دستورالعمل NFPA در مورد بیم دتکتور استاندارد

یکی از معتبرترین و جامع‌ترین مراجع جهانی در زمینه ایمنی و حفاظت از حریق است. این استاندارد مجموعه‌ای از دستورالعمل‌ها و الزامات را برای طراحی، نصب، اجرا، و نگهداری سیستم‌های اعلام و اطفای حریقدر ایالات متحده آمریکا را تعیین می‌کند. در این میان، NFPA 72 به‌عنوان استاندارد سیستم‌های اعلام حریق و ارتباطات اضطراری، الزامات مربوط به بیم دتکتورها را نیز پوشش می‌دهد. این مقاله به بررسی تخصصی بیم دتکتورها و الزامات آن‌ها بر اساس NFPA 72 می‌پردازد.

تعریف و عملکرد بیم دتکتورها

بیم دتکتورها (Beam Smoke Detectors) تجهیزاتی هستند که از یک پرتو نوری برای تشخیص کاهش شفافیت هوا ناشی از وجود دود استفاده می‌کنند. این دتکتورها در فضاهای بزرگ و مرتفع که استفاده از دتکتورهای نقطه‌ای دشوار است، کاربرد دارند. به‌طور کلی، بیم دتکتورها به دو دسته اصلی تقسیم می‌شوند:

1. بیم دتکتور فرستنده-گیرنده جدا

(Projected Beam Smoke Detector)

9k=

شامل یک فرستنده و یک گیرنده مجزا است که در دو نقطه متفاوت نصب می‌شوند. پرتو نوری از فرستنده به گیرنده ارسال شده و در صورت کاهش شدت نور دریافتی، هشدار فعال می‌شود.

2Q==

2. بیم دتکتور انعکاسی

(Reflective Beam Smoke Detector)

9k=

فرستنده و گیرنده در یک واحد قرار دارند و پرتو نوری پس از برخورد به یک بازتابنده، مجدداً به گیرنده بازمی‌گردد. در این نوع نیز کاهش شدت نور نشان‌دهنده وجود دود است.

2Q==

الزامات بیم دتکتورها در استاندارد NFPA 72

استاندارد NFPA 72 الزامات دقیق و مشخصی را برای بیم دتکتورها ارائه می‌دهد که شامل موارد زیر است:

1. معیارهای عملکردی

بیم دتکتورها باید قابلیت تشخیص تغییرات شفافیت هوا را با دقت بالا داشته باشند.
محدوده تشخیص باید متناسب با محیط مورد نظر باشد. معمولاً برد تشخیص این تجهیزات بین 10 تا 100 متر است.
قابلیت تنظیم حساسیت بر اساس شرایط محیطی باید وجود داشته باشد.

2. ملاحظات محیطی و محدودیت‌ها

عملکرد بیم دتکتور نباید تحت تأثیر نور مستقیم خورشید، گرد و غبار یا سایر عوامل محیطی قرار گیرد.
در شرایطی که دود به‌صورت لایه‌ای در سقف تجمع پیدا نمی‌کند، استفاده از بیم دتکتورها توصیه نمی‌شود.
نباید در محیط‌هایی که دارای لرزش زیاد یا تغییرات ساختاری هستند، بدون اقدامات تثبیت‌کننده نصب شوند.

3. الزامات نصب

بیم دتکتورها باید در فضاهای مرتفع و بزرگ مانند انبارها، سوله‌ها، سالن‌های تولید، فرودگاه‌ها و سالن‌های نمایشگاهی نصب شوند.
فاصله بین فرستنده و گیرنده یا بازتابنده باید به‌گونه‌ای باشد که کل فضای مورد نظر را پوشش دهد.
ارتفاع نصب معمولاً در محدوده 4 تا 25 متر توصیه می‌شود.
در فضاهایی که جریان هوا شدید است، ممکن است دقت عملکرد بیم دتکتورها کاهش یابد و نیاز به تنظیمات خاص داشته باشند.

4. الزامات نگهداری و تست دوره‌ای

بیم دتکتورها باید به‌صورت دوره‌ای مورد آزمایش قرار گیرند تا عملکرد صحیح آن‌ها تضمین شود.
فرستنده و گیرنده باید به‌طور منظم تمیز شوند تا از انباشت گرد و غبار جلوگیری شود.
بررسی وضعیت هم‌ترازی بیم دتکتورها و تنظیم مجدد در صورت نیاز ضروری است.
سیستم باید دارای امکان انجام تست خودکار یا تست دستی توسط اپراتور باشد.

روش‌های تست و تأییدیه بر اساس NFPA

NFPA 72 روش‌های تست بیم دتکتورها را برای اطمینان از عملکرد صحیح آن‌ها مشخص می‌کند. برخی از این آزمایش‌ها شامل:

تست حساسیت: بررسی میزان کاهش نور لازم برای فعال شدن هشدار.
تست‌های محیطی: شامل عملکرد در شرایط مختلف دمایی، رطوبتی و نور محیطی.
تست تأخیر زمانی: بررسی مدت‌زمان لازم برای فعال‌سازی هشدار جهت کاهش هشدارهای کاذب.
تست کارایی در شرایط گرد و غبار و آلودگی محیطی: بررسی میزان تحمل بیم دتکتور در برابر ذرات معلق.

مقاومت در برابر عوامل تداخلی

NFPA مشخص می‌کند که بیم دتکتورها باید در برابر موارد زیر مقاوم باشند:

تداخل نوری: از جمله نور خورشید، نورهای مصنوعی و انعکاس‌های ناخواسته.
گرد و غبار و آلاینده‌های محیطی: که ممکن است منجر به کاهش دقت تشخیص شود.
ارتعاشات و جابه‌جایی‌های سازه‌ای: که می‌تواند باعث عدم هم‌ترازی فرستنده و گیرنده شود.

نتیجه‌گیری

استاندارد NFPA 72 مجموعه‌ای از الزامات فنی و عملکردی برای بیم دتکتورها ارائه می‌دهد که رعایت آن‌ها منجر به افزایش ایمنی و کاهش هشدارهای کاذب می‌شود. انتخاب مناسب، نصب اصولی و نگهداری منظم این تجهیزات مطابق با استانداردNFPA نقش مهمی در بهبود عملکرد سیستم‌های اعلام حریق دارد. رعایت دستورالعمل‌های ارائه‌شده در این استاندارد باعث افزایش دقت تشخیص حریق و کاهش نرخ هشدارهای کاذب شده و درنهایت منجر به ارتقای ایمنی ساختمان‌ها و اماکن صنعتی، تجاری و عمومی می‌شود.

نوشته‌های مشابه

  • سیستم اطفاء حریق ثابت با گاز دی اکسیدکربن از نوع غرقابی کامل و فاقد منبع دی‌اکسید کربن

    8.1 اطلاعات کلی
    8.1.1* شرح: سیستم لوله‌ ای قائم یک سیستم اطفاء حریق ثابت از نوع غرقابی کامل، اعمال موضعی یا شلنگ دستی است که فاقد منبع دی‌اکسید کربن به‌صورت دائمی متصل می‌باشد.
    8.1.2* موارد استفاده: نصب سیستم‌های لوله‌ای قائم تنها با تأیید مرجع ذی‌صلاح مجاز است.
    8.1.3 الزامات عمومی: سیستم‌های لوله‌ای قائم و تأمین سیار باید مطابق الزامات فصل‌های ۴ تا ۷ و همچنین موارد مندرج در بخش‌های 8.2 تا 8.5 نصب و نگهداری شوند.
    8.1.3.1 لوله‌کشی باید مطابق با الزامات مربوط به سامانه‌ای باشد که از منبع دائمی متصل استفاده می‌کند.
    8.1.3.2 طول‌های قابل توجه لوله‌کشی در تأمین سیار باید در طراحی مدنظر قرار گیرند.

    8.2 مشخصات خطر
    استفاده از سیستم‌های لوله‌ ای قائم و تأمین سیار در محافظت از خطراتی که در فصل‌های ۴ تا ۷ توصیف شده‌اند مجاز است، مشروط بر اینکه تأخیر در رسیدن به تخلیه مؤثر دی‌اکسید کربن در زمان انتقال تأمین سیار به محل و اتصال آن به سیستم، تأثیر منفی در خاموش‌سازی نداشته باشد.

    8.3 الزامات لوله قائم
    8.3.1 لوله‌کشی تأمین در سیستم‌های لوله‌ای قائم باید مجهز به اتصالات سریع تعویض بوده و در محل قابل دسترس و به‌وضوح علامت‌گذاری‌شده‌ای برای اتصال به تأمین سیار خاتمه یابد.
    8.3.2 این محل باید با میزان دی‌اکسید کربن مورد نیاز و مدت زمان لازم برای تخلیه مشخص شده باشد.

    8.4 الزامات تأمین سیار
    8.4.1* ظرفیت: تأمین سیار باید دارای ظرفیتی مطابق با الزامات فصل‌های ۴ تا ۷ باشد.
    8.4.2 اتصال
    8.4.2.1 تأمین سیار باید به نحوی تجهیز شده باشد که بتواند دی‌اکسید کربن را به سیستم لوله‌ای قائم منتقل کند.
    8.4.2.2 اتصالات سریع تعویض باید فراهم شوند تا این اتصالات با بیشترین سرعت ممکن برقرار گردند.

    8.4.3 قابلیت جابجایی
    8.4.3.1 مخزن یا مخازن ذخیره‌سازی دی‌اکسید کربن باید بر روی یک وسیله نقلیه قابل حرکت نصب شده باشند که بتوان آن را با دست، با وسیله نقلیه موتوری جداگانه یا با نیروی محرکه خود به محل آتش‌سوزی رساند.
    8.4.3.2 وسیله جابجایی تأمین سیار باید قابل‌اطمینان بوده و قادر باشد با حداقل تأخیر به محل حریق برسد.

    8.4.4 محل استقرار
    تأمین سیار باید نزدیک به خطراتی که برای حفاظت از آن‌ها در نظر گرفته شده، نگهداری شود تا اطفاء حریق در کوتاه‌ترین زمان ممکن پس از بروز حریق آغاز گردد.

    8.4.5 تجهیزات جانبی
    تأمین سیار برای سیستم‌های لوله‌ای قائم می‌تواند به شلنگ‌های دستی به عنوان تجهیزات جانبی برای حفاظت از خطرات پراکنده کوچک یا به‌عنوان مکمل سیستم‌های لوله‌ای قائم یا دیگر سامانه‌های ثابت مجهز باشد.

    8.5* آموزش
    آموزش افراد مسئول این تجهیزات در استفاده و نگهداری از سیستم‌های لوله‌ای قائم و تأمین سیار امری حیاتی است

  • انتخاب دتکتورهای گاز

    ۸-۱. انتخاب دتکتور گاز

    تشخیص گاز می‌تواند بر اساس چند اصل مختلف انجام شود. انتخاب اصل تشخیص صحیح برای نوع گاز هدف، محیط و هدف مورد نظر ضروری است.

     

    ۱. چه گازی باید اندازه‌گیری شود؟

    گاز قابل اشتعال (برای جلوگیری از انفجار)

    پنج روش تشخیص اصلی به شرح زیر استفاده می‌شوند: روش احتراق کاتالیستی، روش سرامیک کاتالیستی جدید، روش نیمه‌رسانا، روش مادون قرمز غیرپاشنده و روش تداخلسنج.

    دتکتورهای احتراق کاتالیستی معمولاً در محدوده %LEL استفاده می‌شوند. دتکتورهای سرامیک کاتالیستی جدید معمولاً برای تشخیص در محدوده ۱۰۰۰۰ تا چند هزار ppm استفاده می‌شوند. دتکتورهای نیمه‌رسانا برای اندازه‌گیری در محدوده چند هزار تا چند ده ppm استفاده می‌شوند.

    دتکتورهای گاز قابل اشتعال مادون قرمز غیرپاشنده و تداخلسنج معمولاً گاز را در غلظت‌های %LEL و %vol اندازه‌گیری می‌کنند. دتکتورهای مادون قرمز غیرپاشنده و تداخلسنج، دتکتورهای فیزیکی هستند که واکنش شیمیایی ندارند. آن‌ها امکان تشخیص گاز را حتی در حضور موادی (مانند هالیدها، سولفیدها و سیلیکون) که دتکتورهای احتراق کاتالیستی و نیمه‌رسانا را مسموم می‌کنند، فراهم می‌سازند.

     

    گاز سمی (برای جلوگیری از مسمومیت)

    گازهای سمی معمولاً به دتکتورهای با حساسیت بالا نیاز دارند که قادر به تشخیص غلظت‌های در محدوده چند صد ppm تا چند ppb باشند.

    روش‌های تشخیص شامل روش نیمه‌رسانا، روش الکترولیز پتانسیواستاتیک، روش تشخیص ذرات پیرولیز، روش نوار شیمیایی و روش PID است. اصل تشخیص معمولاً بر اساس محدوده‌ای انتخاب می‌شود که امکان تشخیص در نقاط تنظیم هشدار یا مقادیر حد آستانه را فراهم کند.

    دتکتورهای نیمه‌رسانا گاز را در غلظت‌های حدود چند ده ppm تا چند هزار ppm تشخیص می‌دهند. دتکتورهای الکترولیز پتانسیواستاتیک گاز را در غلظت‌های حدود چند ده ppm تا چند ده ppb تشخیص می‌دهند. دتکتورهای تشخیص ذرات پیرولیز بر اساس اصل حسگری طراحی شده‌اند که به‌طور خاص برای تشخیص ترکیبات فلزی آلی در گازهای مواد نیمه‌رسانا مانند TEOS استفاده می‌شود.

    (تترااتوکسی سیلان). دتکتورهای گاز با نوار شیمیایی مزیت تشخیص گاز در غلظت‌های فوق‌العاده پایین در حد چند ppb را ارائه می‌دهند. این دتکتورها حداقل تأثیرپذیری را از گازهای مزاحم دارند و بنابراین برای استفاده در محیط‌هایی که سایر انواع دتکتورها دچار اختلال می‌شوند، ایده‌آل هستند.

     

    اکسیژن (برای جلوگیری از کم‌اکسیژنی و اکسیژن اضافی)

    دو اصل برای تشخیص اکسیژن استفاده می‌شود: روش سلول گالوانیکی غشایی و روش الکترولیز پتانسیواستاتیک. دتکتورهای سلول گالوانیکی غشایی پرکاربردترین نوع هستند که به دلیل پایداری بلندمدت و مقاومت در برابر تداخل مورد استفاده قرار می‌گیرند. با این حال، این دتکتورها به دلیل استفاده از سرب (Pb) احتمالاً در آینده تحت مقررات RoHS قرار خواهند گرفت. (در حال حاضر معاف هستند.) مجموعه‌ای از دتکتورهای الکترولیز پتانسیواستاتیک بدون سرب با توجه به روندهای قانونی در حال ظهور هستند.

     

    ۲. نوع ثابت یا قابل حمل؟

    اگر دتکتورها توسط کارگران حمل یا پوشیده می‌شوند، دتکتورهای گاز قابل حمل را انتخاب کنید. برای نظارت بر نشت گاز در یک مکان ثابت، دتکتورهای گاز ثابت را انتخاب نمایید.

     

    ۳. نوع انتشار یا مکشی؟

    دتکتورهای گاز عموماً بر اساس روش تشخیص به دو نوع تقسیم می‌شوند: نوع انتشار و نوع مکشی. دتکتورهای گاز نوع مکشی دارای یک پمپ داخلی هستند که گاز را از نقاط احتمالی نشت (مثلاً روی خطوط یا داخل محفظه‌ها) به سمت دتکتور می‌کشند. دتکتورهای گاز نوع انتشار، دتکتورهای غیرفعالی هستند که گازهای شناور در محیط را هنگام رسیدن به دتکتور تشخیص می‌دهند.

     

    ۴. تشخیص چندگانه یا تک‌گاز؟

    علاوه بر دتکتورهای گاز قابل حمل که یک جزء گازی را تشخیص می‌دهند، دتکتورهایی وجود دارند که می‌توانند چندین گاز را به طور همزمان تشخیص دهند. ترکیب پایه‌ای گازها در دتکتورهای چندگانه معمولاً شامل چهار جزء است: گاز قابل اشتعال، گاز سمی (H2S یا CO) و اکسیژن. بسته به محصول خاص، دتکتورهای

  • طراحی سیستم های اسپرینکلر

    • ترجمه و تدوین : مرکز اطلاعات کامپیوتری شرکت اسپین الکتریک

      فصل 19 از NFPA-13

      فصل ۱۹: رویکردهای طراحی

      ۱۹.۱ کلیات:
      از فصل ۱۹ برای تعیین رویکردهای طراحی استفاده خواهد شد.

      ۱۹.۲ رویکردهای عمومی طراحی:
      الزامات بخش ۱۹.۲ برای تمامی سیستم‌های اسپرینکلر، مگر در مواردی که توسط بخشی خاص از فصل ۱۹ یا فصل ۲۰ اصلاح شده باشد، اعمال می‌گردد.

      ۱۹.۲.۱
      حفاظت از یک ساختمان یا بخشی از آن مجاز است که طبق هر یک از رویکردهای طراحی قابل‌اعمال، به صلاحدید طراح انجام گیرد.

      ۱۹.۲.۲ خطرات مجاور یا روش‌های طراحی:*
      برای ساختمان‌هایی که دارای دو یا چند خطر یا روش طراحی مجاور به یکدیگر هستند، موارد زیر اعمال می‌گردد:

      1. اگر نواحی مورد نظر به‌صورت فیزیکی توسط پرده دود، مانع یا دیواری جدا نشده باشند که بتواند از انتقال حرارت ناشی از آتش در یک ناحیه به نحوی جلوگیری کند که از فعال شدن اسپرینکلرها در ناحیه مجاور جلوگیری کند، الزامات مربوط به طراحی با شدت بیشتر باید به‌اندازه ۱۵ فوت (۴٫۶ متر) فراتر از مرز آن ناحیه گسترش یابد.
      2. الزامات بند (۱) زمانی اعمال نمی‌شود که نواحی با یکی از موارد زیر از هم جدا شده باشند:
      o پرده دود یا مانعی که در بالای راهرو قرار دارد، مشروط بر اینکه راهرو دارای حداقل ۲ فوت (۶۰۰ میلی‌متر) جداسازی افقی از خطر مجاور در هر طرف باشد.
      o دیواری که قادر به جلوگیری از انتقال حرارت از یک ناحیه به ناحیه مجاور و در نتیجه ممانعت از فعال شدن اسپرینکلرهای آن باشد.
      3. الزامات بند (۱) همچنین در مورد گسترش معیارهای طراحی با شدت بیشتر از یک سطح سقف بالاتر به زیر سقف پایین‌تر، زمانی که اختلاف ارتفاع بین دو سطح سقف حداقل ۲ فوت (۶۰۰ میلی‌متر) باشد و این تفاوت در بالای یک راهرو با حداقل ۲ فوت جداسازی افقی از خطر مجاور در هر طرف قرار گرفته باشد، اعمال نمی‌گردد.

      ۱۹.۲.۳
      برای سیستم‌هایی که به‌صورت هیدرولیکی محاسبه می‌شوند، کل نیازمندی‌های تأمین آب سیستم برای هر پایه طراحی باید مطابق با رویه‌های بخش ۲۷.۲، مگر در مواردی که در فصل ۱۹ یا ۲۰ اصلاح شده باشد، تعیین شود.

      ۱۹.۲.۴ تقاضای آب:

      ۱۹.۲.۴.۱*
      نیازمندی‌های تقاضای آب باید از طریق منابع زیر تعیین شود:

      1. رویکردهای کنترل آتش بر اساس خطر اشغال و طراحی‌های خاص در فصل ۱۹
      2. رویکردهای طراحی ذخیره‌سازی در فصل‌های ۲۰ تا ۲۵
      3. رویکردهای ویژه برای اشغال‌های خاص در فصل ۲۶

      ۱۹.۲.۴.۲*
      حداقل نیازمندی‌های تقاضای آب برای یک سیستم اسپرینکلر باید با افزودن میزان جریان مجاز شیلنگ آتش‌نشانی به تقاضای آب مورد نیاز اسپرینکلرها تعیین گردد.

      ۱۹.۲.۵ منابع تأمین آب:

      ۱۹.۲.۵.۱
      حداقل مقدار تأمین آب باید برای حداقل مدت زمان تعیین‌شده در فصل ۱۹ در دسترس باشد.

      ۱۹.۲.۵.۲*
      مخازن باید به گونه‌ای طراحی شوند که بتوانند تجهیزات تحت پوشش خود را تأمین کنند.

      ۱۹.۲.۵.۳*
      پمپ‌ها نیز باید به گونه‌ای طراحی شوند که بتوانند تجهیزات مرتبط خود را تأمین نمایند.

      19.2.6 جریان مجاز شیلنگ آتش‌نشانی (Hose Allowance)

      19.2.6.1 سیستم‌های دارای طبقه‌بندی خطر متعدد:
      برای سیستم‌هایی که شامل چند نوع طبقه‌بندی خطر هستند، جریان مجاز شیلنگ و مدت‌زمان تأمین آب باید مطابق یکی از روش‌های زیر تعیین شود:

      1. الزامات تأمین آب برای بالاترین طبقه‌بندی خطر در سیستم مورد استفاده قرار گیرد.
      2. الزامات تأمین آب برای هر طبقه‌بندی خطر به‌صورت جداگانه و بر اساس ناحیه طراحی مربوط به همان خطر در محاسبات استفاده شود.
      3. اگر طبقه‌بندی خطر بالاتر تنها در اتاق‌هایی مجزا با مساحت کمتر یا مساوی ۴۰۰ فوت مربع (۳۷ مترمربع) باشد و این اتاق‌ها مجاور هم نباشند، الزامات تأمین آب برای کاربری اصلی (principal occupancy) برای سایر بخش‌های سیستم کفایت می‌کند. (یادآوری: این بند دارای تفسیر فنی می‌باشد)

      19.2.6.2*
      مقدار جریان آب مجاز برای شیلنگ‌های خارجی باید به نیازمندی‌های اسپرینکلر در نقطه اتصال به شبکه آب شهری یا نزدیک‌ترین هیدرانت (شیر آتش‌نشانی خصوصی) افزوده شود، هرکدام که به رایزر سیستم نزدیک‌تر باشند.

      19.2.6.3
      در مواردی که استفاده از اتصالات داخلی شیلنگ پیش‌بینی یا الزامی باشد، موارد زیر اعمال می‌گردد:

      1. برای نصب یک اتصال شیلنگ، میزان ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) به تقاضای آب سیستم اسپرینکلر افزوده می‌شود.
      2. برای نصب چند اتصال شیلنگ، میزان ۱۰۰ گالن بر دقیقه (380 لیتر بر دقیقه) به تقاضای آب افزوده می‌شود.
      3. این مقدار باید به‌صورت افزایشی از ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) در نظر گرفته شود، به‌طوری‌که هر مرحله از دورترین نقطه اتصال شیلنگ محاسبه شده و در فشار موردنیاز سیستم در آن نقطه اضافه گردد.

      19.2.6.3.1
      در صورتی که سیستم به‌صورت ترکیبی از اسپرینکلر و رایزر آتش‌نشانی(کلاس I یا III) باشد و ساختمان به‌طور کامل طبق NFPA 13 اسپرینکلر شده باشد، هیچ نیازی به در نظر گرفتن تقاضای داخلی شیلنگ در خروجی‌های رایزر آتش‌نشانی نیست.

      19.2.6.4*
      زمانی‌که شیر شیلنگ برای استفاده واحد آتش‌نشانی به رایزر سیستم اسپرینکلر از نوع تر (wet pipe) متصل شده باشد، مطابق بند 16.15.2، موارد زیر اعمال می‌شود:

      1. نیازی نیست تقاضای اسپرینکلر به تقاضای رایزر آتش‌نشانی مطابقNFPA 14 افزوده شود.
      2. در صورتی که مجموع تقاضای اسپرینکلر و جریان مجاز شیلنگ طبق جدول 19.3.3.1.2 از الزامات NFPA 14 بیشتر باشد، مقدار بیشتر باید ملاک قرار گیرد.
      3. برای ساختمان‌هایی که تنها بخشی از آن‌ها اسپرینکلر شده، تقاضای اسپرینکلر (بدون احتساب جریان مجاز شیلنگ) طبق شکل 19.3.3.1.1 باید به الزامات مندرج در NFPA 14 اضافه گردد.

      19.2.7 فن‌ های حجیم با سرعت پایین (HVLS – High Volume Low Speed Fans)*

      نصب فن‌های HVLS در ساختمان‌هایی که مجهز به سیستم اسپرینکلر (از جمله اسپرینکلرهای پاسخ بسیار سریع برای فضاهای ذخیره‌سازی – ESFR) هستند، باید مطابق با موارد زیر انجام شود:

      1. قطر حداکثری فن نباید بیش از ۲۴ فوت (۷٫۳ متر) باشد.
      2. فن باید تقریباً در مرکز بین چهار اسپرینکلر مجاور قرار گیرد.
      3. فاصله عمودی بین فن HVLS و پخش‌کننده اسپرینکلر (deflector) باید حداقل ۳ فوت (۰٫۹ متر) باشد.

      19.2.7 – فن‌های HVLS

      بند (4):
      تمامی فن‌های HVLS باید به‌گونه‌ای در مدار سیستم قرار گیرند که به‌محض فعال شدن هشدار جریان آب (waterflow alarm) بلافاصله خاموش شوند.
      در مواردی که ساختمان به سیستم اعلام حریق مجهز باشد، این اینترلاک (مدار قطع خودکار) باید مطابق با الزامات استاندارد NFPA 72 اجرا گردد.

      19.3 رویکرد کنترل حریق بر اساس طبقه‌بندی خطر اشغال برای اسپرینکلرهای پاششی

      19.3.1 کلیات

      19.3.1.1*
      نیازمندی‌های تأمین آب برای این نوع سیستم‌ها باید از یکی از دو روش زیر تعیین شود:

      روش جدول لوله‌کشی (Pipe Schedule Method) طبق بند 19.3.2
      روش محاسبات هیدرولیکی (Hydraulic Calculation Method) طبق بند 19.3.3

      19.3.1.2 طبقه‌بندی نوع اشغال:

      19.3.1.2.1
      طبقه‌بندی نوع اشغال در این استاندارد، فقط مربوط به نصب اسپرینکلرها و تأمین آب آن‌ها است و کاربرد عمومی برای تعیین نوع خطرات ساختمانی ندارد.
      19.3.1.2.2
      طبقه‌بندی اشغال نباید به‌عنوان یک طبقه‌بندی کلی خطرات حریق در ساختمان استفاده شود.
      19.3.1.2.3
      کاربری‌ها یا بخش‌هایی از کاربری‌ها باید بر اساس موارد زیرطبقه‌بندی شوند:
      o مقدار و قابلیت اشتعال محتویات
      o نرخ آزادسازی حرارت مورد انتظار
      o کل پتانسیل آزادسازی انرژی
      o ارتفاع پشته‌سازی مواد
      o وجود مایعات قابل اشتعال یا احتراق
      این عوامل باید طبق تعاریف بندهای 4.3.2 تا 4.3.7 در نظر گرفته شوند.
      19.3.1.2.4 طبقه‌بندی‌ها به شرح زیر هستند:
      1. خطر سبک (Light Hazard)
      2. خطر معمولی – گروه ۱ و ۲ (Ordinary Hazard Group 1 and 2)
      3. خطر بالا – گروه ۱ و ۲ (Extra Hazard Group 1 and 2)
      4. خطرات خاص اشغالی (Special Occupancy Hazards)مراجعه شود به فصل ۲۶

      19.3.2 نیازمندی‌های تأمین آب — روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.1
      برای تعیین حداقل نیازمندی تأمین آب در کاربری‌های خطر سبک و خطر معمولی که سیستم آن‌ها طبق جداول اندازه‌گذاری لوله‌های مندرج در بخش 27.5 طراحی شده، باید از جدول 19.3.2.1 استفاده شود.

      19.3.2.2
      برای کاربری‌های خطر بالا (Extra Hazard)، الزامات فشار و جریان باید صرفاً بر اساس روش محاسبات هیدرولیکی بند 19.3.3 تعیین شود.

      19.3.2.3
      استفاده از روش جدول لوله‌کشی مجاز است فقط در موارد زیر:

      1. افزایش یا اصلاح در سیستم‌های موجودی که بر اساس جدول لوله‌کشی بخش 27.5 طراحی شده‌اند.
      2. افزایش یا اصلاح در سیستم‌های موجود با طبقه‌بندی خطر بالا که با جدول لوله‌کشی طراحی شده‌اند.
      3. سیستم‌های جدیدی با مساحت حداکثر ۵۰۰۰ فوت مربع (۴۶۵مترمربع)

      2Q==

      19.3.2 – نیازمندی‌های تأمین آب – روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.3 بند 4
      سیستم‌های جدیدی که مساحت آن‌ها بیش از ۵۰۰۰ فوت مربع (۴۶۵متر مربع) باشد، در صورتی می‌توانند از جدول 19.3.2.1 استفاده کنند که مقادیر جریان مورد نیاز در آن جدول در حداقل فشار باقیمانده‌ی ۵۰psi (معادل ۳.۴ بار) در بالاترین تراز اسپرینکلر فراهم باشند.

      19.3.2.4
      جهت تعیین حداقل نیازمندی‌های تأمین آب، از جدول 19.3.2.1 استفاده می‌شود.

      19.3.2.5
      مقادیر مدت زمان پایین‌تر در جدول 19.3.2.1 تنها در صورتی قابل قبول هستند که:

      تجهیزات هشدار جریان آب (waterflow alarm)
      و تجهیزات نظارتی (supervisory devices)
      به‌صورت برقی (electrically supervised) بوده
      و این نظارت توسط یک مرکز مورد تأیید و به‌طور دائمی تحت پایش انجام شود.

      19.3.2.6 – فشار باقیمانده (Residual Pressure):

      19.3.2.6.1
      فشار باقیمانده مندرج در جدول 19.3.2.1 باید در تراز بالاترین اسپرینکلر فراهم باشد.

      19.3.2.6.2 افت فشار ناشی از شیرهای برگشت‌ناپذیر (Backflow Prevention Valves):

      19.3.2.6.2.1
      چنانچه در سیستم‌های طراحی شده با جدول لوله‌کشی از شیر برگشت‌ناپذیر استفاده شود، افت فشار ناشی از این شیر باید در محاسبات فشار باقیمانده لحاظ گردد.
      19.3.2.6.2.2
      میزان افت فشار ایجادشده توسط این شیر (بر حسب psi یا bar)، باید به افت فشار ناشی از ارتفاع و فشار باقیمانده مورد نیاز در ردیف بالایی اسپرینکلرها اضافه گردد تا فشار کلی مورد نیاز در محل تأمین آب مشخص شود.

      19.3.2.7
      استفاده از مقادیر جریان پایین‌تر در جدول 19.3.2.1 تنها زمانی مجاز است که:

      ساختمان از مصالح غیرقابل احتراق (noncombustible) ساخته شده باشد
      یا
      نواحی بالقوه‌ی آتش‌سوزی، با توجه به اندازه‌ی ساختمان یا تقسیم‌بندی فضاها (compartmentation)، محدود شده باشند به‌گونه‌ای که هیچ ناحیه‌ی باز (open area) از مقادیر زیر تجاوز نکند:
      o ۳۰۰۰ فوت مربع (۲۸۰ متر مربع) برای کاربری با خطر سبک(Light Hazard)
      o ۴۰۰۰ فوت مربع (۳۷۰ متر مربع) برای کاربری با خطر معمولی (Ordinary Hazard)

      19.3.3 نیازمندی‌های تأمین آب – روش محاسبات هیدرولیکی(Hydraulic Calculation Methods)

      19.3.3.1 کلیات

      19.3.3.1.1
      نیازمندی تأمین آب اسپرینکلر باید تنها بر اساس یکی از روش‌های زیرو به صلاحدید طراح تعیین شود:

      1. منحنی چگالی/مساحت (Density/Area Curves) مطابق شکل 19.3.3.1.1 و روش بند 19.3.3.2
      2. اتاق دارای بیشترین بار آبی (Room Design Method) مطابق بند 19.3.3.3
      3. نواحی طراحی خاص (Special Design Areas) مطابق بند 19.3.3.4

      19.3.3.1.2
      حداقل تأمین آب باید برای مدت زمانی فراهم باشد که در جدول 19.3.3.1.2مشخص شده است.

      19.3.3.1.3
      مقادیر مدت زمان پایین‌تر در جدول مذکور فقط در صورت وجود نظارت برقی و پایش دائمی توسط یک مرکز مورد تأیید قابل قبول هستند.

      19.3.3.1.4 محدودیت‌ها در روش‌های چگالی/مساحت و طراحی اتاق:

      در صورتی که از روش چگالی/مساحت یا روش طراحی اتاق استفاده شود، الزامات زیر اعمال می‌گردد:

      (1)*
      برای کاربری‌های خطر سبک و معمولی، اگر ناحیه عملکرد اسپرینکلر کمتر از ۱۵۰۰ فوت مربع (۱۴۰ متر مربع) باشد، باید چگالی متناظر با ۱۵۰۰ فوت مربع استفاده شود.
      (2)
      برای کاربری‌های خطر بالا، اگر ناحیه عملکرد اسپرینکلر کمتر از ۲۵۰۰ فوت مربع (۲۳۰ متر مربع) باشد، باید چگالی متناظر با ۲۵۰۰ فوت مربع استفاده گردد.

      Z

      19.3.3.1.5 فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر
      19.3.3.1.5.1* هنگام استفاده از روش چگالی/مساحت یا طراحی اتاق، مگر اینکه الزامات بند 19.3.3.1.5.2 رعایت شده باشد، برای ساختمان‌هایی که دارای فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر هستند، همان‌طور که در بندهای 9.2.1 و 9.3.18 توصیف شده است، حداقل مساحت عملکرد اسپرینکلر برای آن بخش از ساختمان باید 3000 فوت مربع (280 متر مربع) باشد.
      (A) ناحیه طراحی 3000 فوت مربع (280 متر مربع) فقط باید به سیستم اسپرینکلر یا بخش‌هایی از سیستم اسپرینکلری که در مجاورت فضای پنهان قابل‌اشتعال واجد شرایط هستند، اعمال شود.
      (B) اصطلاح «مجاور» به هر سیستم اسپرینکلری که فضایی در بالا، پایین یا کنار فضای پنهان واجد شرایط را محافظت می‌کند اطلاق می‌شود، مگر در مواردی که مانعی با درجه مقاومت در برابر آتش معادل با مدت زمان تأمین آب، به‌طور کامل فضای پنهان را از ناحیه دارای اسپرینکلر جدا کرده باشد.

      19.3.3.1.5.2 فضاهای پنهان بدون اسپرینکلر زیر، نیاز به حداقل مساحت عملکرد اسپرینکلر برابر با 3000 فوت مربع (280 متر مربع) ندارند:
      (1) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با بار قابل‌اشتعال ناچیز که دسترسی به آن‌ها وجود ندارد. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (2) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با دسترسی محدود که اجازه اشغال یا ذخیره مواد قابل‌اشتعال را نمی‌دهند. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (3) فضاهای پنهان قابل‌اشتعال که به‌طور کامل با عایق غیرقابل‌اشتعال پر شده‌اند.
      (4)* در کاربری‌های خطر سبک یا معمول، جایی که سقف‌های غیرقابل‌اشتعال یا با قابلیت اشتعال محدود مستقیماً به پایین تیرهای چوبی توپر یا ساختارهای توپر با قابلیت اشتعال محدود یا غیرقابل‌اشتعال متصل شده‌اند، به‌گونه‌ای که فضاهای بسته بین تیرها ایجاد شود با حجم حداکثر 160 فوت مکعب (4.5 متر مکعب)، از جمله فضای زیر عایقی که مستقیماً روی تیرهای سقف یا درون آن‌ها قرار گرفته در یک فضای پنهان که در غیر این صورت دارای اسپرینکلر است.

      2Q==

      (5) فضاهای پنهان که در آن‌ها از مصالح سخت استفاده شده و سطوح در معرض دید با یکی از موارد زیر، در همان شکلی که در فضا نصب شده‌اند، مطابقت دارند:
      (a) مصالح سطحی دارای شاخص گسترش شعله برابر یا کمتر از 25 هستند و ثابت شده که این مصالح در آزمون مطابق با استاندارد ASTM E84 «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی» یا UL 723 «استاندارد آزمون ویژگی‌های احتراقی سطحی مصالح ساختمانی»، که به‌مدت 20 دقیقه اضافی در همان شکل نصب‌شده در فضا ادامه یافته، آتش را بیش از 10.5 فوت (3.2 متر) گسترش نمی‌دهند، یا
      (b) مصالح سطحی با الزامات ASTM E2768، «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی با مدت زمان طولانی (آزمون تونلی 30 دقیقه‌ای)» مطابقت دارند.

      (6) فضاهای پنهان که مصالح در معرض دید آن‌ها به‌طور کامل از چوب تیمارشده با مواد مقاوم در برابر حریق ساخته شده‌اند، مطابق تعریف NFPA 703.

      (7) فضاهای پنهان در بالای اتاق‌های کوچک مجزا که مساحت آن‌ها از 55 فوت مربع (5.1 متر مربع) بیشتر نیست.

      (8) مسیرهای عمودی عبور لوله (pipe chases) با مساحت کمتر از 10 فوت مربع (0.9 متر مربع)، به شرطی که در ساختمان‌های چندطبقه، این مسیرها در هر طبقه با استفاده از مصالح معادل ساختار کف، مسدودکننده حریق(firestopped) شده باشند و در صورتی که این مسیرهای لوله‌کشی فاقد منابع اشتعال باشند، لوله‌کشی از مصالح غیرقابل احتراق باشد و نفوذ لوله در هر طبقه به‌درستی آب‌بندی شده باشد.

      (9) ستون‌های خارجی با مساحت کمتر از 10 فوت مربع (0.9 متر مربع) که با تیرک‌ها یا تیرچه‌های چوبی شکل گرفته‌اند و سایبان‌های بیرونی را نگه می‌دارند، به شرطی که این سایبان‌ها به‌طور کامل با سیستم اسپرینکلر محافظت شده باشند.

      (10) فضاهای با خطر سبک یا معمولی که در آن‌ها سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود مستقیماً یا بر روی کانال‌های فلزی با عمق بیش از 1 اینچ (25 میلی‌متر) به پایین تیرچه‌های چوبی کامپوزیت متصل شده‌اند، به‌شرطی که کانال‌های تیرچه مجاور با مصالحی معادل تخته گچی ½ اینچ (13 میلی‌متر) به حجم‌هایی بیش از 160 فوت مکعب (4.5 متر مکعب) تقسیم‌بندی شده باشند و حداقل 3½ اینچ (90 میلی‌متر) عایق پتویی (batt insulation) در پایین کانال‌های تیرچه نصب شده باشد زمانی که سقف با استفاده از کانال‌های فلزی متصل شده باشد.

      (11) حفره‌ها درون فضاهای دیواری فاقد اسپرینکلر.

      19.3.3.2 روش چگالی/مساحت

      19.3.3.2.1 منبع آب
      19.3.3.2.1.1 الزامات منبع آب فقط برای اسپرینکلرها باید از نمودارهای چگالی/مساحت در شکل 19.3.3.1.1 یا از فصل 26 در مواردی که معیارهای چگالی/مساحت برای خطرات اشغال خاص مشخص شده‌اند، محاسبه شود.
      19.3.3.2.1.2 هنگام استفاده از شکل 19.3.3.1.1، محاسبات باید هر نقطه‌ای منفرد روی منحنی چگالی/مساحت مناسب را ارضا کند.
      19.3.3.2.1.3 هنگام استفاده از شکل 19.3.3.1.1، ضروری نیست که همه نقاط روی منحنی انتخاب‌شده ارضا شوند.

      19.3.3.2.2 اسپرینکلرها
      19.3.3.2.2.1 چگالی‌ها و مساحت‌های ارائه‌شده در شکل 19.3.3.1.1 فقط باید برای استفاده با اسپرینکلرهای اسپری باشد.
      19.3.3.2.2.2 استفاده از اسپرینکلرهای با واکنش سریع در اشغال‌های خطر زیاد یا دیگر اشغال‌هایی که دارای مقادیر قابل توجهی مایعات قابل اشتعال یا گردوغبارهای قابل احتراق هستند مجاز نیست.
      19.3.3.2.2.3 برای اسپرینکلرهای پوشش گسترده (extended coverage)، حداقل مساحت طراحی باید برابر با مساحت مربوط به خطر در شکل 19.3.3.1.1 یا مساحت محافظت‌شده توسط پنج اسپرینکلر، هرکدام که بیشتر است، باشد.
      19.3.3.2.2.4 اسپرینکلرهای پوشش گسترده باید دارای فهرست‌بندی و طراحی برای حداقل دبی مطابق با چگالی برای خطر مورد نظر طبق شکل 19.3.3.1.1 باشند.

      19.3.3.2.3 اسپرینکلرهای با واکنش سریع
      19.3.3.2.3.1 در مواردی که از اسپرینکلرهای با واکنش سریع فهرست‌شده، از جمله اسپرینکلرهای با پوشش گسترده و واکنش سریع، در سراسر یک سیستم یا بخشی از سیستمی که دارای مبنای طراحی هیدرولیکی یکسان است استفاده شود، مساحت عملکرد سیستم می‌تواند بدون تغییر در چگالی، کاهش یابد طبق آنچه در شکل 19.3.3.2.3.1 آمده است، به‌شرطی که همه شرایط زیر برآورده شوند:
      (1) سیستم لوله‌کشی مرطوب باشد
      (2) اشغال خطر سبک یا خطر معمولی باشد
      (3) ارتفاع سقف حداکثر 20 فوت (6.1 متر) باشد

      (4) هیچ فضای سقفیِ بدون محافظت مطابق با موارد مجاز در بندهای 10.2.9 و 11.2.8 نباید بیش از 32 فوت مربع (3.0 متر مربع) باشد.

      (5) هیچ ناحیه‌ای بدون محافظت در بالای سقف‌های ابری (cloud ceilings) مطابق با موارد مجاز در بند 9.2.7 نباید وجود داشته باشد.

      19.3.3.2.3.2 تعداد اسپرینکلرها در ناحیه طراحی نباید هرگز کمتر از پنج عدد باشد.

      19.3.3.2.3.3 در مواردی که از اسپرینکلرهای با واکنش سریع روی سقف یا بام شیب‌دار استفاده می‌شود، برای تعیین درصد کاهش ناحیه طراحی، حداکثر ارتفاع سقف یا بام باید لحاظ شود.

      19.3.3.2.4 سقف‌های شیب‌دار. در مواردی که از انواع زیر از اسپرینکلرها روی سقف‌های شیب‌دار با شیب بیش از 1 به 6 (افزایش 2 واحد در طول 12 واحد، معادل شیب 16.7 درصد) در کاربردهای غیر انباری استفاده می‌شود، ناحیه عملکرد سیستم باید بدون تغییر چگالی، 30 درصد افزایش یابد:

      (1) اسپرینکلرهای اسپری، شامل اسپرینکلرهای پوشش گسترده که طبق بند 11.2.1(4) فهرست شده‌اند، و اسپرینکلرهای با واکنش سریع
      (2) اسپرینکلرهای CMSA

      19.3.3.2.5 سیستم‌های خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف.* برای سیستم‌های لوله‌کشی خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف، ناحیه عملکرد اسپرینکلر باید بدون تغییر چگالی، 30 درصد افزایش یابد.

      19.3.3.2.6 اسپرینکلرهای دمای بالا. در مواردی که از اسپرینکلرهای دمای بالا برای اشغال‌های با خطر زیاد استفاده می‌شود، ناحیه عملکرد اسپرینکلر می‌تواند بدون تغییر چگالی، تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع).

      19.3.3.2.7 در مواردی که از اسپرینکلرهایی با ضریب دبی K-11.2 (160) یا بزرگ‌تر همراه با منحنی‌های طراحی مربوط به Extra Hazard Group 1 یا Extra Hazard Group 2 و مطابق با بند 19.3.3.1.1 استفاده می‌شود، ناحیه طراحی می‌تواند تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع)، بدون توجه به درجه حرارت اسپرینکلر.

      Z

      19.3.3.2.8* تعدیلات چندگانه
      19.3.3.2.8.1 هنگامی که تعدیلات چندگانه در ناحیه عملکرد باید مطابق با بندهای 19.3.3.2.3، 19.3.3.2.4، 19.3.3.2.5 یا 19.3.3.2.6 انجام گیرد، این تعدیلات باید به صورت مرکب بر پایه ناحیه عملکرد انتخاب‌شده اولیه از شکل 19.3.3.1.1 اعمال شوند.
      19.3.3.2.8.2 اگر ساختمان دارای فضاهای پنهان قابل احتراق و بدون اسپرینکلر باشد، قوانین بند 19.3.3.1.4 باید پس از انجام تمام اصلاحات دیگر اعمال شود.

      19.3.3.3 روش طراحی اتاق
      19.3.3.3.1* نیازمندی‌های تأمین آب برای تنها اسپرینکلرها باید بر پایه اتاقی که بیشترین تقاضا را ایجاد می‌کند، بنا شود.
      19.3.3.3.2 چگالی انتخاب‌شده باید از شکل 19.3.3.1.1 مطابق با طبقه‌بندی خطر اشغال و اندازه اتاق باشد.
      19.3.3.3.3 برای استفاده از روش طراحی اتاق، تمام اتاق‌ها باید دارای دیوارهایی با درجه مقاومت در برابر آتش برابر با مدت زمان تأمین آب ذکر شده در جدول 19.3.3.1.2 باشند.
      19.3.3.3.4 اگر اتاق کوچک‌تر از ناحیه مشخص‌شده در شکل 19.3.3.1.1 باشد، مفاد بندهای 19.3.3.1.4(1) و 19.3.3.1.4(2) باید اعمال شوند.
      19.3.3.3.5 حداقل حفاظت از بازشوها باید به صورت زیر باشد:
      (1) خطر سبک — درب‌های خودبسته‌شونده یا خودکار غیر مقاوم در برابر آتش.
      (2) خطر سبک بدون حفاظت از بازشو — در صورتی که بازشوها حفاظت نشده باشند، محاسبات باید شامل اسپرینکلرهای داخل اتاق به‌علاوه دو اسپرینکلر در فضای ارتباطی نزدیک‌ترین به هر بازشوی حفاظت‌نشده باشد، مگر اینکه فضای ارتباطی تنها دارای یک اسپرینکلر باشد که در این صورت محاسبات باید شامل عملکرد همان یک اسپرینکلر باشد. انتخاب اسپرینکلرهای اتاق و فضای ارتباطی که باید محاسبه شود، باید به گونه‌ای باشد که بیشترین تقاضای هیدرولیکی را تولید کند. برای اشغال‌های خطر سبک با بازشوهای بدون حفاظت در دیوارها، حداقل عمق پیشانی (lintel) برای بازشوها 8 اینچ (200 میلی‌متر) الزامی است و عرض بازشو نباید بیش از 8 فوت (2.4 متر) باشد. داشتن تنها یک بازشوی 36 اینچ (900 میلی‌متر) یا کمتر بدون پیشانی مجاز است، مشروط بر اینکه بازشوی دیگری به فضاهای مجاور وجود نداشته باشد.
      (3) خطر معمولی و خطر بالا — درب‌های خودبسته‌شونده یا خودکار با درجه مقاومت آتش مناسب برای محصورسازی.

      19.3.3.3.6 در صورتی که روش طراحی اتاق استفاده شود و ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای حفاظت‌شده طبق بند 19.3.3.3.5 محافظت می‌شود، حداکثر تعداد اسپرینکلرهایی که نیاز به محاسبه دارند پنج عدد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو خواهد بود.
      19.3.3.3.7 در صورتی که ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای بدون حفاظت در یک اشغال خطر سبک محافظت می‌شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای موجود در راهرو تا حداکثر پنج عدد باشد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو.

      19.3.3.4 نواحی طراحی ویژه
      19.3.3.4.1 در صورتی که ناحیه طراحی شامل یک شوت خدمات ساختمانی باشد که با رایزر جداگانه‌ای تغذیه می‌شود، حداکثر تعداد اسپرینکلرهایی که باید محاسبه شوند، سه عدد است، که هرکدام باید حداقل ۱۵ گالن در دقیقه (57 لیتر در دقیقه) تخلیه داشته باشند.
      19.3.3.4.2* در صورتی که ناحیه‌ای قرار است تنها توسط یک خط اسپرینکلر محافظت شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای روی خط تا حداکثر هفت عدد باشد.
      19.3.3.4.3 اسپرینکلرهای داخل کانال‌ها که در بخش‌های 8.9 و 9.3.9 توصیف شده‌اند، باید به‌گونه‌ای طراحی هیدرولیکی شوند که فشار تخلیه در هر اسپرینکلر حداقل ۷ psi (0.5 bar) باشد، در حالی که تمام اسپرینکلرهای داخل کانال در حال تخلیه هستند.
      19.3.3.4.4 برج‌های پله: برج‌های پله یا دیگر ساختارهایی با طبقات ناقص، اگر با رایزر مستقل لوله‌کشی شده باشند، از نظر اندازه لوله به‌عنوان یک ناحیه تلقی می‌شوند.

      19.4 رویکردهای طراحی ویژه
      19.4.1 اسپرینکلرهای مسکونی
      19.4.1.1* ناحیه طراحی باید شامل چهار اسپرینکلر مجاور باشد که بیشترین تقاضای هیدرولیکی را ایجاد می‌کنند.
      19.4.1.2* مگر اینکه الزامات بند 19.3.3.1.5.2 برای ساختمان‌هایی که دارای فضاهای پنهان قابل احتراق بدون اسپرینکلر هستند (طبق توصیف در بندهای 9.2.1 و 9.3.18) رعایت شده باشد، حداقل ناحیه طراحی عملکرد اسپرینکلر برای آن بخش از ساختمان باید شامل هشت اسپرینکلر باشد.
      19.4.1.2.1* ناحیه طراحی شامل هشت اسپرینکلر فقط باید برای بخش‌هایی از اسپرینکلرهای مسکونی اعمال شود که در مجاورت فضای پنهان قابل احتراق واجد شرایط قرار دارند.
      19.4.1.2.2 واژه «مجاور» شامل هر سیستم اسپرینکلری می‌شود که فضایی را در بالا، پایین، یا کنار فضای پنهان محافظت می‌کند، مگر آنکه مانعی با درجه مقاومت در برابر آتش معادل حداقل مدت زمان تأمین آب، فضای پنهان را به‌طور کامل از ناحیه دارای اسپرینکلر جدا کرده باشد.
      19.4.1.3 مگر اینکه الزامات بند 19.4.1.4 رعایت شده باشد، حداقل دبی مورد نیاز از هر اسپرینکلر در ناحیه طراحی باید بزرگ‌تر از مقادیر زیر باشد:
      (1) طبق حداقل نرخ جریان ذکر شده در لیستینگ اسپرینکلر
      (2) در اتاق‌ها یا فضاهایی بزرگ‌تر از 800 فوت مربع (74 متر مربع)، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی ناحیه طراحی، طبق مفاد بند 9.5.2.1
      (3) در اتاق‌ها یا فضاهایی با 800 فوت مربع (74 متر مربع) یا کمتر، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی سطح اتاق یا فضا با استفاده از مساحت اتاق تقسیم بر تعداد اسپرینکلرهای موجود در آن

      19.4.1.4 برای تغییرات یا افزودن به سیستم‌های موجود مجهز به اسپرینکلرهای مسکونی، معیارهای دبی لیست‌شده کمتر از 0.1 gpm/ft² (4.1 mm/min) مجاز است.
      19.4.1.4.1 در مواردی که اسپرینکلرهای مسکونی تولیدشده پیش از سال 2003 که دیگر توسط تولیدکننده عرضه نمی‌شوند تعویض می‌گردند، و این اسپرینکلرها با چگالی طراحی کمتر از 0.05 gpm/ft² (2.04 mm/min) نصب شده‌اند، استفاده از اسپرینکلر مسکونی با ضریب K معادل (±5 درصد) مجاز است، مشروط بر اینکه سطح پوشش فعلی لیست‌شده برای اسپرینکلر جایگزین تجاوز نکند.

      19.4.1.5 در نواحی مانند اتاق زیر شیروانی، زیرزمین‌ها، یا سایر انواع کاربری‌هایی که خارج از واحدهای مسکونی اما درون همان سازه قرار دارند، این نواحی باید به‌عنوان مبنای طراحی جداگانه طبق بخش 19.2 محافظت شوند.
      19.4.1.6 الزامات اختصاصی برای سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق الزامات کاربری خطر کم(light hazard) در جدول 19.3.3.1.2 باشد.

      19.4.2 حفاظت در برابر مواجهه   (Exposure Protection)

      19.4.2.1* لوله‌کشی باید طبق بخش 27.2 به‌صورت هیدرولیکی طراحی شود به‌نحوی که حداقل ۷ psi (0.5 bar) فشار در هر اسپرینکلر که به سمت ناحیه مواجهه (exposure) قرار گرفته، با فرض فعال بودن تمام این اسپرینکلرها، فراهم گردد.
      19.4.2.2 اگر منبع آب سایر سامانه‌های حفاظت در برابر آتش را نیز تغذیه می‌کند، باید توانایی تأمین هم‌زمان کل تقاضای این سامانه‌ها و همچنین تقاضای سامانه محافظت از مواجهه را داشته باشد.

      19.4.3 پرده‌های آبی (Water Curtains)

      19.4.3.1 اسپرینکلرهای موجود در یک پرده آبی، همان‌طور که در بندهای 9.3.5 یا 9.3.13.2 توصیف شده‌اند، باید به‌گونه‌ای طراحی شوند که حداقل تخلیه 3 گالن در دقیقه برای هر فوت طول (37 لیتر در دقیقه برای هر متر طول) از پرده آبی را فراهم کنند، به‌طوری که هیچ اسپرینکلری کمتر از 15 گالن در دقیقه (57 لیتر در دقیقه) تخلیه نداشته باشد.
      19.4.3.2 برای پرده‌های آبی با اسپرینکلر خودکار (automatic sprinklers)، تعداد اسپرینکلرهایی که در طراحی محاسبه می‌شوند باید برابر با تعداد اسپرینکلرهایی باشد که در طولی مطابق با طول موازی با خطوط انشعاب (branch lines) در ناحیه‌ای که در بند 27.2.4.2 مشخص شده است، قرار دارند.
      19.4.3.3 برای پرده آبی سیستم دلوژ (deluge system) که جهت محافظت از دهانه‌ی صحنه تئاتر (proscenium opening) طبق بند 9.3.13.2 استفاده می‌شود، پرده آبی باید به‌گونه‌ای طراحی شود که همه اسپرینکلرهای باز متصل به آن را تأمین کند.

      19.4.3.4 اسپرینکلرهای زیر سقف یا بام در فضاهای پنهان قابل احتراق با سازه‌های چوبی (Wood Joist یا Wood Truss) با فواصل کمتر از 3 فوت (0.9 متر) و شیب 4 در 12 یا بیشتر

      19.4.3.4.1 در صورتی که فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از 8 فوت (2.4 متر) در جهت عمود بر شیب نباشد، حداقل فشار تخلیه اسپرینکلر باید 7 psi (0.5 bar) باشد.

      19.4.3.4.2 چنانچه فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از ۸ فوت (۲.۴ متر) در جهت عمود بر شیب باشد، حداقل فشار تخلیه اسپرینکلر باید ۲۰ psi (1.4 bar) باشد.
      19.4.3.4.3 الزامات سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق با الزامات کاربری خطر کم (light hazard) در جدول 19.3.3.1.2 رعایت شود.

      19.4.3.5 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای پرده آبی و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب پرده آبی باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.

      19.4.4 شیشه محافظت‌شده با اسپرینکلر (Sprinkler-Protected Glazing)

      19.4.4 در مواردی که الزامات شیشه محافظت‌شده با اسپرینکلر باید با بند 9.3.15 مطابقت داشته باشند، مدت زمان تأمین آب برای ناحیه طراحی شامل اسپرینکلرهای پنجره نباید کمتر از درجه‌بندی مورد نیاز مجموعه (assembly) باشد.
      19.4.4.1 برای شیشه محافظت‌شده با اسپرینکلر، تعداد اسپرینکلرهایی که در طراحی هیدرولیکی لحاظ می‌شوند، باید معادل تعداد اسپرینکلرهایی باشند که در طولی برابر با طول موازی با خطوط انشعاب در ناحیه‌ای که توسط بند 27.2.4.2 مشخص شده، قرار دارند.
      19.4.4.2 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای شیشه محافظت‌شده و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب برای شیشه محافظت‌شده نیز باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.
      19.4.4.3 محاسبات طراحی هیدرولیکی باید شامل ناحیه‌ای از طراحی باشند که اسپرینکلرهای سقفی مجاور شیشه محافظت‌شده با اسپرینکلر را در بر گیرد.

      19.5 سامانه‌های دلوژ (Deluge Systems)

      اسپرینکلرهای باز و سامانه‌های دلوژ باید طبق استانداردهای مربوطه به‌صورت هیدرولیکی طراحی و محاسبه شوند.

  • نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن

    1 مقدمه: مواد ضمیمه زیر برای نشان دادن مثال‌های معمول از نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن ثابت ارائه شده است. لازم به ذکر است که روش‌های توضیح داده‌شده به‌عنوان تنها روش‌های قابل استفاده در نظر گرفته نمی‌شوند. این روش‌ها فقط به منظور کمک به تفسیر و توضیح اهداف استاندارد در مواردی که ممکن است کاربرد صحیح آن‌ها مورد سوال باشد، به‌کار می‌روند.

    B.2 پخت غذا در صنایع/تجاری (سرخ‌کن‌های روغن داغ): سرخ‌کن‌های بزرگ روغن داغ که برای پخت مداوم غذاهایی مانند گوشت، ماهی و تنقلات استفاده می‌شوند، خطرات آتش‌سوزی دارند که نیاز به توجه ویژه هنگام طراحی سیستم اطفاء حریق دی‌اکسید کربن برای حفاظت از آن‌ها دارد.
    اگر روغن پخت بیش از حد گرم شود، پیش از آنکه به جوش بیاید، به دمای خودآتش‌زنی می‌رسد. بنابراین، آتش‌سوزی که شامل بخارات روغن پخت است، ممکن است پس از تخلیه اولیه دی‌اکسید کربن با دمای بالای روغن داغ در مخزن پخت دوباره شعله‌ور شود، مگر اینکه روغن تا زیر دمای آتش‌زنی خنک شود. طراحی بهینه و انرژی‌ساز مخازن پخت مدرن باعث می‌شود که فرایند خنک‌سازی کند باشد.
    چیدمان تجهیزات برای محافظت از آن‌ها برای طراحی صحیح سیستم از اهمیت ویژه‌ای برخوردار است.
    اولاً، استفاده از سرخ‌کن ممکن است شامل گرم‌کردن خارجی روغن با چرخش مجدد روغن از طریق مخزن پخت باشد. این مورد را می‌توان به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثانیاً، برخی از سرخ‌کن‌ها به‌گونه‌ای طراحی شده‌اند که هود بخار و نقاله توسط یک سیستم هیدرولیکی بالا و پایین می‌روند. مایعات هیدرولیکی قابل اشتعال و سازگار با غذا که برای این کار استفاده می‌شوند، ناحیه دیگری از حفاظت را به‌وجود می‌آورند و می‌توان آن‌ها را به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثالثاً، نگرانی‌هایی وجود دارد که یک عملیات با تولید بالا ممکن است سیستم تهویه‌ای داشته باشد که شامل سیستم حذف بخار باشد. این نگرانی باید به‌عنوان بخشی از خطر در نظر گرفته شود. (به 6.2.1 مراجعه کنید.)
    صفحه تخلیه، زمانی که در معرض چکه روغن در انتهای خروجی نقاله قرار دارد، باید پوشانده شود. (به 6.2.1 مراجعه کنید.)
    در نهایت، مخزن بزرگ‌ترین مساحت برای محافظت و بیشترین نیاز به خنک‌سازی کافی را به‌وجود می‌آورد.

    B.2.1 خلاصه‌ای از حفاظت: موارد زیر یک مرجع سریع برای معیارهای حفاظت در طراحی سیستم است.

    B.2.1.1 مخزن: زمانی که مخزن دارای هود متحرک باشد، حفاظت از طریق سیل‌کردن کامل زیر هود طبق 5.1.2 مجاز نیست، مگر اینکه شرایط زیر رعایت شود: (1) هود نباید در حین عملیات پخت بالا برده شود که این به‌معنای موارد زیر است: (a) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قطع می‌شود هنگامی که هود بالا می‌رود (مثلاً برای نگهداری یا تمیزکاری). (b) یک سوئیچ حد دمایی مکانیکی باید استفاده شود که هر زمان که دمای روغن بیشتر از حد دمای تنظیم‌شده به میزان بیش از 20 درصد (درجه فارنهایت یا درجه سلسیوس) از دمای حداکثر معمولی روغن افزایش یابد، عمل کند. این عمل باید موجب موارد زیر شود: i. قطع برق به سیستم گرم‌کننده روغن ii. جلوگیری از بالا بردن هودهای الکتریکی iii. فعال‌سازی آلارم‌های شنیداری و دیداری برای هشدار به عدم بالا بردن هود به‌صورت دستی (c) سوئیچ باید دارای یک دمای بازنشانی خودکار باشد که از 60°F (33.3°C) کمتر از دمای خودآتش‌زنی روغن پخت باشد.

    (2) قبل از اینکه هود بالا برده شود (برای نگهداری و تمیزکاری)،باید یک شیر قطع کن نظارتی بسته شود تا از تخلیه سیستم دی‌اکسید کربن جلوگیری شود. بسته شدن شیر قطع کن باید باعث فعال شدن آلارم دوگانه نظارتی در واحد کنترل شود. (3) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قبل از تخلیه سیستم یا همزمان با آن قطع می‌شود. (4) مقدار دی‌اکسید کربن و مدت زمان تخلیه باید کافی باشد تا یک جو بی‌اکسیژن در مخزن حفظ شود تا دمای روغن پخت کاهش یابد و از شعله‌ور شدن مجدد جلوگیری شود طبق 5.3.5.6. توصیه می‌شود که دما حداقل 60°F (33.3°C) پایین‌تر از دمای خودآتش‌زنی روغن باشد. (5) طراحی سیستم باید بر اساس آزمایش‌های تخلیه برای مدل خاص سرخ‌کن انجام شود تا نشان دهد که با بند B.2.1.1 (4) تطابق دارد. مستندات آزمایش باید در صورت درخواست مقامات ذی‌صلاح یا کاربر نهایی در دسترس باشد. (6) شناسایی حرارتی باید سیستم دی‌اکسید کربن را زمانی که دما برابر یا پایین‌تر از دمای خودآتش‌زنی روغن پخت باشد، فعال کند.

    B.2.1.2 محفظه دائمی: سیستم کاربرد محلی باید به‌گونه‌ای طراحی شود که هود در موقعیت کامل بالا باشد.

    B.2.1.3 تخته تخلیه: استفاده از سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت طبق بخش 6.4 مناسب است.

    B.2.1.4 سیستم تهویه بخار و حذف بخار: سیل کردن کامل با استفاده از غلظت 65 درصد طبق 5.4.2.1 مناسب است.

    B.2.1.5 گرم‌کن روغن خارجی: سیستم کاربرد محلی برای تجهیزات و فیلترهای چرخشی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)، بسته به پیکربندی تجهیزات، مناسب است.

    B.2.1.6 سیستم روغن هیدرولیک: سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)،بسته به پیکربندی تجهیزات، مناسب است.
    زیرا مخزن به حداقل 3 دقیقه تخلیه مایع نیاز دارد (به 6.3.3.5.1 مراجعه کنید)، طراحی سیستم دی‌اکسید کربن می‌تواند شامل دو سیستم لوله‌کشی تخلیه باشد، یکی برای مخزن و دیگری برای خطرات متقابل دیگر.

    B.2.1.7 خاموش کردن تجهیزات: (به بند 4.5.4.9 مراجعه کنید.) همچنین باید به ایمنی شخصی (به بخش 4.3 مراجعه کنید) در هنگام طراحی سیستم توجه شود.

    B.3 هودهای اجاق رستوران، کانال‌های متصل و خطرات مرتبط: حفاظت از هودهای اجاق در آشپزخانه و کانال‌ها با ترکیبی از سیستم‌های سیل کردن کامل و سیستم‌های کاربرد محلی انجام می‌شود. کانال یا دودکش و منطقه پلومن بالای فیلترها می‌توانند با سیل کردن کامل محافظت شوند. سطح زیرین فیلترها و هرگونه خطر خاص مانند سرخ‌کن‌های روغن داغ می‌توانند با کاربرد محلی محافظت شوند. ممکن است لازم باشد که حفاظت کاربرد محلی به سطوح زیر هود و سطوح اجاق گسترش یابد اگر خطر تجمع چربی یا چکه کردن از هود یا کانال در شرایط آتش‌سوزی وجود داشته باشد.
    در حفاظت از کانال با استفاده از ضریب سیل کردن توصیه‌شده 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) حجم کانال، در نظر گرفتن یک دمپر در بالای یا پایین کانال ضروری است، با فراهم آوردن شرایط برای بسته شدن خودکار دمپر در ابتدای تخلیه دی‌اکسید کربن. برای کانال‌هایی که ارتفاع آن‌ها بیشتر از 20 فوت (6.1 متر) یا مسیر افقی آن‌ها بیشتر از 50 فوت (15.3 متر) است، گاز در نقاط میانه معرفی می‌شود تا توزیع مناسب آن تضمین شود. با یک دمپر در بالای دودکش، باید یک نازل درست زیر آن نصب شود و نازل‌های اضافی در بالای آن نصب شوند اگر مسیر کانال از دمپر عبور کند. معمولاً یک نازل در منطقه پلومن مورد نیاز است.

    نازل‌ها باید برای پوشش سطح زیرین فیلترها و تخلیه به مدت 30 ثانیه با نرخ سطح پوشش مشخص‌شده در 6.4.3.5 فراهم شوند. در غیر این صورت، مقدار دی‌اکسید کربن مورد نیاز و نرخ‌های کاربردی می‌توانند با استفاده از نازل‌ها یا روش‌های ویژه‌ای که برای این منظور تأیید یا فهرست شده‌اند، تعیین شوند. اگر سطح زیرین هود عمدتاً با یک جداکننده یا سینی چکه‌ای بسته شده باشد، حفاظت می‌تواند با سیل کردن کامل به‌وسیله ضریب 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) انجام شود و مساحت محیط باز جبران گردد. (به 5.3.5 مراجعه کنید.)

    مقادیر مورد نیاز برای حفاظت از سرخ‌کن‌های روغن داغ یا سایر خطرات آتش‌سوزی خاص، یا هر دو، زیر هود باید علاوه بر الزامات قبلی باشد. تمام خطرات در حال تهویه از طریق یک کانال مشترک باید به‌طور همزمان محافظت شوند.

    شناسایی آتش‌سوزی به‌طور خودکار و فعال‌سازی سیستم برای فضاهای پنهان بالای فیلتر و در سیستم کانال الزامی است. همچنین باید در زیر فیلترها بر روی هر سرخ‌کن روغن داغ، تشخیص‌دهنده‌هایی قرار داده شوند.

    شناسایی آتش‌سوزی قابل مشاهده و فعال‌سازی دستی (به بند 4.5.4.5 مراجعه کنید) می‌تواند برای بخش‌های نمایان خطر قابل قبول باشد؛ با این حال، فعال‌سازی از طریق هر یک از روش‌های خودکار یا دستی باید موجب تخلیه کامل سیستم شود. توجه ویژه باید به انتخاب حسگرهای حرارتی صورت گیرد، با در نظر گرفتن سطح دمای عملیاتی عادی و شرایط افزایش دما در تجهیزات اجاق.

    فعال‌سازی سیستم باید به‌طور خودکار دمپرها را ببندد، فن‌های تهویه اجباری را خاموش کند، و شیر اصلی سوخت یا کلید برق را برای تمام تجهیزات پخت مرتبط با هود قطع کند. این دستگاه‌ها باید از نوعی باشند که نیاز به بازنشانی دستی دارند. (به بند 4.5.4.9 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، باید مراقبت ویژه‌ای برای تمیز نگه داشتن حسگرهای حرارتی و نازل‌های تخلیه از تجمع چربی صورت گیرد. به‌طور کلی، مهر و موم‌ها یا درپوش‌های نازل برای جلوگیری از انسداد روزنه‌های نازل مورد نیاز هستند.

    برای اطلاعات بیشتر، به NFPA 96 مراجعه کنید.

    B.4 دستگاه‌های چاپ روزنامه و دستگاه‌های چاپ روتوگراور: دستگاه‌های چاپ روزنامه، روتوگراور و مشابه آن‌ها خطرات زیادی ایجاد می‌کنند به‌دلیل استفاده از حلال‌های بسیار قابل اشتعال در جوهرها، حضور کاغذ خردشده یا غبار اشباع‌شده با جوهر، روان‌کننده‌ها و غیره. علاوه بر واحدهای چاپ، ممکن است کانال‌های تخلیه، تجهیزات ترکیب جوهر و خطرات الکتریکی مرتبط نیز وجود داشته باشند که نیاز به حفاظت دارند. دستگاه‌های چاپ روتوگراور جوهرهای قابل اشتعال‌تری نسبت به دستگاه‌های چاپ روزنامه استفاده می‌کنند و به همراه درام‌های خشک‌کن حرارتی یا دیگر وسایل خشک‌کن طراحی شده‌اند و خطر بیشتری ایجاد می‌کنند. با این حال، روش حفاظت اصلی برای هر دو دستگاه چاپ روتوگراور و روزنامه مشابه است.

    دستگاه‌های چاپ معمولاً به‌صورت ردیفی (خطی) با پوشه‌هایی که به‌طور متناوب قرار می‌گیرند، مرتب شده‌اند. کاغذ می‌تواند از هر دو طرف پوشه‌ها از واحدهای چاپ عبور کند. جرقه‌های الکتریسیته ساکن یک منبع رایج برای ایجاد آتش‌سوزی هستند. گسترش شعله می‌تواند از واحدهای چاپ به سمت پوشه‌ها یا از پوشه‌ها به سمت واحدهای چاپ باشد.

    دستگاه‌های چاپ “باز” یا “بسته” هستند، بسته به اینکه آیا از محافظت‌کننده‌های مه یا پوشش‌ها استفاده می‌شود. در دستگاه‌های چاپ باز، معمولاً یک سیستم تهویه برای حذف مه جوهر از دستگاه مورد نیاز است و این سیستم تهویه نیاز به حفاظت همزمان دارد.

    اتاق‌های چاپ می‌توانند توسط سیستم‌های سیل کامل محافظت شوند؛ با این حال، سیستم‌های نوع کاربرد محلی معمولاً استفاده می‌شوند. اگرچه خط‌های چاپ و واحدهای چاپ فردی یک سری خطرات در معرض هم هستند، تقسیم‌بندی به‌صورت خط‌ها یا گروه‌بندی مناسب درون خطوط برای دلایل اقتصادی معمول است. کانال‌های تهویه، اتاق‌های ذخیره‌سازی جوهر و اتاق‌های کنترل معمولاً با روش‌های سیل کامل مدیریت می‌شوند.

    تمام خطوط چاپ می‌توانند با روش‌های کاربرد محلی محافظت شوند. یک خط چاپ می‌تواند به گروه‌ها تقسیم شود. در همه موارد، سیستم‌ها باید قادر باشند حفاظت خودکار همزمان و مستقل را برای گروه‌های مجاور از خطوط دیگر و همچنین گروه‌های درون‌خطی که ممکن است آتش به آن‌ها گسترش یابد، ارائه دهند. حفاظت باید به‌گونه‌ای طراحی شود که در صورت وقوع آتش نزدیک به محل اتصال گروه‌های مجاور، سیستم‌های محافظت‌کننده هر دو گروه به‌طور همزمان تخلیه شوند.

    در گروه‌های چاپ فردی، نرخ کاربرد دی‌اکسید کربن می‌تواند بر اساس روش نرخ بر مساحت یا نرخ بر حجم باشد. (به بخش‌های 6.4 و 6.5 مراجعه کنید.)

    اگر از روش نرخ بر مساحت برای دستگاه‌های چاپ استفاده شود، مساحت بر اساس طول کامل رول‌ها، شامل فریم‌های انتهایی، و ارتفاع کامل انبار رول‌ها، شامل مخزن جوهر، محاسبه می‌شود. هر دو طرف انبار رول‌ها باید در نظر گرفته شود. دسته‌های رنگی باید به‌طور مشابه محاسبه شوند. در صورتی که از مخازن جوهر خارجی استفاده شود، حفاظت بر اساس مساحت افقی مخزن است. مساحت کف زیر دستگاه چاپ نیز باید محافظت شود.

    در دستگاه‌های چاپ روتوگراور، خشک‌کن‌ها و کانال‌های اتصال با سیل کردن به میزان 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) که در 30 ثانیه تخلیه می‌شوند، محافظت می‌شوند. هنگامی که از روش نرخ بر مساحت برای تعیین مقدار دی‌اکسید کربن مورد نیاز برای پوشه‌ها استفاده می‌شود، دی‌اکسید کربن باید از هر دو طرف درایو و طرف عملیاتی در دو سطح اعمال شود. هر نازل باید مساحتی به عرض 4 فوت (1.2 متر) و ارتفاع 4 فوت (1.2 متر) را پوشش دهد.

    هنگامی که از روش نرخ بر حجم استفاده می‌شود، کل گروه دستگاه‌های چاپی که باید به‌عنوان یک بخش محافظت شوند، می‌تواند به‌عنوان یک حجم در نظر گرفته شود. نیازی به افزودن 2 فوت (0.6 متر) به طرفین هر دستگاه چاپ نیست زمانی که فریم به‌عنوان مانع طبیعی عمل می‌کند. یک پوشه منفرد می‌تواند در این حجم گنجانده شود؛ اما یک پوشه دوطبقه نیاز به یک بلوک حجم اضافی برای گنجاندن طبقه بالایی دارد.

    نازل‌ها باید به‌گونه‌ای قرار داده شوند که سطوح پوشش داده شده را پوشش دهند؛ با این حال، ممکن است قرار دادن دقیق آن‌ها مطابق با فهرست‌ها یا تأییدها امکان‌پذیر نباشد. نازل‌ها باید به‌گونه‌ای قرار داده شوند که از هر دو انتهای رول‌های چاپ تخلیه شوند تا دی‌اکسید کربن را در داخل حجم دستگاه چاپ حفظ کنند. این موضوع در مورد پوشه‌ها نیز صدق می‌کند.

    حفاظت باید به‌گونه‌ای تنظیم شود که زمانی که محافظت‌کننده‌های مه در محل یا خارج از محل قرار دارند، مؤثر باشد.

    مقدار دی‌اکسید کربن مورد نیاز برای یک گروه واحد بر اساس تخلیه با نرخ محاسبه‌شده به مدت 30 ثانیه است. ذخیره‌سازی اضافی باید حداقل به اندازه کافی باشد تا از تمام گروه‌های مجاور که ممکن است درگیر شوند محافظت کند، شامل ذخیره‌ای برای گروهی که آتش در آن شروع می‌شود. در سیستم‌های فشار بالا، یک بانک ذخیره واحد می‌تواند به‌عنوان ذخیره برای چندین بانک اصلی استفاده شود؛ با این حال، بانک اصلی برای یک گروه نمی‌تواند به‌عنوان ذخیره برای گروه دیگر استفاده شود، مگر اینکه به‌طور خاص توسط مرجع صلاحیت تأیید شده باشد.

    تمام سیستم‌ها باید به‌گونه‌ای تنظیم شوند که قابلیت فعال‌سازی خودکار را داشته باشند و وسیله‌ای برای فعال‌سازی دستی کمکی فراهم باشد. حداقل یک حسگر حرارتی باید در هر واحد چاپ و پوشه قرار گیرد، بسته به طراحی واحد خاص.

    به‌دلیل ارتعاشات ذاتی مرتبط با دستگاه‌های چاپ، توجه ویژه‌ای باید به وسایل نصب داده شود تا از آسیب‌های ارتعاشی به لوله‌کشی یا سیم‌کشی سیستم شناسایی جلوگیری شود.

    تشخیص فوری به‌ویژه در حفاظت گروهی اهمیت دارد تا از گسترش آتش به سایر گروه‌ها جلوگیری شود. به‌دلیل نیاز به تشخیص سریع برای جلوگیری از گسترش آتش به گروه‌های مجاور یا فعال‌سازی حسگرهای مجاور، یا هر دو، سیستم تشخیص باید از حسگرهای سریع‌العمل با نرخ افزایش، نرخ جبران‌شده یا معادل آن‌ها استفاده کند. خاموشی کامل دستگاه‌های چاپ، تهویه، پمپ‌ها و منابع حرارتی باید همزمان با عملکرد سیستم انجام شود.

    آلارم‌های صوتی در اتاق چاپ و در هر زیرزمین، چاه یا سطوح پایین‌تری که دی‌اکسید کربن ممکن است در آن‌ها جریان پیدا کند، باید همزمان با عملکرد سیستم به صدا درآید. (به بخش A.4.3 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، توجه ویژه‌ای باید به اطمینان از ادامه موقعیت و هم‌راستایی صحیح اسپرینکلرها در طول فرآیندهای نگهداری معمول دستگاه‌های چاپ داشته باشیم. توجه ویژه‌ای نیز باید به تأثیرات ارتعاش دستگاه‌های چاپ بر روی فعال‌کننده‌های حرارتی و لوله‌کشی یا سیم‌کشی‌های متصل به آن‌ها داشت.

    B.5 چاه‌های باز:
    چاه‌های باز با عمق تا 4 فوت (1.2 متر) یا عمق برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، باید بر اساس کاربرد محلی محافظت شوند. مساحت مورد نظر برای تعیین مقدار دی‌اکسید کربن، مساحت کل کف چاه است به‌جز هر مساحتی که توسط تانک یا تجهیزات دیگری که به‌طور همزمان محافظت می‌شوند و برای آن‌ها مقدار جداگانه محاسبه شده، پوشش داده شده است. اسپرینکلرها باید به‌گونه‌ای قرار داده شوند که پوشش مناسب برای منطقه محافظت‌شده فراهم کنند، طبق داده‌های فهرست یا تأییدیه‌ها. بنابراین، ممکن است لازم باشد اسپرینکلرهای اضافی در مرکز چاه قرار داده شوند.

    چاه‌های باز که عمق آن‌ها از 4 فوت (1.2 متر) بیشتر است یا عمقی برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، می‌توانند بر اساس مساحت با استفاده از نرخ تخلیه 4 پوند/دقیقه-فوت مربع (19.5 کیلوگرم/دقیقه-متر مربع) از مساحت کف و زمان تخلیه 30 ثانیه محافظت شوند. اسپرینکلرها باید در اطراف چاه قرار داده شوند تا دی‌اکسید کربن به‌طور یکنواخت از تمام طرف‌ها اعمال شود. باید دقت شود که تعداد مناسبی از اسپرینکلرها با پرتاب کافی برای رسیدن به نواحی مرکزی چاه‌های بزرگ استفاده شود. به‌طور جایگزین، ممکن است بهتر باشد برخی از اسپرینکلرها به‌گونه‌ای قرار داده شوند که مستقیماً در داخل چاه روی تجهیزات نیازمند حفاظت، مانند پمپ‌ها، موتورها یا سایر تجهیزات حیاتی تخلیه شوند.

    تانک‌های غوطه‌وری با دهانه باز باید به‌طور جداگانه توسط کاربرد محلی محافظت شوند، به‌ویژه زمانی که سطح مایع کمتر از 4 فوت (1.2 متر) یا یک‌چهارم عرض چاه از دهانه باز چاه باشد. نواحی چنین تانک‌هایی که به‌طور جداگانه در داخل چاه محافظت می‌شوند، می‌توانند از مساحت چاه کسر شوند. اشیاءی که از دهانه چاه بالا می‌روند باید با استفاده از مساحت سطح یا روش‌های محصورسازی فرضی محافظت شوند.

    اگر دهانه چاه به‌طور جزئی پوشانده شود به‌طوری که مساحت باز کمتر از 3 درصد حجم مکعبی به‌صورت فوت مربع باشد، مقدار دی‌اکسید کربن مورد نیاز می‌تواند بر اساس روش سیل کامل تعیین شود، با استفاده از مقدار اضافی گاز برای جبران نشت برابر با 1 پوند/فوت مربع (5 کیلوگرم/متر مربع) از مساحت باز.

    برای چاه‌های عمیق‌تر از حداقل عمق مشخص‌شده، اسپرینکلرها باید در سطح دو‌سوم از کف قرار داده شوند، مشروط بر اینکه عامل نرخ تخلیه در برابر فاصله از حد مجاز تجاوز نکند، به‌طوری که خطر پاشش مایعاتی که ممکن است موجود باشند، وجود نداشته باشد. در هر صورت، بهتر است اسپرینکلرها زیر دهانه باز قرار گیرند تا از ورود هوای اضافی به داخل چاه جلوگیری شود. اگر عمق چاه از 20 فوت (6.1 متر) بیشتر باشد، مطلوب است که اسپرینکلرها کمی بالاتر از سطح دو‌سوم از کف قرار گیرند تا از اختلاط مناسب در چاه اطمینان حاصل شود.

    زمانی که مقدار دی‌اکسید کربن بر اساس روش‌های سیل کامل معمول محاسبه می‌شود، اسپرینکلر باید سرعت و اثرات آشفتگی کافی تولید کند تا حجم چاه به‌طور کامل با جو دی‌اکسید کربن و هوا به‌طور کامل پر شود.

    B.6 زیر کف‌های بلند
    استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن به روش سیل کامل برای حفاظت از فضاهای زیرکف که معمولاً در اتاق‌های کامپیوتر و مراکز مشابه الکترونیکی یافت می‌شود، سال‌هاست که به‌طور رایج مورد استفاده قرار می‌گیرد. تجربیات نشان داده است که یک مشکل احتمالی در این نوع حفاظت، نشت بیش‌ازحد مرتبط با فضای زیرکف وجود دارد که می‌تواند به‌دلیل ترکیب کاشی‌های کف سوراخ‌دار و آشفتگی ناشی از تخلیه گاز باشد. بنابراین، مهم است که سیستم به‌گونه‌ای طراحی شود که نشت را جبران کند و تخلیه‌ای نرم برای کاهش آشفتگی فراهم آورد. برای راهنمایی دقیق، باید از تولیدکننده سیستم مشاوره گرفته شود.

    دی‌اکسید کربن، به‌دلیل سنگین‌تر بودن از هوا، تمایل دارد که در فضا باقی بماند و می‌تواند خطراتی برای پرسنلی که برای انجام تعمیرات پس از آتش‌سوزی وارد فضای زیرکف می‌شوند، ایجاد کند. پس از تخلیه سیستم، لازم است که دی‌اکسید کربن به‌طور کامل از فضای زیرکف تخلیه شود پس از آنکه آتش خاموش شد.

    علاوه بر این، اگر هرگونه خدمات یا نگهداری در فضای زیرکف انجام شود، سیستم دی‌اکسید کربن باید قفل شود تا از تخلیه گاز جلوگیری شود.

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM

     

  • NFPA12 پیوست G اطلاعات درباره اثرات گاز دی‌اکسید کربن سیستم اطفاء

    پیوست G اطلاعات عمومی درباره دی‌اکسید کربن
    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاعاتی ارائه شده است.
    G.1 دی‌اکسید کربن به طور متوسط با غلظت حدود ۰.۰۴ درصد حجمی در جو وجود دارد. این ماده همچنین محصول نهایی طبیعی متابولیسم انسان و حیوانات است. دی‌اکسید کربن به چندین روش مهم بر برخی عملکردهای حیاتی تأثیر می‌گذارد، از جمله کنترل تنفس، گشاد شدن و تنگ شدن رگ‌های خونی – به ویژه در مغز – و تنظیم pH مایعات بدن. غلظت دی‌اکسید کربن در هوا نرخ آزادسازی دی‌اکسید کربن از ریه‌ها را کنترل می‌کند و بنابراین بر غلظت دی‌اکسید کربن در خون و بافت‌ها تأثیر می‌گذارد. افزایش غلظت دی‌اکسید کربن در هوا می‌تواند خطرناک شود، زیرا باعث کاهش نرخ آزادسازی دی‌اکسید کربن از ریه‌ها و کاهش دریافت اکسیژن می‌شود. اطلاعات بیشتر در مورد مواجهه با دی‌اکسید کربن را می‌توان از انتشارات شماره 76-194 اداره بهداشت و خدمات انسانی آمریکا (NIOSH) به دست آورد. ملاحظات ایمنی پرسنل در بخش ۴.۳ پوشش داده شده است.
    جدول G.1 اطلاعاتی درباره اثرات حاد سلامتی ناشی از غلظت‌های بالای دی‌اکسید کربن ارائه می‌دهد.

    9k=

    دی‌اکسید کربن یک محصول تجاری استاندارد با کاربردهای فراوان است. این گاز شاید بیشتر به عنوان گازی که به نوشابه‌ها و سایر نوشیدنی‌های گازدار حالت “فیز” می‌دهد، شناخته شده باشد. در کاربردهای صنعتی، دی‌اکسید کربن به دلیل خواص شیمیایی، خواص مکانیکی به عنوان عامل فشاردهنده، یا خواص سرمایشی به صورت یخ خشک استفاده می‌شود.
    در کاربردهای اطفاء حریق، دی‌اکسید کربن دارای چندین ویژگی مطلوب است. این گاز غیرخورنده، بدون آسیب‌رسانی و بدون باقی گذاشتن باقی‌مانده‌ای برای تمیزکاری پس از حریق است. همچنین فشار مورد نیاز برای تخلیه از طریق لوله‌ها و اسپرینکلرها را خود تأمین می‌کند. چون یک گاز است، به راحتی نفوذ کرده و به همه بخش‌های خطر گسترش می‌یابد. دی‌اکسید کربن رسانای الکتریسیته نیست و بنابراین می‌توان از آن در خطرات برقی فعال استفاده کرد. این گاز می‌تواند تقریباً برای تمام مواد قابل احتراق به جز چند فلز فعال، هیدریدهای فلزی و موادی مانند نیترات سلولز که دارای اکسیژن آزاد هستند، به طور مؤثر استفاده شود.
    در شرایط معمول، دی‌اکسید کربن گازی بی‌رنگ و بی‌بو با چگالی حدود ۵۰ درصد بیشتر از چگالی هوا است. بسیاری از افراد ادعا می‌کنند که می‌توانند بوی دی‌اکسید کربن را حس کنند، اما این احتمالاً به دلیل وجود ناخالصی‌ها یا تأثیرات شیمیایی در بینی است. دی‌اکسید کربن به راحتی با فشرده‌سازی و سرمایش به مایع تبدیل می‌شود. با سرمایش و انبساط بیشتر، می‌توان آن را به حالت جامد نیز تبدیل کرد.
    رابطه بین دما و فشار دی‌اکسید کربن مایع در منحنی شکل G.1 نشان داده شده است. با افزایش دمای مایع، فشار نیز افزایش می‌یابد. با افزایش فشار، چگالی بخار بالای مایع افزایش می‌یابد. از سوی دیگر، مایع با افزایش دما منبسط شده و چگالی آن کاهش می‌یابد. در دمای ۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)، مایع و بخار چگالی یکسانی دارند و در نتیجه فاز مایع ناپدید می‌شود. این دما به عنوان دمای بحرانی دی‌اکسید کربن شناخته می‌شود. در دمای زیر دمای بحرانی [۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)]، دی‌اکسید کربن در یک مخزن بسته به صورت بخشی مایع و بخشی گاز است. بالاتر از دمای بحرانی، کاملاً به حالت گاز در می‌آید.
    یکی از ویژگی‌های غیرمعمول دی‌اکسید کربن این است که نمی‌تواند به صورت مایع در فشارهای کمتر از ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)] وجود داشته باشد. این فشار نقطه سه‌گانه است که در آن دی‌اکسید کربن می‌تواند به صورت جامد، مایع یا بخار باشد. زیر این فشار، بسته به دما، دی‌اکسید کربن باید یا به صورت جامد یا گاز باشد.
    اگر فشار در یک مخزن ذخیره‌سازی با تخلیه بخار کاهش یابد، بخشی از مایع تبخیر می‌شود و مایع باقی‌مانده سردتر می‌شود. در فشار ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)]، مایع باقی‌مانده به یخ خشک در دمای ۶۹.۹- درجه فارنهایت (۵۷- درجه سانتی‌گراد) تبدیل می‌شود. کاهش بیشتر فشار به فشار اتمسفری، دمای یخ خشک را به دمای طبیعی ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) کاهش می‌دهد.
    همین فرآیند زمانی اتفاق می‌افتد که دی‌اکسید کربن مایع به اتمسفر تخلیه شود. بخش بزرگی از مایع به بخار تبدیل شده و حجم آن به شدت افزایش می‌یابد. بقیه به ذرات ریز یخ خشک در دمای ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) تبدیل می‌شود. این یخ خشک یا برف باعث می‌شود که تخلیه ظاهری ابری سفیدرنگ داشته باشد. دمای پایین همچنین موجب چگالش بخار آب موجود در هوای مکیده شده می‌شود، به طوری که مه آب معمولی تا مدتی پس از تصعید یخ خشک باقی می‌ماند.
    دی‌اکسید کربن گازی بی‌رنگ، بی‌بو، غیررسانای الکتریکی و بی‌اثر است که یک محیط مناسب برای اطفاء حریق محسوب می‌شود. دی‌اکسید کربن مایع هنگام آزادسازی مستقیم به اتمسفر، به یخ خشک (“برف”) تبدیل می‌شود. گاز دی‌اکسید کربن ۱.۵ برابر سنگین‌تر از هوا است. دی‌اکسید کربن با کاهش غلظت اکسیژن، بخار سوخت، یا هر دو در هوا تا جایی که احتراق متوقف شود، آتش را خاموش می‌کند. (به بخش ۴.۳ مراجعه شود.)

    سیستم‌های اطفاء حریق دی‌اکسید کربن در محدوده این استاندارد برای خاموش کردن آتش‌های مربوط به خطرات خاص یا تجهیزات در کاربری‌های زیر مفید هستند:
    (۱) در جایی که یک محیط بی‌اثر و غیررسانای الکتریکی ضروری یا مطلوب باشد
    (۲) در جایی که پاکسازی سایر محیط‌ها مشکل ایجاد کند
    (۳) در جایی که نصب چنین سیستم‌هایی نسبت به سیستم‌هایی که از محیط‌های دیگر استفاده می‌کنند، اقتصادی‌تر باشد

    برخی از انواع خطرات و تجهیزاتی که سیستم‌های دی‌اکسید کربن می‌توانند به طور رضایت‌بخشی از آن‌ها محافظت کنند شامل موارد زیر است:
    (۱) مواد مایع قابل اشتعال (به بخش ۴.۵.۴.۹ مراجعه شود.)
    (۲) خطرات الکتریکی مانند ترانسفورماتورها، کلیدها، قطع‌کننده‌های مدار، تجهیزات چرخشی و تجهیزات الکترونیکی
    (۳) موتورهایی که از بنزین و سایر سوخت‌های مایع قابل اشتعال استفاده می‌کنند
    (۴) مواد قابل احتراق معمولی مانند کاغذ، چوب و منسوجات
    (۵) جامدات خطرناک

    G.2 اطلاعات بیشتر درباره خواص فیزیکی دی‌اکسید کربن در “راهنمای مهندسی حفاظت از حریق SFPE” قابل دسترسی است.