ملاحظات هنگام نصب بیم دتکتورهای دودی

راهنمای نصب دتکتور اعلام حریق

بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

انواع بیم دتکتور
بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

هزینه نسبی
طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

جریان هوا
جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

مقاومت در برابر حرکت ساختمان
برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

نصب و راه‌اندازی اولیه
همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

مرحله نهایی
مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

تنظیم حساسیت و جبران تغییرات تدریجی
چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

نگهداری و آزمون
یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

نتیجه‌گیری
بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

 

نوشته‌های مشابه

  • راهنمای دتکتورهای دودی مکشی یا اسپیراتینگ ها برای مهندسین

    دتکتور دود مکشی (Aspirating Smoke Detector)

    تمام سیستم‌های دتکتور دود مکشی (ASD) دارای تجهیزات مشابهی هستند، اما نوع فناوری تشخیص آن‌ها متفاوت است. در حال حاضر چند نوع فناوری تشخیص وجود دارد:

    سیستم‌های مبتنی بر لیزر (دارای فیلتر)

    در این روش، از لیزر به‌عنوان منبع نوری در داخل محفظه تشخیص استفاده می‌شود. ابتدا هوا از یک سیستم فیلتراسیون عبور می‌کند تا ذرات بزرگ حذف شوند. سپس نمونه‌ی هوای فیلتر شده از مقابل لیزر عبور داده می‌شود و پراکندگی نور ناشی از ذرات دود توسط یک کلکتور نوری اندازه‌گیری می‌شود. الکترونیک پیشرفته‌ی دتکتور، میزان ذرات دود موجود در محفظه را تعیین می‌کند.

    سیستم‌های مبتنی بر لیزر (بدون فیلتر)

    این روش که معمولاً با عنوان “شمارش ذرات” شناخته می‌شود نیز از لیزر به عنوان منبع نوری استفاده می‌کند. اما در این پیکربندی، هوا بدون عبور از فیلتر مستقیماً وارد محفظه حسگر می‌شود. با عبور هوا از مقابل لیزر، کلکتور نوری تعداد ذرات در اندازه میکرونی مشخص را شمارش می‌کند تا تعیین شود که آیا میزان کافی از ذرات دود وجود دارد یا خیر. الکترونیک پیشرفته این فناوری قادر است بین ذرات معلق گرد و غبار و ذرات دود در نمونه تفاوت قائل شود.

    اتاقک ابری (Cloud Chamber)

    این روش قدیمی‌ترین و ابتدایی‌ترین فناوری مکشی تشخیص دود است. عنصر حسگر آن یک محفظه‌ی مهر و موم‌شده حاوی بخار آب بسیار متراکم است. هنگامی که یک ذره دود باردار با بخار آب متراکم برخورد می‌کند، یونیزه می‌شود. یون‌های ایجاد شده به عنوان هسته‌های تراکم عمل می‌کنند که مه در اطراف آن‌ها شکل می‌گیرد (زیرا بخار آب بسیار متراکم بوده و در آستانه‌ی چگالش قرار دارد). این فرآیند باعث بزرگ‌تر شدن اندازه ذره می‌شود، به‌طوری که از حالت نامرئی (زیر طول موج نور) به حالتی می‌رسد که قابل شناسایی توسط سلول نوری درون محفظه می‌شود.

    حسگر با منبع دوگانه (Dual Source Sensor)

    در این روش، از یک LED آبی برای شناسایی غلظت‌های بسیار پایین دود و از یک لیزر مادون قرمز برای تشخیص موارد مزاحم مانند گرد و غبار استفاده می‌شود که ممکن است باعث آلارم‌های اشتباه شوند. الگوریتم‌های پیشرفته سیگنال‌های هر دو منبع را تفسیر می‌کنند تا مشخص شود که نمونه‌ی هوا حاوی دود است یا فقط گرد و غبار معلق. سطح تشخیص ذرات می‌تواند تا حداقل 0.0015% بر متر (یا 0.00046% بر فوت) کاهش یابد.

    اصول اگزاست (تخلیه هوا) در دتکتور دود مکشی

    در کاربردهای عادی، معمولاً فشار هوا در فضای حفاظت‌شده با فشار هوا (APS) برابر با فشار هوای فضای نصب دتکتور است، و لوله اگزاست از خروجی فشار اگزاست دتکتور (AES) خارج می‌شود. به همین دلیل، نرم‌افزار طراحی که زمان انتقال و حساسیت دتکتور را محاسبه می‌کند، فرض می‌کند که فشار هوای دو فضا برابر است.

    اندازه سوراخ‌های نمونه‌برداری، اندازه لوله، زمان انتقال و سرعت فن مکنده همگی تابعی از حجم هوایی هستند که از محفظه نمونه‌برداری عبور می‌کند. محفظه حسگر برای تشخیص ذرات دود طراحی شده که با سرعت مشخص فن از درون آن عبور می‌کنند.

    • اگر فشار APS بیشتر از AES باشد، سرعت ورود هوا به محفظه حسگر ممکن است بیشتر از سرعت نامی فن شود که می‌تواند بر دقت تشخیص دود اثر مستقیم بگذارد.
    • مهم: اگر AES بیشتر از APS باشد، فشار هوا در حال فشار آوردن به هوای خروجی است و در نتیجه باعث ایجاد مقاومت و کند شدن فن می‌شود. این امر موجب افزایش زمان انتقال و کاهش حجم هوای ورودی به محفظه حسگر می‌گردد.

    نکته: برای حذف تفاوت فشار، باید هوای خروجی دوباره به همان اتاقی که از آن نمونه‌برداری شده بازگردانده شود (مطابق شکل 6 صفحه بعد).

    می‌توان لوله‌ای را به پورت خروجی متصل کرد تا هوای خروجی را از محل واحد دور کند؛ به‌عنوان مثال برای کاهش نویز، کاهش خطر تداخل یا انسداد عمدی، یا بهبود حفاظت محیطی. باید از لوله‌ای با مشخصات مشابه لوله‌های نمونه‌برداری استفاده شود و در تعیین محل خروجی جدید دقت شود تا مسدود شدن تصادفی یا عمدی آن رخ ندهد.

    روش‌های نمونه‌برداری دتکتور حرارتی خطی (ASD)

    برای هدف این راهنما، پنج روش نمونه‌برداری قابل قبول برای تمام کاربردهای ممکن وجود دارد:

    نمونه‌برداری اولیه (Primary Sampling)

    نام این روش گمراه‌کننده است؛ زیرا معمولاً به‌عنوان یک سیستم تکمیلی استفاده می‌شود و نه سیستم تشخیص اصلی. در نمونه‌برداری اولیه، نمونه‌گیری هوا از یک محل خاص یا جایی انجام می‌شود که احتمال حرکت هوا در آن بیشتر است. برای مناطقی با جریان هوای بالا، مانند دیتاسنترها یا اتاق‌های تمیز، محل نمونه‌برداری اولیه در دریچه‌های برگشت هوا، واحدهای هواساز (AHU) یا کانال‌های برگشت هوا قرار دارد.

    نمونه‌برداری ثانویه (Secondary Sampling)

    در این روش، سوراخ‌های نمونه‌برداری در سطح سقف و در مکان‌هایی مشابه با دتکتورهای نقطه‌ای دود نصب می‌شوند. فاصله‌گذاری بین سوراخ‌ها باید مطابق با استاندارد یا آیین‌نامه مربوطه باشد.

    نمونه‌برداری موضعی (Localised Sampling)

    WhatsApp Image 2025 09 30 at 3.50.37 PM

    این روش شامل حفاظت از تجهیزات یا نواحی خاص در یک فضای باز بزرگ است. نمونه‌برداری موضعی ممکن است در سیستم نمونه‌برداری رک‌ها (Rack Sampling) در یک انبار بزرگ باز استفاده شود.

    نمونه‌برداری داخل کابینت
    در این نوع روش نمونه‌برداری، سوراخ‌های مکش هوا به‌گونه‌ای نصب می‌شوند که تجهیزات خاصی را در یک فضای باز بزرگ‌تر پایش کنند. این روش با نمونه‌برداری موضعی متفاوت است، زیرا حجم تحت حفاظت بسیار کوچک‌تر بوده و تجهیز مورد نظر معمولاً به‌صورت خودکفا درون یک کابینت یا رک رایانه‌ای قرار دارد. سامانه تشخیص مکشی (ASD) هوایی را که برای خنک‌سازی تجهیزات استفاده می‌شود، پایش می‌کند. این نوع نمونه‌برداری معمولاً بر روی تجهیزاتی نصب می‌شود که آسیب دیدن آن‌ها در اثر آتش می‌تواند نتایج فاجعه‌باری به دنبال داشته باشد.

    نمونه‌برداری درون کانال
    در این نوع نمونه‌برداری، به‌جای استفاده از آشکارسازهای دود کانال‌نصب سنتی، از سامانه تشخیص مکشی (ASD) استفاده می‌شود تا در صورت وقوع آتش‌سوزی، سامانه تهویه مطبوع (HVAC) مرتبط خاموش شده یا دمپرها بسته شوند تا از گسترش دود جلوگیری گردد. همچنین می‌توان از آن برای تشخیص ذرات دود موجود در هوای خروجی (یا ورودی) استفاده کرد، به‌ویژه زمانی که آشکارسازی با حساسیت بیشتر مورد نیاز است.

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM

     

  • سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی

    1 کلیات

    این فصل تغییرات، اصلاحات و اضافات لازم برای کاربردهای دریایی را بیان می‌کند. تمامی الزامات دیگر NFPA 2001 برای سیستم‌های کشتی‌بردی اعمال می‌شود، مگر اینکه توسط این فصل اصلاح شده باشد. در صورتی که مفاد فصل 13 با مفاد فصل‌های 1 تا 11 تضاد داشته باشد، مفاد فصل 13 اولویت دارد.

    13.1.1 دامنه

    این فصل محدود به کاربردهای سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی است. سیستم‌های بی‌اثرکننده انفجار در توسعه این فصل مد نظر قرار نگرفته‌اند.

    13.2 استفاده و محدودیت‌ها

    13.2.1* سیستم‌های اطفاء حریق با عامل تمیز به‌طور عمده باید برای حفاظت از خطراتی که در محفظه‌ها یا تجهیزاتی هستند که خود شامل یک محفظه برای نگهداری عامل می‌باشد، استفاده شوند.

    13.2.2* علاوه بر محدودیت‌های ذکر شده در 4.2.2، سیستم‌های اطفاء حریق با عامل تمیز نباید برای حفاظت از موارد زیر استفاده شوند:

    1. محفظه‌های بار خشک
    2. بار عمده

    13.2.3 تأثیرات محصولات تجزیه عامل و محصولات احتراق بر مؤثر بودن سیستم اطفاء حریق و تجهیزات باید در هنگام استفاده از عوامل تمیز در محیط‌هایی با دماهای محیطی بالا (مانند اتاق‌های سوزاندن، ماشین‌آلات داغ و لوله‌ها) در نظر گرفته شود.

    13.3 خطرات برای پرسنل

    13.3.1 به‌جز اتاق‌های موتورخانه که در 13.3.1.1 مشخص شده‌اند، سایر فضاهای اصلی ماشین‌آلات باید به‌عنوان فضاهای معمولی اشغال شده در نظر گرفته شوند.

    13.3.1.1 اتاق‌های موتورخانه با حجم 6000 فوت‌مکعب (170 مترمکعب) یا کمتر که فقط برای نگهداری به آن دسترسی دارند، نیازی به رعایت 13.3.1 ندارند.

    13.3.2* برای سیستم‌های دریایی، فاصله‌های الکتریکی باید مطابق با 46CFR، زیرمجموعه J، مهندسی الکتریکی” باشد.

    13.4 تأمین عامل

    13.4.1 این استاندارد از ذخایر اضافی عامل نیاز ندارد.

    13.4.2* ترتیب ذخیره‌سازی مخازن باید مطابق با 5.1.3.1 و 5.1.3.3 تا 5.1.3.5 باشد. در صورتی که تجهیزات در معرض شرایط آب و هوایی شدید قرار گیرند، سیستم باید مطابق با دستورالعمل‌های طراحی و نصب تولیدکننده نصب شود.

    13.4.2.1 به‌جز در مورد سیستم‌هایی که سیلندرهای ذخیره‌سازی در داخل فضای محافظت شده قرار دارند، مخازن فشاری مورد نیاز برای ذخیره‌سازی عامل باید مطابق با 13.4.2.2 باشد.

    13.4.2.2 در صورتی که مخازن عامل خارج از فضای محافظت شده قرار دارند، باید در اتاقی ذخیره شوند که در یک مکان امن و به‌راحتی قابل دسترسی قرار داشته باشد و به‌طور مؤثر تهویه شود به‌طوری‌که مخازن عامل در معرض دماهای محیطی بالاتر از 130°F (55°C) قرار نگیرند. دیوارها و عرشه‌های مشترک بین اتاق‌های ذخیره‌سازی مخازن عامل و فضاهای محافظت شده باید با عایق‌بندی ساختاری کلاس A-60 طبق تعریف 46CFR 72 محافظت شوند. اتاق‌های ذخیره‌سازی مخازن عامل باید بدون نیاز به عبور از فضای محافظت شده قابل دسترسی باشند. درها باید به‌صورت بیرون‌چرخشی باز شوند و دیوارها و عرشه‌ها، از جمله درها و سایر وسایل بستن هرگونه بازشو در آن‌ها، باید مرزهایی بین این اتاق‌ها و فضاهای مجاور باشند و محکم و غیر قابل نفوذ به گاز باشند.

    13.4.3 زمانی که مخازن عامل در فضای اختصاصی ذخیره می‌شوند، درهای خروجی باید به‌صورت بیرون‌چرخشی باز شوند.

    13.4.4 در صورتی که مخازن در معرض رطوبت قرار گیرند، باید به‌طوری نصب شوند که فاصله‌ای حداقل 2 اینچ (51 میلی‌متر) بین عرشه و قسمت پایین مخزن فراهم شود.

    13.4.5 علاوه بر الزامات 5.1.3.4، مخازن باید با حداقل دو بست محکم شوند تا از حرکت ناشی از حرکات کشتی و لرزش جلوگیری شود.

    13.4.6* برای کاربردهای دریایی، تمامی لوله‌ها، شیرها و اتصالات از مواد آهنی باید از داخل و خارج در برابر خوردگی محافظت شوند، مگر اینکه در 13.4.6.1 مجاز باشد.

    13.4.6.1

    بخش‌های بسته لوله و شیرها و اتصالات داخل بخش‌های بسته لوله باید تنها از خارج در برابر خوردگی محافظت شوند.

    13.4.6.2

    جز در مواردی که در 13.4.6.1 مجاز است، قبل از آزمایش پذیرش، داخل لوله‌ها باید تمیز شود بدون اینکه مقاومت آن‌ها در برابر خوردگی تحت تأثیر قرار گیرد.

    13.4.7*

    لوله‌ها، اتصالات، نازل‌ها و آویزها، از جمله مواد پرکننده جوشکاری، در داخل فضای محافظت شده باید دارای دمای ذوب بالاتر از 1600°F (871°C) باشند. استفاده از قطعات آلومینیومی مجاز نیست.

    13.4.8

    لوله‌ها باید حداقل 2 اینچ (51 میلی‌متر) از نازل آخر در هر خط شاخه‌ای فراتر بروند تا از مسدود شدن جلوگیری شود.

    13.5 سیستم‌های شناسایی، راه‌اندازی و کنترل

    13.5.1 کلیات

    13.5.1.1 سیستم‌های شناسایی، راه‌اندازی، آلارم و کنترل باید مطابق با الزامات مقامات صلاحیت‌دار نصب، آزمایش و نگهداری شوند.

    13.5.1.2* برای فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب)،آزادسازی خودکار عامل اطفاء حریق مجاز نیست، مگر اینکه راه‌اندازی سیستم در ایمنی حرکت کشتی تداخل نکند. آزادسازی خودکار عامل اطفاء حریق در هر فضایی که راه‌اندازی سیستم موجب تداخل در ایمنی حرکت کشتی نشود، مجاز است.

    13.5.1.2.1 آزادسازی خودکار برای هر فضای 6000 فوت مکعب (170 مترمکعب) یا کمتر مجاز است.

    13.5.2 شناسایی خودکار

    13.5.2.1 سیستم‌های شناسایی الکتریکی، سیگنال‌دهی، کنترل و راه‌اندازی باید حداقل دو منبع انرژی داشته باشند. منبع اصلی باید از باس اضطراری کشتی باشد. برای کشتی‌هایی که باس اضطراری یا باتری دارند، منبع پشتیبان باید یا باتری هشدار عمومی کشتی یا باتری داخلی سیستم باشد. باتری‌های داخلی باید قادر به راه‌اندازی سیستم برای حداقل 24 ساعت باشند. تمامی منابع انرژی باید تحت نظارت باشند.

    13.5.2.1.1 برای کشتی‌هایی که باس اضطراری یا باتری ندارند، منبع اصلی مجاز است که تأمین انرژی اصلی الکتریکی کشتی باشد.

    13.5.2.2 علاوه بر الزامات ذکر شده در بخش 9.3، مدارهای راه‌اندازی نباید از داخل فضای محافظت شده عبور کنند، مگر در سیستم‌های دریایی که راه‌اندازی الکتریکی دستی استفاده می‌شود.

    13.5.2.2.1 برای سیستم‌هایی که با 13.5.2.4 مطابقت دارند، عبور مدارهای راه‌اندازی از داخل فضای محافظت شده مجاز است.

    13.5.2.3*

    راه‌اندازی دستی برای سیستم‌ها نباید قادر به اجرا شدن با یک اقدام واحد باشد. جز در مواردی که در 13.5.2.3.1 مشخص شده است، ایستگاه‌های راه‌اندازی دستی باید در یک محفظه قرار گیرند.

    13.5.2.3.1

    راه‌اندازی دستی باید به‌صورت راه‌اندازی دستی محلی در محل سیلندرها مجاز باشد.

    13.5.2.4

    سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی دستی در مسیر اصلی خروجی خارج از فضای محافظت‌شده داشته باشند. علاوه بر این، سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند و سیلندرهایی در داخل فضای محافظت‌شده دارند و همچنین سیستم‌هایی که فضاهای ماشین‌آلات اصلی بدون نظارت را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی در یک ایستگاه کنترل که به‌طور مداوم نظارت می‌شود، خارج از فضای محافظت‌شده داشته باشند.

    13.5.2.4.1

    سیستم‌هایی که فضاهای 6000 فوت مکعب (170 مترمکعب) یا کمتر را محافظت می‌کنند، مجاز هستند که یک ایستگاه راه‌اندازی واحد در یکی از مکان‌های توضیح داده‌شده در 13.5.2.4 داشته باشند.

    13.5.2.5

    نور اضطراری باید برای ایستگاه‌های راه‌اندازی از راه دور که سیستم‌های محافظت‌کننده از فضاهای ماشین‌آلات اصلی را سرویس می‌دهند، فراهم شود. تمامی دستگاه‌های عملیات دستی باید برچسب‌گذاری شوند تا خطرات محافظت‌شده را شناسایی کنند. علاوه بر این، اطلاعات زیر باید فراهم شود:

    1. دستورالعمل‌های عملیاتی
    2. مدت زمان تأخیر
    3. اقداماتی که باید در صورت عدم عملکرد سیستم انجام شود
    4. اقدامات دیگری که باید انجام شود مانند بستن دریچه‌ها و گرفتن شمارش سرنشینان

    13.5.2.5.1

    برای سیستم‌هایی که سیلندرها را در داخل فضای محافظت‌شده دارند، باید یک وسیله برای نشان دادن تخلیه سیستم در ایستگاه راه‌اندازی از راه دور فراهم شود.

    13.6 الزامات اضافی برای سیستم‌های محافظت‌کننده از خطرات کلاس B بزرگتر از 6000 فوت مکعب (170 مترمکعب) با سیلندرهای ذخیره‌شده در داخل فضای محافظت‌شده.

    13.6.1*

    یک سیستم شناسایی آتش خودکار باید در فضای محافظت‌شده نصب شود تا هشدار اولیه برای آتش‌سوزی ارائه دهد و از خسارات بالقوه به سیستم اطفاء حریق قبل از فعال شدن دستی آن جلوگیری کند. سیستم شناسایی باید در صورت شناسایی آتش، آلارم‌های شنیداری و بصری را در فضای محافظت‌شده و بر روی پل هدایت کشتی فعال کند. تمامی دستگاه‌های شناسایی و آلارم باید از نظر الکتریکی برای پیوستگی تحت نظارت باشند و هرگونه مشکل باید در پل هدایت کشتی اعلام شود.

    13.6.2*

    مدارهای برق متصل به مخازن باید برای شرایط خرابی و از دست دادن برق تحت نظارت باشند. باید آلارم‌های بصری و شنیداری برای نشان دادن این وضعیت فراهم شود و آلارم‌ها باید در پل هدایت کشتی اعلام شوند.

    13.6.3*

    در داخل فضای محافظت‌شده، مدارهای الکتریکی که برای آزادسازی سیستم ضروری هستند باید در برابر حرارت مقاوم باشند، مانند کابل‌های معدنی با عایق مطابق با ماده 332 از NFPA 70، یا معادل آن. سیستم‌های لوله‌کشی ضروری برای آزادسازی سیستم‌هایی که برای عملیات هیدرولیکی یا پنوماتیکی طراحی شده‌اند باید از فولاد یا مواد مقاوم در برابر حرارت معادل آن باشند.

    13.6.4*

    چیدمان‌های مخازن و مدارهای الکتریکی و لوله‌کشی که برای آزادسازی هر سیستم ضروری هستند، باید به‌گونه‌ای باشند که در صورت آسیب به هر یک از خطوط آزادسازی برق به دلیل آتش‌سوزی یا انفجار در فضای محافظت‌شده (یعنی مفهوم خطای واحد)، تمام بار اطفاء حریق مورد نیاز برای آن فضا هنوز بتواند تخلیه شود.

    13.6.5*

    مخازن باید برای کاهش فشار ناشی از نشت و تخلیه تحت نظارت باشند. باید سیگنال‌های بصری و شنیداری در فضای محافظت‌شده و یا در پل هدایت کشتی یا در فضایی که تجهیزات کنترل آتش متمرکز است، برای نشان دادن وضعیت فشار پایین فراهم شود.

    13.6.6*

    در داخل فضای محافظت‌شده، مدارهای الکتریکی ضروری برای آزادسازی سیستم باید با استانداردهای Class A طبق NFPA 72 طراحی شوند.

    13.7 پوشش

    13.7.1*

    برای جلوگیری از خروج ماده اطفاء حریق از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید یکی از طراحی‌های زیر را داشته باشند:

    1. به‌طور دائم مهر و موم‌شده
    2. مجهز به بسته‌شونده‌های خودکار
    3. مجهز به بسته‌شونده‌های دستی که با یک مدار هشدار برای نشان دادن زمانی که این بسته‌شونده‌ها هنگام فعال‌سازی سیستم مهر و موم نشده‌اند، تجهیز شده‌اند.

    13.7.1.1

    در مواردی که حبس ماده اطفاء حریق عملی نباشد یا در صورتی که سوخت بتواند از یک بخش به بخش دیگر جریان یابد (مانند از طریق بیلج)، محافظت باید گسترش یابد تا بخش‌های مجاور یا مناطق کاری متصل شده را شامل شود.

    13.7.2*

    قبل از تخلیه ماده اطفاء حریق، تمامی سیستم‌های تهویه باید بسته و ایزوله شوند تا از انتقال ماده به دیگر بخش‌ها یا خارج از کشتی جلوگیری شود. باید از خاموش‌شونده‌های خودکار یا خاموش‌شونده‌های دستی که توسط یک نفر از مکانی که ایستگاه تخلیه ماده اطفاء حریق در آن قرار دارد، قابل بسته شدن باشد، استفاده شود.

    13.8 الزامات غلظت طراحی

    13.8.1 ترکیب سوخت‌ها

    برای ترکیب سوخت‌ها، غلظت طراحی باید از مقدار اطفاء شعله برای سوختی که بیشترین غلظت را نیاز دارد، استخراج شود.

    13.8.2 غلظت طراحی

    برای هر سوخت خاص، غلظت طراحی که در 13.8.3 ذکر شده است باید استفاده شود.

    13.8.3 اطفاء شعله

    حداقل غلظت طراحی برای مایعات آتش‌زا و قابل اشتعال کلاس B باید طبق دستورالعمل‌های ذکر شده در IMO MSC/Circ. 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” طبقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری، که به‌روزرسانی‌شده توسط IMO MSC.1/Circ. 1267، اصلاحات دستورالعمل‌ها برای تأیید سیستم‌های گاز اطفاء حریق ثابت معادل” است، تعیین شود.

    13.8.4* مقدار کل سیلابی

    مقدار ماده اطفاء حریق باید بر اساس حجم خالص فضای محافظت‌شده و مطابق با الزامات بند 5 از IMO MSC/Circular 848 تعیین شود.

    13.8.5* مدت زمان محافظت

    مهم است که غلظت طراحی ماده اطفاء حریق نه تنها باید تحقق یابد بلکه باید برای مدت زمان کافی برای اقدام اضطراری موثر توسط پرسنل آموزش‌دیده کشتی حفظ شود. در هیچ موردی مدت زمان نگهداری نباید کمتر از 15 دقیقه باشد.

    13.9 سیستم توزیع

    13.9.1 نرخ کاربرد

    حداکثر نرخ طراحی کاربرد باید بر اساس مقدار ماده اطفاء حریق مورد نیاز برای غلظت دلخواه و زمان لازم برای دستیابی به آن غلظت تعیین شود.

    13.9.2 زمان تخلیه

    13.9.2.1

    زمان تخلیه برای مواد هالوکربنی نباید از 10 ثانیه بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

    13.9.2.2

    برای مواد هالوکربنی، زمان تخلیه باید به‌عنوان زمانی تعریف شود که 95 درصد از جرم ماده اطفاء حریق [در دمای 70°F (21°C)] از نازل‌ها تخلیه شده باشد، که برای دستیابی به غلظت طراحی حداقل ضروری است.

    13.9.2.3

    زمان تخلیه برای مواد گاز بی‌اثر نباید از 120 ثانیه برای 85 درصد غلظت طراحی بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

    13.10 انتخاب و موقعیت نازل

    برای فضاهایی که در 13.10.1 شناسایی نشده‌اند، نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند. محدودیت‌ها باید بر اساس آزمایش‌های انجام‌شده طبق IMO MSC/Circular 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” مطابقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری تعیین شوند. فاصله نازل‌ها، پوشش منطقه‌ای، ارتفاع و هم‌راستایی نباید از محدودیت‌ها تجاوز کند.

    13.10.1

    برای فضاهایی که فقط سوخت‌های کلاس A وجود دارند، محل قرارگیری نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده برای نازل‌ها باشد.

    13.11 بازرسی و آزمایش

    حداقل سالیانه، تمامی سیستم‌ها باید توسط پرسنل متخصص بازرسی و آزمایش شوند تا عملکرد صحیح آن‌ها تضمین شود. آزمایش‌های تخلیه الزامی نیستند.

    13.11.1

    گزارش بازرسی همراه با توصیه‌ها باید به فرمانده کشتی و نماینده مالک ارائه شود. این گزارش باید برای بازرسی توسط مقامات ذی‌صلاح در دسترس باشد.

    13.11.2

    حداقل سالیانه، مقدار ماده اطفاء حریق در مخازن قابل بازسازی باید توسط پرسنل متخصص بررسی شود. فشار مخزن باید حداقل ماهی یک بار توسط خدمه کشتی تأیید و ثبت شود.

    13.11.3*

    برای مواد هالوکربنی تمیز، اگر یک مخزن بیش از 5 درصد از ماده اطفاء حریق را از دست دهد یا فشار آن بیش از 10 درصد کاهش یابد، باید دوباره پر شود یا تعویض شود.

    13.11.3.1*

    اگر یک مخزن ماده گاز بی‌اثر فشار خود را بیشتر از 5 درصد از دست دهد، باید دوباره پر شود یا تعویض شود. زمانی که از گیج‌های فشار برای این منظور استفاده می‌شود، آن‌ها باید حداقل سالیانه با یک دستگاه کالیبره مقایسه شوند.

    13.11.4

    پیمانکار نصب باید دستورالعمل‌هایی برای ویژگی‌های عملیاتی و روش‌های بازرسی خاص برای سیستم ماده تمیز نصب‌شده روی کشتی فراهم کند.

    13.12 تأیید نصب‌ها

    قبل از پذیرش سیستم، مستندات فنی مانند راهنمای طراحی سیستم، گزارش‌های آزمایش یا گزارش فهرست‌شده باید به مقامات ذی‌صلاح ارائه شود. این مستندات باید نشان دهند که سیستم و اجزای آن با یکدیگر سازگار بوده، در محدوده‌های آزمایش‌شده مورد استفاده قرار می‌گیرند و برای استفاده دریایی مناسب هستند.

    13.12.1 وظایف سازمان فهرست‌بندی

    سازمان فهرست‌بندی باید عملکردهای زیر را انجام دهد:

    1. تأیید اینکه آزمایش‌های آتش‌سوزی مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
    2. تأیید اینکه آزمایش‌های اجزا مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
    3. بازبینی برنامه تضمین کیفیت اجزاء.
    4. بازبینی دستورالعمل طراحی و نصب.
    5. شناسایی محدودیت‌های سیستم و اجزاء.
    6. تأیید محاسبات جریان.
    7. تأیید یکپارچگی و قابلیت اطمینان سیستم به‌عنوان یک کل.
    8. داشتن یک برنامه پیگیری.
    9. انتشار فهرستی از تجهیزات.

    13.13 آزمایش فشار دوره‌ای

    آزمایشی طبق بند 10.4.15 باید در فواصل زمانی 24 ماهه انجام شود. برنامه آزمایش دوره‌ای باید شامل آزمایش عملیاتی تمامی آلارم‌ها، کنترل‌ها و تأخیرهای زمانی باشد.

    13.14 انطباق

    سیستم‌های الکتریکی باید مطابق با زیرشاخه 46 CFR بخش 1 باشند. برای کشتی‌های کانادایی، نصب‌های الکتریکی باید مطابق با TP 127 E، استانداردهای الکتریکی ایمنی کشتی‌ها انجام شوند.

  • NFPA12 پیوست G اطلاعات درباره اثرات گاز دی‌اکسید کربن سیستم اطفاء

    پیوست G اطلاعات عمومی درباره دی‌اکسید کربن
    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاعاتی ارائه شده است.
    G.1 دی‌اکسید کربن به طور متوسط با غلظت حدود ۰.۰۴ درصد حجمی در جو وجود دارد. این ماده همچنین محصول نهایی طبیعی متابولیسم انسان و حیوانات است. دی‌اکسید کربن به چندین روش مهم بر برخی عملکردهای حیاتی تأثیر می‌گذارد، از جمله کنترل تنفس، گشاد شدن و تنگ شدن رگ‌های خونی – به ویژه در مغز – و تنظیم pH مایعات بدن. غلظت دی‌اکسید کربن در هوا نرخ آزادسازی دی‌اکسید کربن از ریه‌ها را کنترل می‌کند و بنابراین بر غلظت دی‌اکسید کربن در خون و بافت‌ها تأثیر می‌گذارد. افزایش غلظت دی‌اکسید کربن در هوا می‌تواند خطرناک شود، زیرا باعث کاهش نرخ آزادسازی دی‌اکسید کربن از ریه‌ها و کاهش دریافت اکسیژن می‌شود. اطلاعات بیشتر در مورد مواجهه با دی‌اکسید کربن را می‌توان از انتشارات شماره 76-194 اداره بهداشت و خدمات انسانی آمریکا (NIOSH) به دست آورد. ملاحظات ایمنی پرسنل در بخش ۴.۳ پوشش داده شده است.
    جدول G.1 اطلاعاتی درباره اثرات حاد سلامتی ناشی از غلظت‌های بالای دی‌اکسید کربن ارائه می‌دهد.

    9k=

    دی‌اکسید کربن یک محصول تجاری استاندارد با کاربردهای فراوان است. این گاز شاید بیشتر به عنوان گازی که به نوشابه‌ها و سایر نوشیدنی‌های گازدار حالت “فیز” می‌دهد، شناخته شده باشد. در کاربردهای صنعتی، دی‌اکسید کربن به دلیل خواص شیمیایی، خواص مکانیکی به عنوان عامل فشاردهنده، یا خواص سرمایشی به صورت یخ خشک استفاده می‌شود.
    در کاربردهای اطفاء حریق، دی‌اکسید کربن دارای چندین ویژگی مطلوب است. این گاز غیرخورنده، بدون آسیب‌رسانی و بدون باقی گذاشتن باقی‌مانده‌ای برای تمیزکاری پس از حریق است. همچنین فشار مورد نیاز برای تخلیه از طریق لوله‌ها و اسپرینکلرها را خود تأمین می‌کند. چون یک گاز است، به راحتی نفوذ کرده و به همه بخش‌های خطر گسترش می‌یابد. دی‌اکسید کربن رسانای الکتریسیته نیست و بنابراین می‌توان از آن در خطرات برقی فعال استفاده کرد. این گاز می‌تواند تقریباً برای تمام مواد قابل احتراق به جز چند فلز فعال، هیدریدهای فلزی و موادی مانند نیترات سلولز که دارای اکسیژن آزاد هستند، به طور مؤثر استفاده شود.
    در شرایط معمول، دی‌اکسید کربن گازی بی‌رنگ و بی‌بو با چگالی حدود ۵۰ درصد بیشتر از چگالی هوا است. بسیاری از افراد ادعا می‌کنند که می‌توانند بوی دی‌اکسید کربن را حس کنند، اما این احتمالاً به دلیل وجود ناخالصی‌ها یا تأثیرات شیمیایی در بینی است. دی‌اکسید کربن به راحتی با فشرده‌سازی و سرمایش به مایع تبدیل می‌شود. با سرمایش و انبساط بیشتر، می‌توان آن را به حالت جامد نیز تبدیل کرد.
    رابطه بین دما و فشار دی‌اکسید کربن مایع در منحنی شکل G.1 نشان داده شده است. با افزایش دمای مایع، فشار نیز افزایش می‌یابد. با افزایش فشار، چگالی بخار بالای مایع افزایش می‌یابد. از سوی دیگر، مایع با افزایش دما منبسط شده و چگالی آن کاهش می‌یابد. در دمای ۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)، مایع و بخار چگالی یکسانی دارند و در نتیجه فاز مایع ناپدید می‌شود. این دما به عنوان دمای بحرانی دی‌اکسید کربن شناخته می‌شود. در دمای زیر دمای بحرانی [۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)]، دی‌اکسید کربن در یک مخزن بسته به صورت بخشی مایع و بخشی گاز است. بالاتر از دمای بحرانی، کاملاً به حالت گاز در می‌آید.
    یکی از ویژگی‌های غیرمعمول دی‌اکسید کربن این است که نمی‌تواند به صورت مایع در فشارهای کمتر از ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)] وجود داشته باشد. این فشار نقطه سه‌گانه است که در آن دی‌اکسید کربن می‌تواند به صورت جامد، مایع یا بخار باشد. زیر این فشار، بسته به دما، دی‌اکسید کربن باید یا به صورت جامد یا گاز باشد.
    اگر فشار در یک مخزن ذخیره‌سازی با تخلیه بخار کاهش یابد، بخشی از مایع تبخیر می‌شود و مایع باقی‌مانده سردتر می‌شود. در فشار ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)]، مایع باقی‌مانده به یخ خشک در دمای ۶۹.۹- درجه فارنهایت (۵۷- درجه سانتی‌گراد) تبدیل می‌شود. کاهش بیشتر فشار به فشار اتمسفری، دمای یخ خشک را به دمای طبیعی ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) کاهش می‌دهد.
    همین فرآیند زمانی اتفاق می‌افتد که دی‌اکسید کربن مایع به اتمسفر تخلیه شود. بخش بزرگی از مایع به بخار تبدیل شده و حجم آن به شدت افزایش می‌یابد. بقیه به ذرات ریز یخ خشک در دمای ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) تبدیل می‌شود. این یخ خشک یا برف باعث می‌شود که تخلیه ظاهری ابری سفیدرنگ داشته باشد. دمای پایین همچنین موجب چگالش بخار آب موجود در هوای مکیده شده می‌شود، به طوری که مه آب معمولی تا مدتی پس از تصعید یخ خشک باقی می‌ماند.
    دی‌اکسید کربن گازی بی‌رنگ، بی‌بو، غیررسانای الکتریکی و بی‌اثر است که یک محیط مناسب برای اطفاء حریق محسوب می‌شود. دی‌اکسید کربن مایع هنگام آزادسازی مستقیم به اتمسفر، به یخ خشک (“برف”) تبدیل می‌شود. گاز دی‌اکسید کربن ۱.۵ برابر سنگین‌تر از هوا است. دی‌اکسید کربن با کاهش غلظت اکسیژن، بخار سوخت، یا هر دو در هوا تا جایی که احتراق متوقف شود، آتش را خاموش می‌کند. (به بخش ۴.۳ مراجعه شود.)

    سیستم‌های اطفاء حریق دی‌اکسید کربن در محدوده این استاندارد برای خاموش کردن آتش‌های مربوط به خطرات خاص یا تجهیزات در کاربری‌های زیر مفید هستند:
    (۱) در جایی که یک محیط بی‌اثر و غیررسانای الکتریکی ضروری یا مطلوب باشد
    (۲) در جایی که پاکسازی سایر محیط‌ها مشکل ایجاد کند
    (۳) در جایی که نصب چنین سیستم‌هایی نسبت به سیستم‌هایی که از محیط‌های دیگر استفاده می‌کنند، اقتصادی‌تر باشد

    برخی از انواع خطرات و تجهیزاتی که سیستم‌های دی‌اکسید کربن می‌توانند به طور رضایت‌بخشی از آن‌ها محافظت کنند شامل موارد زیر است:
    (۱) مواد مایع قابل اشتعال (به بخش ۴.۵.۴.۹ مراجعه شود.)
    (۲) خطرات الکتریکی مانند ترانسفورماتورها، کلیدها، قطع‌کننده‌های مدار، تجهیزات چرخشی و تجهیزات الکترونیکی
    (۳) موتورهایی که از بنزین و سایر سوخت‌های مایع قابل اشتعال استفاده می‌کنند
    (۴) مواد قابل احتراق معمولی مانند کاغذ، چوب و منسوجات
    (۵) جامدات خطرناک

    G.2 اطلاعات بیشتر درباره خواص فیزیکی دی‌اکسید کربن در “راهنمای مهندسی حفاظت از حریق SFPE” قابل دسترسی است.

  • اصول عملکرد بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.31 AM

    این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

    فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

    بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

    WhatsApp Image 2025 09 14 at 9.19.31 AM1

    بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

    از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM

    تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

    لوازم جانبی  بیم دتکتور دودی اعلام حریق

    لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

    ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

    برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

    کاربرد صحیح بیم دتکتور دودی اعلام حریق

    مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

    اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

    دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

    بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

    ارتفاع سقف در بیم دتکتور دودی اعلام حریق

    حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

    اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

    در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

    محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

    با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

    تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

    مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

    بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

    استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.32 AM1
    استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM2

    محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

    یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

    WhatsApp Image 2025 09 14 at 9.19.33 AM

    اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

    WhatsApp Image 2025 09 14 at 9.19.33 AM1

    عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

    حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.34 AM

    هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

    مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

    استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

    • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
      (NFPA 72-1999, 2-3.4.5.2)
    • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
      (NFPA 72-1999, 2-3.4.4)
    • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
      (NFPA 72-1999, 2-3.4.4)
    • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
    • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
      (NFPA 72-1999, 2-3.4.6.1)

    نصب  بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

    از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

    این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

    فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

    • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
    • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

    با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

    در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

    توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

    سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

    • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
    • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
    • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
    • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
    • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
    • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
    • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

    در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.

  • معرفی دتکتورهای تاندا

    WhatsApp Image 2025 09 28 at 3.15.10 PM

    بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

    مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

    WhatsApp Image 2025 09 28 at 3.15.10 PM1

    در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

    در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

    در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

    از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

    WhatsApp Image 2025 09 28 at 3.15.10 PM2

    هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

    از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

    بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

    WhatsApp Image 2025 09 28 at 3.15.11 PM

    بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

    اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

    WhatsApp Image 2025 09 28 at 3.15.11 PM1

    از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

    برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

    قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

    برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

    تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

    وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.