معرفی دتکتورهای تاندا

18278811

WhatsApp Image 2025 09 28 at 3.15.10 PM

بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

WhatsApp Image 2025 09 28 at 3.15.10 PM1

در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

WhatsApp Image 2025 09 28 at 3.15.10 PM2

هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

WhatsApp Image 2025 09 28 at 3.15.11 PM

بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

WhatsApp Image 2025 09 28 at 3.15.11 PM1

از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.

 

 

نوشته‌های مشابه

  • روش طراحی سیستم دتکتور دودی مکشی یا اسپیراتینگ ها

    در زمان طراحی شبکه لوله نمونه‌برداری، عوامل متعددی باید مدنظر قرار گیرد. لازم است محل نصب به‌دقت بررسی و بیشترین اطلاعات ممکن جمع‌آوری شود.

    نیازمندی‌ها
    اولین گام، تعیین دقیق نیازهای نصب است. پس از مشخص شدن نیازها، نوع موقعیت قابل بررسی خواهد بود.

    فعالیت‌ها
    نوع فعالیت‌هایی که در فضا انجام می‌شود بسیار اهمیت دارد. یک فضای عمومی با شکل خاص ممکن است نیازهای سیستمی متفاوتی نسبت به یک انبار با همان شکل داشته باشد. اطلاعاتی مانند ساعات فعالیت، حضور یا عدم حضور افراد در فضا، و وجود آلودگی یا هوای آلوده نیز باید در نظر گرفته شود.

    ویژگی‌های فیزیکی
    پس از بررسی نوع کلی نصب، ویژگی‌های فیزیکی فضا باید بررسی شود:

    • آیا فضا، اتاق، فضای خالی، کابینت یا محفظه است؟
    • آیا فضای خالی در کف یا سقف وجود دارد؟ در صورت وجود، چگونه تقسیم‌بندی شده‌اند؟
    • آیا کانال‌هایی وجود دارد؟ کاربرد آن‌ها چیست و آیا خدماتی در آن‌ها قرار دارد؟
    • ابعاد دقیق فضا چیست؟
    • از چه مصالحی استفاده شده و آیا مناطقی وجود دارد که باید از قرارگیری شبکه در آن‌ها اجتناب شود؟
    • آیا سیستم‌های اعلام حریق دیگری وجود دارند؟ در صورت وجود، در چه موقعیتی نصب شده‌اند؟

    شرایط محیطی
    شرایط محیطی داخل فضا می‌تواند تأثیر بسیار مهمی بر روش نمونه‌برداری مناسب برای حفاظت از آن داشته باشد.
    همان‌طور که پیش‌تر اشاره شد، آزمایش دود برای جمع‌آوری این اطلاعات حیاتی است. این آزمایش می‌تواند الگوهای حرکت هوا، نرخ گردش آن، و اینکه آیا در نقطه‌ای جریان هوا ساکن است یا خیر را مشخص کند.

    سایر موارد قابل بررسی شامل موارد زیر است:

    • در صورت ورود هوای تازه، نرخ و میزان آن چقدر است؟
    • آیا به دلیل آلودگی، استفاده از یک دتکتور مرجع لازم است؟
    • دما و رطوبت نسبی چقدر هستند و آیا این مقادیر ثابت یا متغیرند؟
    • آیا فعالیت‌هایی در محیط وجود دارند که دود، گرد و غبار، بخار یا شعله تولید کنند و این فعالیت‌ها چند وقت یک‌بار انجام می‌شوند؟

    ارزیابی ریسک
    در هر نصب، احتمال دارد برخی نواحی نیاز به حفاظت بیشتری نسبت به سایر بخش‌ها داشته باشند. این امر ممکن است به دلیل وجود تجهیزات گران‌قیمت یا نواحی خاصی مانند انبار مواد قابل اشتعال باشد. این نواحی آسیب‌پذیر باید همراه با هرگونه خطرات ساختاری مانند مواد مصنوعی، فوم‌ها یا جداکننده‌های چوب نرم مورد توجه قرار گیرند.

    مکان‌های ممکن برای نصب دستگاه
    در انتخاب محل نصب واحد دتکتور نیز عوامل متعددی باید در نظر گرفته شود. هدف اصلی در تعیین موقعیت دستگاه، ایجاد یک سیستم متعادل است؛ به این معنا که طول لوله‌ها تا حد امکان برابر باشد. همچنین باید تلاش شود تا زمان پاسخ‌دهی و میزان رقیق‌سازی به حداقل برسد.

    واحد دتکتور نیاز به منبع تغذیه دارد و باید دسترسی جهت انجام تعمیرات و نگهداری وجود داشته باشد. همچنین ممکن است دلایل زیبایی‌شناختی باعث شود مکان خاصی برای نصب مناسب نباشد.

    لوله خروجی
    لوله خروجی واحد دتکتور دودی مکشی، در صورت نیاز، می‌تواند دارای لوله‌کشی اضافه شود؛ برای مثال، اگر نیاز باشد هوای عبوری از دتکتور به منبع خود بازگردد. همچنین، لوله‌کشی اضافی می‌تواند برای کاهش صدای فن مورد استفاده قرار گیرد.

  • دتکتور شعله در استاندارد NFPA 86

    استاندارد NFPA 86 یکی از مهم‌ترین استانداردهای ایمنی صنعتی است که با هدف کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث در کوره‌ها و اجاق‌های صنعتی تدوین شده است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی اهمیت حیاتی دارد. با افزایش میزان تولید صنعتی و استفاده از فرآیندهای حرارتی در صنایع مختلف، رعایت این استانداردها برای تضمین ایمنی و بهینه‌سازی عملکرد تجهیزات ضروری است. این استاندارد نه‌تنها در ایمنی نقش دارد، بلکه موجب افزایش بهره‌وری و کاهش هزینه‌های تعمیرات و نگهداری نیز می‌شود.

    دتکتور شعله و عملکرد آن

    9k=

    دتکتور شعله، یکی از اصلی‌ترین تجهیزات ایمنی در فرآیندهای حرارتی صنعتی است که وظیفه شناسایی وجود شعله در محیط را بر عهده دارد. این تجهیزات به‌طور مستقیم در کاهش ریسک آتش‌سوزی و جلوگیری از انفجار نقش دارند. عدم استفاده از دتکتورهای مناسب یا نصب نادرست آن‌ها می‌تواند خسارات جبران‌ناپذیری به بار آورد.

    اهمیت دتکتور شعله

    دتکتورهای شعله برای تشخیص حضور آتش از فناوری‌های مختلفی استفاده می‌کنند که از جمله آن‌ها می‌توان به موارد زیر اشاره کرد:

    دتکتور فرابنفش (UV): این سنسورها برای شناسایی تابش فرابنفش ناشی از شعله‌های آتش به کار می‌روند.
    دتکتور مادون قرمز (IR): این سنسورها تغییرات انرژی مادون قرمز ساطع‌شده از شعله را شناسایی می‌کنند.
    دتکتور ترکیبی UV/IR: ترکیب این دو فناوری می‌تواند میزان تشخیص دقیق‌تر و کاهش هشدارهای کاذب را به همراه داشته باشد.
    دتکتور مرئی (VIS): برخی دتکتورها از حسگرهای نوری استفاده می‌کنند که در محدوده نور مرئی کار می‌کنند.

    استانداردهای نصب دتکتور شعله

    براساس بندهای 8.2.2 و 8.2.5 استاندارد NFPA 86، نصب دتکتورهای شعله باید مطابق دستورالعمل‌های سازنده و استانداردهای بین‌المللی باشد. در نظر گرفتن موارد زیر می‌تواند از بروز مشکلات جلوگیری کند:

    نصب در مکان مناسب: دتکتور باید در نقطه‌ای قرار گیرد که بیشترین میدان دید را نسبت به شعله‌های احتمالی داشته باشد.
    نگهداری و کالیبراسیون: تجهیزات باید به‌طور دوره‌ای بررسی و تنظیم شوند تا از دقت عملکرد آن‌ها اطمینان حاصل شود.
    پیشگیری از هشدارهای کاذب: برخی از منابع نوری، جرقه‌ها یا بازتاب‌های ناخواسته می‌توانند باعث هشدارهای اشتباه شوند، لذا باید محل نصب با دقت انتخاب شود.

    عملکرد سیستم‌های ایمنی احتراق

    2Q==

    علاوه بر دتکتورهای شعله، سیستم‌های ایمنی احتراق (Combustion Safeguard Systems) نیز نقش مهمی در حفاظت از فرآیندهای حرارتی دارند. این سیستم‌ها شامل مجموعه‌ای از تجهیزات نظارتی، شیرهای ایمنی و سیستم‌های کنترلی هستند که با تشخیص تغییرات غیرعادی در احتراق، عملکرد دستگاه را کنترل می‌کنند.

    اجزای کلیدی سیستم‌های ایمنی احتراق

    کنترلر احتراق: وظیفه دارد وضعیت شعله و عملکرد سوخت را بررسی کند.
    شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را متوقف می‌کنند.
    حسگرهای فشار و دما: برای اطمینان از تعادل مناسب فشار و دمای گاز یا مایع سوختی استفاده می‌شوند.

    نقش سنسورهای فرابنفش در تشخیص شعله

    سنسورهای فرابنفش (UV Sensors) یکی از ابزارهای مهم در تشخیص شعله‌های آتش هستند، اما ممکن است در اثر خرابی، دیگر قادر به تشخیص خاموش شدن شعله نباشند. به همین دلیل، استاندارد NFPA 86 توصیه می‌کند که این سنسورها دارای قابلیت خودبررسی‌کننده (Self-Checking UV Detectors) باشند یا به‌صورت دوره‌ای آزمایش شوند.

    تنظیمات دمایی و تهویه ایمنی در کوره‌ها

    Z

    کنترل دمای سوخت

    در فرآیندهای صنعتی که از سوخت‌های مایع مانند نفت یا گازوئیل استفاده می‌شود، کنترل دمای سوخت برای جلوگیری از مشکلاتی نظیر افزایش ویسکوزیته یا تبخیر ناگهانی، ضروری است.
    دمای سوخت باید در محدوده‌ای باشد که موجب احتراق یکنواخت و جلوگیری از خاموش شدن ناگهانی شعله شود.

    تنظیم محدودیت دمای اضافی

    نقطه تنظیم دمای اضافی باید بر اساس توصیه‌های سازنده تنظیم شود تا از رسیدن مواد قابل احتراق به دمای خوداشتعالی جلوگیری شود.
    این دما نباید از محدوده‌ای که می‌تواند باعث خرابی تجهیزات شود، فراتر رود.

    اهمیت تهویه ایمنی

    در صورت افزایش دمای کوره، جریان هوای خروجی کاهش یافته و احتمال تجمع گازهای اشتعال‌پذیر افزایش می‌یابد.
    کاهش تهویه مناسب می‌تواند موجب انفجار گازهای فرار شده و باعث بروز حوادث جدی شود.

    Z

    استفاده از PLC در نظارت بر دمای کوره‌ها

    امروزه استفاده از PLC (Programmable Logic Controller) برای نظارت بر دما و عملکرد تجهیزات صنعتی به‌شدت رایج شده است. این سیستم‌ها می‌توانند به‌صورت خودکار وضعیت سنسورها و تجهیزات ایمنی را تحلیل کرده و در صورت بروز هرگونه ناهنجاری، اقدامات لازم را انجام دهند. مزایای استفاده از PLC شامل:

    پایش دائمی و ارسال هشدارهای زودهنگام
    کاهش خطای انسانی در نظارت بر تجهیزات
    امکان کنترل و تنظیم خودکار دما و فشار

    نکات ایمنی در زمان قطع برق

    استاندارد NFPA 86 تأکید دارد که مدارهای الکتریکی مرتبط با فرآیندهای احتراقی، در شرایط اضطراری باید به‌صورت خودکار یا دستی قطع شوند. این موارد شامل:

    خرابی‌های سیستم که منجر به شرایط خطرناک شود.
    افزایش غیرقابل‌کنترل دما که تهدیدی برای ایمنی تجهیزات و محیط اطراف باشد.
    قطع ناگهانی برق که می‌تواند باعث از کار افتادن سیستم‌های ایمنی و احتراقی شود.

    9k=

    نتیجه‌گیری

    استاندارد NFPA 86 مجموعه‌ای از دستورالعمل‌های مهم برای ایمنی فرآیندهای صنعتی ارائه می‌دهد. استفاده صحیح از دتکتورهای شعله، سیستم‌های ایمنی احتراق، کنترل دمای کوره و تهویه مناسبمی‌تواند خطرات ناشی از آتش‌سوزی و انفجار را کاهش دهد. علاوه بر این، نظارت هوشمند با استفاده از PLC و رعایت الزامات نصب و نگهداری، نقش مهمی در بهبود عملکرد تجهیزات و افزایش طول عمر آن‌ها دارد.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    توصیه‌های نهایی:

    دتکتورهای شعله باید در مکان‌های مناسب نصب شوند تا دید کافی نسبت به شعله داشته باشند.
    سنسورهای فرابنفش باید دارای قابلیت خودبررسی باشند یا به‌صورت دوره‌ای تست شوند.
    سیستم‌های تهویه ایمنی باید همواره عملکرد مناسبی داشته باشند تا از تجمع گازهای خطرناک جلوگیری شود.
    در موارد افزایش دمای غیرمجاز، سیستم‌های کنترلی باید به‌صورت خودکار عمل کنند تا از خرابی یا حوادث ناگوار جلوگیری شود.
    نظارت مستمر بر عملکرد تجهیزات با استفاده از PLC باعث افزایش بهره‌وری و کاهش هزینه‌های نگهداری می‌شود.

    با رعایت این موارد، می‌توان ایمنی در محیط‌های صنعتی را بهبود بخشید و از وقوع حوادث جلوگیری کرد.

  • الزامات سیستم اطفاء حریق با دی اکسید کربن برای کاربرد دریایی ( کشتی ها و وسایل نقلیه دریایی، مناطق ساحلی، اسکله ها و غیره)


    فصل ۹ سیستم‌های دریایی
    9.1 تعاریف ویژه

    9.2 کلیات
    9.2.1* شرح کلی
    این فصل، اصلاحات لازم برای سیستم‌های دریایی را بیان می‌کند.
    9.2.2 کلیه الزامات دیگر این استاندارد، مگر آنکه در این فصل به‌صورت خاص تغییر یافته باشند، برای سیستم‌های دریایی نیز اعمال می‌شوند.

    9.3 الزامات سیستم
    9.3.1 اجزاء
    اجزای سیستم باید به‌طور خاص برای کاربرد دریایی سیستم‌های دی‌اکسید کربن لیست یا تأیید شده باشند.

    9.3.2 دستورالعمل‌های بهره‌برداری
    9.3.2.1 دستورالعمل‌های بهره‌برداری از سیستم باید در مکان واضحی در نزدیکی تمامی کنترل‌های دستی و در اتاق ذخیره‌سازی دی‌اکسید کربن قرار داده شوند.
    9.3.2.2 برای سیستم‌هایی که ذخیره‌سازی دی‌اکسید کربن در داخل فضای حفاظت‌شده قرار ندارد، دستورالعمل‌ها باید شامل نموداری باشند که محل کنترل اضطراری را در صورت عدم عملکرد کنترل‌های عادی نشان دهد.

    9.3.3 فعال‌سازی
    9.3.3.1* در فضاهایی با حجم بیش از ۶۰۰۰ فوت مکعب (۱۷۰متر مکعب)، فعال‌سازی خودکار سیستم دی‌اکسید کربن مجاز نمی‌باشد.
    9.3.3.2* فعال‌سازی خودکار برای فضاهایی با حجم ۶۰۰۰ فوت مکعب (۱۷۰ متر مکعب) یا کمتر، در صورتی مجاز است که الزامات بندهای 9.3.3.2.1 تا 9.3.3.2.4 رعایت شوند.

    9.3.3.2.1 مسیر خروج افقی از محفظه ماشین‌آلات به عرشه باز باید فراهم شود.
    9.3.3.2.2 محفظه باید در زمان عملکرد تجهیزات بدون حضور نفر باشد.
    9.3.3.2.3 زمانی که افراد در داخل محفظه حضور دارند، سیستم باید در وضعیت قفل قرار گیرد.
    9.3.3.2.4 فعال‌سازی خودکار سیستم نباید با ناوبری ایمن کشتی تداخل داشته باشد.

    9.3.3.3 برای عملکرد دستی، باید دو شیر جداگانه برای تخلیه دی‌اکسید کربن در هر فضای محافظت‌شده فراهم شود.
    9.3.3.3.1 یکی از شیرها باید تخلیه از مخزن دی‌اکسید کربن را کنترل کند.
    9.3.3.3.2 شیر دوم باید تخلیه دی‌اکسید کربن به فضای محافظت‌شده را کنترل کند.
    9.3.3.3.3 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای آزادسازی سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.3.4 کنترل‌ها
    9.3.3.4.1 برای هر یک از شیرهای مورد نیاز در بند 9.3.3.3 باید یک کنترل دستی جداگانه فراهم گردد.
    9.3.3.4.2 یک مجموعه کنترل باید در خارج از حداقل یکی از مسیرهای اصلی خروج از هر فضای محافظت‌شده قرار گیرد.

    9.3.3.5 علاوه بر کنترل‌های دستی مورد نیاز در 9.3.3.4، هر یک از شیرهای ذکر شده در 9.3.3.3 باید دارای کنترل اضطراری دستی مخصوص به خود باشند.

    9.3.3.6 جعبه آزادسازی
    9.3.3.6.1 کنترل‌های مربوط به شیرهای مورد نیاز در 9.3.3.4 باید درون یک جعبه آزادسازی قرار گیرند که به‌وضوح برای فضای محافظت‌شده شناسایی شده باشد.
    9.3.3.6.2 اگر جعبه حاوی کنترل‌ها قفل‌شده باشد، کلید آن باید در یک محفظه از نوع شیشه‌شکن در کنار جعبه و در مکانی مشخص قرار گیرد.

    9.3.3.7 منبع نیرو
    9.3.3.7.1 علاوه بر الزامات بند 4.3.3.2، آژیرهای هشدار قبل از تخلیه باید به‌گونه‌ای باشند که فقط به فشار دی‌اکسید کربن وابسته بوده و به منبع نیروی دیگری نیاز نداشته باشند.
    9.3.3.7.2 تأخیر زمانی مورد نیاز طبق بند 4.5.6.2.2 باید حداقل ۲۰ ثانیه بوده و تنها به فشار دی‌اکسید کربن وابسته باشد.

    9.3.4 ذخیره‌سازی دی‌اکسید کربن
    9.3.4.1 ذخیره‌سازی دی‌اکسید کربن در فضاهای محافظت‌شده‌ای که معمولاً بدون نفر هستند، برای سیستم‌هایی با حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن و دارای عملکرد خودکار مجاز می‌باشد.
    9.3.4.2 سیستم‌های با فشار پایین باید مجهز به دو واحد تبرید بوده و مطابق با مقررات 46 CFR 58.20 ساخته شوند.
    9.3.4.3 زمانی که مخازن دی‌اکسید کربن خارج از فضای محافظت‌شده قرار دارند، باید در اتاقی نگهداری شوند که در مکانی ایمن و به‌راحتی قابل دسترس بوده و به‌طور مؤثر تهویه شود تا مخازن ماده اطفاء حریق در معرض دماهای محیطی تعیین‌شده در بند 4.6.5.5 قرار نگیرند.

    9.3.4.3.1 دیوارها و عرشه‌های مشترک میان اتاق‌های نگهداری مخازن ماده اطفاء حریق و فضاهای محافظت‌شده باید با عایق ساختاری کلاس A-60 مطابق با استاندارد 46 CFR 72 محافظت شوند.
    9.3.4.3.2 درها و سایر روش‌های بسته شدن هرگونه بازشو در این مرزها باید گازبند باشند.
    9.3.4.3.3 اتاق‌های نگهداری مخازن ماده اطفاء حریق باید بدون نیاز به عبور از فضای محافظت‌شده قابل دسترسی باشند.
    9.3.4.3.4 درب‌های ورودی باید به سمت بیرون باز شوند.
    9.3.4.3.5 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای تخلیه سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

    9.3.5 لوله‌کشی سیستم
    9.3.5.1 در صورت نیاز، باید زهکش‌هایی برای تخلیه رطوبت جمع‌شده تعبیه شود.
    9.3.5.2 لوله‌کشی دی‌اکسید کربن نباید دارای زهکش یا بازشویی در داخل بخش‌های مسکونی باشد.
    9.3.5.3 لوله‌کشی دی‌اکسید کربن نباید برای هیچ منظور دیگری استفاده شود، مگر اینکه در سیستم‌های تشخیص دود از نوع نمونه‌برداری از هوا مورد استفاده قرار گیرد.

    9.3.6 طراحی سیستم
    طراحی سیستم باید با فصل‌های ۵ تا ۷ مطابقت داشته باشد، مگر در موارد مشخص‌شده در بندهای 9.3.6.1 تا 9.3.6.4.2.

    9.3.6.1 فضاهای ماشین‌آلات
    فضاهای ماشین‌آلات باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.1.1 ۸۵ درصد از غلظت مورد نیاز طبق بند 9.3.6.1 باید طی ۲ دقیقه از آغاز تخلیه حاصل شود.
    9.3.6.1.2 حجم ناخالص باید شامل بدنه پوششی نیز باشد.

    9.3.6.2 فضاهای بار
    فضاهای بار (غیر از فضاهای وسایل نقلیه) باید بر اساس نسبت ۱ پوند دی‌اکسید کربن به ازای هر ۳۰ فوت مکعب حجم ناخالص مجهز شوند.
    9.3.6.2.1 مقدار اولیه دی‌اکسید کربن تخلیه‌شده باید بر اساس حجم خالص فضا و میزان بار موجود تعیین شود.
    9.3.6.2.2 در صورت نیاز، دی‌اکسید کربن اضافی باید برای کنترل آتش آزاد شود.
    9.3.6.2.3 دستورالعمل‌های شفاف در خصوص فرآیند تخلیه دی‌اکسید کربن باید در داخل اتاق نگهداری مخازن دی‌اکسید کربن نصب شود.

    9.3.6.3 فضاهای وسایل نقلیه
    9.3.6.3.1 فضاهای وسایل نقلیه که در آن‌ها سوخت وسایل نقلیه بیش از ۱۹ لیتر (۵ گالن) است، باید برای رسیدن به غلظت ۳۴درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.3.2 ۸۵ درصد از این غلظت باید طی ۲ دقیقه از آغاز تخلیه به دست آید.

    9.3.6.4 فضاهای وسایل نقلیه
    9.3.6.4.1 فضاهای وسایل نقلیه که میزان سوخت (بنزین یا گازوئیل) موجود در آن‌ها ۱۹ لیتر (۵ گالن) یا کمتر است، باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
    9.3.6.4.2 دو سوم این غلظت باید طی ۱۰ دقیقه از آغاز تخلیه حاصل شود.

    9.3.7 فضاهای تجهیزات الکتریکی
    فضاهای تجهیزات الکتریکی باید به عنوان خطر خشک الکتریکی طبق فصل ۵ در نظر گرفته شوند.

    9.4 بازرسی و نگهداری
    بازرسی و نگهداری باید مطابق با بند 4.8.3 و بخش 9.4 انجام گیرد.

    9.4.1 کلیات
    پیش از انجام آزمایش یا عملیات نگهداری سیستم ثابت اطفاء حریق با دی‌اکسید کربن، تمام افراد باید از فضای محافظت‌شده تخلیه شوند. (رجوع شود به بخش 4.3)

    9.4.2 تأیید نصب
    9.4.2.1 آزمایش تأییدی که در بندهای 9.4.2.1.1 تا 9.4.2.1.4 شرح داده شده، باید پیش از آزمایش‌های الزامی بند 4.4.3 انجام شود.
    9.4.2.1.1 تست فشار لوله‌کشی باید مطابق با الزامات بندهای 9.4.2.1.2 تا 9.4.2.1.4 انجام شود.
    9.4.2.1.2 سیال آزمایشی باید یک گاز خشک و غیرخورنده نظیر نیتروژن یا دی‌اکسید کربن باشد.
    9.4.2.1.3 هنگام وارد کردن فشار به لوله‌ها، فشار باید به صورت افزایشی در گام‌های ۵۰ psi (۳.۵ بار) اعمال شود.
    9.4.2.1.4 پس از رسیدن به فشار تست موردنظر، منبع فشار باید قطع و از لوله جدا شود.

    ⚠️ هشدار
    تست فشار پنوماتیکی ممکن است در صورت ترکیدگی سیستم لوله‌کشی، خطر پرتاب اشیاء و آسیب به افراد را ایجاد کند. پیش از انجام این تست، ناحیه‌ای که لوله در آن قرار دارد باید تخلیه شده و اقدامات ایمنی لازم برای حفاظت از افراد انجام شود.

    9.4.2.2 سیستم‌های پرفشار
    9.4.2.2.1 سیستم‌هایی با شیر توقف
    9.4.2.2.1.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا شیرهای توقف باید تحت فشار حداقل ۱۰۰۰ psi (۶۸۹۵ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.
    9.4.2.2.1.3 تمام لوله‌کشی بین شیرهای توقف و اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷ کیلوپاسکال) قرار گیرد.
    9.4.2.2.1.4 افت فشار در این بخش نیز در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.2.2 سیستم‌های بدون شیر توقف
    9.4.2.2.2.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷کیلوپاسکال) قرار گیرد.
    9.4.2.2.2.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.2.3 سیستم‌های کم‌فشار
    9.4.2.3.1 لوله‌کشی‌هایی که به‌طور معمول تحت فشار هستند
    9.4.2.3.1.1 تمام لوله‌کشی‌هایی که به طور معمول تحت فشار قرار دارند باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸کیلوپاسکال) قرار گیرند.
    9.4.2.3.1.2 در طول آزمایش ۲ دقیقه‌ای، هیچ‌گونه نشتی از لوله‌کشی نباید وجود داشته باشد.

    9.4.2.3.2 لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها
    9.4.2.3.2.1 تمام لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸ کیلوپاسکال) قرار گیرد.
    9.4.2.3.2.2 افت فشار در طول ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

    9.4.3 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی‌های سیستم تهویه
    9.4.3.1 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی سیستم تهویه باید با عبور جریان دی‌اکسید کربن در سیستم آزمایش شوند.
    9.4.3.2 تأخیرهای پیش‌تخلیه‌ای که در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) دقت ±۲۰ درصد از مقدار نامی را ندارند، باید تعویض شوند.

    9.4.4 تأیید
    رعایت الزامات بند 9.3.2 باید مورد تأیید قرار گیرد

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.

     

  • مزایای دتکتور دودی مکشی یا اسپیراتینگ برای کاربری های متنوع

    زمانی‌که تشخیص دود در مرحله ابتدایی حریق حیاتی است، سیستم‌های دتکتور دودی مکشی مزایای زیادی دارند.

    سطوح اولیه تشخیص
    توانایی سیستم‌های دتکتور دودی مکشی در تشخیص ذرات دود در سطح بسیار پایین کاهش دید، آن‌ها را برای مناطقی که نیاز به سریع‌ترین تشخیص ممکن دارند (پیش از آغاز احتراق و آسیب)، ایده‌آل می‌کند. کاربردهای معمول شامل موزه‌ها، ساختمان‌های تاریخی، اماکن با ارزش فرهنگی، و مراکز حیاتی مانند دیتا سنترها هستند. همچنین محدوده‌های حساسیت قابل برنامه‌ریزی، امکان سفارشی‌سازی سیستم دتکتور دودی مکشی بر اساس خطر خاص موجود را فراهم می‌کند، که به مالک انعطاف‌پذیری بیشتری می‌دهد.

    تشخیص قابل اعتماد
    نرم‌افزار تشخیص در سیستم دتکتور دودی مکشی این امکان را می‌دهد که محفظه حسگر بین ذرات دود و ذرات گردوغبار معلق در هوای نمونه‌برداری‌شده تمایز قائل شود. این فناوری باعث مقاومت سیستم در برابر هشدارهای کاذب شده و از هشدارهای ناخواسته‌ای که ممکن است منجر به خاموش شدن غیرضروری تجهیزات، توقف فعالیت‌ها یا تخلیه زودهنگام ساختمان شوند، جلوگیری می‌کند.

    تأثیرناپذیری از جریان هوای بالا
    اتاق‌هایی با جریان هوای بالا، مانند دیتا سنترها، مراکز مخابراتی و اتاق‌های تمیز، یک چالش رایج هستند. جریان هوای بالا باعث ایجاد تغییرات مکرر در هوای محیط و رقیق شدن دود می‌شود، که تشخیص دود را دشوارتر می‌کند.

    سرعت بالای جریان هوا
    سرعت بالای جریان هوا، ذرات دود را از دتکتورهای دودی نقطه‌ای نصب‌شده روی سقف دور کرده و به سمت واحدهای تهویه (HVAC) منتقل می‌کند. ذرات بزرگ‌تر در واحد تهویه فیلتر می‌شوند، اما ذرات ریز از فیلتر عبور کرده و به داخل فضا بازمی‌گردند. در این حالت، ذرات دود به بخشی از هوای محیط تبدیل می‌شوند، اما چون دتکتور دودی مکشی به‌صورت فعال از هوای فضای حفاظت‌شده نمونه‌برداری می‌کند، می‌تواند آن‌ها را تشخیص دهد.

    عدم تأثیر بر زیبایی فضا و مقاوم در برابر دستکاری
    یکی دیگر از مزایای سیستم دتکتور دودی مکشی، امکان پنهان‌سازی لوله نمونه‌برداری و نصب دتکتور در مکانی دور از دید است. این ویژگی آن را برای محیط‌هایی که احتمال دستکاری وجود دارد (مانند زندان‌ها یا مدارس) مناسب می‌سازد. همچنین برای فضاهایی که زیبایی ظاهری اهمیت دارد (مانند اماکن تاریخی یا فرهنگی) نیز ایده‌آل است.

    قابل استفاده در محیط‌های سخت
    در محیط‌های سخت یا آلوده، ذرات بزرگ می‌توانند به مدارهای الکترونیکی دتکتورهای سنتی آسیب وارد کنند و ذرات کوچک نیز می‌توانند هشدارهای کاذب ایجاد کنند. سیستم دتکتور دودی مکشی از هوای فضای حفاظت‌شده نمونه‌برداری کرده و ذرات آسیب‌زننده را فیلتر می‌کند، که این ویژگی آن را برای نصب در چنین محیط‌هایی مناسب می‌سازد. همچنین، چون دتکتور در خارج از فضای حفاظت‌شده نصب می‌شود، این سیستم برای فضاهایی با دمای بسیار بالا یا پایین (مانند سردخانه‌ها و فریزرها) نیز مناسب است.

    نگهداری آسان
    پس از نصب دتکتور دودی مکشی و لوله نمونه‌برداری، زمان‌های انتقال و فشار هوای داخل لوله باید ثبت شود. سپس، نگهداری سالیانه شامل تست دورترین منفذ نمونه‌گیری و مقایسه زمان انتقال آن با مستندات اولیه می‌باشد. در مواقعی که لوله در سقف بلند یا زیر کف نصب شده، می‌توان یک نقطه نمونه‌برداری در سطح زمین تعبیه کرد تا آزمایش سالیانه آسان‌تر و هزینه‌های نگهداری کمتر شود.

    هر شبکه لوله‌کشی که برای استفاده با سیستم FAAST طراحی می‌شود، باید با استفاده از نرم‌افزار PipeIQ تأیید گردد.

  • راهکارهای سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی سیستم اطفاء آتش

    این مقاله به بررسی راهکارهای کاربرد سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی در کارخانه‌های تولید مهمات و سایر تأسیساتی که نیاز به سیستم مهار آتش آبپاشی (Deluge) با سرعت بالا دارند می‌پردازد. همچنین فناوری دتکتور شعله‌ای نوری و پیشرفت‌های اخیر در سیستمی که به کاربران در دستیابی به انطباق با کدها و استانداردهای صنعتی کمک می‌کند، مرور خواهد شد.

    ۱.۰ مقدمه
    برای برآورده‌کردن الزامات زمانی پاسخ‌دهی کل سیستم طبق کدها و استانداردهای صنعتی فوق‌سریع، سیستم دتکتور شعله‌ای و آزادسازی باید قادر باشد رویداد را شناسایی کرده و سیگنالی به سیستم آبپاشی ارسال کند که این سیستم باید ظرف ۱۰۰ میلی‌ثانیه یا کمتر از لحظه حضور منبع انرژی در مقابل دتکتور تا شروع جریان آب از نازل آبپاش واکنش نشان دهد.

    WhatsApp Image 2025 09 16 at 5.25.44 AM

    برای اینکه یک سیستم به‌عنوان «سریع» شناخته شود، باید ظرف ۵۰۰ میلی‌ثانیه یا کمتر عمل کند (ارجاع به استاندارد NFPA 15)در کاربردهایی که به این سیستم‌ها نیاز دارند، آتش بسیار سریع‌تر از آن رشد می‌کند که بتوان از دتکتورهای حرارتی یا دتکتورهای دود استفاده کرد، زیرا این دتکتورها ممکن است چندین ثانیه طول بکشند تا آتش را شناسایی کنند.

    WhatsApp Image 2025 09 16 at 5.25.45 AMWhatsApp Image 2025 09 16 at 5.25.45 AM1

    برای درک روش‌های به‌کارگیری دتکتور شعله‌ای نوری فوق‌سریع در کارخانه‌های پردازش مهمات، مرور مختصری بر اصول پایه عملکرد فناوری دتکتور شعله‌ای ضروری است.

    ۲.۰ مروری بر دتکتور شعله‌ای نوری
    دتکتورهای شعله‌ای تشخیص انرژی تابشی، آتش را از طریق حس و تحلیل تابش الکترومغناطیسی منتشر شده از آتش شناسایی می‌کنند. انواع مختلف آتش طیف‌های نوری متفاوتی منتشر می‌کنند که امکان شناسایی آن‌ها را فراهم می‌کند.
    بازه طیفی انتشار که دتکتور به آن حساس است باید به‌طور دقیق کنترل شود تا اثر تابش طیفی ناشی از نور خورشید، نور محیط، ماشین‌آلات و تجهیزات پردازش به حداقل برسد. شکل ۱ نمای کلی از طیف الکترومغناطیسی و نواحی فروسرخ (IR) و فرابنفش (UV) مطلوب برای تشخیص شعله را نشان می‌دهد.
    در ادامه شرح مختصری از هر فناوری مناسب برای تشخیص شعله فوق‌سریع (UV، IR و UV/IR) آمده است.

    ۲.۱ فناوری‌های دتکتور شعله‌ای نوری

    ۲.۱.۱ فرابنفش (UV)

    دتکتورهای شعله‌ای UV از یک دتکتور تشکیل شده‌اند که شامل لوله خلأ از نوع Geiger-Mueller است. این دتکتور معمولاً به‌گونه‌ای طراحی می‌شود که به یک باند بسیار باریک از انرژی نوری در محدوده ۱۸۵۰ تا ۲۴۵۰ آنگستروم (Å) پاسخ دهد و مدل‌های خاصی نیز وجود دارند که این محدوده را تا ۲۶۵۰Å گسترش می‌دهند. همان‌طور که در شکل ۲ نشان داده شده، محدوده حساسیت UV خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد.

    وقتی تابش UV منتشر شده از آتش با دتکتور تماس پیدا می‌کند، پالس‌های ولتاژی تولید می‌شود که فرکانس آن‌ها متناسب با شدت تابش UV است. این پالس‌ها توسط یک میکروپروسسور پردازش شده و با پارامترهای برنامه‌ریزی‌شده مقایسه می‌شوند. اگر میزان پالس‌های پردازش‌شده از آستانه تعیین‌شده فراتر رود، آلارم فعال می‌شود.

    WhatsApp Image 2025 09 16 at 5.25.45 AM2WhatsApp Image 2025 09 16 at 5.25.46 AM

    این دتکتورها قادر به تشخیص هر نوع آتش بوده و در شرایط ایده‌آل می‌توانند زمان پاسخ کمتر از ۱۵ میلی‌ثانیه داشته باشند.

    از آنجا که دتکتورهای UV می‌توانند به‌صورت ضدنور خورشید طراحی شوند و تحت تأثیر تابش حرارتی قرار نگیرند، می‌توان آن‌ها را در بسیاری از کاربردها با موفقیت به‌کار برد.

    همانند هر فناوری دتکتور دیگری، مزایا و معایبی وجود دارد. دتکتورهای شعله‌ای UV نسبت به رعد و برق، جوشکاری و پرتوهای ایکس حساس هستند. انسداد فیزیکی جزئی شعله یا وجود دود و/یا بخارات جاذب UV ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی شود. شکل ۴ را ببینید.

    WhatsApp Image 2025 09 16 at 5.25.46 AM1

    ۲.۱.۲ فروسرخ (IR)

    WhatsApp Image 2025 09 16 at 5.25.46 AM2

    دتکتورهای شعله‌ای IR از یک دتکتور پیرولکتریک تشکیل شده‌اند. درون دتکتور پیرولکتریک، یک فیلتر تداخلی نوری استفاده می‌شود تا یک ناحیه عبور باند ایجاد کند که برای تشخیص اختصاصی آتش مناسب باشد. این فیلترها بر اساس طول موج مورد نظر انتخاب می‌شوند که معمولاً بین ۴٫۲ تا ۴٫۸ میکرومتر (μm) در باند انتشار CO₂ قرار دارد. همان‌طور که در شکل ۵ نشان داده شده، محدوده حساسیت IR خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد

    .WhatsApp Image 2025 09 16 at 5.25.47 AM3

    WhatsApp Image 2025 09 16 at 5.25.47 AM1WhatsApp Image 2025 09 16 at 5.25.47 AM2WhatsApp Image 2025 09 16 at 5.25.48 AM

    دتکتورهای شعله‌ای IR (شکل ۶) می‌توانند آتش‌هایی را که پیش از آن دود ایجاد می‌کنند یا حاوی بخارات هستند، راحت‌تر از دتکتورهای مبتنی بر فناوری UV شناسایی کنند. زمان پاسخ در شرایط ایده‌آل می‌تواند کمتر از ۱۵ میلی‌ثانیه باشد. از آنجا که دتکتورهای IR می‌توانند مقاوم در برابر نور خورشید ساخته شوند و تحت تأثیر تابش UV قرار نمی‌گیرند، می‌توان آن‌ها را در بسیاری از کاربردهایی که برای دتکتورهای UV چالش‌برانگیز است، با موفقیت به کار برد.

     

    اگر انرژی الکترومغناطیسی منتشرشده شامل طول موج‌هایی باشد که از فیلتر تداخلی عبور می‌کنند، نور با یک عنصر تک‌بلوری برخورد می‌کند. این عنصر سیگنال کوچکی تولید می‌کند که دامنه و فرکانس آن متناسب با تابش الکترومغناطیسی منتشرشده از آتش است. این سیگنال سپس توسط یک میکروپروسسور پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه می‌شود و در صورت احراز شرایط، آلارم آتش فعال می‌گردد.
    دتکتورهای شعله‌ای IR ممکن است به اجسام داغ مدوله‌شده و منابع نوری حساس باشند. وجود آب، برف یا یخ بر روی لنز دتکتور نیز ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی آتش شود (شکل ۷ را ببینید).

    ۲.۱.۳ فرابنفش-فروسرخ (UVIR)
    دتکتورهای شعله‌ای UVIR ترکیبی از فناوری‌های UV و IR را در یک دتکتور شعله‌ای به کار می‌گیرند (شکل ۸). برای فعال‌شدن آلارم آتش، هر دو دتکتور UV و IR باید تابش الکترومغناطیسی منتشرشده را شناسایی کرده و هر دو سیگنال پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه شوند. شکل ۹ نواحی حساسیت الکترومغناطیسی یک دتکتور UVIR را نشان می‌دهد.
    فناوری UVIR می‌تواند عملکرد مناسب در تشخیص آتش را در حالی فراهم کند که در مقایسه با فناوری UV یا IR به‌تنهایی مقاومت بیشتری در برابر فعال‌سازی کاذب دارد. تمام مزایا و محدودیت‌های فناوری‌های UV و IR در مورد یک دتکتور شعله‌ای UVIR نیز صدق می‌کند. این ویژگی‌ها باعث شده که فناوری UVIR به‌طور گسترده پذیرفته شود.
    علاوه بر رله آلارم آتش که زمانی عمل می‌کند که هر دو دتکتور UV و IR آتش را تشخیص دهند، دتکتورهای شعله‌ای UVIR شرکتهای معتبر تولیدی  دارای یک رله کمکی قابل برنامه‌ریزی داخلی نیز هستند. این رله کمکی می‌تواند طوری پیکربندی شود که در شرایط آلارم فقط UV، فقط IR یا پیش‌آلارم UVIR تغییر وضعیت دهد و انعطاف‌پذیری بیشتری را برای دتکتور شعله‌ای در مکان‌هایی که ویژگی‌های طیفی ماده مورد نظر ممکن است متغیر باشد، فراهم کند.

    ۲.۲ حفظ عملکرد تشخیص
    در اکثر کاربردها، این احتمال وجود دارد که لنز دتکتور به‌وسیله مواد خارجی مسدود شود. آلودگی لنز دتکتور ممکن است باعث تأخیر یا حتی جلوگیری از رسیدن تابش طیفی آتش به دتکتور(های) موجود در دتکتور شعله‌ای گردد. بنابراین بسیار مهم است که دتکتور قادر به بررسی خودکار تمام سطوح نوری، دتکتورها و مدارهای داخلی خود باشد.
    دتکتور باید قادر باشد به‌طور خودکار اپراتور را در صورت تأثیر بر عملکرد آن آگاه سازد. در صورت بروز این وضعیت خطا، می‌توان یک فرآیند مشخص را متوقف کرد یا اقدامات دیگری را بر اساس نیاز انجام داد.

    WhatsApp Image 2025 09 16 at 5.25.49 AM

    برخی دتکتورهای شعله‌ای نوری دارای قابلیت یکپارچگی نوری خودکار (oiR) هستند که یک تست عملکرد کالیبره‌شده را هر یک دقیقه یک‌بار برای اطمینان از توانایی عملیاتی کامل دتکتور انجام می‌دهند (شکل ۱۰). برای انجام تست یکپارچگی نوری، منابع داخلی IR و UV کالیبره‌شده و کنترل‌شده توسط میکروپروسسور برای هر سنسور موجود در دتکتور، سیگنال‌های تست را فراهم می‌کنند. اگر دتکتور دچار آلودگی نوری یا هرگونه مشکل عملکرد داخلی شود، زمانی که کمتر از نصف محدوده تشخیص اولیه باقی مانده باشد، وضعیت خطای یکپارچگی نوری را گزارش خواهد کرد. معمولاً این خطا ناشی از کثیف بودن لنز است و با تمیز کردن، عملکرد کامل دتکتور بازگردانده می‌شود.

    برخی نواحی کارخانه مستعد گرد و غبار و آلاینده‌های معلق در هوا هستند که ممکن است باعث تجمع رسوبات روی لنز دتکتور شوند. برای این محیط‌ها، شرکت شرکت های تولیدی پیشرفته شیلدهای هوایی ارائه می‌دهد که با ایجاد جریان مداوم هوای پاک بر سطح بیرونی لنز دتکتور، تجمع آلاینده‌ها را کاهش داده و به افزایش فاصله زمانی بین سرویس‌های نگهداری کمک می‌کنند. این شیلدهای هوایی هیچ‌گونه اختلالی در نصب دتکتور، زاویه دید آن یا تست یکپارچگی نوری ایجاد نمی‌کنند.

    ۲.۳ ثبت رویدادها
    هنگام وقوع یک رویداد یا وضعیت خطا، ضروری است که اطلاعات دقیق به‌سرعت گردآوری شود. واحد کنترل اعلام حریق سرویس اطفاء، باید توانایی ارائه اطلاعات سطح بالا شامل ورودی‌های فعال‌شده یا نوع خطای رخ‌داده را داشته باشد. علاوه بر این، برای بررسی رویدادها، به‌دست آوردن جزئیات بیشتر مفید است. هر دتکتور شعله‌ای شرکت های تولیدی پیشرفته دارای قابلیت ثبت رویداد داخلی است که به‌طور خودکار برای هر رویداد یا خطای رخ‌داده، زمان و تاریخ را ثبت می‌کند. رویدادهایی مانند روشن یا خاموش شدن دستگاه، شرایط خطا، پیش‌آلارم و آلارم آتش به همراه دمای محیط و ولتاژ ورودی در زمان وقوع رویداد ذخیره می‌شوند.

    ۲.۴ انتخاب فناوری
    هنگام انتخاب فناوری برای حفاظت از افراد، فرآیندها، دارایی‌ها و ساختمان‌ها، باید نهایت دقت در طراحی سیستم به‌کار گرفته شود تا در شرایط پیش‌بینی‌شده به‌درستی عمل کند. نوع فناوری دتکتور شعله‌ای انتخابی برای یک ناحیه باید بر اساس یک ارزیابی طراحی مبتنی بر عملکرد انتخاب شود. لازم است درک کامل از اهداف عملکردی مورد انتظار برای هر دتکتور در سیستم به‌دست آید.

    برخی موارد قابل بررسی در ارزیابی طراحی مبتنی بر عملکرد شامل:

    • ترکیب آتش
    • ویژگی‌های آتش (نرخ رشد، ویژگی‌های سوختن، طیف انتشار)
    • حداقل اندازه آتشی که نیاز به تشخیص دارد
    • بخارات کاهنده UV یا گرد و غبار کاهنده IR
    • منابع غیرآتش

    دتکتورهای شعله‌ای نوری ممکن است بسته به مدل و سازنده عملکرد متفاوتی داشته باشند. تنها روش قابل اعتماد برای سنجش حساسیت دتکتور شعله‌ای نسبت به یک ماده خاص، قرار دادن آن در معرض یک رویداد کنترل‌شده واقعی است. با این حال، تولید آتش‌های آزمایشی تکرارپذیر و کاملاً یکسان دشوار است. بنابراین، معمولاً لازم است چندین بار یک ماده خاص در معرض دتکتور قرار گیرد تا داده‌های آزمایشی معتبر به‌دست آید.

    علاوه بر این، باید بین حساسیت مطلوب دتکتور به ماده مورد نظر و حساسیت آن به منابع تابش غیردر اثر آتش، تعادل برقرار شود. دتکتوری که بیش از حد به محیط اطراف حساس باشد و باعث آلارم‌های مزاحم شود، قطعاً نامطلوب است. بنابراین، دتکتور باید در معرض منابع رایج موجود در ناحیه مورد پایش قرار گیرد تا ارزیابی دقیقی از عملکرد کلی دتکتور شعله‌ای انجام شود.

    این جنبه‌ها ممکن است چالش‌های متعددی را برای مهندس مسئول اجرای ارزیابی مبتنی بر عملکرد ایجاد کنند. برنامه‌ریزی و کنترل مؤثر توسط مهندس آزمون، دقت هر اندازه‌گیری مبتنی بر عملکرد را به حداکثر می‌رساند.

    ۲.۵ ملاحظات برای ارزیابی طراحی مبتنی بر عملکرد آشکارسازی شعله نوری

    ۲.۵.۱ محل آزمون

    WhatsApp Image 2025 09 16 at 5.25.49 AM1

    • محلی برای آزمون شناسایی کنید که دسترسی، مشاهده و امکان خروج ایمن برای همه افراد درگیر را فراهم کند. امکان کنترل دسترسی به محل آزمون مطلوب است.
    • آزمون‌های آتش در محیط‌های داخلی ممکن است تحت تأثیر تجمع مواد معلق کاهنده مانند دود، گرد و غبار و بخارات حلال قرار گیرند که همگی می‌توانند عملکرد آشکارسازی شعله را منفی تحت تأثیر قرار دهند. برای دستیابی به نتایج آزمون و عملکرد آشکارسازی شعله ثابت، باید قبل و بین تمام آزمون‌های داخلی، تبادل هوای پاک فراهم شود.
    • اطمینان حاصل کنید که روش مناسبی برای خاموش کردن آتش آزمون در محل موجود باشد یا اگر ماده به راحتی خاموش نمی‌شود، تدابیری برای کنترل سوختن آن اتخاذ شده باشد.
    • اطمینان حاصل کنید که تمام مواد سوخته به طور کامل خاموش شده و تمام مواد باقی‌مانده سوخته به‌درستی دفع شوند.
    • بهتر است شرایطی که در کاربرد واقعی محل نصب دتکتورهای شعله‌ای پیش خواهد آمد، شبیه‌سازی شود. موانع احتمالی دید دتکتورهای شعله‌ای نسبت به منطقه را در نظر بگیرید.
    • در صورت امکان، دمای محیط، رطوبت، جهت و سرعت باد را کنترل کنید.

    ۲.۵.۲ فرآیند آزمون

    • پیش از شروع آزمون، دمای محیط، رطوبت، جهت و سرعت باد را ثبت کنید.
    • بسته به شرایط محیطی، آزمون‌های آتش که در فضای باز انجام می‌شوند ممکن است تحت تأثیر تغییرات در ویژگی‌های انتشار شعله قرار گیرند. فیلم‌برداری از آزمون‌های آتش در فضای باز می‌تواند برای تعیین اثرات احتمالی تغییرات جهت و سرعت باد ارزشمند باشد.
    • نوع یا انواع سوخت، اندازه‌های موردنظر آتش، فاصله‌ها و نیازمندی‌های زمانی که دتکتورهای شعله‌ای باید در کاربرد واقعی به آن‌ها پاسخ دهند را شناسایی کنید. از این داده‌ها برای تعیین شاخص‌های عملکرد مورد نظر برای کاربرد و روش ارزیابی استفاده کنید.
    • حداقل سه آزمون تکراری از هر نوع سوخت در هر فاصله انجام دهید تا داده‌های معتبر به دست آید.
    • روشی که برای اشتعال ماده استفاده می‌شود نباید باعث واکنش دتکتورهای شعله‌ای شود. اگر دتکتورها به منبع اشتعال واکنش نشان دهند، این امر ممکن است دقت اندازه‌گیری زمان را تحت تأثیر قرار دهد.
    • منابع اشتعال آتش مانند کبریت‌های برقی توصیه نمی‌شوند، زیرا ممکن است ماده قابل اشتعالی را وارد ماده مورد نظر کنند که به طور معمول وجود ندارد. این ماده ممکن است طیف گسیلی متفاوتی نسبت به طیف ماده مورد نظر تولید کند.
    • روش پذیرفته‌شده‌ای را برای تعیین سرعت واکنش دتکتور مشخص کنید. نمونه‌های معمول شامل استفاده از تایمر دیجیتال یا سیستم فیلم‌برداری با سرعت بالا هستند.
    • تمام فناوری‌ها/انواع دتکتور، شماره سریال‌ها و موقعیت‌ها (فاصله و زاویه) نسبت به آتش، همچنین تمام تنظیمات آستانه آتش دتکتورها و/یا تنظیمات تأخیر زمانی را ثبت کنید.
    • اطمینان حاصل کنید که تمام دتکتورها به‌درستی تراز شده و لنزها تمیز باشند.

    ۲.۵.۳ سوخت‌های آزمون

    • آزمون‌های آتش برای جامدات قابل اشتعال، مهمات و پیشرانه‌ها به دلیل تنوع زیاد در قابلیت اشتعال و نرخ انتشار آتش، نیازمند ملاحظات ویژه هستند. اندازه آتش ایجاد شده توسط این مواد با تعیین وزن ماده نسوخته، حجم و آرایش قبل از اشتعال مشخص می‌شود.
    • پودرها و پیشرانه‌های قابل اشتعال با نرخ‌های مختلفی می‌سوزند که به آرایش ماده بستگی دارد (مثال: ۳۰ گرم باروت به‌صورت انباشته به‌طور متفاوتی نسبت به ۳۰ گرم گسترده‌شده روی سطح ۵ سانتی‌متر مربع می‌سوزد). روش چیدمان پودرها یا پیشرانه‌های قابل اشتعال را استاندارد کرده و برای هر آزمون تکرار کنید.
    • اگر منطقه تحت نظارت شامل پردازش چندین ماده آتش‌بازی باشد، سیستم باید طوری طراحی شود که امکان آشکارسازی بدترین حالت، یعنی کندترین ماده در حال سوختن را فراهم کند.

     

    هر آزمون باید با استفاده از مواد جدید انجام شود و هرگز سوخت‌ها بیش از یک بار سوزانده نشوند، زیرا احتمال دارد ماده در صورت اشتعال مجدد ویژگی‌های متفاوتی نشان دهد.

    ۲.۶ توصیه‌های آزمون منابع هشدار مزاحم
    منابع معمول هشدار مزاحم دتکتور شعله‌ای در زیر فهرست شده‌اند. نباید هیچ واکنش هشدار حریق دتکتور شعله‌ای در اثر قرار گرفتن در معرض این منابع رخ دهد:

    • نور مستقیم خورشید
    • لامپ رشته‌ای ۳۰۰ وات در فاصله ۵ فوت
    • لامپ فلورسنت ۳۴ وات در فاصله ۱ فوت
    • لامپ هالوژن ۵۰۰ وات (با لنز پلاستیکی یا شیشه‌ای) در فاصله ۵ فوت
    • بخاری کوارتز مادون قرمز برقی (۱۵۰۰ وات) در فاصله ۱۰ فوت
    • بی‌سیم دستی دوطرفه (۵ وات) در حالت ارسال در فاصله ۳ فوت
    • مدوله کردن انرژی منبع هشدار مزاحم با نرخ تقریباً ۲ تا ۱۰ هرتز (با استفاده از یک چرخاننده بدون حرارت، نه دست) نیز نباید باعث واکنش هشدار حریق دتکتور شعله‌ای شود.
    • هر منبع هشدار مزاحم شناخته‌شده دیگر باید همان‌گونه که در کاربرد واقعی وجود دارد به دتکتورها ارائه شود تا درک مناسبی از اثر احتمالی آن‌ها به دست آید.
    • توانایی آشکارسازی شعله در حضور منابع انرژی تابشی رایج فوق. این منابع در بسیاری از کارخانه‌ها و محیط‌های تولیدی یافت می‌شوند.
      ممکن است نیازهایی وجود داشته باشد که برآورده یا کشف نشده‌اند. یک بررسی کامل که شامل بحث آزاد باشد، می‌تواند راهکارهای غیرمتعارف را آشکار کرده و به راه‌حل‌های آشکارسازی منجر شود.

    ۳.۰ رعایت کدها و استانداردها
    کدها و استانداردها، مانند آن‌هایی که توسط انجمن ملی حفاظت از آتش (NFPA) و دولت ایالات متحده تدوین شده‌اند، دانش و اطلاعات لازم برای به حداقل رساندن خطر و اثرات آتش را فراهم می‌کنند. کدهایی مانند NFPA 101 «کد ایمنی حیات»، NFPA 72 «کد ملی هشدار و اعلام حریق»، NFPA 15 «استاندارد سیستم‌های ثابت آب‌پاش برای حفاظت در برابر آتش» و معیارهای یکپارچه تسهیلات (UFC) UFC 3-600-01 از این نمونه‌ها هستند.
    همچنین مهم است که هر سیستمی که هدف آن آشکارسازی و اطفای حریق است، به‌طور کامل با تمام کدها و استانداردهای قابل اجرا مطابقت داشته باشد. بنابراین، انتخاب دتکتورهای شعله‌ای و سیستم‌های کنترلی که دارای تأییدیه از سازمان‌های شخص ثالث باشند، اهمیت دارد. انتخاب محصولات مناسب در نهایت به کاربر کمک می‌کند تا انطباق را به دست آورد.

    ۳.۱
    برای رعایت کدها و استانداردهای فعلی، خروجی‌های دتکتورهای شعله‌ای فوق‌سریع باید به یک واحد کنترل هشدار حریق خدمات آزادسازی که به‌طور خاص برای این خدمات فهرست شده باشد، متصل شوند و دتکتورها نیز باید برای استفاده با همان واحد کنترل فهرست شده باشند. این واحد کنترل عملکردهای مهمی مانند نظارت بر ورودی‌ها و خروجی‌ها را انجام می‌دهد تا اطمینان حاصل شود سیستم در زمان نیاز به‌درستی عمل می‌کند.
    HSDM برای داشتن زمان واکنش مستقل ۲ میلی‌ثانیه طراحی شده است و هنگامی که با دتکتور شعله‌ای UV، UV/IR یا IR شرکت Det-Tronics ترکیب می‌شود، سیستم ترکیبی می‌تواند در شرایط ایده‌آل پاسخی کمتر از ۱۵ میلی‌ثانیه ارائه دهد.
    HSDM با نظارت پیوسته بر تمام ورودی‌ها و خروجی‌ها، عملکرد سیستم را تضمین می‌کند و از یک شبکه محلی/مدار خط سیگنال (LON/SLC) استفاده می‌کند که نظارت کلاس X را برای اتصال بین HSDM و کنترلر سیستم ایمنی EQP فراهم می‌آورد.
    ماژول HSDM دارای شش کانال ورودی و شش کانال خروجی قابل پیکربندی است که می‌توان آن‌ها را برای عملکرد تحت نظارت یا بدون نظارت برنامه‌ریزی کرد. هر کانال ورودی، اتصالات بسته را از دستگاه‌های آشکارساز حریق مانند دتکتورهای شعله‌ای نوری، دتکتورهای حرارتی، دتکتورهای دود و شستی‌های دستی می‌پذیرد. کانال‌های خروجی برای فعال‌سازی سلونوئیدهای تأییدشده شخص ثالث که برای راه‌اندازی شیرهای سیلابی پایلوت‌دار استفاده می‌شوند، طراحی شده‌اند.
    دتکتورهای شعله‌ای نوری، ماژول سیلابی فوق‌سریع و کنترلر سیستم ایمنی به مشتریان این امکان را می‌دهند که سیستمی مطابق با الزامات UFC و NFPA طراحی کنند (شکل ۱۱).
    خروجی رله هشدار حریق از دتکتور شعله‌ای نوری UV، IR یا UV/IR به HSDM متصل می‌شود. دتکتور شعله‌ای همراه با HSDM قادر به ارائه زمان واکنش فوق‌سریع، کمتر از ۲۰ میلی‌ثانیه در شرایط ایده‌آل است.
    HSDM یک سیگنال اولویت‌دار روی کابل LON ارسال می‌کند که توسط کنترلر سیستم ایمنی EQP دریافت می‌شود. این ارتباط پرسرعت نیست. EQP از منطق از پیش برنامه‌ریزی‌شده برای تعیین اقدامات بعدی استفاده می‌کند که معمولاً شامل ارسال سیگنال به یک ماژول ورودی/خروجی مجزا و پیشرفته است که به نوبه خود برای فعال‌سازی تجهیزات اعلان هشدار استفاده می‌شود. همچنین ارتباط اضافی با نگهبانان، پلیس، آتش‌نشانی یا سایر بخش‌های مورد نیاز نیز امکان‌پذیر است.
    یک سیستم آشکارسازی شعله و آزادسازی که به‌خوبی طراحی و فهرست شده باشد، می‌تواند به کاربران کمک کند تا الزامات کدهای UFC و NFPA برای یک سیستم آب‌پاش فوق‌سریع را برآورده کنند.

    ۳.۲ رعایت نیاز زمان واکنش کمتر از ۱۰۰ میلی‌ثانیه (ms)
    در حالی که بحث سرعت واکنش دتکتورهای شعله‌ای مهم است، باید توجه داشت که اندازه‌گیری مهم‌تر، سرعت واکنش کل سیستم است که شامل دتکتور شعله‌ای، واحد کنترل هشدار حریق خدمات آزادسازی، شیرهای سلونوئیدی و یک بخش سیلابی است. یک دتکتور شعله‌ای فوق‌سریع می‌تواند آتش در حال گسترش سریع را در حدود ۲۰ میلی‌ثانیه و در شرایط ایده‌آل شناسایی کند. واحد کنترل هشدار حریق خدمات آزادسازی نیز ممکن است ظرف چند میلی‌ثانیه واکنش نشان دهد. شیر سلونوئیدی زمانی را برای تخلیه فشار پایلوت از شیر سیلابی نیاز دارد و در نهایت، آب نیز زمانی را برای عبور از لوله‌کشی تا نازل و از نازل تا آتش طی می‌کند. بنابراین، باید در نظر داشت که سرعت واکنش دتکتور و واحد کنترل تنها بخشی کوچک از کل زمان واکنش سیستم است.
    توجه دقیق باید به نصب دتکتورها در نزدیک‌ترین فاصله ممکن به خطر بالقوه و اطمینان از عدم وجود مانع بین دتکتور و منطقه تحت نظارت که می‌تواند خط دید دتکتور را مسدود کند، معطوف شود. تمام حباب‌های هوا باید از داخل لوله‌کشی سیستم هیدرولیک خارج شوند. علاوه بر این، باید سریع‌ترین سلونوئیدهای ممکن استفاده شوند و نازل‌های سیلابی نیز باید در نزدیک‌ترین فاصله ممکن به خطر بالقوه نصب شوند. رعایت دقیق این موارد، سرعت کل سیستم را به‌طور چشمگیری بهبود می‌بخشد (شکل ۱۲).

    ۴.۰ راهکارهایی برای آشکارسازی شعله نوری فوق‌سریع

    دتکتورهای شعله نوری مدرن به‌گونه‌ای طراحی شده‌اند که به کاربران در دستیابی به انطباق با کدها و استانداردهای UFC و NFPA کمک کنند. برخی شرکت‌ها مدل‌های X2200 UV، X9800 IR و X5200 UVIR از دتکتورهای شعله را ارائه می‌دهند که در صورت پیکربندی و نصب صحیح، قادر به ارائه زمان پاسخ‌دهی با سرعت بالا و فوق‌العاده سریع هستند.
    علاوه بر آزمون‌های حرارتی سختگیرانه، آزمون‌های آزمایشگاهی و شبیه‌سازی‌هایی که در کارخانه انجام می‌شود، تمامی دتکتورهای شعله پیش از ارسال به مشتریان، در مرکز آزمون مهندسی با استفاده از آتش واقعی آزمایش می‌شوند.