دتکتورهای شعله: کلید یک سیستم مؤثر اطفای حریق

ImageForArticle 3016 17099101780485634

اولین گام در مقابله با آتش‌سوزی، شناسایی به موقع وقوع آن است که بهترین راه برای این کار، انتخاب و به‌کارگیری دتکتورهای مناسب برای تشخیص شعله و در عین حال نادیده گرفتن شرایط هشدار کاذب می‌باشد.

مقدمه
بسیاری از کارخانه‌ها و تاسیسات فرآیندی مقادیر زیادی مایعات و گازهای قابل اشتعال و حتی انفجاری به عنوان محصولات، مواد اولیه یا سوخت‌ها دارند. حتی وقتی بهترین روش‌ها به دقت رعایت شوند، گاهی خطاهای تجهیزات یا اپراتورها باعث می‌شود این مواد از محفظه خود خارج شده و با هوا مخلوط شوند که منجر به آتش‌سوزی می‌شود.

در حالی که اکثر مردم درباره فجایع انفجار و آتش‌سوزی‌های بزرگ شنیده‌اند، بسیاری از حوادث بالقوه در همان مراحل اولیه با فعال شدن دتکتور شعله و آغاز سیستم خودکار اطفای حریق مهار می‌شوند. این سیستم منبع سوخت را قطع کرده و آتش را خاموش می‌کند، معمولاً با استفاده از فومی خاص، تا حداقل آسیب به تجهیزات، صدمات جانی و اثرات زیست‌محیطی را فراهم کند. دتکتور شعله همچنین پرسنل پاسخ‌دهنده اولیه را مطلع می‌کند تا سریعاً به محل حادثه برسند.

دستیابی به چنین نتیجه مثبتی مستلزم سیستم‌های ایمنی مؤثر و آموزش پرسنل است. در اولویت قرار دادن این موضوع، این سیستم‌ها باید بتوانند به سرعت شروع حریق را تشخیص دهند و به‌موقع مراحل اصلاحی صحیح را فعال کنند تا حادثه فرصت تشدید نیابد

 

تشخیص شعله‌ها
انسان‌ها آتش را با دیدن نور مرئی آن و احساس حرارت تابیده شده تشخیص می‌دهند. اما هر کسی که ماهیت آتش را مطالعه کرده باشد می‌داند که سوخت‌های مختلف می‌توانند انواع بسیار متفاوتی از آتش ایجاد کنند. الکل در حال سوختن نسبت به نفت در حال سوختن تقریباً نامرئی است. خوشبختانه، ابزارهایی که برای تشخیص شعله طراحی شده‌اند محدودیت چشم انسان را ندارند. دتکتورشعله‌ها می‌توانند تابش‌های داغ حاصل از محصولات احتراق، رادیکال‌ها و گونه‌های دیگر را در بخش‌های مختلف طیف الکترومغناطیسی جستجو کنند و در صورت قرارگیری مؤثر، ظرف چند ثانیه واکنش نشان دهند.

اکثر محصولاتی که به عنوان قابل اشتعال شناخته می‌شوند حاوی کربن هستند و بنابراین دی‌اکسید کربن را به عنوان محصول اصلی تولید می‌کنند. با این حال، کربن لازم نیست که سوخت باشد، همانطور که در محصولاتی غیرآلی مانند هیدروژن، آمونیاک، اکسیدهای فلزی، سیلان و غیره دیده می‌شود. بسیاری از اینها حاوی هیدروژن بوده و بنابراین بخار آب تولید می‌کنند. الکل‌ها، هیدروکربن‌ها و بسیاری از سوخت‌های دیگر هم هیدروژن و هم کربن دارند و بنابراین هر دو محصول را تولید می‌کنند.

صرف‌نظر از منبع سوخت، شعله‌ها و گازهای داغ حاصل تابش الکترومغناطیسی در طول‌موج‌های مختلف (شکل ۲) از فرابنفش (UV)، طیف مرئی تا مادون قرمز (IR) ایجاد می‌کنند. مقدار و طول‌موج این تابش بستگی به منبع سوخت دارد. دی‌اکسید کربن داغ دارای قله شدید در ۴.۲ تا ۴.۵ میکرومتر و بخار آب داغ در ۲.۷ میکرومتر است. دتکتورشعله‌ها معمولاً برای تشخیص تابش نوری در این طول‌موج‌ها طراحی می‌شوند که الگوهای شدت آنها در شعله‌های باز رایج است.

 

کارخانه‌های قدیمی بیشتر به اپراتورهای انسانی برای اعلام هشدار و شروع عملیات اطفای حریق وابسته بودند، اغلب به دلیل کمبود دتکتورهای شعله مؤثر. اما با کاهش تعداد کارکنان در اکثر کارخانه‌ها و بهبود چشمگیر دتکتورهای شعله، سیستم‌های خودکار به بهترین روش برای آغاز عملیات تبدیل شده‌اند.

فناوری‌های تشخیص حریق اشکال مختلفی دارند. در فضاهای مسکونی و تجاری، دتکتورهای دود وجود دارند که به دنبال محصولات خاص احتراق یا تیرگی هوا می‌گردند، اما این دتکتورها به فضاهای بسته نیاز دارند تا میزان کافی از دود یا ذرات به حد قابل تشخیص برسد که زمان‌بر است. دتکتورهای حرارتی نیز همین مشکل را دارند. از آنجایی که کارخانه‌های فرآیندی اغلب باز به فضای بیرون هستند، دتکتورهای دود ممکن است برای هشدار زودهنگام مناسب نباشند.

سریع‌ترین روش برای تشخیص حریق، شناسایی شعله است. شعله‌ها بلافاصله هنگام سوختن گازها یا مایعات شکل می‌گیرند و نیازی به انتظار برای تجمع محصولات احتراق یا افزایش حرارت نیست. اگرچه این مفهوم ساده است، اما توانایی شناسایی دقیق شعله با سرعت پاسخ‌دهی بالا چالش‌برانگیز است.

WhatsApp Image 2025 09 24 at 3.21.18 AM

اجتناب از هشدارهای کاذب
شرایطی که دتکتورشعله به آن‌ها واکنش نشان می‌دهد همیشه محدود به نوع آتش‌سوزی‌هایی نیست که تأسیسات نگران آن هستند. دی‌اکسید کربن و بخار آب داغ ممکن است توسط اگزوز کامیون یا موتور ثابت ایجاد شوند. نور فرابنفش می‌تواند توسط جوشکار یا بازتاب نور خورشید تولید شود. اگر دتکتورشعله این موارد را به اشتباه به عنوان آتش واقعی تشخیص دهد و منجر به صدور هشدار و فعال‌سازی خودکار سیستم‌های کنترل برای خاموش کردن آتش شود، این واکنش می‌تواند بسیار پرهزینه و مزاحم باشد و احتمالاً منجر به ثبت یک حادثه شود.

علاوه بر پاکسازی، تولید متوقف می‌شود و در بسیاری از موارد برای مدت طولانی پس از آماده شدن تمام سیستم‌ها، به دلیل دوره انتظار برای تحقیقات علت ریشه‌ای، گزارش‌های نظارتی و سایر مجوزهای لازم برای راه‌اندازی مجدد، توقف ادامه می‌یابد. به دلیل این موارد و الزامات دیگر، هشدار کاذب می‌تواند تقریباً به اندازه یک آتش واقعی مزاحمت ایجاد کند.

این واقعیت باعث توسعه دتکتورشعله‌هایی شده که قادر به تشخیص و رد هشدارهای کاذب هستند و نیاز به تنظیمات نادرست و نامناسب توسط پرسنل را کاهش می‌دهند. یکی از رایج‌ترین، اگرچه نامناسب‌ترین روش‌ها، کاهش حساسیت دتکتورشعله است که به منظور کاهش احتمال هشدار کاذب انجام می‌شود. این کار پوشش تشخیص را کاهش می‌دهد و در یک حادثه در حال پیشرفت، آتش باید به حدی برسد که دتکتور تنظیم‌شده پایین‌تر فعال شود، که مبارزه و خاموش کردن آن را سخت‌تر می‌کند.

راه‌حل بهتر اما پرهزینه‌تر، استفاده از روش اثبات شده به کارگیری چندین دتکتورشعله در قالب یک سیستم رأی‌گیری است. این روش در سایر سیستم‌های حیاتی ایمنی متداول است اما هزینه پیاده‌سازی و یکپارچه‌سازی آن بالا است. با این وجود، به کارگیری چند دتکتور و سیستم‌های پشتیبان معمولاً هزینه کمتری نسبت به مدیریت یک هشدار کاذب واحد دارد.

نیاز به استفاده از این روش‌ها با پیشرفت سیستم‌های پردازش سیگنال دتکتورشعله و توانایی آن‌ها در تمایز بین آتش واقعی و منابع احتمالی دیگر کاهش یافته است

WhatsApp Image 2025 09 24 at 3.21.16 AM

برای مثال، آیا منبع تابش فرابنفش تشخیص داده شده از یک شعله است یا یک جوشکار؟ اگرچه هر دو ممکن است در طول‌موج‌های مشابه تابش داشته باشند، ماهیت خروجی از نظر شدت و نوسان بسیار متفاوت است و یک دتکتور هوشمند می‌تواند تفاوت آن‌ها را تشخیص دهد.

زمان پاسخ سریع که با دتکتورشعله حساس و پیشرفته امکان‌پذیر است می‌تواند تفاوت بین یک حادثه فاجعه‌بار و یک آتش خاموش شده با حداقل تأثیر باشد. این نوع دتکتورها همچنین می‌توانند از توقف تولید ناشی از هشدارهای کاذب جلوگیری کنند.

دتکتورشعله‌ها براساس مقاومتشان در برابر منابع خاص هشدار کاذب ارزیابی می‌شوند، بنابراین در ارزیابی هر محصول باید این موارد به دقت بررسی شود. این دسته‌بندی‌ها شامل مواردی مانند چراغ‌های فلورسنت، چراغ‌های هالوژنی، کویل‌های داغ درخشان، جوشکاری قوسی، نور خورشید و غیره است. اکثر آن‌ها فاصله‌ای برای مقاومت در برابر این منابع را مشخص می‌کنند.

 

نوشته‌های مشابه

  • سیستم‌های اسپرینکلر

    5.1 کلیات
    5.1.1 الزامات حداقل
    5.1.1.1 این فصل الزامات حداقل برای بازرسی، آزمایش و نگهداری روتین سیستم‌های اسپرینکلر آب را ارائه می‌دهد.
    5.1.1.2 جدول 5.1.1.2 برای تعیین فرکانس‌های حداقل مورد نیاز برای بازرسی، آزمایش و نگهداری باید استفاده شود.
    5.1.2 اجزای مشترک و شیرها
    اجزای مشترک و شیرها باید طبق فصل 13 بازرسی، آزمایش و نگهداری شوند.
    5.1.3 بررسی موانع
    در صورتی که نیاز به انجام بررسی موانع باشد، باید از روش‌های ذکر شده در فصل 14 پیروی شود.

    5.1.4 نقص‌ها. رویه‌های ذکر شده در فصل 15 باید زمانی که نقصی در سیستم حفاظت پیش می‌آید، دنبال شوند.
    5.1.5 اتصالات شیلنگ. اتصالات شیلنگ باید طبق فصل‌های 6 و 13 بررسی، آزمایش و نگهداری شوند.
    5.2* بازرسی.
    5.2.1 آبپاش‌ها.
    5.2.1.1* آبپاش‌ها باید از سطح زمین به طور سالانه بازرسی شوند.
    5.2.1.1.1* هر آبپاشی که علائم یکی از موارد زیر را نشان دهد باید تعویض شود:
    (1) نشتی
    (2) خوردگی که به عملکرد آبپاش آسیب می‌زند
    (3) آسیب فیزیکی
    (4) از دست دادن مایع در عنصر حساس به حرارت حباب شیشه‌ای
    (5) بارگذاری که به عملکرد آبپاش آسیب می‌زند
    (6) رنگی غیر از رنگ اعمال‌شده توسط سازنده آبپاش
    5.2.1.1.2 هر آبپاشی که به اشتباه در جهت نادرست نصب شده باشد باید با جابجایی خط انشعاب، آویز یا شاخه اصلاح شود یا تعویض گردد.
    5.2.1.1.3* آبپاش‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیاز به بازرسی ندارند.
    5.2.1.1.4 آبپاش‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.1.1.5 اسکاشون‌ها و پوشش‌های آبپاش‌های فرورفته، توکار و پنهان باید با اسکاشون یا پوشش فهرست‌شده خود جایگزین شوند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.1.5.1 زمانی که اسکاشون یا پوشش فهرست‌شده از یک مجموعه فهرست‌شده مفقود شده و دیگر در دسترس تجاری نیست، باید آبپاش تعویض شود.
    5.2.1.1.6 اسکاشون‌ها برای آبپاش‌های معلق که نه فرورفته، نه توکار و نه پنهان هستند نیازی به تعویض ندارند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.2* حداقل فاصله از انبار مطابق با موارد 5.2.1.2.1 تا 5.2.1.2.6 باید در زیر تمام دستگاه‌های معیوب آبپاش حفظ شود.
    5.2.1.2.1* مگر اینکه فاصله‌های بیشتری توسط 5.2.1.2.2، 5.2.1.2.3 یا 5.2.1.2.4 لازم باشد یا فاصله‌های کمتری توسط 5.2.1.2.6 مجاز باشد، فاصله بین دستگاه معیوب و بالای انبار باید 18 اینچ (457 میلی‌متر) یا بیشتر باشد.
    5.2.1.2.2 در صورتی که استانداردهایی غیر از NFPA 13 حداقل فاصله بیشتری از انبار مشخص کنند، باید از آنها پیروی شود.
    5.2.1.2.3* فاصله بین دستگاه معیوب و بالای انبار باید 36 اینچ (914 میلی‌متر) یا بیشتر برای آبپاش‌های ویژه باشد.
    5.2.1.2.4 فاصله از بالای انبار تا دستگاه معیوب باید 36 اینچ (914 میلی‌متر) یا بیشتر باشد زمانی که لاستیک‌های رابر ذخیره شده باشند.
    5.2.1.2.5 آبپاش‌های درون قفسه نیازی به رعایت معیارهای انسداد و الزامات فاصله از انبار ندارند.

    5.2.1.2.6* فاصله بین دستگاه معیوب و بالای انبار می‌تواند کمتر از 18 اینچ (457 میلی‌متر) باشد در صورتی که توسط استاندارد نصب مجاز شناخته شده باشد.
    5.2.1.3* انباری که نزدیک‌تر از حد مجاز به دستگاه معیوب اسپرینکلر قرار دارد طبق قوانین فاصله از انبار استاندارد نصب، که در 5.2.1.2.1 تا 5.2.1.2.4 توضیح داده شده است، باید اصلاح شود.
    5.2.1.4 تأمین اسپرینکلرهای یدکی باید سالانه برای موارد زیر بازرسی شود:
    (1) تعداد و نوع صحیح اسپرینکلرها طبق الزامات 5.4.1.5
    (2) آچار اسپرینکلر برای هر نوع اسپرینکلر طبق الزامات 5.4.1.5.5
    (3) فهرست اسپرینکلرهای یدکی طبق الزامات 5.4.1.5.6
    5.2.2* لوله و اتصالات. لوله‌ها و اتصالات اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.2.1* لوله‌ها و اتصالات باید از هرگونه آسیب مکانیکی، نشتی و خوردگی پاک باشند.
    5.2.2.2 لوله‌های اسپرینکلر نباید تحت بارهای خارجی توسط مواد قرار گیرند که روی لوله استراحت کنند یا از لوله آویزان شوند.
    5.2.2.3* لوله‌ها و اتصالات نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.2.4 لوله‌ها و اتصالات نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.3* آویزها، میله‌ها و پشتیبانی‌ها. آویزها، میله‌ها و پشتیبانی‌های لوله‌های اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.3.1 آویزها، میله‌ها و پشتیبانی‌ها نباید آسیب دیده، شل یا جدا شده باشند.
    5.2.3.2 آویزها، میله‌ها و پشتیبانی‌هایی که آسیب دیده، شل یا جدا شده‌اند باید تعویض یا دوباره محکم شوند.
    5.2.3.3* آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.3.4 آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.4 دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت. دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت باید هر سه ماه یکبار بازرسی شوند تا اطمینان حاصل شود که از آسیب فیزیکی آزاد هستند.
    5.2.5* تابلو اطلاعات طراحی هیدرولیکی. تابلو اطلاعات طراحی هیدرولیکی باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم به لوله‌کش نصب شده و قابل خواندن است.
    5.2.5.1 تابلو اطلاعات طراحی هیدرولیکی که مفقود یا غیرقابل خواندن باشد باید تعویض شود.
    5.2.5.2 سیستم جدول لوله‌ای باید تابلو اطلاعات طراحی هیدرولیکی داشته باشد که روی آن نوشته شده باشد “سیستم جدول لوله‌ای.”
    5.2.6 ردیابی حرارتی. ردیابی حرارتی باید طبق الزامات سازنده بازرسی و نگهداری شود.

    5.2.7 تابلو اطلاعات. تابلو اطلاعات مورد نیاز در 4.1.9 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.8* تابلو اطلاعات عمومی. تابلو اطلاعات عمومی مورد نیاز در NFPA 13 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.9 تابلو اطلاعات ضدیخ. تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.3 آزمایش.
    5.3.1* اسپرینکلرها.
    5.3.1.1* در جایی که طبق این بخش نیاز باشد، نمونه اسپرینکلرها باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند.
    5.3.1.1.1 هرگاه اسپرینکلرها به مدت 50 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید آزمایش شوند.
    5.3.1.1.1.1 روش‌های آزمایش باید در فواصل 10 ساله تکرار شوند.
    5.3.1.1.1.2 اسپرینکلرهایی که پیش از سال 1920 ساخته شده‌اند باید تعویض شوند.
    5.3.1.1.1.3* اسپرینکلرهایی که با استفاده از عناصر واکنش سریع ساخته شده‌اند و به مدت 20 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.1.4* نمونه‌های نمایندگی از اسپرینکلرهای نوع لحیم با کلاس دمایی فوق‌العاده بالا [325°F (163°C)] یا بیشتر که در شرایط دمای محیطی حداکثر مجاز نیمه‌پی‌در‌پی تا پیوسته قرار دارند باید در فواصل 5 ساله آزمایش شوند.
    5.3.1.1.1.5 هرگاه اسپرینکلرها به مدت 75 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند و آزمایش‌ها در فواصل 5 ساله تکرار شوند.
    5.3.1.1.1.6* اسپرینکلرهای خشک که به مدت 15 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.2* اسپرینکلرهایی که در محیط‌های سخت قرار دارند، از جمله جو‌های خورنده، باید یکی از موارد زیر باشند:
    (1) تعویض شوند
    (2) آزمایش شوند از طریق نمونه‌های نمایندگی اسپرینکلر در فواصل 5 ساله
    5.3.1.1.3 اسپرینکلرهای مقاوم در برابر خوردگی فهرست‌شده که در محیط‌های سخت نصب شده‌اند باید مجاز باشند که در فواصل 10 ساله آزمایش شوند.
    5.3.1.1.4 در جایی که داده‌های تاریخی نشان دهند، فواصل طولانی‌تری بین آزمایش‌ها مجاز خواهد بود.
    5.3.1.2* نمونه نمایندگی از اسپرینکلرها برای آزمایش طبق 5.3.1.1 باید حداقل از چهار اسپرینکلر یا 1 درصد از تعداد اسپرینکلرها در هر نمونه فردی اسپرینکلر، هرکدام که بیشتر است، تشکیل شده باشد.

    5.3.1.3 هرگاه یکی از اسپرینکلرها در یک نمونه نمایندگی نتواند شرایط آزمایش را برآورده کند، تمام اسپرینکلرهای موجود در ناحیه‌ای که توسط آن نمونه نمایندگی می‌شود باید تعویض شوند.
    5.3.1.3.1 به تولیدکنندگان مجاز است که تغییراتی در اسپرینکلرهای خود در میدان با استفاده از دستگاه‌های فهرست‌شده انجام دهند که عملکرد اصلی را مطابق با لیست بازمی‌گرداند، در صورتی که برای مقام مسئول قابل قبول باشد.
    5.3.2 اسپرینکلرهای برقی.
    5.3.2.1 اسپرینکلرهای برقی باید طبق الزامات سازنده آزمایش شوند.
    5.3.2.2 آزمایش فعال‌سازی الکترونیکی و نظارت باید مطابق با الزامات سازنده و NFPA 72 یا کد هشدار آتش محلی باشد.
    5.3.3 دستگاه‌های هشدار آب.
    5.3.3.1 دستگاه‌های هشدار آب مکانیکی، از جمله اما نه محدود به زنگ‌های موتور آب، باید هر سه ماه یکبار آزمایش شوند.
    5.3.3.2* دستگاه‌های هشدار آب نوع وانی و نوع سوئیچ فشار باید هر شش ماه یکبار آزمایش شوند.
    5.3.3.3 آزمایش دستگاه‌های هشدار آب نوع سوئیچ فشار در سیستم‌های لوله‌های تر باید از طریق باز کردن اتصال آزمایش بازرسان انجام شود.
    5.3.3.3.1 در صورتی که شرایط یخبندان یا سایر شرایط استفاده از اتصال آزمایش بازرسان را منع کند، استفاده از اتصال بای‌پس مجاز خواهد بود.
    5.3.3.4 به جز در موارد مجاز در 5.3.3.4.1، آزمایش دستگاه‌های هشدار آب نوع وانی در سیستم‌های لوله‌های تر باید از طریق جریان آبی معادل جریان خارج از کوچکترین اسپرینکلر با عامل k (یا کوچک‌تر) از سوئیچ جریان انجام شود.
    5.3.3.4.1 یک دستگاه هشدار آب نوع وانی که با ویژگی تست خودکار یکپارچه فهرست‌شده باشد و قادر به تأیید وجود آب در محل دستگاه هشدار آب و عملکرد دستگاه هشدار آب و زنگ باشد، مجاز است که استفاده شود.
    5.3.3.4.2 دستگاه‌های هشدار آب نوع وانی که هر شش ماه یکبار با استفاده از آب گردش‌دهی یا طبق توضیحات 5.3.3.4.1 آزمایش می‌شوند، باید با باز کردن اتصال آزمایش بازرسان در حداقل یک بار هر 3 سال آزمایش شوند.
    5.3.3.5 پمپ‌های آتش‌نشانی نباید در طول آزمایش از سرویس خارج شوند، مگر اینکه دائماً توسط پرسنل واجد شرایط نظارت شوند یا تمام روش‌های اصلاحات در فصل 15 دنبال شوند.
    5.3.4* سیستم‌های ضدیخ. سالانه، قبل از آغاز شرایط یخبندان، محلول ضدیخ باید با استفاده از روش زیر آزمایش شود:
    (1) با استفاده از تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10، سوابق نصب، سوابق نگهداری، اطلاعات مالک، آزمایش‌های شیمیایی، یا سایر منابع معتبر اطلاعات، نوع ضدیخ در سیستم باید تعیین شود و در صورت لزوم یکی از موارد (الف) یا (ب) انجام شود:
    (الف) اگر مشخص شود که ضدیخ از نوعی است که دیگر مجاز نیست، سیستم باید کاملاً تخلیه شود و ضدیخ با محلول قابل قبول جایگزین شود.

    (ب) اگر نوع ضدیخ نتواند به‌طور قابل اعتمادی تعیین شود، سیستم باید کاملاً تخلیه شده و ضدیخ با محلول قابل قبول طبق 5.3.4.4 جایگزین شود.
    (2) اگر ضدیخ طبق 5.3.4(1)(الف) و 5.3.4(1)(ب) تعویض نشود، نمونه‌های آزمایش باید از بالای هر سیستم و از پایین هر سیستم به شرح زیر گرفته شوند:
    (الف) اگر دورترین بخش سیستم نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از دورترین بخش گرفته شود.
    (ب) اگر اتصال به لوله‌های تأمین آب نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از اتصال به لوله‌های تأمین آب گرفته شود.
    (3) گرانروی خاص هر محلول باید با استفاده از هیدرومتر با مقیاس مناسب یا رفراکتومتر با مقیاس کالیبره‌شده برای محلول ضدیخ بررسی شود.
    (4) اگر هر یک از نمونه‌ها غلظتی بیش از مقدار مجاز در 5.3.4.4 نشان دهد، سیستم باید تخلیه شده و دوباره با محلول جدید قابل قبول پر شود.
    (5) اگر غلظتی بیشتر از آنچه که در حال حاضر طبق 5.3.4.4 مجاز است برای جلوگیری از یخ‌زدگی مایع ضروری بوده باشد، روش‌های جایگزین برای جلوگیری از یخ‌زدگی لوله باید استفاده شود.
    5.3.4.1 محلول ضدیخ باید در دورترین نقطه خود و جایی که با سیستم لوله‌های تر ارتباط دارد آزمایش شود.
    5.3.4.2 در جایی که ظرفیت سیستم‌های ضدیخ بیشتر از 150 گالن (568 لیتر) باشد، آزمایش‌ها باید در یک نقطه اضافی برای هر 100 گالن (379 لیتر) انجام شود.
    5.3.4.2.1 اگر نتایج نشان‌دهنده نقطه انجماد اشتباه در هر نقطه از سیستم باشد، سیستم باید تخلیه شده و دوباره با ضدیخ جدید مخلوط‌شده پر شود.
    5.3.4.2.2 برای محلول‌های مخلوط‌شده، دستورالعمل‌های سازنده باید برای تعداد نقاط آزمایش و فرآیند پرکردن مجدد مجاز باشد.
    5.3.4.3 استفاده از محلول‌های ضدیخ باید مطابق با مقررات بهداشتی ایالتی و محلی باشد.
    5.3.4.3.1* لوله‌ها و اتصالات اسپرینکلر CPVC فهرست‌شده باید فقط با گلیسرین از یخ‌زدگی محافظت شوند.
    5.3.4.3.1.1 استفاده از دی‌اتیلن، اتیلن یا پروپیلن گلیکول‌ها به‌طور خاص ممنوع است.
    5.3.4.4 به جز در موارد مجاز در 5.3.4.4.1 و 5.3.4.4.3، تمامی سیستم‌های ضدیخ باید از محلول‌های ضدیخ فهرست‌شده استفاده کنند.
    5.3.4.4.1* برای سیستم‌های نصب‌شده قبل از 30 سپتامبر 2012، محلول‌های ضدیخ فهرست‌شده تا 30 سپتامبر 2022 مورد نیاز نخواهند بود، مشروط بر اینکه یکی از شرایط زیر برقرار باشد:
    (1) * غلظت محلول ضدیخ باید محدود به 30 درصد پروپیلن گلیکول به‌صورت حجمی یا 38 درصد گلیسرین به‌صورت حجمی باشد.
    (2) * سیستم‌های ضدیخ با غلظت‌های بیش از 30 درصد اما نه بیشتر از 40 درصد پروپیلن گلیکول به‌صورت حجمی و 38 درصد اما نه بیشتر از 50 درصد گلیسرین به‌صورت حجمی مجاز خواهند بود، بر اساس ارزیابی ریسک قطعی تایید‌شده که توسط یک شخص واجد شرایط تایید‌شده توسط مقام مسئول تهیه شده است.

    5.3.4.4.2 محلول‌های جدیدی که معرفی می‌شوند باید محلول‌های ضدیخ از نوع مخلوط‌شده در کارخانه (شیمیایی خالص یا 96.5 درصد مطابق با داروشناسی ایالات متحده) باشند.
    5.3.4.4.3 محلول‌های ضدیخ مخلوط‌شده از پروپیلن گلیکول که غلظتی بیش از 30 درصد به‌صورت حجمی دارند، برای استفاده با اسپرینکلرهای ESFR مجاز هستند، مشروط بر اینکه اسپرینکلرهای ESFR برای چنین استفاده‌ای در یک کاربرد خاص فهرست‌شده باشند.
    5.4 نگهداری.
    5.4.1 اسپرینکلرها.
    5.4.1.1 در صورتی که یک اسپرینکلر به هر دلیلی برداشته شود، نباید دوباره نصب شود.
    5.4.1.2* اسپرینکلرهای تعویضی باید ویژگی‌های مناسب برای کاربرد مورد نظر را داشته باشند که شامل موارد زیر است:
    (1) نوع
    (2) اندازه سوراخ و ضریب K
    (3) درجه حرارت
    (4) پوشش، در صورت وجود
    (5) نوع دفییکتور (مثلاً ایستاده، آویز، دیواری)
    (6) الزامات طراحی
    5.4.1.2.1* اسپرینکلرهای پاششی مجاز هستند تا اسپرینکلرهای قدیمی را تعویض کنند.
    5.4.1.2.2* در صورتی که اسپرینکلرهای مسکونی که قبل از سال 2003 تولید شده و دیگر از سوی سازنده در دسترس نیستند، و طراحی چگالی آنها کمتر از 0.05 گالن در دقیقه در هر فوت مربع (204 میلی‌متر در دقیقه) باشد، می‌توان از اسپرینکلر مسکونی با ضریب K معادل (± 5 درصد) استفاده کرد، مشروط بر اینکه ناحیه پوششفعلی برای اسپرینکلر تعویضی تجاوز نشود.
    5.4.1.2.3 اسپرینکلرهای تعویضی برای اسکله‌ها و دکل‌ها باید با استاندارد NFPA 307 مطابقت داشته باشند.
    5.4.1.3 فقط از اسپرینکلرهای جدید و فهرست‌شده برای تعویض اسپرینکلرهای موجود استفاده شود.
    5.4.1.4* اسپرینکلرهای ویژه و سریع‌العمل تعریف‌شده توسط NFPA 13 باید با اسپرینکلرهایی با همان اندازه سوراخ، دامنه دما، ویژگی‌های واکنش حرارتی و ضریبK تعویض شوند.
    5.4.1.5* حداقل شش اسپرینکلر یدکی باید در محل نگهداری شود تا هر اسپرینکلری که عمل کرده یا به‌گونه‌ای آسیب دیده باشد، به‌سرعت تعویض شود.
    5.4.1.5.1 اسپرینکلرها باید با انواع و درجه حرارت‌های اسپرینکلرهای موجود در ملک همخوانی داشته باشند.
    5.4.1.5.2 موجودی اسپرینکلرهای یدکی باید در کابینتی نگهداری شود که دمای آن در هیچ زمانی از حداکثر دمای سقف‌های مشخص‌شده در جدول 5.4.1.5.2 برای هر یک از اسپرینکلرهای داخل کابینت تجاوز نکند.
    5.4.1.5.3 در صورتی که اسپرینکلرهای خشک با طول‌های مختلف نصب شده باشند، نیازی به نگهداری اسپرینکلرهای خشک یدکی نیست، مشروط بر اینکه راهی برای بازگشت سیستم به حالت عملیاتی فراهم شود.

    5.4.1.5.4 موجودی اسپرینکلرهای یدکی باید شامل تمام انواع و درجه‌های اسپرینکلر نصب‌شده باشد و به شرح زیر باشد:
    (1) برای تاسیسات محافظت‌شده با کمتر از 300 اسپرینکلر حداقل 6 اسپرینکلر
    (2) برای تاسیسات محافظت‌شده با 300 تا 1000 اسپرینکلر حداقل 12 اسپرینکلر
    (3) برای تاسیسات محافظت‌شده با بیش از 1000 اسپرینکلر حداقل 24 اسپرینکلر
    5.4.1.5.5* یک آچار اسپرینکلر مطابق با مشخصات سازنده اسپرینکلر باید برای هر نوع اسپرینکلر نصب‌شده در کابینت قرار داده شود تا برای برداشتن و نصب اسپرینکلرها در سیستم استفاده شود.
    5.4.1.5.6 فهرستی از اسپرینکلرهای نصب‌شده در ملک باید در کابینت اسپرینکلر نصب شود.
    5.4.1.5.6.1* این فهرست باید شامل موارد زیر باشد:
    (1) شماره شناسایی اسپرینکلر (SIN) در صورت وجود؛ یا سازنده، مدل، سوراخ، نوع دفییکتور، حساسیت حرارتی و درجه فشار
    (2) شرح کلی
    (3) تعداد هر نوع که باید در کابینت نگهداری شود
    (4) تاریخ انتشار یا اصلاح فهرست
    5.4.1.6* اسپرینکلرها نباید به هیچ‌وجه تغییر داده شوند یا هیچ‌گونه زینت، رنگ یا پوشش پس از ارسال از کارخانه تولید اعمال شود.
    5.4.1.7 اسپرینکلرها و نازل‌های اسپری خودکار مورد استفاده برای حفاظت از تجهیزات آشپزی تجاری و سیستم‌های تهویه باید سالانه تعویض شوند.
    5.4.1.7.1 در صورتی که اسپرینکلرهای نوع لامپ خودکار یا نازل‌های اسپری استفاده شوند و در بررسی سالانه هیچ تجمع چربی یا مواد دیگر روی اسپرینکلرها یا نازل‌ها مشاهده نشود، این اسپرینکلرها و نازل‌ها نیازی به تعویض نخواهند داشت.
    N 5.4.1.8 اسپرینکلرهای الکتریکی باید مطابق با الزامات سازنده نگهداری شوند.
    5.4.1.9 پوشش‌های حفاظتی.
    5.4.1.9.1* اسپرینکلرهایی که مناطق اسپری و اتاق‌های میکس را در نواحی کاربرد رزین محافظت می‌کنند و با پوشش‌های حفاظتی نصب شده‌اند، باید همچنان از باقی‌مانده‌های پاشش محافظت شوند تا در صورت بروز آتش‌سوزی، به درستی عمل کنند.

    5.4.1.9.2 اسپرینکلرهایی که همانطور که در 5.4.1.9.1 توضیح داده شده نصب شده‌اند، باید با کیسه‌های سلوفانی با ضخامت 0.003 اینچ (0.076 میلی‌متر) یا کمتر یا کیسه‌های کاغذی نازک محافظت شوند.
    5.4.1.9.3 پوشش‌ها باید به صورت دوره‌ای تعویض شوند تا از تجمع رسوبات سنگین جلوگیری شود.
    5.4.2* سیستم‌های لوله خشک. سیستم‌های لوله خشک باید در تمام اوقات خشک نگه داشته شوند.
    5.4.2.1 در طول هوای غیر یخ‌زدگی، سیستم لوله خشک می‌تواند مرطوب بماند، در صورتی که تنها گزینه دیگر خارج کردن سیستم از سرویس باشد تا زمانی که قطعات مورد نیاز یا در حین فعالیت‌های تعمیراتی برسد.
    5.4.2.2 فضاهای یخچالی یا سایر نواحی داخل ساختمان که دما در آن‌ها در 40°F (4°C) یا کمتر نگه داشته می‌شود، نباید اجازه داده شود که مرطوب بمانند.
    5.4.2.3 خشک‌کن‌های هوا باید مطابق با دستورالعمل‌های سازنده نگهداری شوند.
    5.4.2.4 کمپرسورهایی که در ارتباط با سیستم‌های آبیاری لوله خشک استفاده می‌شوند، باید با توجه به دستورالعمل‌های سازنده و همچنین فصل 13 بازرسی، تست و نگهداری شوند.
    5.4.3* سیستم‌های دریایی. سیستم‌های آبیاری که معمولاً با استفاده از آب شیرین به عنوان منبع نگهداری می‌شوند، باید پس از ورود آب خام به سیستم، تخلیه و دوباره با آب شیرین پر شوند، سپس دوباره تخلیه و با آب شیرین پر شوند.
    5.5 الزامات عملکرد اجزا.
    5.5.1 هرگاه یک جزء از سیستم آبیاری تنظیم، تعمیر، بازسازی یا تعویض شود، اقدامات لازم طبق جدول 5.5.1 باید انجام شود.
    5.5.2 در صورتی که استاندارد نصب اصلی با استاندارد ذکر شده متفاوت باشد، استفاده از استاندارد نصب مناسب مجاز است.
    5.5.3 این اقدامات نیازی به بررسی طراحی ندارند که خارج از محدوده این استاندارد است.

  • دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

    WhatsApp Image 2025 09 14 at 9.31.18 AM

    کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

    طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

    دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

    ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

    WhatsApp Image 2025 09 14 at 9.31.19 AM

    • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
    • تولید دود کم و بدون هالوژن (LS0H)
    • ساختار مقاوم برای استفاده در محیط‌های سخت
    • نصب آسان با گزینه‌های متنوع برای نصب
    • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
    • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

    WhatsApp Image 2025 09 14 at 9.31.19 AM1

    • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
    • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
    • طیف گسترده‌ای از کاربردهای اثبات‌شده

    WhatsApp Image 2025 09 14 at 9.31.20 AM

    اصول عملکرد

    دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

    مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

    WhatsApp Image 2025 09 14 at 9.31.20 AM1

    این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

    ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

    در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

    رجوع شود به:
    «ویژگی‌ها به عنوان کابل تشخیص آتش»

    کاربردها

    دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

    دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

    دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

    این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

    نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

    کاربردهای رایج:

    • تونل‌ها، کانال‌ها و سقف‌های کاذب
    • پله‌های برقی و مسیرهای متحرک
    • مخازن ذخیره‌سازی پتروشیمی
    • سالن‌های رنگ و اتاقک‌های اسپری
    • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
    • فضاهای سقفی و زیرشیروانی
    • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
    • مناطق تأسیسات نیروگاه هسته‌ای
    • انبارهای سرد و سردخانه‌ها
    • تابلوهای کنترل و کلیدهای برق
    • قفسه‌های مرتفع انبارها
    • سکوهای نفتی دریایی
    • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
    • سیلوهای غلات و انبارهای کشاورزی
    • محفظه‌های موتور خودروهای جاده‌ای / ریلی
    • نشت بخار و خطاهای گرمایش ردیابی‌شده
    • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
    • فضاهای زیرکفی اتاق‌های کامپیوتر

    ویژگی‌ها به عنوان کابل تشخیص آتش

    در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

    • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
    • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

    ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

    WhatsApp Image 2025 09 14 at 9.31.21 AM

    همچنین به مثال ارائه‌شده رجوع شود.

    مثال

    این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

    • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
    • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
    • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

    عملکرد دو مرحله‌ای

    اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

    .  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

    عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

    یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

    مشخصات پایه

    • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
    • رنگ: قرمز
    • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
    • بافت: سیم مسی قلع‌زده
    • دی‌الکتریک داخلی: سفید
    • رسانای مرکزی: فولاد با روکش مس
    • استحکام کششی: ۲۰۰ نیوتن

    WhatsApp Image 2025 09 14 at 9.31.21 AM1

    دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

    ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

    با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

    انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

    پیکربندی سیستم و سازگاری تجهیزات

    دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

    دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

  • روش طراحی سیستم دتکتور دودی مکشی یا اسپیراتینگ ها

    در زمان طراحی شبکه لوله نمونه‌برداری، عوامل متعددی باید مدنظر قرار گیرد. لازم است محل نصب به‌دقت بررسی و بیشترین اطلاعات ممکن جمع‌آوری شود.

    نیازمندی‌ها
    اولین گام، تعیین دقیق نیازهای نصب است. پس از مشخص شدن نیازها، نوع موقعیت قابل بررسی خواهد بود.

    فعالیت‌ها
    نوع فعالیت‌هایی که در فضا انجام می‌شود بسیار اهمیت دارد. یک فضای عمومی با شکل خاص ممکن است نیازهای سیستمی متفاوتی نسبت به یک انبار با همان شکل داشته باشد. اطلاعاتی مانند ساعات فعالیت، حضور یا عدم حضور افراد در فضا، و وجود آلودگی یا هوای آلوده نیز باید در نظر گرفته شود.

    ویژگی‌های فیزیکی
    پس از بررسی نوع کلی نصب، ویژگی‌های فیزیکی فضا باید بررسی شود:

    • آیا فضا، اتاق، فضای خالی، کابینت یا محفظه است؟
    • آیا فضای خالی در کف یا سقف وجود دارد؟ در صورت وجود، چگونه تقسیم‌بندی شده‌اند؟
    • آیا کانال‌هایی وجود دارد؟ کاربرد آن‌ها چیست و آیا خدماتی در آن‌ها قرار دارد؟
    • ابعاد دقیق فضا چیست؟
    • از چه مصالحی استفاده شده و آیا مناطقی وجود دارد که باید از قرارگیری شبکه در آن‌ها اجتناب شود؟
    • آیا سیستم‌های اعلام حریق دیگری وجود دارند؟ در صورت وجود، در چه موقعیتی نصب شده‌اند؟

    شرایط محیطی
    شرایط محیطی داخل فضا می‌تواند تأثیر بسیار مهمی بر روش نمونه‌برداری مناسب برای حفاظت از آن داشته باشد.
    همان‌طور که پیش‌تر اشاره شد، آزمایش دود برای جمع‌آوری این اطلاعات حیاتی است. این آزمایش می‌تواند الگوهای حرکت هوا، نرخ گردش آن، و اینکه آیا در نقطه‌ای جریان هوا ساکن است یا خیر را مشخص کند.

    سایر موارد قابل بررسی شامل موارد زیر است:

    • در صورت ورود هوای تازه، نرخ و میزان آن چقدر است؟
    • آیا به دلیل آلودگی، استفاده از یک دتکتور مرجع لازم است؟
    • دما و رطوبت نسبی چقدر هستند و آیا این مقادیر ثابت یا متغیرند؟
    • آیا فعالیت‌هایی در محیط وجود دارند که دود، گرد و غبار، بخار یا شعله تولید کنند و این فعالیت‌ها چند وقت یک‌بار انجام می‌شوند؟

    ارزیابی ریسک
    در هر نصب، احتمال دارد برخی نواحی نیاز به حفاظت بیشتری نسبت به سایر بخش‌ها داشته باشند. این امر ممکن است به دلیل وجود تجهیزات گران‌قیمت یا نواحی خاصی مانند انبار مواد قابل اشتعال باشد. این نواحی آسیب‌پذیر باید همراه با هرگونه خطرات ساختاری مانند مواد مصنوعی، فوم‌ها یا جداکننده‌های چوب نرم مورد توجه قرار گیرند.

    مکان‌های ممکن برای نصب دستگاه
    در انتخاب محل نصب واحد دتکتور نیز عوامل متعددی باید در نظر گرفته شود. هدف اصلی در تعیین موقعیت دستگاه، ایجاد یک سیستم متعادل است؛ به این معنا که طول لوله‌ها تا حد امکان برابر باشد. همچنین باید تلاش شود تا زمان پاسخ‌دهی و میزان رقیق‌سازی به حداقل برسد.

    واحد دتکتور نیاز به منبع تغذیه دارد و باید دسترسی جهت انجام تعمیرات و نگهداری وجود داشته باشد. همچنین ممکن است دلایل زیبایی‌شناختی باعث شود مکان خاصی برای نصب مناسب نباشد.

    لوله خروجی
    لوله خروجی واحد دتکتور دودی مکشی، در صورت نیاز، می‌تواند دارای لوله‌کشی اضافه شود؛ برای مثال، اگر نیاز باشد هوای عبوری از دتکتور به منبع خود بازگردد. همچنین، لوله‌کشی اضافی می‌تواند برای کاهش صدای فن مورد استفاده قرار گیرد.

  • بررسی انواع دتکتورهای گاز

    1. گاز چیست؟

    2-1. ترکیب هوا

    هوا تقریباً از 78٪ نیتروژن، 21٪ اکسیژن و 1٪ گازهای دیگر (مانند آرگون و دی‌اکسید کربن) تشکیل شده است. نیتروژن، که بزرگ‌ترین جزء هواست، پایه‌ی پروتئین‌های ساخته‌شده از اسیدهای آمینه را تشکیل می‌دهد و در بسیاری از موجودات زنده یافت می‌شود. نیتروژن برای تقریباً تمام حیات روی این سیاره ضروری است. با این حال، نیتروژن مستقیماً از هوا به بدن جذب نمی‌شود. نیتروژنی که ما استنشاق می‌کنیم، صرفاً هنگام بازدم خارج می‌شود. اکسیژن، که برای حیات ضروری است و مستقیماً به بدن ما جذب می‌شود، 21٪ از هوا را تشکیل می‌دهد. دی‌اکسید کربن، که برای فتوسنتز گیاهان حیاتی است، کمتر از 1٪ است. جانوران اکسیژن جذب می‌کنند و دی‌اکسید کربن دفع می‌کنند و گیاهان دی‌اکسید کربن جذب می‌کنند و اکسیژن دفع می‌کنند، که این امر تعادل ثابتی در ترکیب کلی هوا و فرآیندهای حیاتی روی این سیاره حفظ می‌کند.

    2-2. خطرات گاز

    به طور کلی، خطرات گاز به سه دسته زیر تقسیم می‌شوند:

     

    گازهای قابل اشتعال

    گازهایی که در صورت ترکیب با هوا، محدوده انفجاری (محدوده اشتعال) دارند.

    بر اساس سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی (GHS*)، این مواد در حالت گازی در فشار استاندارد اتمسفر (101.3 کیلوپاسکال) و دمای 20 درجه سانتی‌گراد تعریف می‌شوند.

    * GHS: سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی

     

    گازهای سمی

    گازهایی که عملکرد بیولوژیکی انسان را مختل می‌کنند.

    گازهای سمی بر اساس مقادیر آستانه‌ای تنظیم می‌شوند که برای محافظت از اثرات مضر سلامتی کارگرانی که در محل کار روزانه 8 ساعت و هفته‌ای 40 ساعت در معرض این مواد قرار می‌گیرند، تعیین شده‌اند.

     

    کمبود اکسیژن

    بدن انسان می‌تواند در غلظت اکسیژن جو حدود 21% به طور طبیعی عمل کند.

    اگر اکسیژن مصرف شود و غلظت آن کاهش یابد (مثلاً در اثر اکسیداسیون فلزات یا فعالیت میکروارگانیسم‌ها) یا اگر اکسیژن توسط گازهای دیگر (مانند N₂ و Ar) جایگزین شود، اثرات آن بر بدن انسان زمانی آشکار می‌شود که غلظت اکسیژن به زیر حدود 18% برسد. در غلظت‌های 6% تا 8% خطر مرگ وجود دارد.

    1. خطرات گازهای قابل اشتعال

    3-1. سه عنصر لازم برای احتراق

     

    احتراق به طور کلی به واکنش اکسیداسیونی گفته می‌شود (که در آن مواد با اکسیژن ترکیب می‌شوند) که همراه با تولید گرما و نور است.

    ماده سوختنی

    گاز حامی احتراق

    منبع اشتعال

    در صورت نبود هر یک از این عناصر، احتراق امکان‌پذیر نیست. برای جلوگیری از احتراق گاز، ضروری است که غلظت گاز را زیر حدی که بتواند مشتعل شود تنظیم و حفظ کرد (با فرض وجود گاز حامی احتراق و منبع اشتعال).

    WhatsApp Image 2025 09 26 at 9.39.48 AM

    3-2. محدوده انفجاری

    اگر یک گاز قابل اشتعال یا بخار ناشی از یک مایع قابل اشتعال با هوا یا اکسیژن مخلوط شود، در صورت وجود منبع احتراق و قرار گرفتن غلظت در محدوده خاصی، منفجر خواهد شد. این محدوده غلظت، محدوده انفجاری نامیده می‌شود. حد پایینی غلظت، حد انفجاری پایین (LEL) و حد بالایی غلظت، حد انفجاری بالا (UEL) نام دارد.

    WhatsApp Image 2025 09 26 at 9.39.48 AM1

    مثال: هیدروژن

    حد انفجاری پایین مقداری است که به صورت تجربی تعیین می‌شود، اما نتایج به‌دست‌آمده ممکن است بسته به شرایط و روش‌های آزمایش متفاوت باشد. بنابراین احتیاط لازم است و مقادیر ذکرشده ممکن است بسته به منبع مرجع متغیر باشند.

     

    رایج است که آشکارسازهای گاز، غلظت گاز را بر اساس حد انفجاری پایین پایش می‌کنند. دلیل این امر آن است که حتی اگر غلظت گاز از حد انفجاری بالا بیشتر باشد، در صورت نشت گاز به اتمسفر، گاز بلافاصله رقیق شده و پخش می‌شود و غلظت آن به محدوده انفجاری می‌رسد. واحد %LEL معمولاً برای بیان غلظت نسبت به حد انفجاری پایین استفاده می‌شود (100%LEL).

     

    3-3. بخار قابل اشتعال

    اگرچه هر دو در حالت گازی هستند، اما گاز و بخار به طور کلی به دو چیز متفاوت اشاره دارند. بخار به ماده‌ای گفته می‌شود که در دمای معمولی به حالت مایع (یا جامد) وجود دارد، اما تحت شرایط خاصی از فاز مایع به فاز گازی تبخیر می‌شود. ویژگی‌های فیزیکی زیر، که بر اساس تغییرات دما تعیین می‌شوند، مشخص می‌کنند که آیا بخار قابل اشتعال می‌تواند به یک خطر تبدیل شود یا خیر.

     

    1. فشار بخار اشباع

    این فشار به فشاری اشاره دارد که در آن یک ماده در دمای خاصی از مایع به گاز تبخیر می‌شود. فشار بخار معمولاً با افزایش دما بالا می‌رود. دمایی که در آن فشار برابر با فشار اتمسفر (101.3 کیلوپاسکال ≈ 760 میلی‌متر جیوه) می‌شود، نقطه جوش نامیده می‌شود. غلظت (غلظت حجمی) گازی که در دمای خاصی تبخیر می‌شود را می‌توان با محاسبه درصد فشار بخار نسبت به فشار اتمسفر تعیین کرد.

    WhatsApp Image 2025 09 26 at 9.39.49 AM

    شکل بالا، منحنی‌های فشار بخار اشباع برای اتانول و آب را نشان می‌دهد. از آنجا که نقطه جوش آب ۱۰۰ درجه سانتی‌گراد است، مشاهده می‌شود که منحنی فشار بخار در فشار ۱۰۱.۳ کیلوپاسکال، دمای ۱۰۰ درجه سانتی‌گراد را نشان می‌دهد. به عبارت دیگر، غلظت بخار آب اشباع در این نقطه ۱۰۰ درصد حجمی است.

     

    از طرف دیگر، اتانول مایعی فرّارتر از آب است (یعنی فشار بخار بالاتری دارد)، همانطور که هر کسی که قبل از تزریق در بیمارستان با اتانول ضدعفونی شده باشد، به راحتی درک می‌کند. در عمل، نقطه جوش اتانول ۷۸ درجه سانتی‌گراد است. این داده نیز نشان می‌دهد که اتانول فرّارتر از آب است.

     

    می‌توانیم غلظت گاز اتانول را در دمای خاصی بر اساس فشار بخار آن دما محاسبه کنیم. به عنوان مثال، از منحنی فشار بخار اشباع می‌توان دریافت که فشار بخار اتانول در ۲۰ درجه سانتی‌گراد تقریباً ۵.۸ کیلوپاسکال است. این مقدار را می‌توان در معادله زیر قرار داد تا غلظت گاز محاسبه شود:

     

    =غلظت گاز (درصد حجمی) = (فشار بخار در دمای مشخص) ÷ (فشار اتمسفر) × ۱۰۰

    = ۵.۸ (kPa) ÷ ۱۰۱.۳ (kPa) × ۱۰۰

    = ۵.۷ درصد حجمی

     

    این محاسبه ارزش به خاطر سپردن دارد. حتی اگر منحنی فشار بخار مانند شکل بالا در دسترس نباشد، معمولاً برگه اطلاعات ایمنی (SDS) ارائه‌شده توسط تولیدکننده مواد شیمیایی، داده‌های فشار بخار را برای دماهای معمولی (۲۰ تا ۳۰ درجه سانتی‌گراد) شامل می‌شود که می‌توان از آنها برای محاسبه غلظت گاز استفاده کرد.

     

    ۲. نقطه اشتعال (Flash Point)

    نقطه اشتعال به کمترین دمایی اشاره دارد که در آن، غلظت بخار یک ماده در هوا به حدی می‌رسد که در صورت وجود منبع احتراق، قابلیت اشتعال پیدا می‌کند. این دما را می‌توان به عنوان دمایی تفسیر کرد که در آن، غلظت بخار قابل اشتعال به حد انفجاری پایین (LEL) می‌رسد. اگر نقطه اشتعال مایعی که بخار قابل اشتعال تولید می‌کند، پایین‌تر از دمای محیطی باشد که مایع در آن استفاده می‌شود، به دلیل خطر بالای آتش‌سوزی و انفجار، احتیاط زیادی در ارزیابی خطر اشتعال لازم است.

     

    ۳. نقطه خودسوزی (Ignition Point)

    این دما به کمترین دمایی اشاره دارد که یک ماده قابل اشتعال در هوا، به دلیل افزایش دمای خود ماده (و نه تماس موضعی با یک جسم داغ مانند جرقه الکتریکی، شعله یا سیم فلزی گداخته) به صورت خودبه‌خود مشتعل می‌شود. تولیدکنندگان تجهیزات الکتریکی ضد انفجار باید دستگاه‌ها را به گونه‌ای طراحی و تولید کنند که دمای سطحی تجهیزات که احتمال تماس با گاز یا بخار قابل اشتعال را دارد، از نقطه خودسوزی گاز یا بخار مربوطه تجاوز نکند.

    ۴-۱. خطرات گازهای سمی

    گازهای مورد استفاده یا تولیدشده به عنوان گازهای فرآیندی در صنایع مختلف، شامل گازهای سمی هستند که حتی در غلظت‌های بسیار کم می‌توانند آسیب‌های جدی به سلامت انسان وارد کنند یا حتی منجر به مرگ شوند.

     

    برخی گازها مانند **سولفید هیدروژن (H₂S)** و **آمونیاک (NH₃)** بوی مشخصی دارند که انسان می‌تواند حضور آن‌ها را تشخیص دهد. با این حال، حس بویایی انسان قادر نیست تعیین کند که آیا غلظت این گازها به سطوح خطرناک رسیده است یا خیر (به عنوان مثال، حد آستانه مجاز مواجهه شغلی برای H₂S موسوم به **TLV-TWA: 1 ppm** طبق استاندارد ACGIH 2018).

     

    **۱ ppm** معادل غلظتی است که با اضافه کردن تنها **یک قطره (۱ میلی‌لیتر = ۱ گرم یا ۱ سی‌سی)** از یک مایع سمی به یک مخزن بزرگ **۱۰۰۰ لیتری (۱ تن یا ۱ مترمکعب)** آب و مخلوط کردن کامل آن به دست می‌آید. فرض کنید این یک قطره (۱ ppm) سس سویا باشد. نه تنها تشخیص آن پس از مخلوط شدن به صورت بصری غیرممکن است، بلکه حتی با چشیدن نیز قابل تشخیص نخواهد بود. هرچند گازها با مایعات متفاوت هستند، بسیاری از گازهای سمی هم **بی‌رنگ** و هم **بی‌بو** هستند.

     

    یک نمونه از چنین گاز سمی، **مونوکسید کربن (CO)** است که گازی بالقوه کشنده بوده و می‌تواند در اثر احتراق ناقص بخاری‌های گازی در منازل تولید شود. این گاز گاهی اوقات به عنوان **قاتل خاموش** شناخته می‌شود، زیرا می‌تواند بدون آنکه تشخیص داده شود، باعث مسمومیت یا مرگ شود.

    ### **۵-۱. خطرات کمبود اکسیژن**

     

    اکسیژن ماده‌ای ضروری برای حفظ عملکرد بیولوژیکی انسان است. **کمبود اکسیژن (هیپوکسی)** تأثیرات جدی بر بدن، به‌ویژه مغز، می‌گذارد و وضعیتی بسیار خطرناک با نرخ مرگ‌ومیر بالا در محیط‌های کاری محسوب می‌شود.

    WhatsApp Image 2025 09 26 at 9.39.53 AM

    بررسی حوادث صنعتی مرتبط با کمبود اکسیژن در ژاپن نشان می‌دهد که بیشتر این موارد در بخش‌های **تولیدی و ساختمانی** رخ داده و سالانه منجر به تلفات متعددی می‌شود.

     

    **طبق آیین‌نامه پیشگیری از کمبود اکسیژن در قانون ایمنی و بهداشت صنعتی ژاپن:**

    – **شرایط کمبود اکسیژن** زمانی است که غلظت اکسیژن در هوا کمتر از ۱۸٪ باشد.

    – از دتکتورهای گاز برای اطمینان از حفظ غلظت اکسیژن بالاتر از ۱۸٪ استفاده می‌شود.

     

    ### **علائم کمبود اکسیژن:**

    – **۱۸٪ – ۱۶٪ اکسیژن:** افزایش تنفس، ضربان قلب سریع‌تر، اختلال در قضاوت و هماهنگی حرکتی.

    – **۱۶٪ – ۱۲٪ اکسیژن:** تنفس سنگین، گیجی، سردرد، خواب‌آلودگی، کاهش قدرت تفکر و حرکت.

    – **۱۲٪ – ۱۰٪ اکسیژن:** حالت تهوع، استفراغ، بیهوشی جزئی، کبودی لب‌ها و پوست.

    – **زیر ۱۰٪ اکسیژن:** بیهوشی، تشنج، آسیب مغزی، ایست تنفسی و مرگ در مدت‌زمان کوتاه.

     

    **هشدار:** در محیط‌های بسته یا فضاهای محدود (مانند مخازن، تونل‌ها، چاه‌ها) احتمال کاهش اکسیژن به‌دلیل واکنش‌های شیمیایی، جابجایی با گازهای دیگر یا مصرف اکسیژن وجود دارد. نظارت مستمر با دستگاه‌های سنجش اکسیژن و استفاده از تجهیزات تنفسی مناسب الزامی است.**

    البته، در ادامه ترجمه‌ی دقیق و روان متن موردنظر بدون هیچگونه افزودنی ارائه شده است:

     

    5-2. سه علت اصلی کمبود اکسیژن

    1. مصرف اکسیژن موجود در هوا
      علل اصلی مصرف اکسیژن:
      اکسیداسیون آهن و فلزات دیگر (ماسه آهن، لوله‌های فلزی، مخازن فلزی)،
      اکسیداسیون رنگ، مصرف زیستی اکسیژن (تنفس انسان‌ها و میکروارگانیسم‌ها)
    2. تخلیه یا ورود هوای کم‌اکسیژن
      هوای کم‌اکسیژن که به دلایل مختلفی ایجاد می‌شود، در صورتی که به‌دلیل شرایط کاری، روش‌های ساخت‌وساز یا شرایط آب‌وهوایی، تخلیه یا وارد مکان‌هایی با کمبود اکسیژن شود، می‌تواند موجب بی‌اکسیژنی گردد.
    3. تولید متان یا ورود گاز بی‌اثر
      کمبود اکسیژن می‌تواند ناشی از انتشار متان (که در طبیعت وجود دارد) یا نشت گازهای بی‌اثر (مانند نیتروژن، دی‌اکسید کربن، آرگون) از مخازن یا لوله‌ها در صنایع تولیدی باشد.

     

    5-3. اکسیژن بیش‌ازحد
    اگرچه اکسیژن برای عملکرد زیستی انسان ضروری است، اما قرارگیری مداوم در معرض غلظت‌ها یا فشارهای جزئی بالای اکسیژن می‌تواند منجر به مسمومیت با اکسیژن شود.
    مسمومیت با اکسیژن باعث تشنج عمومی و از دست دادن هوشیاری می‌شود و در بدترین حالت، منجر به مرگ می‌گردد.
    در محیط‌هایی که امکان بروز اکسیژن بیش‌ازحد وجود دارد، باید غلظت گازها نه‌فقط برای کمبود اکسیژن (کمتر از ۱۸٪)، بلکه برای جلوگیری از غلظت‌های بیش‌ازحد نیز پایش شود.

    البته، در ادامه ترجمه‌ی دقیق و روان متن خواسته‌شده بدون هیچ‌گونه افزودنی آورده شده است:

     

    مناطق معمولی که نیاز به تشخیص گاز دارند
    6-1. بازار دستگاه‌های گازسنج
    بازار دستگاه‌های گازسنج شامل تمامی بازارهایی است که در آن‌ها از گاز استفاده می‌شود.

    1. آزمایشگاه‌ها، دانشگاه‌ها، بیمارستان‌ها
      مراکز تحقیقاتی که از طیف گسترده‌ای از گازها، از جمله گازهای قابل اشتعال و سمی استفاده می‌کنند، تدابیری برای ایمنی کارکنان تحقیقاتی اتخاذ می‌کنند؛ مانند تشخیص سریع نشت گاز از طریق پایش محیط با استفاده از گازسنج‌های ثابت شرکت Riken Keiki.
      علاوه بر گازسنج‌ها، سیستم‌های تحلیلی که قادر به انجام هم‌زمان تحلیل پراش اشعه ایکس (XRD) و فلورسانس اشعه ایکس (XRF) در محل هستند نیز برای کاربردهایی مانند تحقیقات روی آثار فرهنگی غیرقابل‌انتقال مورد استفاده قرار می‌گیرند.
    2. صنعت الکترونیک
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD از گازهایی موسوم به گازهای مواد ویژه (گازهای بسیار سمی و قابل اشتعال) مانند سیلان، آرسین و فسفین استفاده می‌کنند.
      در مورد این گازها، نشت در غلظت‌های بسیار پایین (چند ppm تا چند ده ppm) نیز غیرقابل‌قبول است.
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD ممکن است صدها تا هزاران دستگاه گازسنج Riken Keiki برای محافظت از کارکنان در برابر نشت گاز نصب کرده باشند.
      این دستگاه‌ها مجهز به حسگرهای روش الکترولیز پتانسیواستاتیکی هستند که قادر به تشخیص نشت گاز در حد چند ppm می‌باشند.

     

    1. صنعت فولاد
      گازهایی که به‌عنوان محصولات جانبی در فرآیندهای تولید فولاد (گاز کک، گاز کوره بلند، گاز مبدل) تولید می‌شوند، دارای مقادیر زیادی هیدروژن و مونوکسید کربن هستند.
      این گازها به‌عنوان سوخت برای تولید برق در کارخانه‌های فولاد مجدداً مورد استفاده قرار می‌گیرند.
      گازسنج‌های قابل‌حمل Riken Keiki کارکنان داخل کارخانه‌های فولاد را در برابر خطرات انفجار و مسمومیت محافظت می‌کنند.

     

    1. صنعت پالایش نفت و پتروشیمی
      صنعت پالایش نفت و پتروشیمی در فرآیندهای تولید خود با طیف گسترده‌ای از گازهای قابل اشتعال و سمی سروکار دارد.
      گازسنج‌های ثابت و قابل‌حمل Riken Keiki در کاربردهایی مانند تشخیص نشت گازهای سمی و قابل اشتعال از تجهیزات و لوله‌ها، مدیریت فرآیند و اندازه‌گیری محیط کار مورد استفاده قرار می‌گیرند.
      پایشگرهای ثابت گازهای سمی برای مدیریت گازهای سمی در مرزهای کارخانه نیز به‌طور فزاینده‌ای مورد استفاده قرار می‌گیرند
    2. مناطق آتشفشانی و چشمه‌های آب گرم
      گازهای آتشفشانی در نزدیکی دهانه‌های آتشفشان و در مناطقی که چشمه‌های آب گرم تخلیه می‌شوند، تولید می‌گردند.
      این گازهای آتشفشانی حاوی گازهای سمی مانند دی‌اکسید گوگرد و سولفید هیدروژن هستند که در صورت استنشاق برای انسان مضرند.
      غلظت این گازها به‌طور مداوم به‌دلیل فعالیت‌های آتشفشانی و عوامل دیگر تغییر می‌کند.
      دستگاه‌های گازسنج تخصصی برای پایش شبانه‌روزی غلظت دی‌اکسید گوگرد و سولفید هیدروژن به کار می‌روند تا از کارکنان و گردشگران محافظت شود.

     

    1. صنعت مواد غذایی
      در صنعت مواد غذایی، نیتروژن و دی‌اکسید کربن در فرآیند بسته‌بندی برای جلوگیری از اکسید شدن غذا مورد استفاده قرار می‌گیرند.
      از آنجا که این گازها خفه‌کننده هستند، گازسنج‌های اکسیژن تخصصی در کارخانه‌های مواد غذایی نصب می‌شوند تا از کارکنان در برابر بی‌اکسیژنی محافظت کنند.

     

    1. صنعت ساخت‌وساز
      کار در حفاری‌های زیرزمینی برای ساخت تونل‌ها و همچنین کار درون منهول‌ها می‌تواند کارکنان را در معرض تولید سولفید هیدروژن و شرایط کمبود اکسیژن قرار دهد؛ این وضعیت ناشی از باکتری‌های مصرف‌کننده اکسیژن موجود در لایه‌های زیرزمینی است.
      گازسنج‌های قابل‌حمل اکسیژن و سولفید هیدروژن از کارکنان در برابر خطرات ناشی از کمبود اکسیژن و مسمومیت با سولفید هیدروژن محافظت می‌کنند.
    2. آتش‌نشانی و امداد و نجات
      صحنه‌های آتش‌سوزی و حوادث، کارکنان را در معرض خطرات مختلفی قرار می‌دهند؛ از جمله انفجار ناشی از گازهای قابل اشتعال، کمبود اکسیژن، مسمومیت با مونوکسید کربن در اثر احتراق ناقص، و گازهای سمی مانند سولفید هیدروژن.
      گازسنج‌های شخصی چهارگازه برای پایش هم‌زمان چهار گاز مختلف استفاده می‌شوند. این دستگاه‌ها برای موقعیت‌هایی که نوع دقیق گازهای خطرناک ناشناخته است، بسیار مناسب هستند.

     

    1. حمل‌ونقل دریایی و کشتی‌سازی
      کشتی‌هایی که مقادیر زیادی نفت خام، LNG یا LPG حمل می‌کنند، با خطر نشت گازهای قابل اشتعال از مخازن بار مواجه هستند.
      گازسنج‌های ثابت تخصصی برای پایش نشت گاز در این کشتی‌ها به‌کار می‌روند. این دستگاه‌ها امکان شناسایی سریع نشت‌ها را فراهم کرده و از وقوع انفجار و آلودگی دریایی جلوگیری می‌کنند.
      همچنین، گازسنج‌های قابل‌حمل توسط کارکنان در حین انجام عملیات ساخت‌وساز پوشیده می‌شوند تا آن‌ها را در برابر کمبود خطرناک اکسیژن و مسمومیت با گازهای سمی محافظت کنند.

     

    1. هوافضا
      سوخت موشک‌ها حاوی هیدروژن (گاز قابل اشتعال و بسیار انفجاری) و هیدرازین (گاز سمی برای انسان) است.
      پایش این گازها برای ایمنی کاملاً ضروری است.
      گازسنج‌های ضدانفجار در مکان‌هایی که خطر انفجار بالا وجود دارد، مانند مناطقی که سوخت موشک با آن‌ها سروکار دارد، برای اطمینان از ایمنی استفاده می‌شوند.

    فناوری‌های تشخیص گاز
    7-1. فناوری‌های حسگر گاز
    برای مواجهه با محیط‌ها و انواع گازهای متنوع در طیف گسترده‌ای از صنایع، فناوری‌های مختلف حسگر گاز توسعه یافته‌اند.
    در این بخش، ۱۳ نوع از رایج‌ترین فناوری‌هایی که معمولاً در صنعت استفاده می‌شوند معرفی می‌گردند:

    1. روش احتراق کاتالیستی
    2. روش جدید کاتالیستی سرامیکی
    3. روش نیمه‌رسانا
    4. روش نیمه‌رسانای سیم داغ
    5. روش رسانش گرمایی
    6. روش الکترولیز پتانسیواستاتیکی
    7. روش الکترود با غشای جداکننده
    8. روش سلول گالوانیکی با غشای نفوذپذیر
    9. روش مادون قرمز غیرپراکنشی (NDIR)
    10. روش تداخل‌سنجی
    11. روش نوار شیمیایی
    12. آشکارساز یونش نوری (PID)
    13. روش آشکارسازی ذرات ناشی از پیرولیز

    7-2. روش احتراق کاتالیستی

    1. توضیح مختصر

    این حسگر بر پایه گرمای تولیدشده از سوزاندن گاز قابل اشتعال روی کاتالیست اکسیداسیون، گاز را شناسایی می‌کند. این حسگر رایج‌ترین حسگر گاز است که به‌طور خاص برای گازهای قابل اشتعال طراحی شده است.

    WhatsApp Image 2025 09 26 at 9.39.54 AM

    1. ساختار و اصول عملکرد

    [ساختار]
    این حسگر از یک المان آشکارساز و یک المان جبرانی تشکیل شده است.
    المان آشکارساز شامل سیم پیچ فلز گران‌بها (مانند پلاتین) و کاتالیست اکسیدکننده – ماده‌ای فعال در برابر گاز قابل اشتعال – است که همراه با یک پایه آلومینا روی سیم پخته (سینتر) شده‌اند. این المان در واکنش با هر گاز قابل شناسایی می‌سوزد.
    المان جبرانی شامل سیم پیچ فلز گران‌بها و شیشه – ماده‌ای غیرفعال در برابر گاز قابل اشتعال – است که همراه با پایه آلومینا روی سیم پخته شده‌اند. این المان اثرات محیط را تصحیح می‌کند.

    [اصول عملکرد]
    سیم پیچ فلز گران‌بها، المان آشکارساز را تا دمای ۳۰۰ تا ۴۵۰ درجه سانتی‌گراد گرم می‌کند. سپس گاز قابل اشتعال روی سطح المان آشکارساز می‌سوزد و دمای آن افزایش می‌یابد.
    با تغییر دما، مقاومت سیم پیچ فلز گران‌بها – که بخشی از المان است – تغییر می‌کند. این تغییر مقاومت تقریباً متناسب با غلظت گاز است.
    مدار پل نشان‌داده‌شده در شکل سمت راست به حسگر اجازه می‌دهد تغییر مقاومت را به ولتاژ تبدیل کرده و از آن برای تعیین غلظت گاز استفاده کند.

    حسگر ثابت –
    دسته: حالت جامد
    گاز قابل شناسایی: گازهای قابل اشتعال

     

     

    ویژگی‌ها

    O ویژگی‌های خروجی:
    سیم پیچ فلز گران‌بها که منبع حرارت است، ضریب مقاومت وابسته به دما را به‌صورت خطی تغییر می‌دهد.
    در محدوده غلظت کمتر از حد انفجار (LEL)، واکنش احتراقی متناسب با غلظت گاز است.
    در این محدوده، خروجی حسگر به‌آرامی متناسب با تغییرات غلظت گاز تغییر می‌کند.

    WhatsApp Image 2025 09 26 at 9.39.54 AM1

    پاسخ‌دهی:
    گرمای احتراق تولیدشده روی سطح المان آشکارساز به سیم پیچ فلز گران‌بها منتقل شده و مقاومت مدار پل را تغییر می‌دهد و سپس به سیگنال تبدیل می‌گردد.

    WhatsApp Image 2025 09 26 at 9.39.55 AM

    با نرخ واکنش بالا، این حسگر در پاسخ‌دهی، دقت و قابلیت تکرار عملکرد بسیار خوبی دارد.

    O ویژگی‌های دما و رطوبت:
    مواد به‌کاررفته در اجزای حسگر دارای مقاومت الکتریکی بالا هستند و کمتر تحت تأثیر دما و رطوبت محیط استفاده قرار می‌گیرند، بنابراین قرائت‌ها تقریباً ثابت باقی می‌مانند.

    WhatsApp Image 2025 09 26 at 9.39.55 AM1

    توسعه کاتالیست:
    المان آشکارساز از کاتالیستی استفاده می‌کند که واکنش احتراقی را تسهیل می‌کند.
    این کاتالیست به‌طور اختصاصی برای حسگرهای گاز توسعه یافته و با بهره‌گیری از دانش فنی خاص طراحی شده است، که پایداری بلندمدت را فراهم می‌کند.

     

    ۷–۴. تشخیص گاز با دتکتورهای گاز نیمه‌رسانا

    حسگر ثابت

    **۱. شرح مختصر دتکتورهای گاز نیمه‌رسانا

    این حسگر از یک نیمه‌رسانای اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. حسگر این تغییر مقاومت را به‌عنوان غلظت گاز تشخیص می‌دهد. این یک حسگر همه‌کاره است که انواع گازها از گازهای سمی تا گازهای قابل اشتعال را شناسایی می‌کند. 

     

    **۲. ساختار و اصول کار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی         تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا        در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند

    **[ساختار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی (SnO₂) تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا (Au) در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند. 

    WhatsApp Image 2025 09 26 at 9.39.55 AM2

     

    **[اصول کار دتکتورهای گاز نیمه‌رسانا

    سیم گرم‌کن، سطح نیمه‌رسانای اکسید فلزی را تا ۴۰۰–۳۵۰°C گرم می‌کند. با جذب اکسیژن هوا روی این سطح به‌صورت O و O₂، نیمه‌رسانا مقاومت ثابتی حفظ می‌کند. سپس، گاز متان یا مشابه آن با سطح تماس یافته و جذب شیمیایی می‌شود. این گاز توسط یون‌های O اکسید شده و تجزیه می‌شود. واکنش روی سطح حسگر به‌صورت زیر است: 

     

    CH₄ + ۴O⁻ → CO₂ + ۲H₂O + ۸e⁻ 

    WhatsApp Image 2025 09 26 at 9.39.56 AM

    به‌طور خلاصه، گاز متان روی سطح حسگر جذب شده و اکسیژن جذب‌شده را جدا می‌کند. این امر الکترون‌های آزاد درون حسگر را افزایش داده و مقاومت را کاهش می‌دهد. حسگر با اندازه‌گیری تغییر مقاومت، غلظت گاز را تعیین می‌کند. 

     

    **۳. ویژگی‌های دتکتورهای گاز نیمه‌رسانا 

    **ویژگی‌های خروجی دتکتورهای گاز نیمه‌رسانا

    حسگر تغییرات مقاومت نیمه‌رسانا را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (در سطح ppm) که توسط حسگرهای سرامیکی جدید قابل تشخیص نیستند را نیز شناسایی می‌کند. این حسگر برای غلظت‌های کم بسیار حساس بوده و سطح خروجی بالایی دارد. 

    WhatsApp Image 2025 09 26 at 9.39.56 AM1

    **تشخیص گازهای سمی در دتکتورهای گاز نیمه‌رسانا

    از آنجا که در اصل، مقاومت با تغییر تعداد الکترون‌ها و تحرک آن‌ها تغییر می‌کند، این حسگر طیف وسیعی از گازها از جمله گازهای سمی که گرمای احتراق کمتری تولید می‌کنند را تشخیص می‌دهد. 

     

    **ویژگی‌های پیری دتکتورهای گاز نیمه‌رسانا

    حسگر در بلندمدت پایداری خود را حفظ کرده و عمر طولانی دارد. در مقایسه با حسگرهای مبتنی بر احتراق کاتالیستی، این نوع حسگر مقاومت بالایی در برابر سمیت و شرایط سخت جوی دارد. 

     

    **انتخاب‌پذیری گاز در دتکتورهای گاز نیمه‌رسانا

    با افزودن ناخالصی به ماده نیمه‌رسانا، اثر تداخل تغییر می‌کند. این ویژگی به حسگر اجازه می‌دهد تا برخی گازها را به‌صورت انتخابی تشخیص دهد.

     

     

     

    ۷-۵.تشخیص گاز از طریق روش نیمه‌هادی نوع سیم داغ

     

    سنسور ثابت

    سنسور قابل حمل نیمه‌هادی نوع سیم داغ

     

    ۱. شرح مختصر از دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    این سنسور از یک نیمه‌هادی اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. سنسور این تغییر مقاومت را به عنوان غلظت گاز تشخیص می‌دهد. این یک سنسور گاز با حساسیت بالا برای غلظت‌های کم است.

     

    ۲. ساختار و اصول  دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    [ساختار]

    سنسور از یک المان تشخیصی تشکیل شده است که شامل یک سیم پیچ از جنس فلز گران‌بها (مثلاً پلاتین) و یک نیمه‌هادی اکسید فلزی پخته شده روی سیم پیچ است، و یک المان جبرانی که ماده‌ای غیرفعال در برابر گازهای قابل تشخیص روی آن پخته شده است.

    WhatsApp Image 2025 09 26 at 9.39.57 AM

    [اصول  عملکرد دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM1

    مقاومت (R) المان تشخیصی، ترکیبی از مقاومت (RS) نیمه‌هادی و مقاومت (RH) سیم پیچ فلز گران‌بها است. المان تشخیصی توسط سیم پیچ فلز گران‌بها تا ۳۰۰°C تا ۴۰۰°C گرم می‌شود و مقاومت ثابتی را حفظ می‌کند. سپس، گاز متان یا مشابه با المان تشخیصی تماس پیدا می‌کند و اکسیژن جذب شده روی سطح نیمه‌هادی اکسید فلزی را جدا می‌کند. این امر تعداد الکترون‌های آزاد در داخل نیمه‌هادی را افزایش داده و مقاومت نیمه‌هادی را کاهش می‌دهد. در نتیجه مقاومت کل المان تشخیصی کاهش می‌یابد. با تشخیص تغییر مقاومت توسط مدار پل، سنسور غلظت گاز را تعیین می‌کند.

     

    رده جامد

    گاز قابل تشخیص

     

    ۳. ویژگی‌های دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    ویژگی‌های خروجی  دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM2

    سنسور تغییرات مقاومت نیمه‌هادی را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (سطح ppm) که توسط سنسورهای سرامیکی جدید قابل تشخیص نیستند را نیز تشخیص می‌دهد.

     

     

     

    کوچک‌سازی و صرفه‌جویی در انرژی  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سیم پیچ فلز گران‌بها برای گرم‌کن را می‌توان کوچک‌تر کرد تا سنسوری کوچکتر با مصرف انرژی کمتر فراهم شود.

     

    ویژگی‌های پیری  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سنسور در بلندمدت پایداری خود را حفظ می‌کند و عمر طولانی دارد. در مقایسه با سنسورهای مبتنی بر احتراق کاتالیستی، این نوع سنسور مقاومت بالایی در برابر سمیت و جو شدید دارد.

     

    انتخاب‌پذیری گاز  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    با افزودن یک ناخالصی به نیمه‌هادی اکسید فلزی، اثر تداخل تغییر می‌کند. این ویژگی به سنسور اجازه می‌دهد تا برخی گازها را به صورت انتخابی تشخیص دهد.

     

     

    دتکتور گاز رسانائی گرمائی

    1. توضیح مختصر دتکتور گاز رسانائی گرمائی

     

    این دتکتور با تشخیص تفاوت در رسانایی گرمایی، غلظت گاز را تعیین می‌کند. این یک دتکتور اثبات‌شده برای گازهای قابل اشتعال است که به‌طور مؤثر گازهای با غلظت بالا را تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM

    [ساختار  دتکتور گاز رسانائی گرمائی

    این دتکتور از یک المان تشخیص و یک المان جبران تشکیل شده است. المان‌های تشخیص و جبران در دو نوع موجود هستند: یکی شامل یک سیم‌پیچ پلاتین و مخلوطی از شیشه (یک ماده غیرفعال در برابر گاز قابل اشتعال) و یک پایه آلومینا است که روی سیم‌پیچ پخته شده است، و دیگری شامل یک سیم‌پیچ و یک فلز غیرفعال یا مشابه است که روی سیم‌پیچ پوشش داده شده است. المان تشخیص به گونه‌ای طراحی شده است که گازهای قابل تشخیص با آن تماس پیدا کنند. المان جبران محصور شده است تا هیچ گاز قابل تشخیصی با آن تماس نداشته باشد.

     

    [اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM1

    سیم‌پیچ پلاتین، المان تشخیص را تا 200 تا 500 درجه سانتی‌گراد گرم می‌کند. سپس، یک گاز قابل تشخیص با المان تشخیص تماس پیدا می‌کند و به دلیل رسانایی گرمایی خاص گاز، شرایط اتلاف گرما را تغییر می‌دهد و دمای المان تشخیص را افزایش می‌دهد. با این تغییر دما، مقاومت سیم‌پیچ پلاتین، که بخشی از المان است، تغییر می‌کند. تغییر مقاومت تقریباً متناسب با غلظت گاز است.

     

    با تشخیص تغییر مقاومت توسط مدار پل، دتکتور غلظت گاز را تعیین می‌کند.

     

    1. ویژگی‌های دتکتور گاز رسانائی گرمائی

     

    ویژگی‌های خروجی  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور تغییرات مقاومت سیم‌پیچ پلاتین را تشخیص می‌دهد، خروجی تا رسیدن به صد درصد حجمی تقریباً متناسب با غلظت است. این دتکتور برای تشخیص گازهای با غلظت بالا مناسب است.

    WhatsApp Image 2025 09 26 at 9.39.59 AM

    تشخیص در شرایط بی‌اکسیژن  دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.59 AM1

    از آنجا که دتکتور تغییرات رسانایی گرمایی را تشخیص می‌دهد، می‌تواند گازها را حتی در جو بی‌اکسیژن نیز تشخیص دهد. اما گازهایی با تفاوت کوچک در رسانایی گرمایی با گاز مرجع را تشخیص نمی‌دهد.

     

    دتکتور به‌صورت فیزیکی تغییرات رسانایی گرمایی گاز را تشخیص می‌دهد و شامل واکنش شیمیایی مانند واکنش احتراق نیست. این بدان معناست که با تخریب یا مسمومیت کاتالیزور ارتباطی ندارد و پایداری بلندمدت را فراهم می‌کند.

     

    تشخیص گازهای غیرقابل اشتعال  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور از رسانایی گرمایی خاص گاز استفاده می‌کند، حتی گازهای غیرقابل اشتعال با تفاوت زیاد در رسانایی گرمایی، مانند آرگون، نیتروژن و دی‌اکسید کربن با غلظت بالا را نیز تشخیص می‌دهد.

     

     

     

     

     

    ۷-۷. روش الکترولیز پتانسیواستاتیک

     

     

    ۱. شرح مختصر دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.39.59 AM2

    این دتکتور گاز قابل تشخیص را با استفاده از یک الکترود در پتانسیل ثابت الکترولیز می‌کند تا جریان ایجاد شود و سپس با اندازه‌گیری جریان، غلظت گاز را تعیین می‌نماید. این دتکتور گاز برای تشخیص گازهای سمی بسیار مناسب است. می‌توان پتانسیل خاصی را برای تشخیص گاز خاصی تنظیم کرد.

     

    ۲. ساختار و اصول  دتکتور گاز الکترولیز پتانسیواستاتیک

    [ساختار دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک الکترود (الکترود عمل) همراه با یک غشاء نفوذپذیر گاز و کاتالیزور (مثل طلا یا پلاتین)، الکترود مرجع و الکترود مقابل تشکیل شده که درون محفظه‌ای پلاستیکی پر از محلول الکترولیت قرار گرفته‌اند.

     

    [اصول عملکرد دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک مدار پتانسیواستاتیک برای ثابت نگه داشتن پتانسیل بین الکترود عمل و الکترود مرجع استفاده می‌کند. الکترود عمل گاز قابل تشخیص را مستقیماً الکترولیز می‌کند. اگر گاز قابل تشخیص H2S باشد، واکنش‌های زیر رخ می‌دهد:

    الکترود عمل: H2S + 4H2O → H2SO4 + 8H+ + 8e

    الکترود مقابل: 2O2 + 8H+ + 8e → 4H2O

    جریان تولیدشده متناسب با غلظت گاز است. با اندازه‌گیری جریان بین الکترود عمل و الکترود مقابل، دتکتور غلظت گاز را تعیین می‌کند.

     

    ۳. ویژگی‌های دتکتور گاز الکترولیز پتانسیواستاتیک

    ویژگی‌های خروجی دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون تغییر خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

     

    واکنش‌دهی  دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM1

    منحنی پاسخ همانطور که در شکل سمت راست نشان داده شده است. دتکتور با استفاده از واکنش کاتالیزوری گاز را به جریان تبدیل می‌کند. از آنجا که H2S کاتالیزور الکترود را تغییر نمی‌دهد، دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

    ویژگی‌های پیری  دتکتور گاز الکترولیز پتانسیواستاتیک

    تقریباً تا دو سال، حساسیت دتکتور در سطح حدود ۸۰٪ حساسیت اولیه باقی می‌ماند. از آنجا که رطوبت تأثیر جزئی بر حساسیت دارد، ممکن است خوانش بسته به فصل تغییر کند.

     

    ویژگی‌های دمای دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.01 AM

    با خوانش تقریباً پایدار در دماهای بالا، حساسیت دتکتور با کاهش دما ممکن است کاهش یابد. حتی در ۰°C، حساسیت دتکتور کمتر از ۸۰٪ نخواهد شد. با انجام تصحیح دما، نوسانات خوانش به حداقل می‌رسد.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    ۷-۸. روش تشخیص گاز با دتکتور گاز با الکترود با غشای جداکننده

    ۱. شرح مختصر  دتکتور گاز با الکترود با غشای جداکننده

    بر اساس اصول دتکتور پایه‌گذاری شده بر الکترولیز پتانسیواستاتیک، این دتکتور با یک فیلم نفوذپذیر گاز (غشای جداکننده) و یک الکترود عمل کاملاً جدا از هم ساختار یافته است. این یک دتکتور گاز سمی با انتخاب‌پذیری عالی است.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    . ساختار و اصول  دتکتور گاز با الکترود با غشای جداکننده

    [ساختار دتکتور گاز با الکترود با غشای جداکننده

    دتکتور با یک الکترود عمل – یک الکترود فلزی با یک فیلم نفوذپذیر گاز که روی آن قرار گرفته – همراه با الکترودهای مرجع و مقابل ساختار یافته است. این الکترودها در یک محفظه پلاستیکی پر از محلول الکترولیت قرار دارند. بین الکترود عمل و فیلم، یک لایه بسیار نازک از محلول الکترولیت وجود دارد.

     

    [اصول دتکتور گاز با الکترود با غشای جداکننده

    یک گاز قابل تشخیص از طریق فیلم نفوذپذیر گاز عبور کرده و با یون‌های موجود در محلول الکترولیت واکنش می‌دهد که هالوژن تولید می‌کند. اگر گاز قابل تشخیص Cl باشد، واکنش زیر رخ می‌دهد:

    Cl2 + 2I- → 2Cl- + I2

    I2 تولید شده توسط این واکنش در الکترود عمل کاهش می‌یابد، باعث می‌شود جریانی از مدار عبور کند. از آنجا که این جریان متناسب با غلظت گاز است، دتکتور مقدار جریان را برای تعیین غلظت گاز اندازه می‌گیرد. گاز قابل تشخیص قبل از واکنش با الکترود عمل با محلول الکترولیت واکنش می‌دهد و بنابراین هیچ تداخلی با گازهایی که با محلول الکترولیت واکنش نمی‌دهند رخ نمی‌دهد. این ویژگی به دتکتور انتخاب‌پذیری عالی می‌بخشد.

     

     

    ۳. ویژگی‌ها ی دتکتور گاز با الکترود با غشای جداکننده

    ویژگی‌های خروجی  دتکتور گاز با الکترود با غشای جداکننده

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون هیچ تغییری خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM

    پاسخ‌دهی  دتکتور گاز با الکترود با غشای جداکننده

    دتکتور به سرعت پاسخ می‌دهد. از آنجا که الکترودها یا محلول الکترولیت به ندرت توسط گاز کلر خورده می‌شوند، دتکتور از دقت و تکرارپذیری عالی برخوردار است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM1

    ویژگی‌های پیری  دتکتور گاز با الکترود با غشای جداکننده

    عملکرد دتکتور با گذشت زمان کاهش نمی‌یابد و تقریباً هیچ تغییری در خروجی مشاهده نمی‌شود. با این حال، اگر فیلم نفوذپذیر گاز به دلیل چسبیدن ذرات خارجی، نفوذپذیری گاز را از دست بدهد، این ممکن است منجر به کاهش خروجی شود.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با الکترود با غشای جداکننده

    WhatsApp Image 2025 09 26 at 9.40.02 AM2

    دماهای بالا تقریباً هیچ تأثیری بر خروجی ندارند در حالی که دماهای پایین احتمالاً خروجی را کاهش می‌دهند. حتی در دمای ۰ درجه سانتی‌گراد، دتکتور حساسیت خود را در سطحی نه کمتر از ۸۰٪ حفظ می‌کند. با انجام تصحیحات دما، نوسانات قرائت به حداقل می‌رسد. خروجی تحت تأثیر رطوبت قرار نمی‌گیرد.

     

    ۷-۹. روش تشخیص گاز با دتکتور گاز با سلول گالوانیک غشایی

     

    ۱. شرح مختصر  دتکتور گاز با سلول گالوانیک غشایی

     

     

    این دتکتور ساده و سنتی بر اساس اصول سلول‌ها عمل می‌کند. این دتکتور بدون نیاز به منبع تغذیه خارجی، پایداری بلندمدت دارد.

     

    ۲. ساختار و اصول  دتکتور گاز با سلول گالوانیک غشایی

     

     

    [ساختار دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.03 AM

    دتکتور از یک کاتد (فلز گران‌بها) و آند (سرب) قرارگرفته در یک محلول الکترولیتی تشکیل شده است. یک غشای جداساز به سطح خارجی کاتد چسبیده است. با اتصال کاتد و آند از طریق یک مقاومت ثابت، مقدار ولتاژ خروجی تولید می‌شود.

     

    [اصول دتکتور گاز با سلول گالوانیک غشایی

     

     

    اکسیژن از غشای جداساز عبور کرده و در کاتد کاهش می‌یابد. همزمان در آند، سرب در محلول الکترولیتی حل می‌شود (اکسید می‌شود). واکنش‌های زیر در الکترودها رخ می‌دهد:

    کاتد: O2 + 2H2O + 4e → 4OH

    آند: 2Pb → 2Pb2+ + 4e

     

    جریان ناشی از واکنش کاهش، توسط مقاومت به ولتاژ تبدیل شده و از ترمینال خروجی خارج می‌شود. خروجی دتکتور متناسب با غلظت اکسیژن (فشار جزئی) است.

     

    ۳. ویژگی‌های دتکتور گاز با سلول گالوانیک غشایی

     

     

    ویژگی‌های خروجی  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.04 AM

    غلظت اکسیژن با مقدار جریان متناسب است. دتکتور مقدار جریان را به ولتاژ تبدیل کرده و سپس آن را خروجی می‌دهد. بنابراین، خروجی دتکتور در محدوده ۰ تا ۱۰۰٪ با غلظت اکسیژن متناسب است.

     

    سرعت پاسخ  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM

    با سرعت پاسخ بالا، این دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

     

     

    ویژگی‌های پیری

    با عمر طولانی، این دتکتور می‌تواند به مدت دو تا سه سال مورد استفاده قرار گیرد.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM1

    دتکتور از یک ترمیستور داخلی برای جبران دمایی استفاده می‌کند، بنابراین خوانش تقریباً به دما وابسته نیست.

    ۷-۱۰.تشخیص گاز به  روش مادون قرمز غیرپاشنده

    ۱. شرح مختصر  دتکتور مادون قرمز غیرپاشنده

    بر اساس این واقعیت که بسیاری از گازها اشعه مادون قرمز را جذب می‌کنند، این دتکتور نور مادون قرمز را به سلول اندازه‌گیری اعمال می‌کند تا تغییرات نور مادون قرمز ناشی از جذب گاز قابل تشخیص را شناسایی کند. این روش تمام نور مادون قرمز در محدوده طول‌موج خاصی را بدون تفکیک (پاشش) نور مادون قرمز بر اساس طول‌موج، به‌صورت یکپارچه تشخیص می‌دهد. WhatsApp Image 2025 09 26 at 9.40.06 AM

    . ساختار و اصول  دتکتور مادون قرمز غیرپاشنده

    [ساختار دتکتور مادون قرمز غیرپاشنده

    این دتکتور از یک منبع نور مادون قرمز و یک سنسور مادون قرمز تشکیل شده است که بین آن‌ها یک سلول اندازه‌گیری و یک فیلتر نوری قرار گرفته است. منبع نور مادون قرمز، نور را ساطع می‌کند که از طریق سلول اندازه‌گیری و فیلتر نوری عبور کرده و توسط سنسور مادون قرمز تشخیص داده می‌شود. فیلتر نوری به طول‌موج‌های مادون قرمز که توسط گاز قابل تشخیص جذب می‌شوند، اجازه عبور انتخابی می‌دهد.

     

    [اصول عملکرد دتکتور مادون قرمز غیرپاشنده

    یک گاز قابل تشخیص وارد سلول اندازه‌گیری شده و نور مادون قرمز را جذب می‌کند. این امر باعث کاهش مقدار نور مادون قرمز تشخیص‌داده شده توسط سنسور مادون قرمز می‌شود. برخی از گازهای قابل تشخیص با غلظت‌های شناخته شده وارد می‌شوند تا رابطه (منحنی کالیبراسیون) بین کاهش مقدار نور مادون قرمز و غلظت هر گاز قابل تشخیص تعیین شود. هنگامی که یک گاز قابل تشخیص با غلظت ناشناخته وارد می‌شود، دتکتور از منحنی کالیبراسیون بر اساس کاهش اندازه‌گیری‌شده مقدار نور مادون قرمز برای تعیین غلظت گاز استفاده می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.06 AM1

    . ویژگی‌های دتکتور مادون قرمز غیرپاشنده

    ویژگی‌های خروجی  دتکتور مادون قرمز غیرپاشنده

    WhatsApp Image 2025 09 26 at 9.40.06 AM3

    غلظت گاز و خروجی دتکتور رابطه متناسب ندارند، بلکه رابطه آن‌ها مطابق منحنی نشان‌داده شده در شکل پائین است. (i-C4H10: ایزوبوتان)

     

    ویژگی‌های پاسخ‌دهی  دتکتور مادون قرمز غیرپاشنده

    هنگامی که گاز با دبی ثابت به دتکتور گاز تغذیه می‌شود، دتکتور پاسخ‌های قابل تکرار و دقیقی ارائه می‌دهد. WhatsApp Image 2025 09 26 at 9.40.07 AM2

    ویژگی‌های پیری  در دتکتور مادون قرمز غیرپاشنده

    در محیطی با تغییرات دمایی کم، دتکتور پایدار باقی می‌ماند و بدون کاهش دقت خوانش در طول زمان عمل می‌کند. بسته به محیط، ممکن است دتکتور با گذشت زمان به‌طور قابل توجهی تخریب شود. در این صورت، می‌توان با انجام کالیبراسیون گاز هر شش ماه یکبار، تخریب را به حداقل رساند.

     

    ویژگی‌های دما و رطوبت  در دتکتور مادون قرمز غیرپاشنده

    با انجام تصحیحات دمایی، می‌توان وابستگی خوانش‌ها به دما را در محدوده دمایی مشخص‌شده به حداقل رساند.

    WhatsApp Image 2025 09 26 at 9.40.07 AM3

    در صورت عدم تشکیل میعان (%LEL) در داخل سلول گاز، دتکتور تقریباً تحت تأثیر رطوبت قرار نمی‌گیرد.

    . روش تشخیص گاز با تداخل سنجی

    ۱. شرح کلی  دتکتور گاز تداخل سنجی

    این دتکتور گاز، که یکی از قدیمیترین حسگرهای گاز ماست، تغییرات در ضریب شکست گاز را تشخیص میدهد. با دقت بالا، پایداری بلندمدت را حفظ میکند. در گذشته، داخل معادن زغالسنگ برای اندازهگیری غلظت متان استفاده میشد و در سالهای اخیر، بهطور گسترده برای اندازهگیری غلظت حلالها یا مقادیر حرارتی گازهای سوختی مانند گاز طبیعی کاربرد دارد.

    ۲. ساختار و اصول  دتکتور گاز تداخل سنجی

    [ساختار دتکتور گاز تداخل سنجی

    WhatsApp Image 2025 09 26 at 9.40.08 AM

    منبع نور، نور را ساطع میکند که توسط آینه تخت موازی به دو پرتو نور (A و B) تقسیم و توسط منشور بازتاب میشود. پرتو A یک سفر رفت و برگشت در محفظه گاز D، که گاز قابل تشخیص جریان دارد، انجام میدهد و پرتو B یک سفر رفت و برگشت در محفظه گاز E، که گاز مرجع جریان دارد، انجام میدهد. دو پرتو نور A و B در نقطه C آینه تخت موازی به هم میرسند و یک الگوی تداخلی روی سنسور تصویر از طریق آینه و لنز تشکیل میدهند.

     

    [اصول عملکرد دتکتور گاز تداخل سنجی

    یک الگوی تداخلی به نسبت تفاوت در ضریب شکست بین گاز قابل تشخیص و گاز مرجع حرکت میکند. حسگر مبتنی بر تداخلسنج نوری، مسافت حرکت الگوی تداخلی را اندازهگیری میکند تا ضریب شکست گاز قابل تشخیص را تعیین و آن را به غلظت گاز یا مقدار حرارتی تبدیل کند.

     

    ۳. ویژگی های دتکتور گاز تداخل سنجی

    مسافت حرکت الگوی تداخلی AB که توسط این حسگر اندازهگیری میشود، با معادله زیر نشان داده میشود:

    ویژگیهای خروجی  دتکتور گاز تداخل سنجی

    الگوی تداخلی

    از آنجا که تغییر در ضریب شکست متناسب با تغییر در غلظت گاز است، حسگر خطیبودن بسیار بالایی ارائه میدهد.

     

    پاسخدهی  دتکتور گاز تداخل سنجی

    حسگر اندازهگیری را با تکمیل جایگزینی در محفظه گاز با حجم ۰.۵ تا ۵ میلیلیتر به پایان میرساند. برخی مدلها اندازهگیری را در ۵ تا ۱۰ ثانیه با پاسخ ۹۰٪ تکمیل میکنند.

     

    ویژگیهای پیری  دتکتور گاز تداخل سنجی

    بارزترین ویژگی این حسگر این است که حساسیت آن کاهش نمییابد. حساسیت حسگر فقط به طول محفظه گاز L و طول موج منبع نور λ بستگی دارد. از آنجا که هر دو این پارامترها ثابت هستند، حسگر حساسیت پایدار بلندمدت ارائه میدهد. حتی اگر عنصر نوری کثیف شود، تأثیری بر مسافت حرکت الگوی تداخلی ندارد؛ بنابراین، حسگر تا زمانی که بتواند الگو را تشخیص دهد، حساسیت آن کاهش نمییابد.

     

    ویژگیهای فشار و دما در دتکتور گاز تداخل سنجی

    اگرچه ضریب شکست گاز بسته به دما T و فشار P تغییر میکند، حسگر دما و فشار را اندازهگیری میکند تا آنها را تصحیح کند و بنابراین تحت تأثیر آنها قرار نمیگیرد.

     

     

     

     

     

     

    7-12.تشخیص گاز به روش نوار شیمیایی

    1. شرح کلی دتکتور گاز با نوار شیمیائی

    این حسگر از نوار سلولزی آغشته به ماده رنگزا استفاده می‌کند. با عبور یا نفوذ گاز قابل تشخیص به داخل این نوار، واکنشی شیمیایی رخ داده و رنگ نوار تغییر می‌کند. حسگر با اندازه‌گیری نور بازتاب‌شده از رنگ ایجادشده بر اثر واکنش بین ماده رنگزا و گاز، غلظت بسیار کم گازهای سمی را به صورت کمی تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز با نوار شیمیائی

    [ساختار دتکتور گاز با نوار شیمیائی

    حسگر دارای محفظه‌ای است که گاز قابل تشخیص وارد آن می‌شود. این محفظه یک ظرف ضد نور است که داخل آن منبع نور و بخش گیرنده نور برای تشخیص رنگ نوار قرار گرفته‌اند. حسگر شامل این محفظه گاز و اجزای دیگری مانند مکانیسم قرقره برای جمع‌آوری نوار پس از هر اندازه‌گیری است.

    WhatsApp Image 2025 09 26 at 9.40.08 AM1

    [اصول دتکتور گاز با نوار شیمیائی

    وقتی گاز قابل تشخیص با نوار آغشته به ماده رنگزا تماس پیدا می‌کند، واکنش شیمیایی رخ داده و نوار رنگ می‌گیرد. به عنوان مثال، اگر فسفین (PH3) با نوار تماس پیدا کند، کلوئید نقره طبق فرمول زیر تولید می‌شود و یک لکه رنگی روی نوار سفید ظاهر می‌شود:

    PH3 + AgCIO → Ag + H3PO4 + 1/2 Cl2

     

    حسگر نور را به نقطه رنگی‌شده نوار تابانده و تغییر شدت نور بازتاب‌شده قبل و بعد از ورود گاز را اندازه‌گیری می‌کند؛ بنابراین غلظت گاز را به دقت محاسبه می‌کند.

     

    1. ویژگی‌ها ی دتکتور گاز با نوار شیمیائی

    ویژگی‌های خروجی دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.08 AM2

    وقتی گاز قابل تشخیص وارد بخش تشخیص می‌شود، نوار شروع به رنگ‌گرفتن می‌کند و خروجی به تدریج افزایش می‌یابد. از آنجا که حسگر تغییرات رنگ را اندازه‌گیری می‌کند، خروجی به صورت منحنی نمایش داده می‌شود.

     

     

    ویژگی‌های دما و رطوبت در دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.09 AM

    برای فسفین (PH3)، حسگرهای نوار‌ای وابسته به دما نیستند. همچنین بدون وابستگی زیاد به رطوبت، این حسگر در محدوده دمایی و رطوبتی عملیاتی، قرائت دقیقی ارائه می‌دهد.

     

    ویژگی‌های پیری در دتکتور گاز با نوار شیمیائی

    آزمایش‌های مداوم روی حسگر نشان می‌دهد که بدون کاهش حساسیت به گاز، اندازه‌گیری پایدار انجام می‌دهد.

     

    ویژگی‌های دتکتور گاز با نوار شیمیائی

    – حساسیت بسیار بالا با انتخاب‌پذیری عالی

    – استفاده از نوار کاست که تعویض آن آسان است

    – تغذیه نوار برای هر اندازه‌گیری، که هیچ هیسترزیسی ایجاد نمی‌کند

    – رنگ‌گرفتن نوار بر اثر گاز قابل تشخیص تجمع می‌یابد، که امکان تشخیص غلظت‌های بسیار کم گاز را فراهم می‌کند.

     

     

     

     

     

     

     

     

    7-13. دتکتور یونیزاسیون نوری

    1. شرح کلی دتکتور یونیزاسیون نوری

    این حسگر گاز با اعمال نور فرابنفش به گاز قابل تشخیص، باعث یونیزه شدن آن می‌شود. این عمل جریان یونی ایجاد می‌کند. حسگر این جریان را اندازه‌گیری کرده و غلظت گاز را تعیین می‌نماید. این حسگر محدوده وسیعی از گازها را بدون توجه به آلی یا معدنی بودن آنها تشخیص می‌دهد. معمولاً برای اندازه‌گیری غلظت ترکیبات آلی فرار (VOCs) در محدوده ppb تا ppm استفاده می‌شود.

     

    1. ساختار و اصول دتکتور یونیزاسیون نوری

    [ساختار دتکتور یونیزاسیون نوری

    حسگر از یک محفظه یونیزاسیون برای ورود گاز قابل تشخیص، یک لامپ فرابنفش برای تابش نور و الکترودهای مثبت و منفی برای تشخیص جریان یونی تشکیل شده است.

     

    [اصول عملکرد دتکتور یونیزاسیون نوری

    گاز قابل تشخیص وارد محفظه یونیزاسیون شده و در معرض نور فرابنفش از منبع نور (لامپ فرابنفش) قرار می‌گیرد. این عمل باعث آزاد شدن الکترون‌ها و تولید کاتیون می‌شود. کاتیون‌ها و الکترون‌های تولید شده توسط الکترودهای مثبت و منفی جذب شده و جریان الکتریکی ایجاد می‌کنند. از آنجا که این جریان متناسب با غلظت گاز است، حسگر با اندازه‌گیری مقدار جریان، غلظت گاز قابل تشخیص را تعیین می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.09 AM1

    برای یونیزه کردن یک گاز، نیاز به اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص آن گاز است. انرژی فوتون با واحد الکترون ولت (eV) بیان می‌شود. این حسگر از لامپ‌هایی با انرژی فوتونی 10.6 eV و 11.7 eV استفاده می‌کند. هرچه انرژی فوتون بیشتر باشد، مقدار بیشتری از گاز قابل تشخیص یونیزه می‌شود.

     

    1. ویژگی‌های دتکتور یونیزاسیون نوری

    ویژگی‌های خروجی دتکتور یونیزاسیون نوری

    WhatsApp Image 2025 09 26 at 9.40.10 AM

    برای گازهایی با غلظت پایین (چند صد ppm)، خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد.

    برای گازهایی با غلظت پایین خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد

    لامپ فرابنفش:

    انرژی فوتونی (eV) لامپ فرابنفش توسط ترکیب گاز موجود در لامپ و جنس پنجره لامپ تعیین می‌شود.

     

     

    انرژی یونیزاسیون مواد معمول:

    با اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص هر گاز، حسگر گاز را یونیزه کرده و غلظت آن را تعیین می‌کند. این حسگر معمولاً از لامپ‌های 10.6 eV یا 11.7 eV استفاده می‌کند.

     

    جدول انرژی فوتونی:

    گاز داخل لامپ | جنس پنجره | انرژی فوتونی (eV)

    زنون | یاقوت کبود | 8.4

    کریپتون | فلورید منیزیم | 10.6

    آرگون | فلورید لیتیم | 11.7

     

     

    WhatsApp Image 2025 09 26 at 9.40.10 AM1

     

    7-14. روش تشخیص گاز با ذرات پیرولیز شده

    1. شرح کلی دتکتور گاز با ذرات پیرولیز شده

    این حسگر گاز، گاز قابل تشخیص را حرارت داده تا اکسید تولید کند و سپس ذرات اکسید را با استفاده از یک حسگر ذره سنجی می‌کند. این حسگر پایداری بلندمدت داشته و مقاومت عالی در برابر تداخل و پاسخگویی سریع دارد. حسگر ذره بر اساس اصول مشابه حسگرهای دود یونیزاسیونی که از پرتوها استفاده می‌کنند، کار می‌کند.

     

    1. ساختار و اصول دتکتور گاز با ذرات پیرولیز شده

    [ساختار دتکتور گاز با ذرات پیرولیز شده

    این حسگر معمولاً ترکیبی از یک تجزیه‌گر حرارتی و حسگر ذره است. در مرکز تجزیه‌گر حرارتی یک لوله کوارتزی پیچیده شده با عنصر گرمایشی قرار دارد.

    حسگر ذره شامل یک محفظه اندازه‌گیری (که به طور مداوم با استفاده از پرتوهای آلفا جریان یون تولید می‌کند) و یک محفظه جبران است. گاز قابل تشخیص فقط وارد محفظه اندازه‌گیری می‌شود، در حالی که محفظه جبران به اتمسفر باز است.

     

    [اصول دتکتور گاز با ذرات پیرولیز شده

    بسیاری از گازهای آلی فلزی مانند TEOS در اثر حرارت، اکسید ذره‌ای تولید می‌کنند. گاز قابل تشخیص از طریق تجزیه‌گر حرارتی اکسید شده و وارد حسگر ذره می‌شود.

    در محفظه اندازه‌گیری حسگر ذره، از یک منبع پرتو آلفا برای یونیزه کردن هوا استفاده می‌شود که باعث جریان یونی می‌شود. ذرات وارد محفظه اندازه‌گیری شده و یون‌ها را جذب می‌کنند؛ این امر جریان یونی را کاهش داده و در نتیجه خروجی حسگر کم می‌شود. بر اساس میزان کاهش خروجی، غلظت گاز تعیین می‌شود. محفظه جبران، نوسانات خروجی حسگر ناشی از دما، رطوبت و/یا فشار را جبران می‌کند.

     

     

    1. ویژگی‌های دتکتور گاز با ذرات پیرولیز شده

    ویژگی‌های خروجی دتکتور گاز با ذرات پیرولیز شده

    خروجی حسگر به غلظت ذرات تولید شده از طریق تجزیه حرارتی بستگی دارد. حسگر از یک منحنی کالیبراسیون استفاده می‌کند تا غلظت گاز نسبت به قرائت خطی باشد.

     

    پاسخگویی دتکتور گاز با ذرات پیرولیز شده

    از آنجا که گاز وارد شده به بخش تشخیص بلافاصله در تجزیه‌گر حرارتی اکسید می‌شود، حسگر از سرعت پاسخ بالا و تکرارپذیری عالی برخوردار است.

     

    ویژگی‌های پیری در دتکتور گاز با ذرات پیرولیز شده

    حسگر از Am-241 به عنوان منبع پرتو استفاده می‌کند که نیمه عمر بسیار طولانی (حدود 400 سال) دارد و در نتیجه عملکرد حسگر به مرور زمان به سختی کاهش می‌یابد.

     

    ویژگی‌های دمایی در دتکتور گاز با ذرات پیرولیز شده

    حسگر از محفظه جبران برای جبران اثرات دما استفاده می‌کند و بنابراین ویژگی‌های دمایی عالی از خود نشان می‌دهد.

     

  • بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

    چکیده

    دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

     

    ۱. مقدمه

    دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

     

    ۲. اصول عملکرد طول‌موج دوگانه

    WhatsApp Image 2025 09 27 at 11.52.20 PM

    OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

    • UV: تأثیرگذار بر ذرات ریز و درشت
    • IR: عمدتاً حساس به ذرات بزرگ‌تر

    این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

     

    ۳. اصطلاحات کلیدی

    • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
    • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
    • خطای ورود جسم: انسداد ناگهانی شدید
    • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
    • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

     

    ۴. خطاهای رایج در سیستم OSID

    • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
    • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
    • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

     

    ۵. استقرار ایمن در محیط‌های دشوار

    ۵.۱ محیط‌های پرگرد‌و‌غبار

    • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
    • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

    ۵.۲ محیط‌های مرطوب

    WhatsApp Image 2025 09 27 at 11.52.21 PM

    • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM1
    • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM2
    • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

    WhatsApp Image 2025 09 27 at 11.52.22 PM

    ۶. تجهیزات محافظتی

    WhatsApp Image 2025 09 27 at 11.52.22 PM1

    • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
    • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
    • WhatsApp Image 2025 09 27 at 11.52.23 PM
    • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
    • WhatsApp Image 2025 09 27 at 11.52.23 PM1
    • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

    WhatsApp Image 2025 09 27 at 11.52.24 PM

     

    ۷. آلارم‌های کاذب استثنایی

    با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

    WhatsApp Image 2025 09 27 at 11.52.24 PM1

    ۸. جمع‌بندی و توصیه‌ها

    • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
    • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
    • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
    • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.

     

  • دتکتور شعله در استاندارد NFPA 86

    هدف اصلی استاندارد NFPA 86 کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث مرتبط با کوره‌ها و اجاق‌های صنعتی است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی ضروری است.

    A.8.10.1
    بخش‌های فرعی ۸.۲.۲ و ۸.۲.۵ الزام می‌کنند که دتکتور شعله (Flame Detector) و سیستم ایمنی احتراق (Combustion Safeguard) مطابق با دستورالعمل‌های سازنده نصب و به کار گرفته شوند. در مواردی که دتکتورهای شعله (اسکنرها) همراه با سیستم‌های ایمنی احتراق به طور مداوم و بدون خاموشی بیش از حداکثر بازه زمانی توصیه شده توسط دستورالعمل‌های سازنده سیستم ایمنی احتراق و دتکتور شعله کار می‌کنند، چنین عملکرد مداوم بدون خاموشی و بررسی ایمنی شروع به کار (Safe-Start Check) مطابق با استاندارد نخواهد بود.

    توضیحات:

    دتکتور شعله (Flame Detector): دستگاهی است که شعله آتش را تشخیص می‌دهد.
    سیستم ایمنی احتراق (Combustion Safeguard): سیستمی است که برای ایمنی در فرآیندهای احتراق استفاده می‌شود.
    Safe-Start Check: بررسی ایمنی قبل از شروع به کار سیستم، که اطمینان حاصل می‌کند سیستم به درستی کار می‌کند.

    این متن تأکید می‌کند که دتکتورهای شعله و سیستم‌های ایمنی احتراق باید طبق دستورالعمل‌های سازنده نصب و استفاده شوند و در صورت کارکرد مداوم بدون خاموشی و بررسی ایمنی، ممکن است با استانداردها مطابقت نداشته باشند.

    9k=

    سنسورهای فرابنفش (UV) ممکن است به گونه‌ای خراب شوند که از دست رفتن شعله تشخیص داده نشود. در مواردی که این سنسورها به طور مداوم استفاده می‌شوند، خرابی‌ها می‌توانند توسط یک دتکتور فرابنفش خودبررسی‌کننده (Self-Checking) یا با آزمایش دوره‌ای دتکتور برای اطمینان از عملکرد صحیح، تشخیص داده شوند.

    A.8.10.3
    شکل A.8.10.3 (بدون مقیاس) نموداری است که توالی رویدادهای لازم برای دستیابی به زمان بسته شدن شیر قطع ایمنی (SSOV) در مدت حداکثر ۵ثانیه پس از از دست رفتن شعله را نشان می‌دهد. شیرهای قطع ایمنی معمولی (SSOV) حداکثر زمان بسته شدن ۱ ثانیه دارند؛ با این حال، برخی شیرهای تأیید شده یا لیست‌شده ممکن است زمان‌های طولانی‌تری داشته باشند.

    N A.8.10.5(1)
    در مواردی که از سنسورهای شعله مستقل برای تشخیص شعله پایلوت(Pilot) و شعله اصلی (Main Flame) استفاده می‌شود، اطمینان حاصل کنید که شعله پایلوت و شعله اصلی به طور مستقل تشخیص داده می‌شوند. به دلیل دشواری تشخیص مستقل شعله پایلوت و شعله اصلی با دو اسکنر فرابنفش (UV)، تشخیص شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) قابل قبول است.

    توضیحات کلیدی:

    1. سنسورهای فرابنفش (UV Sensors): این سنسورها برای تشخیص شعله استفاده می‌شوند اما ممکن است خراب شوند و از دست رفتن شعله را تشخیص ندهند.
    2. خودبررسی (Self-Checking): برخی دتکتورهای فرابنفش قابلیت خودبررسی دارند تا خرابی‌ها را تشخیص دهند.
    3. شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را قطع می‌کنند و زمان بسته شدن آنها باید کوتاه باشد (معمولاً ۱ ثانیه، اما حداکثر ۵ ثانیه).
    4. تشخیص مستقل شعله پایلوت و شعله اصلی: در برخی سیستم‌ها، شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) تشخیص داده می‌شود.

    شعله‌هایی که تا ۳ فوت (۱ متر) یا کمتر گسترش می‌یابند، تنها نیاز به یک سنسور شعله برای تشخیص شعله پایلوت و شعله اصلی دارند. یک مشعل خطی (Line Burner)، مشعل لوله‌ای (Pipe Burner) یا مشعل تابشی (Radiant Burner) با شعله‌هایی که تا ۳ فوت (۱ متر) یا بیشتر گسترش می‌یابند، نیاز به دو سنسور شعله دارند: یکی برای تشخیص شعله پایلوت و دیگری برای تشخیص شعله مشعل اصلی در انتهای مجموعه که دورترین نقطه از منبع اشتعال است. دو مثال از آرایش‌های مشعل که به عنوان یک مشعل واحد با یک سیستم ایمنی شعله نصب‌شده در انتهای مجموعه در نظر گرفته می‌شوند، در شکل‌های A.8.10.6(a) وA.8.10.6(b) نشان داده شده‌اند.

    A.8.12
    در هر جایی که دمای سوخت روغن می‌تواند به زیر سطح ایمن برسد، افزایش ویسکوزیته (گرانروی) از اتمیزه شدن مناسب جلوگیری می‌کند. سوخت‌های روغن شماره ۲ و شماره ۴ می‌توانند در صورت کاهش دما به زیر نقطه ریزش(Pour Point) منجمد شوند، چه از پیش‌گرم‌کننده‌ها استفاده شود و چه نشود. در هر جایی که دمای سوخت روغن به بالاتر از سطح ایمن برسد، تبخیر روغن قبل از اتمیزه شدن اتفاق می‌افتد و باعث کاهش حجم سوخت به اندازه‌ای می‌شود که خاموش‌شدن قابل توجه شعله را ایجاد می‌کند.

    A.8.13.1
    این واقعیت که روغن یا گاز به عنوان سوخت ذخیره (Standby Fuel) در نظر گرفته می‌شود، نباید الزامات ایمنی مربوط به آن سوخت را کاهش دهد.

    A.8.16
    نقطه تنظیم دمای اضافی (Excess Temperature Set Point) باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.16.6
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۶.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند ارزیابی کنند.

    توضیحات کلیدی:

    1. سنسورهای شعله: تعداد سنسورهای شعله مورد نیاز به طول شعله و نوع مشعل بستگی دارد.
    2. سوخت روغن: دمای سوخت روغن باید در محدوده ایمن نگه داشته شود تا از مشکلاتی مانند افزایش ویسکوزیته یا تبخیر جلوگیری شود.
    3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
    4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.2Q==

    A.8.16.7
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    A.8.16.8
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.16.9
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    A.8.17.3
    نمایش بصری امکان تشخیص خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، را فراهم می‌کند که ممکن است منجر به اقدامات مورد نیاز در بخش ۸.۱۷.۲ نشود. اپراتور یا پرسنل نگهداری می‌توانند قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) را با مشاهده نشانگر دما ارزیابی کنند. همچنین، قابل قبول است که خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) به یک PLC یا ابزار دیگر به صورت موازی با قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) وارد شود، به شرطی که دقت قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) کاهش نیابد. PLC یا ابزار دیگر می‌تواند برای نظارت، روندیابی و هشدار خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) با مقایسه آن با اندازه‌گیری دمای مستقل، مانند قفل ایمنی دمای عملیاتی، استفاده شود.

    A.8.17.4
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    Δ A.8.17.8
    یک کنتاکت کمکی در دستگاه قفل ایمنی محدودیت دمای اضافی می‌تواند به عنوان قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) استفاده شود، به شرطی که الزامات بخش ۸.۱۷.۲ برآورده شوند.

    توضیحات کلیدی:

    1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    2. ترموکوپل و سیم‌های گسترش: این اجزا باید برای محیط عملیاتی مناسب باشند تا از اتصال کوتاه جلوگیری شود.
    3. PLC (Programmable Logic Controller): یک کنترل‌کننده منطقی قابل برنامه‌ریزی که برای نظارت و کنترل فرآیندها استفاده می‌شود.
    4. قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد): یک سیستم ایمنی که در صورت رسیدن دما به این حد، اقدامات لازم را انجام می‌دهد.

    Z

    قطع برق خودکار یا دستی مدارهای تحت تأثیر به شرح زیر است:
    (۱خرابی سیستم (اتصال کوتاه) که توسط حفاظت معمول مدار شاخه‌ای برطرف نشده است (به NFPA 70 مراجعه شود).
    (۲دمای اضافی در بخشی از کوره که توسط دستگاه‌های کنترل دمای معمول کاهش نیافته است.
    (۳خرابی هر یک از کنترل‌های عملیاتی معمول که چنین خرابی می‌تواند به شرایط ناایمن منجر شود.
    (۴از دست رفتن برق که می‌تواند به شرایط ناایمن منجر شود.

    A.8.18.1.5
    الزامات بخش ۸.۱۸.۱.۵ ممکن است نیاز به کاهش ظرفیت (دریفت) برخی از اجزای لیست‌شده توسط سازندگان داشته باشد، مانند استفاده برای انواع دیگر خدمات صنعتی، کنترل موتور و همان‌طور که در جدول A.8.18.1.5 نشان داده شده است.

    A.8.18.2
    نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.18.2.5
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۸.۲.۴ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

    A.8.18.2.6
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    توضیحات کلیدی:

    1. قطع برق خودکار یا دستی: این اقدامات برای جلوگیری از شرایط ناایمن در سیستم‌های حرارتی و کوره‌ها انجام می‌شود.
    2. دمای اضافی: افزایش دمای بیش از حد در کوره می‌تواند خطرناک باشد و باید توسط سیستم‌های کنترل دما مدیریت شود.
    3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
    4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
    5. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.

    Z

    A.8.18.2.7
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.18.2.8
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    A.8.19
    نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.19.2
    قطع جریان سیال انتقال حرارت به کوره می‌تواند با خاموش‌کردن سیستم مرکزی گرمایش سیال یا با بستن شیرهای قطع ایمنی سیال انتقال حرارت در خطوط تأمین و بازگشت کوره انجام شود. اگر از شیرهای قطع ایمنی سیال انتقال حرارت استفاده می‌شود، سیستم مرکزی گرمایش سیال ممکن است نیاز به یک حلقه اضطراری خودکار داشته باشد تا یک بار خنک‌کننده مصنوعی فراهم کند و جریان سیال را از طریق گرم‌کن حفظ کند.

    Δ جدول
    این بخش احتمالاً به یک جدول اشاره دارد که در ادامه متن آمده است

    توضیحات کلیدی:

    1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    2. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
    3. شیرهای قطع ایمنی سیال انتقال حرارت (Heat Transfer Fluid Safety Shutoff Valves): این شیرها برای قطع جریان سیال انتقال حرارت در شرایط اضطراری استفاده می‌شوند.
    4. حلقه اضطراری (Emergency Loop): یک سیستم پشتیبان که در صورت قطع جریان سیال، بار خنک‌کننده مصنوعی ایجاد می‌کند تا از آسیب به سیستم جلوگیری شود.

    A.8.19.6
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۹.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

    A.8.19.7
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    A.8.19.8
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.19.9
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    توضیحات کلیدی:

    1. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.
    2. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    3. نظارت توسط ابزارهای دیگر: عنصر حسگر دما می‌تواند توسط ابزارهای جانبی نظارت شود، به شرطی که دقت اندازه‌گیری کاهش نیابد.

    9k=