصیه می‌شود.

    ال‌پی‌جی / پروپان (C₃H₈)
    دتکتورهای LPG (پروپان، C₃H₈) باید به دلیل سنگینی بیشتر نسبت به هوا، در ارتفاع پایین نصب شوند. دتکتورها باید حدود ۱۵۰ میلی‌متر (با حداکثر ارتفاع ۴۰۰ میلی‌متر) از کف زمین فاصله داشته باشند.

    WhatsApp Image 2025 09 22 at 1.05.30 AM1
    نکات کلیدی:

    • ارتفاع نصب: به دلیل چگالی بیشتر، LPG تمایل دارد در نزدیکی زمین تجمع یابد. جانمایی در ارتفاع مناسب باعث می‌شود دتکتور سریعاً نشت احتمالی گاز را شناسایی کند.
    • عوامل محیطی: در هنگام تعیین ارتفاع نصب، باید شرایط مرطوب مانند زمین خیس شده توسط طی‌کشی یا ریختگی‌ها در نظر گرفته شود. در این موارد، دتکتورها باید بالاتر از ارتفاع تجمع احتمالی آب نصب شوند تا از هشدارهای کاذب جلوگیری شود.
    • نکات نصب: دتکتورها نباید در مجاورت جریان‌های قوی هوا مانند درها، پنجره‌ها یا سامانه‌های تهویه نصب شوند. آزمون و نگهداری منظم برای اطمینان از عملکرد بهینه ضروری است.

    منوکسید کربن (CO)، دی‌اکسید کربن (CO₂)

    منوکسید کربن (CO):
    چون وزن منوکسید کربن تقریباً با هوا برابر است، دتکتورها باید در ارتفاع بین ۱.۶ تا ۱.۸ متر از سطح زمین نصب شوند، ترجیحاً در ناحیه تنفسی.

    • ارتفاع نصب: این ارتفاع امکان شناسایی مؤثر CO در جایی که افراد تنفس می‌کنند را فراهم می‌کند.

    WhatsApp Image 2025 09 22 at 1.05.31 AM

    • نکات نصب: از نصب دتکتورها در نزدیکی سامانه‌های تهویه یا مناطق دارای جریان هوا اجتناب شود، چون ممکن است غلظت گاز را رقیق کرده و قرائت‌ها را نادقیق کند.

    دی‌اکسید کربن (CO₂):

    • دتکتورهای کلاس درس: بر اساس راهنمای IGEM/UP11، دتکتورها باید در ارتفاع سر نشسته نصب شوند. اما تجربه میدانی نشان می‌دهد که این موقعیت ممکن است باعث قرائت‌های نادرست ناشی از بازدم مستقیم شود.
    • یک گزینه: برای کاهش احتمال هشدارهای کاذب، پیروی از روش نصب دتکتورهای CO₂ مشابه آشپزخانه‌های صنعتی، یعنی بالاتر از سر ایستاده، توصیه می‌شود.
    • دتکتورهای آشپزخانه صنعتی: باید غلظت کلی CO₂ در مناطق کاری کارکنان را پایش کنند.
    • ارتفاع و موقعیت: دتکتورها باید بین ۱ تا ۳ متر از خط پخت، بالاتر از سر ایستاده نصب شوند. نباید نزدیک لبه هود یا در مسیر مستقیم جریان تهویه نصب شوند.
    • دتکتورهای آزمایشگاهی (CO₂ لوله‌کشی یا کپسولی): باید در نزدیک‌ترین نقاط نشت احتمالی مانند شیرهای گاز، رگولاتورها و محل ذخیره کپسول نصب شوند.
    • ارتفاع نصب: چون CO₂ سنگین‌تر از هوا است، دتکتورها باید در ارتفاع پایین نصب شوند.
    • نکات کلیدی: بازرسی و آزمون منظم این دتکتورها برای حفظ ایمنی و پایش مؤثر نشت‌ها حیاتی است.

    WhatsApp Image 2025 09 22 at 1.05.31 AM1

    کاهش اکسیژن (O₂):
    پایش کاهش اکسیژن یک اقدام ایمنی حیاتی برای شناسایی حضور گازهای خنثی یا نجیب است که می‌توانند جای اکسیژن را بگیرند و منجر به خفگی شوند. گازهایی مانند نیتروژن (N₂) و آرگون (Ar) در محیط‌های آزمایشگاهی رایج هستند.

    نیتروژن (N₂):
    نیتروژن یک گاز بی‌اثر، بی‌رنگ و بی‌بو است که کمی از هوا سبک‌تر بوده و به عنوان یک گاز خفه‌کننده عمل می‌کند. نیتروژن به‌طور گسترده در آزمایشگاه‌ها به عنوان گاز حامل استفاده می‌شود و از طریق کپسول‌های قابل حمل یا لوله‌کشی تأمین می‌شود.

    آرگون (Ar):
    آرگون گازی بی‌اثر، بی‌رنگ، بی‌بو و بدون طعم است. غیرسمی بوده و از احتراق پشتیبانی نمی‌کند. حدود ۰.۹۳٪ از جو زمین را تشکیل می‌دهد و در کاربردهایی نیازمند اتمسفر بی‌اثر استفاده می‌شود.

    • فرآیندهای صنعتی: در جوشکاری و فلزکاری برای جلوگیری از اکسیداسیون و واکنش‌های شیمیایی استفاده می‌شود.
    • نگهداری مواد غذایی: برای حذف اکسیژن در بسته‌بندی و افزایش ماندگاری کاربرد دارد.
    • روشنایی: در لامپ‌های فلورسنت و رشته‌ای برای جلوگیری از اکسیداسیون رشته استفاده می‌شود.

    خطر خفگی: مشابه نیتروژن، آرگون با جایگزینی اکسیژن باعث کاهش سطح اکسیژن قابل تنفس می‌شود و در غلظت‌های بالا بسیار خطرناک است.

    نصب دتکتور:

    • نیاز به پایش: چون آرگون سنگین‌تر از هوا است، دتکتورهای پایش کاهش اکسیژن باید در ارتفاع پایین نصب شوند.
    • زمان پاسخ: نصب صحیح برای هشدار زودهنگام در صورت نشت ضروری است. اگر دتکتورها خیلی بالا نصب شوند، ممکن است افراد فرصت کافی برای واکنش نداشته باشند.
    • تهویه: تهویه مناسب در محیط‌هایی که از آرگون استفاده می‌شود برای کاهش خطرات حیاتی است.
    • غنی‌سازی اکسیژن (O₂)
      غنی‌سازی اکسیژن به افزایش سطح اکسیژن فراتر از غلظت معمول جو، که حدود ۲۱ درصد است، اطلاق می‌شود. این پدیده می‌تواند تأثیر قابل‌توجهی بر پویایی آتش و ایمنی کلی در محیط‌های مختلف داشته باشد.
    • نکات کلیدی:
      خطر آتش‌سوزی: افزایش سطح اکسیژن می‌تواند فرآیند احتراق را تسریع کند و منجر به افزایش خطر آتش‌سوزی شود. موادی که در شرایط عادی ایمن یا غیرقابل اشتعال در نظر گرفته می‌شوند، ممکن است در جوهای غنی از اکسیژن بسیار قابل اشتعال شوند.
      اهمیت شناسایی: شناسایی نشتی اکسیژن برای پیشگیری از خطرات احتمالی آتش‌سوزی ضروری است. پایش منظم سطح اکسیژن در محیط‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد، مانند آزمایشگاه‌ها، مراکز درمانی و کاربردهای صنعتی که از اکسیژن خالص یا با غلظت بالا استفاده می‌کنند، ضروری است.
    • راهبردهای تشخیص:
      نصب دتکتور اکسیژن: دتکتورهای اکسیژن باید به‌صورت راهبردی در محل‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد نصب شوند؛ مانند نزدیک مخازن ذخیره‌سازی اکسیژن، سامانه‌های لوله‌کشی یا تجهیزاتی که از اکسیژن خالص استفاده می‌کنند.
      اقدامات تهویه: تأمین تهویه مناسب در نواحی با پتانسیل غنی‌سازی اکسیژن می‌تواند خطر آتش‌سوزی را کاهش دهد. جریان مناسب هوا می‌تواند غلظت اضافی اکسیژن را رقیق کرده و احتمال وقوع آتش‌سوزی را کاهش دهد.
    • غنی‌سازی اکسیژن خطرات قابل‌توجهی ایجاد می‌کند که باید از طریق پایش مستمر، نصب راهبردی دتکتورها و اجرای پروتکل‌های اضطراری مناسب، مدیریت شوند. با مدیریت فعالانه سطح اکسیژن، سازمان‌ها می‌توانند احتمال وقوع حوادث ناشی از آتش‌سوزی را به‌طور چشمگیری کاهش دهند.

     

    • پوشش منطقه‌ای: ملاحظات
      تعداد دتکتورهای گاز موردنیاز در یک منطقه مشخص، به چند عامل کلیدی بستگی دارد که شامل موارد زیر است:
    • ۱. ابعاد منطقه مورد پوشش:
      ابعاد کلی فضا تعیین می‌کند که برای پوشش کافی و تشخیص به‌موقع نشت گاز به چند دتکتور نیاز است.
    • ۲. ارتفاع اتاق:
      ارتفاع اتاق می‌تواند بر پراکندگی گاز تأثیر بگذارد. دتکتورها باید در ارتفاع مناسب بسته به نوع گاز پایش‌شده نصب شوند (برای گازهای سنگین مانند LPG در ارتفاع پایین و برای گازهای سبک مانند متان در ارتفاع بالا).
    • ۳. تجهیزات نصب‌شده:
      وجود و نوع تجهیزات موجود در منطقه، مانند دیگ‌های گازی، اجاق‌ها یا آب‌گرم‌کن‌ها، می‌توانند ریسک‌های خاصی ایجاد کنند و نیاز به دتکتورهای اضافی داشته باشند.
    • ۴. میزان لوله‌کشی:
      پیچیدگی و گستردگی لوله‌کشی گاز در منطقه می‌تواند احتمال نشتی را افزایش دهد. در نزدیکی اتصالات حیاتی یا مسیرهای طولانی لوله، ممکن است به دتکتورهای بیشتری نیاز باشد.
    • ۵. نوع گاز هدف و کاربری فضا:
      هر گاز ویژگی‌ها و رفتار خاصی دارد. درک نوع گاز هدف، چگالی آن و رفتار آن در محیط برای تعیین محل نصب دتکتور ضروری است. همچنین، نوع کاربری فضا (مثلاً فضای آموزشی در برابر آشپزخانه تجاری) الزامات پایش متفاوتی را ایجاب می‌کند.

     

    • راهنمایی درباره پوشش دتکتورها:
    • برد پوشش معمول:
      برای دتکتورهای گاز طبیعی، برد پوشش معمول ممکن است تا شعاع ۵ متر در صورت نصب روی دیوار باشد. برای دتکتورهای مونوکسید کربن، این برد می‌تواند تا ۱۰ متر افزایش یابد.
    • پایش دی‌اکسید کربن:
      در محیط‌های آموزشی و آشپزخانه‌های تجاری، دتکتورهای CO₂ باید به‌گونه‌ای راهبردی نصب شوند که شرایط محیطی نماینده را، به‌ویژه در ناحیه تنفسی، پایش کنند.
    • نوع پوشش:
      باید نوع پوشش موردنیاز نیز بررسی شود. این شامل ارزیابی این است که آیا پایش پیوسته (“پوشش گسترده”) لازم است یا بررسی نقطه‌ای (“پوشش هدفمند”) کافی است، بسته به خطرات خاص موجود در منطقه.

     

    • پوشش مؤثر منطقه‌ای برای تضمین ایمنی و قابلیت اطمینان سامانه دتکتور گاز ضروری است. با ارزیابی دقیق عوامل فوق، سازمان‌ها می‌توانند راهبردهای پایش گاز خود را بهینه کرده و از خطرات ناشی از نشت گاز و پیامدهای آن جلوگیری کنند.
    • پوشش گسترده (Blanket Coverage)
    • پوشش گسترده به استقرار راهبردی چندین دتکتور گاز به‌صورت یکنواخت در سراسر یک ناحیه مشخص، مانند یک اتاق تجهیزات صنعتی، برای اطمینان از پایش کامل و ایمنی اطلاق می‌شود.
    • 🔹 نکات کلیدی در مورد پوشش گسترده:
      توزیع یکنواخت:
      دتکتورها باید به‌صورت یکنواخت در سراسر فضا توزیع شوند تا از ایجاد هرگونه خلأ در پوشش جلوگیری شود. این امر تضمین می‌کند که هرگونه نشت گاز بدون توجه به محل وقوع آن، به‌سرعت شناسایی شود.
    • هم‌پوشانی در نواحی آشکارسازی:
      چیدمان دتکتورها به‌گونه‌ای که نواحی پوشش آن‌ها کمی هم‌پوشانی داشته باشند مفید است. این افزونگی تضمین می‌کند که در صورت خرابی یا انسداد یک دتکتور، دتکتور دیگری بتواند آن ناحیه را پوشش دهد.
    • طرح و چیدمان اتاق:
      چیدمان فیزیکی اتاق، از جمله نحوه قرارگیری تجهیزات، نواحی انبارش، و سامانه‌های تهویه باید در هنگام تعیین محل نصب دتکتورها در نظر گرفته شود. از نصب دتکتور در مکان‌هایی که ممکن است مسدود شده یا تحت تأثیر جریان هوا از فن‌ها یا کانال‌های تهویه قرار گیرند، باید اجتناب شود.
    • نوع دتکتورها:
      گازهای مختلف ممکن است به دتکتورهای خاصی نیاز داشته باشند. باید اطمینان حاصل شود که دتکتور متناسب با گاز موجود در فضا و ویژگی‌های آن (مانند سنگین‌تر یا سبک‌تر بودن از هوا) انتخاب شده باشد.
    • نگهداری و آزمون منظم:
      سامانه‌ای متشکل از چندین دتکتور نیازمند برنامه‌ نگهداری دقیق برای اطمینان از عملکرد مناسب تمامی واحدهاست. باید آزمون‌ها و کالیبراسیون منظم به‌منظور تضمین دقت و قابلیت اطمینان انجام شود.
    • ❗ همچنین، تعداد دتکتورها نیز باید مورد توجه قرار گیرد. خرابی یا برداشتن یک دتکتور برای تعمیرات نباید ایمنی ناحیه تحت پوشش را به خطر اندازد. ممکن است برای پایش پیوسته و جلوگیری از آلارم‌های کاذب، تکرار (یا سه‌برابر کردن) دتکتورها و تجهیزات کنترلی الزامی باشد.
    • اجرای رویکرد پوشش گسترده با دتکتورهایی که به‌طور یکنواخت مستقر شده‌اند، راهکاری ایمن و قوی برای پایش نشت گاز در نواحی حیاتی مانند اتاق تجهیزات فراهم می‌آورد. این کار با تضمین پوشش کامل، توان واکنش سازمان را در برابر خطرات احتمالی گاز بهبود می‌بخشد.

     

    • پوشش هدفمند (Targeted Coverage)
    • پوشش هدفمند شامل نصب راهبردی دتکتورهای گاز در مکان‌های خاصی است که احتمال نشت گاز در آن‌ها بیشتر است. این رویکرد تضمین می‌کند که پایش بر نواحی بحرانی که بیشترین احتمال نشت گاز را دارند متمرکز باشد و از این طریق ایمنی و اثربخشی واکنش را افزایش می‌دهد.
    • 🔹 نکات کلیدی در مورد پوشش هدفمند:
    • شناسایی نقاط احتمالی نشت:
      یک ارزیابی ریسک جامع باید انجام شود تا نقاط احتمالی نشت در تأسیسات شناسایی شود. نواحی رایج شامل موارد زیر هستند:
      ▪ دیگ‌های بخار: به‌عنوان تجهیزات اصلی مصرف‌کننده گاز، نقاط بحرانی برای نشت محسوب می‌شوند.
      ▪ لوله‌کشی‌ها: هرگونه اتصال، خم، یا اتصال در سامانه‌های لوله‌کشی گاز ممکن است در معرض نشت باشد.
      ▪ شیرها: عملکرد شیرها، به‌ویژه در سامانه‌های پرفشار، می‌تواند منجر به نشت احتمالی شود.
      ▪ دودکش‌ها و خروجی‌ها: در صورت وجود انسداد یا خرابی، گاز ممکن است از این مسیرها نشت کند.
    • نزدیکی به منابع گاز:
      دتکتورها باید تا حد امکان نزدیک به نقاط شناسایی‌شده نشت نصب شوند، بدون اینکه دسترسی برای تعمیر یا بهره‌برداری محدود شود. این نوع استقرار امکان شناسایی و واکنش سریع‌تر را فراهم می‌کند.
    • نوع دتکتورها:
      باید اطمینان حاصل شود که نوع دتکتور متناسب با گاز خاص مورد پایش انتخاب شود. برای مثال، از دتکتورهای گاز قابل اشتعال در نزدیکی دیگ‌ها و خطوط گاز طبیعی، و از دتکتورهای CO در نزدیکی تجهیزات احتراقی استفاده شود.
    • عوامل محیطی:
      شرایط محیطی پیرامون نقاط نشت احتمالی باید در نظر گرفته شود. عواملی مانند جریان هوا، دما و رطوبت می‌توانند بر پراکندگی گاز و اثربخشی دتکتورها تأثیر بگذارند. باید اطمینان حاصل شود که دتکتورها در موقعیتی قرار گیرند که کمترین تداخل از این عوامل را داشته باشند.
    • نگهداری و کالیبراسیون منظم:
      دتکتورهایی که در نقاط هدفمند نصب می‌شوند باید در قالب برنامه نگهداری منظم بررسی شوند، شامل آزمون‌های مکرر برای عملکرد و کالیبراسیون مجدد به‌منظور تضمین دقت اندازه‌گیری.
    • اجرای پوشش هدفمند با نصب دتکتورها در نقاط بحرانی نشت، توانایی پایش گاز را به‌طور چشمگیری افزایش می‌دهد. با تمرکز منابع در نواحی پُرخطر، سازمان‌ها می‌توانند واکنشی سریع‌تر نسبت به خطرات احتمالی گاز ارائه دهند و ایمنی کلی را بهبود ببخشند.
    • ❗ همچنین می‌توان از ترکیب هر دو تکنیک پایش برای افزایش سطح نظارت استفاده کرد.
  • طراحی سیستم‌های اطفاء حریق گاز پایه به روش سیلاب کامل

    ۷.۱ enclosure

    ۷.۱.۱ در طراحی سیستم اطفاء حریق به روش سیلاب کامل، ویژگی‌هایenclosure محافظت‌شده باید مورد توجه قرار گیرد.
    ۷.۱.۲ مساحت منافذی که قابل بسته شدن نیستند در enclosure محافظت‌شده باید به حداقل برسد.
    ۷.۱.۳ مرجع ذی‌صلاح می‌تواند برای اطمینان از عملکرد سیستم مطابق با الزامات این استاندارد، از سیستم‌های فشرده‌سازی/افزایش فشار یا آزمایش‌های دیگر استفاده کند. (برای اطلاعات بیشتر به پیوست D مراجعه کنید.)
    ۷.۱.۴ برای جلوگیری از از دست رفتن عامل از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید به طور دائمی مهر و موم شده یا مجهز به بسته‌کننده‌های خودکار باشند.
    ۷.۱.۵ در صورتی که محدود کردن عامل عملی نباشد، یکی از موارد زیر باید اعمال شود:
    (۱) حفاظت باید گسترش یابد تا شامل خطرات یا مناطق کاری متصل مجاور شود.
    (۲) عامل اضافی باید از طریق پیکربندی تخلیه گسترش‌یافته به enclosure محافظت‌شده وارد شود.
    ۷.۱.۶ در صورتی که یک سیستم اطفاء حریق به روش سیلاب کامل با عامل پاک برای حفاظت از یک اتاق با کف بلند یا فرورفته در نظر گرفته شده باشد، اتاق و کف بلند یا فرورفته باید به طور همزمان محافظت شوند.
    ۷.۱.۶.۱ اگر فقط فضای زیر کف بلند قرار است توسط سیستم سیلاب کامل محافظت شود، باید از گاز بی‌اثر برای محافظت از آن فضا استفاده شود.
    ۷.۱.۶.۲ هر حجم، اتاق و کف بلند یا فرورفته که باید محافظت شود باید دارای دتکتورها، شبکه لوله‌کشی و نازل‌ها باشد.
    ۷.۱.۷ به جز سیستم‌های تهویه شناسایی شده در بند ۷.۱.۷.۲، سیستم‌های تهویه هوای فشرده، شامل سیستم‌های تهویه بازگشتی مستقل، باید به طور خودکار خاموش یا بسته شوند در صورتی که ادامه کار آن‌ها عملکرد سیستم اطفاء حریق را تحت تأثیر منفی قرار دهد یا منجر به گسترش آتش شود.
    ۷.۱.۷.۱ در صورتی که سیستم تهویه هوای فشرده یا بازگشتی مستقل به طور خودکار خاموش یا بسته نشود، حجم کانال‌های سیستم تهویه بازگشتی خود-contained که در زیر ارتفاع سقف فضای محافظت‌شده نصب شده‌اند باید به عنوان بخشی از حجم کل خطر هنگام تعیین مقدار عامل در نظر گرفته شود.
    ۷.۱.۷.۲ سیستم‌های تهویه‌ای که برای تأمین ایمنی ضروری هستند نیازی به خاموش شدن هنگام فعال‌سازی سیستم اطفاء حریق ندارند.
    ۷.۱.۷.۳ در صورتی که سیستم تهویه مجاز به ادامه کار طبق بند ۷.۱.۷.۲باشد، باید تخلیه گسترش‌یافته عامل فراهم شود تا غلظت طراحی برای مدت زمان مورد نیاز حفاظت حفظ شود.
    ۷.۱.۸ enclosure محافظت‌شده باید دارای استحکام ساختاری و یکپارچگی لازم برای نگهداری تخلیه عامل باشد.
    ۷.۱.۸.۱ اگر فشارهای ایجادشده تهدیدی برای استحکام ساختاریenclosure ایجاد کند، باید تهویه فراهم شود تا از فشارهای زیاد جلوگیری شود.
    ۷.۱.۸.۲ طراحان باید به دستورالعمل‌های سازنده سیستم در خصوص تهویهenclosure مشورت کنند. (برای منطقه تهویه relief فشار یا مساحت معادل نشت، به بند ۶.۱.۲.۵(۲۸) مراجعه کنید.)

    ۷.۲ الزامات غلظت طراحی

    ۷.۲.۱ عمومی
    ۷.۲.۱.۱ غلظت حداقل اطفاء حریق یا غلظت بی‌اثر باید برای تعیین غلظت طراحی حداقل برای سوخت خاص استفاده شود.
    ۷.۲.۱.۲ برای ترکیب‌های سوختی، باید از غلظت حداقل اطفاء حریق یا غلظت بی‌اثر برای سوختی که نیاز به بالاترین غلظت دارد استفاده شود مگر اینکه آزمایش‌هایی روی ترکیب واقعی انجام شده باشد.

    ۷.۲.۲ خاموش کردن شعله

    ۷.۲.۲.۱ خطرات کلاس A
    ۷.۲.۲.۱.۱ غلظت حداقل اطفاء حریق برای سوخت‌های کلاس A باید از طریق آزمایش به عنوان بخشی از برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳تعیین شود.

    ۷.۲.۲.۱.۲ غلظت حداقل طراحی برای یک خطر سطحی کلاس A باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
    (۱) غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۲ برای سیستم‌هایی با شناسایی و فعال‌سازی خودکار (به بند ۹.۱.۲ مراجعه کنید) یا ۱.۳ برای سیستم‌هایی با فعال‌سازی دستی فقط (به بند ۹.۱.۱.۱ مراجعه کنید).
    (۲) برابر با حداقل غلظت اطفاء حریق برای هپتان همانطور که از بند ۷.۲.۲.۲.۱ (۲) تعیین شده است.

    ۷.۲.۲.۱.۳ غلظت حداقل طراحی برای آتش‌های عمیق باید از طریق آزمایش خاص کاربردی تعیین شود.

    ۷.۲.۲.۲ خطرات کلاس B
    ۷.۲.۲.۲.۱ غلظت اطفاء حریق برای سوخت‌های کلاس B باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
    (۱) غلظت کلاس B همانطور که از طریق یک برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳ تعیین شده است.
    (۲) غلظت اطفاء حریق برای سوخت خاص، همانطور که از طریق روش فنجان برنر (به پیوست B مراجعه کنید) تعیین شده است.
    هشدار: در شرایط خاص، ممکن است خاموش کردن یک جت گاز در حال سوخت خطرناک باشد. به عنوان اولین اقدام، تأمین گاز را قطع کنید.

    ۷.۲.۲.۲.۲ تجهیزات اندازه‌گیری که در استفاده از روش فنجان برنر به کار می‌روند باید کالیبره شده باشند.
    ۷.۲.۲.۲.۳ غلظت حداقل طراحی برای یک خطر سوخت کلاس B باید غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۲.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳ باشد.

    ۷.۲.۲.۳ برنامه فهرست‌بندی
    به حداقل، برنامه فهرست‌بندی باید مطابق با UL 2127، سیستم‌های اطفاء حریق با گاز بی‌اثر تمیز، یا UL 2166، سیستم‌های اطفاء حریق با گاز هالوکربن تمیز، یا معادل آن باشد.

    ۷.۲.۲.۴ خطرات کلاس C
    ۷.۲.۲.۴.۱ غلظت حداقل طراحی برای یک خطر کلاس C باید غلظت حداقل اطفاء حریق کلاس A باشد، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳۵.
    ۷.۲.۲.۴.۲ غلظت حداقل طراحی برای فضاهایی که حاوی خطرات الکتریکی انرژی‌دار با ولتاژ بالاتر از ۴۸۰ ولت هستند و در حین و بعد از تخلیه برق دارند، باید از طریق تحلیل خطر و آزمایشات لازم تعیین شود.

    ۷.۲.۳ بی‌اثر کردن
    ۷.۲.۳.۱ غلظت بی‌اثر باید از طریق آزمایش تعیین شود.
    ۷.۲.۳.۲ غلظت بی‌اثر باید در تعیین غلظت طراحی عامل استفاده شود زمانی که شرایطی برای بازگشت مجدد یا انفجار وجود دارد.
    ۷.۲.۳.۳ غلظت حداقل طراحی برای بی‌اثر کردن جو یک enclosure که خطر آن یک مایع یا گاز قابل اشتعال است، باید غلظت بی‌اثر ضرب در یک عامل ایمنی ۱.۱ باشد.

    ۷.۳ مقدار سیستم سیلاب کامل
    ۷.۳.۱ مقدار عامل هالوکربنی که برای دستیابی به غلظت طراحی مورد نیاز است، باید از طریق معادله زیر محاسبه شود:

    guFQK+BdJPAAAAAElFTkSuQmCC

    مقادیر پارامترها عبارتند از:

    W = مقدار عامل پاک کننده [پوند (کیلوگرم)]

    V = حجم خالص خطر، که به‌صورت حجم ناخالص منهای حجم ساختارهای ثابت غیر قابل نفوذ به بخار عامل پاک کننده محاسبه می‌شود [فوت‌مکعب (مترمکعب)]

    C = غلظت طراحی عامل (درصد حجم)

    s = حجم ویژه بخار عامل فوق‌گرم در فشار 1 اتمسفر و دمای حداقل پیش‌بینی شده [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    7.3.1.1 غلظت عامل هالوکربنی که در محفظه حفاظت‌شده توسعه خواهد یافت، باید در دمای حداقل و حداکثر طراحی با استفاده از معادله زیر محاسبه شود:

    مقادیر پارامترها عبارتند از:

    C = غلظت عامل [درصد حجم]

    W = مقدار نصب‌شده عامل [پوند (کیلوگرم)]

    s = حجم ویژه گاز عامل در دمای حداقل/حداکثر طراحی خطر [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    V = حجم محفظه ساخته‌شده [فوت‌مکعب (مترمکعب)]

    7.3.1.2 غلظت‌های عامل محاسبه‌شده بر اساس داده‌های ساخته‌شده و نصب‌شده و دماهای حداقل و حداکثر طراحی فضای حفاظت‌شده باید طبق الزامات 6.1.2.7 و 6.2.4 ثبت شوند.

    7.3.2* مقدار عامل گاز بی‌اثر مورد نیاز برای دستیابی به غلظت طراحی باید با استفاده از معادله 7.3.2، 7.3.2.1a یا 7.3.2.1b محاسبه شود:

    مقادیر پارامترها عبارتند از:

    X = حجم گاز بی‌اثر اضافه‌شده در شرایط استاندارد 14.7 psi مطلق، 70°F (1.013 بار مطلق، 21 درجه سلسیوس) به ازای حجم فضای خطر [فوت‌مکعب/فوت‌مکعب (مترمکعب/مترمکعب)]

    sJ = حجم ویژه گاز بی‌اثر در 70°F (21 درجه سلسیوس) و 14.7 psi مطلق (1.013 بار مطلق)

    s = حجم ویژه گاز بی‌اثر در 14.7 psi مطلق و دمای حداقل طراحی [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    C = غلظت طراحی گاز بی‌اثر (درصد حجم)

    7.3.2.1* معادله جایگزینی برای محاسبه غلظت‌های عامل گاز بی‌اثرمجاز است، به‌شرح زیر:

    B8vFtHzjS0rvAAAAABJRU5ErkJggg==

    t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در فارنهایت)

    B+oGJ7zCObEBAAAAABJRU5ErkJggg==

    جایی که:

    t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در سلسیوس)

    7.3.2.2 مقدار طراحی شده گاز بی‌اثر در واحدهای جرم باید به صورت زیر محاسبه شود:

    جایی که:

    W = مقدار گاز بی‌اثر [پوند (کیلوگرم)]
    V = حجم خطر [پای³ (متر³)]
    [7.3.2.2a]
    [7.3.2.2b]
    s = حجم ویژه گاز در دمای خطر [پای³ /پوند (متر³ /کیلوگرم)]
    C = غلظت گاز بی‌اثر [% حجم]

    7.3.2.3 غلظت گاز بی‌اثر تمیز که در محفظه محافظت‌شده تولید خواهد شد، باید در دمای طراحی حداقل و حداکثر محاسبه شود، با استفاده از یکی از معادلات زیر:

    جایی که:

    C = غلظت گاز [٪ حجم]
    W = مقدار نصب‌شده گاز [پوند (کیلوگرم)]
    s = حجم ویژه گاز در دمای طراحی حداقل/حداکثر خطر [پای³ /پوند (متر³ /کیلوگرم)]
    V = حجم محفظه ساخته‌شده [پای³ (متر³)]

    7.3.3* عوامل طراحی. در صورتی که شرایط خاصی بر کارایی اطفاء حریق تأثیر بگذارد، حداقل مقدار گاز باید از طریق استفاده از عوامل طراحی افزایش یابد.

    7.3.3.1 * عامل طراحی تی. غیر از موارد شناسایی‌شده در 7.3.3.1.3، هنگامی که یک منبع گاز واحد برای محافظت از چندین خطر استفاده می‌شود، باید از عامل طراحی جدول 7.3.3.1 استفاده شود.

    7.3.3.1.1 برای کاربرد جدول 7.3.3.1، تعداد عامل طراحی تی باید برای هر خطری که سیستم از آن محافظت می‌کند، با استفاده از راهنماهای زیر تعیین شود:
    (1) از نقطه‌ای که سیستم لوله‌کشی وارد خطر می‌شود، تعداد تی‌های موجود در مسیر جریان که به منبع گاز برمی‌گردند باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود (تی‌های استفاده‌شده در یک منیفولد را شامل نشوید).
    (2) هر تی که در داخل خطر گاز را به خطر دیگری می‌رساند، باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود.

    7.3.3.1.2 خطر با بزرگ‌ترین تعداد عامل طراحی تی باید در جدول 7.3.3.1 برای تعیین عامل طراحی استفاده شود.

    7.3.3.1.3 برای سیستم‌هایی که آزمون تخلیه را با موفقیت پشت سر می‌گذارند، این عامل طراحی اعمال نخواهد شد.

    7.3.3.2* عوامل طراحی اضافی. طراح باید عوامل طراحی اضافی را برای هر یک از موارد زیر تعیین و مستند کند:
    (1) دهانه‌های غیرقابل بستن و تأثیر آن‌ها بر توزیع و غلظت (برای جزئیات بیشتر به 7.6.3 مراجعه کنید).
    (2) کنترل گازهای اسیدی
    (3) بازآتش‌سوزی از سطوح گرم‌شده
    (4) نوع سوخت، پیکربندی‌ها، سناریوهایی که به طور کامل در غلظت اطفاء حریق، هندسه محفظه و موانع در نظر گرفته نشده‌اند و تأثیر آن‌ها بر توزیع.Z

    7.3.3.3* عامل طراحی برای فشار محفظه. مقدار طراحی گاز تمیز باید طبق جدول 7.3.3.3 تنظیم شود تا فشارهای محیطی که بیشتر از 11 درصد (معادل تقریباً 3000 فوت (915 متر) تغییر ارتفاع) از فشارهای استاندارد سطح دریا [29.92 اینچ جیوه در 70°F (760 میلیمتر جیوه در 0°C)] متفاوت است، جبران شود.

    7.4* مدت زمان حفاظت.
    7.4.1 برای سیستم‌های اطفاء حریق شعله‌ای، حداقل غلظت 85 درصد از حداقل غلظت طراحی باید در بالاترین ارتفاع محتوای محافظت‌شده در داخل خطر برای مدت زمان 10 دقیقه یا مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.
    7.4.2 برای سیستم‌های بی‌اثر کننده، حداقل غلظت نباید کمتر از غلظت بی‌اثر کننده تعیین‌شده مطابق با 7.2.3.1 باشد و باید در طول فضای محافظت‌شده برای مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.

    7.5 سیستم توزیع.
    7.5.1 * زمان تخلیه اولیه.
    7.5.1.1* برای گازهای هالوکربنی، زمان تخلیه نباید بیشتر از 10 ثانیه باشد یا طبق الزامات مقامات مسئول.
    7.5.1.2 برای گازهای بی‌اثر، زمان تخلیه نباید بیشتر از 60 ثانیه برای خطرات سوخت کلاس B، 120 ثانیه برای خطرات آتش‌سوزی سطحی کلاسA یا خطرات کلاس C باشد یا طبق الزامات مقامات مسئول. (برای جزئیات بیشتر به A.7.5.1.1 مراجعه کنید.)
    7.5.1.3* محاسبات جریان انجام شده طبق بخش 6.2 یا طبق دستورالعمل‌های سیستم‌های پیش‌مهندسی‌شده فهرست‌شده باید برای اثبات انطباق با 7.5.1.1 یا 7.5.1.2 استفاده شود.
    7.5.1.4 برای سیستم‌های پیشگیری از انفجار، زمان تخلیه گازها باید به گونه‌ای باشد که غلظت حداقل طراحی بی‌اثر قبل از رسیدن غلظت بخارات قابل اشتعال به محدوده قابل اشتعال بدست آید.

    7.5.2* تخلیه طولانی. در صورتی که تخلیه طولانی برای حفظ غلظت طراحی برای مدت زمان مشخص ضروری باشد، مقادیر اضافی گاز باید با نرخ کاهش یافته به کار گرفته شوند.
    7.5.2.1 تخلیه اولیه باید در محدودیت‌های مشخص شده در 7.5.1.1 تکمیل شود.
    7.5.2.2 عملکرد سیستم تخلیه طولانی باید با آزمایش تأیید شود.

    7.6 انتخاب و مکان‌یابی نازل‌ها.
    7.6.1 نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند.
    7.6.2 نازل‌ها باید در داخل محفظه محافظت‌شده مطابق با محدودیت‌های فهرست‌شده از نظر فاصله، پوشش کف و هم‌راستایی قرار گیرند.
    7.6.3 نوع نازل‌های انتخاب‌شده، تعداد آن‌ها و مکان‌یابی آن‌ها باید به گونه‌ای باشد که غلظت طراحی در تمام قسمت‌های محفظه خطر ایجاد شود و به گونه‌ای باشد که تخلیه موجب پاشیدن مایعات قابل اشتعال یا ایجاد ابرهای گرد و غبار نشود که بتوانند آتش را گسترش دهند، انفجار ایجاد کنند یا به طور دیگری بر محتویات یا یکپارچگی محفظه تأثیر منفی بگذارند.

    2Q==

  • اصول عملکرد بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.31 AM

    این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

    فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

    بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

    WhatsApp Image 2025 09 14 at 9.19.31 AM1

    بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

    از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM

    تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

    لوازم جانبی  بیم دتکتور دودی اعلام حریق

    لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

    ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

    برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

    کاربرد صحیح بیم دتکتور دودی اعلام حریق

    مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

    اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

    دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

    بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

    ارتفاع سقف در بیم دتکتور دودی اعلام حریق

    حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

    اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

    در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

    محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

    با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

    تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

    مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

    بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

    استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.32 AM1
    استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM2

    محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

    یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

    WhatsApp Image 2025 09 14 at 9.19.33 AM

    اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

    WhatsApp Image 2025 09 14 at 9.19.33 AM1

    عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

    حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.34 AM

    هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

    مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

    استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

    • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
      (NFPA 72-1999, 2-3.4.5.2)
    • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
      (NFPA 72-1999, 2-3.4.4)
    • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
      (NFPA 72-1999, 2-3.4.4)
    • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
    • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
      (NFPA 72-1999, 2-3.4.6.1)

    نصب  بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

    از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

    این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

    فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

    • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
    • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

    با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

    در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

    توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

    سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

    • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
    • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
    • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
    • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
    • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
    • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
    • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

    در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.