معرفی دتکتورهای تاندا

18278811

WhatsApp Image 2025 09 28 at 3.15.10 PM

بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

WhatsApp Image 2025 09 28 at 3.15.10 PM1

در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

WhatsApp Image 2025 09 28 at 3.15.10 PM2

هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

WhatsApp Image 2025 09 28 at 3.15.11 PM

بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

WhatsApp Image 2025 09 28 at 3.15.11 PM1

از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.

 

 

نوشته‌های مشابه

  • سیستم‌های اطفاء حریق دی‌اکسید کربن با کاربرد موضعی NFPA12-ANNEX F- Local Application Carbon Dioxide Systems

    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاع‌رسانی ارائه شده است.

    F.1 یک سیستم اطفاء حریق دی‌اکسید کربن با کاربرد موضعی طراحی شده است تا دی‌اکسید کربن را مستقیماً به آتش‌سوزی‌ای که می‌تواند در یک ناحیه یا فضایی بدون محصورسازی واقعی رخ دهد، اعمال کند. چنین سیستم‌هایی باید به گونه‌ای طراحی شوند که دی‌اکسید کربن را در حین عملکرد سیستم به نحوی به خطر مورد اطفاء برسانند که تمام سطوح سوختنی یا شعله‌ور را پوشش داده یا احاطه کند.

    نرخ جریان و مدت زمان کاربرد مورد نیاز بستگی به نوع ماده قابل احتراق درگیر، ماهیت خطر (اینکه آیا سطح مایع مانند مخزن غوطه‌وری یا مخزن کوئنچ است یا یک قطعه ماشین‌آلات پیچیده مانند دستگاه چاپ) و محل و فاصله اسپرینکلرهای دی‌اکسید کربن نسبت به خطر دارد.

    عوامل مهمی که در طراحی یک سیستم کاربرد موضعی باید در نظر گرفته شود عبارتند از: نرخ جریان، محدودیت‌های ارتفاع و مساحت اسپرینکلرهای استفاده‌شده، میزان دی‌اکسید کربن مورد نیاز، و سیستم لوله‌کشی. مراحل زیر برای طراحی یک سیستم لازم است:

    (۱) تعیین مساحت خطر مورد اطفاء. در تعیین این مساحت، مهم است که نقشه دقیق خطر را با نشان دادن تمام ابعاد و محدودیت‌ها جهت جانمایی اسپرینکلرها ترسیم کنید. حدود خطر باید با دقت تعریف شوند تا تمام مواد قابل احتراق که می‌توانند در خطر گنجانده شوند را شامل شود، و احتمال وجود کالا یا سایر موانع در یا نزدیک خطر باید به دقت بررسی شود.

    (۲) برای اسپرینکلرهای نوع سقفی، با توجه به محدودیت‌های ارتفاع خطر مورد اطفاء، اسپرینکلرها را به گونه‌ای جانمایی کنید که خطر را تحت پوشش قرار دهند، با استفاده از اسپرینکلرهای مختلف در محدوده‌های ارتفاع و مساحت مجاز که در لیست‌ها یا تأییدیه‌های این اسپرینکلرها بیان شده است. حدود پوشش مساحت یک اسپرینکلر برای یک ارتفاع خاص از اطلاعات لیست شده تعیین می‌شود که در قالبی مشابه شکل F.1(a) ارائه شده است. در نظر داشته باشید که تمام پوشش‌های اسپرینکلر بر اساس مربع‌های تقریبی ترسیم می‌شوند. این مرحله برای اسپرینکلرهای کنار مخزن یا خطی حذف می‌شود.

    (۳) بر اساس ارتفاع هر اسپرینکلر از سطح خطر، نرخ جریان بهینه‌ای که هر اسپرینکلر باید برای اطفاء خطر داشته باشد را تعیین کنید. این مقدار از یک نمودار مانند شکل F.1(b) که در لیست‌های جداگانه یا تأییدیه‌های اسپرینکلرها ارائه شده است، به دست می‌آید. برای اسپرینکلرهای کنار مخزن یا خطی، بر اساس شکل خطر، اسپرینکلرها را در محدوده‌های فاصله‌ای مجاز طبق تأییدیه یا لیست جانمایی کنید. بر اساس فاصله یا مساحت پوشش، نرخ جریان مناسب را از نمودارهای تأیید شده‌ای مانند شکل F.1(c) و F.1(d) انتخاب کنید. این مرحله برای اسپرینکلرهای نوع سقفی حذف می‌شود.

    (۴) مدت زمان تخلیه برای خطر را تعیین کنید. این زمان همیشه حداقل ۳۰ ثانیه خواهد بود، اما می‌تواند طولانی‌تر باشد، بسته به عواملی مانند ماهیت ماده در خطر و احتمال نیاز برخی نقاط داغ به زمان خنک‌کنندگی بیشتر.

    (۵) نرخ جریان تک‌تک اسپرینکلرها را جمع کنید تا نرخ جریان کل به دست آید و این مقدار را در مدت زمان تخلیه ضرب کنید تا مقدار کل دی‌اکسید کربن مورد نیاز برای اطفاء خطر محاسبه شود. سپس این عدد را در ۱.۴ (برای سیستم‌های پرفشار) ضرب کنید تا ظرفیت کل سیلندرهای ذخیره‌سازی به دست آید.

    (۶) محل استقرار مخزن یا سیلندرهای ذخیره‌سازی را تعیین کرده و لوله‌کشی اتصال‌دهنده اسپرینکلرها به مخازن ذخیره را طراحی کنید.

    (۷) از سیلندرهای ذخیره شروع کرده و افت فشار را در طول لوله‌کشی سیستم تا هر اسپرینکلر محاسبه کنید تا فشار نهایی در هر اسپرینکلر به دست آید (به بخش C.1 مراجعه شود). مطمئن شوید که طول معادل لوله برای اتصالات و اجزای سیستم را در محاسبات لحاظ کرده‌اید. طول‌های معادل اجزای سیستم در لیست‌ها یا تأییدیه‌های جداگانه این اجزا موجود است. شرایط ذخیره‌سازی را برای سیستم‌های پرفشار برابر با ۷۵۰ psi (۵۱۷۱kPa) و برای سیستم‌های کم‌فشار برابر با ۳۰۰ psi (۲۰۶۸ kPa) در نظر بگیرید. در طراحی اولیه، باید اندازه‌های لوله‌ها را در نقاط مختلف سیستم فرض کنید. پس از انجام محاسبات برای تعیین فشار اسپرینکلرها، ممکن است لازم باشد اندازه لوله‌ها را برای دستیابی به فشارهای بالاتر یا پایین‌تر تغییر دهید تا نرخ جریان مناسب حاصل شود.

    (۸) بر اساس فشار اسپرینکلرها از مرحله (۷) و نرخ جریان جداگانه هر اسپرینکلر از مرحله (۳)، یک اوریفیس معادل را انتخاب کنید که بیشترین تطابق را با مساحت مورد نیاز برای تولید نرخ جریان طراحی شده داشته باشد، با استفاده از جدول‌های 4.7.5.2.1، 4.7.5.3.1، و A4.7.4.4.3.

    2Q==

    IMG 1522 1 IMG 1523 IMG 1524

  • تاندا (TANDA)؛ پیشرو در تولید سیستم‌های اعلام حریق معرفی شرکت تاندا

    تاندا یک شرکت پیشرو در زمینه حفاظت از حریق است که در ارائه محصولات و راهکارهای جامع تخصص دارد. این شرکت با مأموریت حفاظت از جان و اموال تأسیس شده و متعهد به ارائه فناوری‌های نوآورانه و راهکارهای سفارشی برای پاسخگویی به نیازهای منحصربه‌فرد مشتریان خود در صنایع مختلف در سراسر جهان است.

    تاریخچه گسترده تاندا؛ روایتی از پیشرفت و نوآوری

    تاندا، شرکتی که با هدف ایجاد تحولی اساسی در صنعت حفاظت از حریق تأسیس شد، امروزه به یکی از رهبران جهانی این حوزه تبدیل شده است. این شرکت در طول سال‌ها توانسته است با ارائه راهکارهای نوآورانه و قابل‌اعتماد، جایگاهی ویژه در بازار به دست آورد. تعهد همیشگی به کیفیت و بهبود مستمر، نقش مهمی در موفقیت‌های آن داشته و باعث شده است که بتواند نیازهای در حال تغییر مشتریان خود را برآورده کرده و در خط مقدم فناوری ایمنی حریق باقی بماند.

    در وب‌سایت رسمی این شرکت، بخشی به انتشار اخبار و گزارش‌هایی درباره سالگردها، نوآوری‌های کلیدی، پروژه‌های مهم و مقالاتی پیرامون تاریخچه تاندا اختصاص داده شده است. این منابع اطلاعاتی، نگاهی جامع به مسیر رشد و دستاوردهای این برند ارائه می‌دهند.

    روایت‌هایی از تاریخچه تاندا

    یکی از نقاط عطف مهم در تاریخ این شرکت، سال ۲۰۱۵ است. در این سال، تاندا فعالیت‌های خود را به سطح بین‌المللی گسترش داد و با ایجاد شراکت‌های استراتژیک، موفق شد محصولات و راهکارهای پیشرفته حفاظت از حریق را به بازارهای جهانی معرفی کند. این توسعه، به تثبیت حضور این برند در مناطقی مانند خاورمیانه، آفریقا، جنوب آسیا، جنوب شرق آسیا و آمریکای جنوبی منجر شد.

    در طول این مسیر، دستاوردهای مهمی رقم خورده است. برای علاقه‌مندان به صنعت حفاظت از حریق، مطالعه تاریخچه این برند می‌تواند اطلاعات ارزشمندی درباره پیشرفت‌های آن و تأثیرگذاری‌اش در سطح بین‌المللی ارائه دهد. امکان مرور داستان‌های برجسته و استفاده از فیلترهای موضوعی در منابع منتشرشده، فرصتی برای آشنایی عمیق‌تر با مسیر رشد و نوآوری‌های این برند فراهم می‌کند.

    بررسی استانداردها و گواهینامه‌های TANDA

    شرکت TANDA موفق به دریافت چندین گواهینامه و استاندارد معتبر جهانی شده است که نشان‌دهنده کیفیت و ایمنی بالای محصولات این شرکت در صنعت اعلام حریق است. استانداردهای اخذ شده توسط TANDA شامل EN54، UL، LPCB و CE هستند. در ادامه، توضیح مختصری درباره هر یک از این استانداردها ارائه شده است:

    1. استاندارد EN54

    منطقه: اروپا
    توضیح: این استاندارد توسط کمیته استانداردسازی اروپا (CEN)تدوین شده و یکی از مهم‌ترین استانداردهای مرتبط با سیستم‌های اعلام حریق در اتحادیه اروپا است. EN54 شامل مجموعه‌ای از بخش‌ها است که هر کدام به عملکرد تجهیزات مختلف مانند دتکتورها، آژیرها، کنترل پنل‌ها و سایر اجزای سیستم اعلام حریق می‌پردازد. این استاندارد اطمینان حاصل می‌کند که تجهیزات اعلام حریق عملکردی دقیق و قابل‌اعتماد دارند.

    2. گواهینامه UL (Underwriters Laboratories)

    منطقه: ایالات متحده آمریکا
    توضیح: UL یک سازمان مستقل در آمریکا است که محصولات را از نظر ایمنی و کیفیت ارزیابی و تأیید می‌کند. تجهیزات اعلام حریق که موفق به اخذ گواهینامه UL می‌شوند، تحت آزمایش‌های سخت‌گیرانه‌ای قرار می‌گیرند تا از عملکرد ایمن و استاندارد آن‌ها اطمینان حاصل شود. دریافت این گواهینامه نشان می‌دهد که محصولات TANDA از استانداردهای بین‌المللی ایمنی و کیفیت پیروی می‌کنند.

    3. گواهینامه LPCB (Loss Prevention Certification Board)

    منطقه: بریتانیا
    توضیح: LPCB یک نهاد گواهی‌دهنده در بریتانیا است که محصولات مرتبط با ایمنی و آتش‌نشانی را مورد آزمایش و تأیید قرار می‌دهد. داشتن این گواهینامه نشان‌دهنده کیفیت بالا، عملکرد قابل‌اعتماد و تطابق محصولات TANDA با استانداردهای سخت‌گیرانه ایمنی است.

    4. نشان CE (Conformité Européenne)

    منطقه: اتحادیه اروپا
    توضیح: نشان CE تأیید می‌کند که محصولات تولیدی یک شرکت با مقررات سلامت، ایمنی و محیط‌زیست اتحادیه اروپا سازگار هستند. این گواهینامه به TANDA اجازه می‌دهد تا محصولات خود را به‌طور قانونی در بازارهای اروپایی عرضه کند. دریافت نشان CE نشان‌دهنده این است که محصولات TANDA از استانداردهای لازم برای عرضه در اروپا برخوردارند.

    انواع محصولات شرکت تاندا

    TANDA طیف گسترده‌ای از محصولات اعلام حریق را تولید می‌کند که شامل موارد زیر است

    : دتکتورهای دود، حرارت، گاز و شعله

    کنترل پنل‌های هوشمند اعلام حریق

    آژیرها و فلاشرهای هشداردهنده

    بیم دتکتورها برای نظارت بر فضاهای وسیع

    تجهیزات جانبی سیستم‌های اعلام حریق

    بیم دتکتور TANDA و کاربرد آن

    بیم دتکتور یکی از محصولات کلیدی در سیستم‌های اعلام حریق TANDA است. این دستگاه با استفاده از پرتوهای مادون قرمز، وجود دود را در محیط تشخیص می‌دهد. بیم دتکتورها برای فضاهای بزرگ مانند انبارها، سالن‌های ورزشی و مراکز خرید ایده‌آل هستند. انواع بیم دتکتور شامل:

    1. بیم دتکتور انعکاسی (Reflective Beam Detector): دارای فرستنده و گیرنده در یک سمت و بازتاب‌دهنده در سمت مقابل.
    2. بیم دتکتور فرستنده-گیرنده‌ای (End-to-End Beam Detector): شامل فرستنده و گیرنده مجزا در دو طرف مقابل یکدیگر.

    موارد استفاده و نمونه پروژه‌های اجرا شده با تجهیزات TANDA

    بسیاری از ساختمان‌های اداری، بیمارستان‌ها، انبارها و مراکز خرید از سیستم‌های اعلام حریق TANDA بهره می‌برند. این شرکت در کشورهای مختلفی حضور دارد و تجهیزات آن در پروژه‌های متعددی اجرا شده‌اند.

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

     

  • طراحی دتکتور حرارتی خطی – ویژه مهندس طراح

    همان‌طور که پیش‌تر گفته شد، نصب دتکتور حرارتی خطی باید مطابق با استاندارد NFPA 70 (کد ملی برق آمریکا)، استانداردNFPA 72 (کد اعلام حریق) یا طبق الزامات مرجع محلی ذی‌صلاح انجام شود. این بخش از دفترچه، نمونه‌هایی از طراحی نصب برای کاربردهای خاص دتکتور حرارتی خطی مانند سردخانه‌ها، سینی کابل‌ها، تونل‌ها و غیره را ارائه می‌دهد. سیم دتکتور حرارتی خطی را می‌توان مشابه دتکتورهای حرارتی نقطه‌ای در ارتفاع سقف نصب کرد، که پوشش تشخیص وسیع‌تری را فراهم می‌کند. برخی کاربردها نیز شامل نصب نزدیک به منبع خطر می‌شود که این امر باعث انتقال سریع گرما و اعلام سریع هشدار می‌گردد. این نوع نصب با عنوان کاربرد ویژه یا تشخیص مجاورتی شناخته می‌شود. دتکتور حرارتی خطی توسط شرکت‌های Underwriters Laboratories (UL) و Factory Mutual Research Corporation (FM) مورد آزمون قرار گرفته و تأیید شده است و فواصل نصب استانداردی برای آن تعیین شده است. این الزامات در بخش‌های بعدی به‌طور کامل توضیح داده شده‌اند. هنگام طراحی پوشش تشخیص، توجه به عواملی که ممکن است بر طراحی نهایی تأثیر بگذارند و موجب کاهش فاصله مجاز نصب برای دستیابی به پوشش مؤثر شوند، ضروری است. این عوامل می‌توانند شامل جریان هوا، نوع ساختار، ارتفاع سقف‌ها و موانع موجود باشند. مرجع محلی ذی‌صلاح ممکن است فواصلی متفاوت با مقادیر توصیه‌شده را الزامی بداند، بنابراین باید پیش از نصب با آن مشورت شود.

    تشخیص ناحیه‌ای
    برای تشخیص در سطح وسیع یا گسترده، دتکتور حرارتی خطی باید در سقف یا روی دیوارهای جانبی و در فاصله‌ای حداکثر ۲۰اینچ (۵۱ سانتی‌متر) از سقف نصب شود. نصب‌هایی که شامل ساختارهای تیر یا خرپا هستند، در بخش‌های بعدی توضیح داده خواهند شد. شکل ۳۴ فواصل نصب مورد تأیید نهادهای استاندارد را نشان می‌دهد.

    2Q==

    فاصله‌گذاری در سقف صاف

    حداکثر فاصله برای نصب روی سقف‌های صاف نباید بیشتر از فاصله تأییدشده بین مسیرهای موازی سیم دتکتور حرارتی خطی باشد، و همچنین باید فاصله آن از دیوارها یا جداکننده‌هایی که تا فاصله ۱۸ اینچ (۴۶ سانتی‌متر) از سقف بالا آمده‌اند، کمتر از نصف فاصله تأییدشده باشد. شکل ۳۵ نمونه‌ای از طراحی سقف صاف با استفاده از فاصله‌گذاری ۳۵ فوت (۱۰.۷ متر) را نشان می‌دهد.

    Z

    ساختار تیرآهنی
    طراحی فاصله‌گذاری برای سقف‌هایی با ساختار تیرآهنی بر اساس دو عامل انجام می‌شود: عمق تیر و فاصله بین تیرها. برای اطمینان از نصب صحیح سیستم، حتماً دستورالعمل‌های زیر را رعایت کرده یا برای جزئیات بیشتر به استاندارد NFPA 72 مراجعه کنید.

    تیرهایی با عمق ۴ اینچ (۱۰ سانتی‌متر) یا کمتر

    چیدمان مشابه سقف صاف است.
    حداکثر فاصله بین مسیرهای موازی سیم دتکتور حرارتی خطی، ۳۵ فوت (۱۰.۷ متر) است.
    حداکثر فاصله از هر دیوار یا جداکننده‌ای که تا ۱۸ اینچ (۴۶سانتی‌متر) به سقف نزدیک شده، ۱۷ فوت و ۶ اینچ (۵.۳متر) است.

    تیرهایی با عمق بیش از ۴ اینچ (۱۰ سانتی‌متر)

    حداکثر فاصله بین مسیرهای سیم که به‌صورت عمود بر تیرها نصب شده‌اند، برابر با دو سوم فاصله مجاز در سقف صاف است.
    حداکثر فاصله از دیوارها یا جداکننده‌هایی که تا ۱۸ اینچ (۴۶سانتی‌متر) به سقف نزدیک شده‌اند، ۱۷ فوت و ۶ اینچ (۵.۳متر) است. این مسیرهای سیم به‌صورت عمود بر تیرها نصب می‌شوند، همان‌طور که در شکل ۳۶ نشان داده شده است.
    سیم‌های دتکتور که به‌صورت موازی با تیرها نصب می‌شوند، می‌توانند با همان فاصله استاندارد باقی بمانند.
    اگر عمق تیرها بیشتر از ۱۸ اینچ (۴۶ سانتی‌متر) و فاصله بین آن‌ها بیش از ۸ فوت (۲.۴ متر) باشد، هر بخش ایجادشده بین تیرها (محفظه تیر) به‌عنوان یک ناحیه جداگانه در نظر گرفته شده و نیاز به پوشش مجزا دارد.

    2Q==

    ساختار تیرچه‌ای توپر
    در ساختارهایی با تیرچه‌های توپر، دتکتور حرارتی خطی باید در زیر تیرچه‌ها نصب شود. هنگامی‌که مسیر سیم دتکتور به‌صورت موازی با تیرچه‌ها اجرا می‌شود، حداکثر فاصله مجاز نصف فاصله تعیین‌شده برای سقف صاف خواهد بود. شکل ۳۷ یک نمونه طراحی معمول برای پوشش سقف در ساختار تیرچه‌ای توپر را نشان می‌دهد.

    Z

    سقف‌های شیب‌دار
    شکل ۳۸ نحوه نصب دتکتور حرارتی خطی بر روی سقف‌های شیب‌دار یا نوک‌تیز را نشان می‌دهد. حداقل باید یک مسیر سیم‌کشی در فاصله حداکثر ۳ فوت (۰.۹ متر) به‌صورت افقی از نوک سقف اجرا شود. سایر مسیرهای لازم باید بر اساس فاصله افقی طرح‌ریزی‌شده از سقف به سمت پایین و نوع ساختار به‌کاررفته در سقف طراحی شوند. برای نصب‌هایی که در ارتفاع بیش از ۳۰ فوت (۹.۱ متر) انجام می‌شوند، مطابق بخش ۵.۱.۵باید فاصله‌گذاری کاهش یابد. برای اطلاعات بیشتر در مورد سقف‌های شیب‌دار به بخش ۵.۶.۵.۴ از استاندارد NFPA 72 مراجعه شود.

    Z

    توجه: سقف‌های شیب‌داری که طبق کد به‌عنوان سقف صاف در نظر گرفته می‌شوند
    بر اساس مقررات، برخی از سقف‌های شیب‌دار در صورتی که شرایط خاصی را داشته باشند، به‌عنوان سقف صاف محسوب می‌شوند. برای تعیین اینکه یک سقف شیب‌دار صاف تلقی می‌شود یا خیر، اختلاف ارتفاع (بر حسب اینچ) بین پایین‌ترین و بالاترین نقطه دیوار را اندازه‌گیری کرده و آن را بر عرض دیوار (بر حسب فوت) تقسیم کنید. اگر عدد حاصل کمتر از ۱.۵ باشد، آن سقف به‌عنوان سقف صاف در نظر گرفته می‌شود.

    فاصله‌گذاری در سقف‌های بلند
    برای ارتفاع سقف‌های تا ۳۰ فوت (۹.۱ متر)، دتکتور حرارتی خطی می‌تواند با فاصله ۳۵ فوت (۱۰.۷ متر) نصب شود. برای نصب‌هایی با ارتفاع بیشتر از ۳۰ فوت (۹.۱ متر)، فاصله‌گذاری به نصف فاصله تأییدشده کاهش می‌یابد و به ۱۷ فوت و ۶ اینچ (۵.۳ متر) می‌رسد، همان‌طور که در شکل ۳۹ نشان داده شده است.

    Z

    فضای هوای مرده
    دتکتور حرارتی خطی نباید در گوشه‌ای که در فاصله ۴ اینچ (۱۰سانتی‌متر) از دیوار جانبی یا سقف قرار دارد، نصب شود. همان‌طور که در شکل ۴۰ نشان داده شده است، فضای هوای مرده در جایی ایجاد می‌شود که سقف و دیوار جانبی به هم می‌رسند. زمانی که گازهای داغ از منبع آتش به سمت بالا حرکت می‌کنند، پخش شده، خنک می‌شوند و شروع به پایین آمدن می‌کنند که این امر فضای هوای مرده را ایجاد کرده و می‌تواند بر عملکرد صحیح سیم دتکتور تأثیر بگذارد.

    9k=

    تشخیص مجاورت
    برای اطفاء حریق در نزدیکی یا کاربردهای خاص، کابلSafeCable باید بر روی خطر یا دقیقاً بالای آن نصب شود، به‌گونه‌ای که در معرض افزایش دمای ناشی از وضعیت حریق قرار گیرد.

    موتورها، ژنراتورها، پمپ‌ها، شیرآلات
    دتکتور حرارتی خطی می‌تواند مستقیماً روی سطح تقریباً هر نوع تجهیزات مکانیکی و الکتریکی مطابق شکل ۴۱ نصب شود. این نوع نصب امکان پاسخ سریع به تجهیزات داغ‌شده را فراهم می‌سازد، که می‌تواند زودتر از سیستم‌های تشخیص منطقه‌ای هشدار دهد. معمولاً کابلی که برای اطفاء حریق مستقیم تجهیزات استفاده می‌شود، دارای دمای فعال‌سازی بالاتری است. سیم دتکتور حرارتی خطی با دمای بالاتر می‌تواند به همان سیم دتکتور استفاده‌شده برای تشخیص منطقه‌ای متصل شود، مشروط بر اینکه هر دو بخشی از یک منطقه در نظر گرفته شوند.

    هنگام نصب مستقیم بر روی بدنه موتورها، ژنراتورها و غیره، انتخاب کابل حرارتی خطی باید براساس دمای محیطی سطحی باشد که کابل روی آن نصب می‌شود.

    2Q==

    تشخیص درون کابینت تابلوهای برق، تجهیزات سوییچگیر و سایر کابینت‌های الکتریکی
    دتکتور حرارتی خطی را می‌توان از میان تابلوهای برق، تجهیزات سوییچگیر و سایر کابینت‌های الکتریکی عبور داد به‌طوری‌که در نزدیکی اجزای الکتریکی داخل کابینت قرار گیرد، همان‌طور که در شکل ۴۲ نشان داده شده است. کابل دتکتور باید با استفاده از بست‌های نایلونی غیر رسانا مهار شود.

    در این نوع کاربرد، باید توجه ویژه‌ای به انتخاب دمای مناسب کابل شود، که این انتخاب باید بر اساس دمای محیطی ناحیه حفاظت‌شده و سطحی که کابل دتکتور حرارتی خطی روی آن نصب شده، صورت گیرد.

    9k=

    سیستم‌های اسپرینکلر پیش‌فعال و دلوژ
    هنگام استفاده از دتکتور حرارتی خطی به‌عنوان تجهیز آغازگر در سیستم‌های اسپرینکلر پیش‌فعال، باید به دستورالعمل‌های مربوط به فاصله‌گذاری و موقعیت‌دهی که توسط شرکت Factory Mutual (FM) ارائه شده توجه شود. به‌طور کلی، تأییدیه FM مستلزم آن است که دتکتور حرارتی خطی با فاصله‌ای نصب شود که از حداکثر فاصله مجاز برای سیستم اسپرینکلر سقفی بیشتر نباشد.

    کابل دتکتور باید به‌صورت موازی با هر شاخه لوله اسپرینکلر تا انتهای آن شاخه اجرا شود، سپس به‌صورت زاویه قائمه به سمت شاخه بعدی برگشته و در جهت مخالف ادامه یابد تا انتهای ناحیه تشخیص. اطمینان حاصل شود که هر خم ۹۰ درجه‌ای در کابل دتکتور دارای شعاعی حداقل ۳ اینچ (۷.۶ سانتی‌متر) باشد.

    یک مسیر دتکتور حرارتی خطی (منطقه یا زون) می‌تواند تا ۱۰٬۰۰۰ فوت (۳٬۰۴۸ متر) کابل دتکتور حرارتی خطی را شامل شود. اگر منطقه اسپرینکلر به بیش از ۱۰٬۰۰۰ فوت کابل نیاز داشته باشد، باید یک منطقه تشخیص اضافه تعریف شود.

    تعریف مناطق یا زون ها در سیستم طراحی دتکتور حرارتی خطی
    توجه به این نکته مهم است که تعریف ناحیه تشخیص برای دتکتور حرارتی خطی نباید با تعریف ناحیه برای سیستم اسپرینکلر اشتباه گرفته شود. اگر ناحیه اسپرینکلر فراتر از ظرفیت یک منطقه تشخیص سیگنال باشد، باید یک ناحیه تشخیص اضافی تعریف گردد. در این حالت، هر یک از مناطق تشخیص می‌توانند شیر برقی مشترک سیستم اسپرینکلر را فعال کنند. پوشش منطقه تشخیص نباید فراتر از پوشش ناحیه اسپرینکلر باشد.

    انبارها و سردخانه ها با ذخیره‌سازی قفسه‌ای
    بخش‌های زیر نحوه استفاده از دتکتور حرارتی خطی در انواع سیستم‌های ذخیره‌سازی قفسه‌ای را توضیح می‌دهد، از جمله قفسه‌های باز با یا بدون سیستم اسپرینکلر و ذخیره‌سازی سردخانه‌ای. هنگام نصب دتکتور حرارتی خطی در سیستم قفسه‌ای، چه با سیستم اسپرینکلر و چه بدون آن، باید دستورالعمل‌های FM و همچنین توصیه‌های سازنده رعایت شود.

    ذخیره‌سازی قفسه‌ای باز بدون اسپرینکلر
    در نصب دتکتور حرارتی خطی در سیستم قفسه‌ای باز بدون اسپرینکلر، تعداد مسیرهای کابل دتکتور بر اساس ارتفاع قفسه تعیین می‌شود. به‌طور کلی، برای هر ۱۰ فوت (۳ متر) ارتفاع قفسه، باید یک مسیر کابل دتکتور در نظر گرفته شود. کابل دتکتور باید به تیر بارگذاری متصل شده و در فضای دودکش عرضی عبور داده شود.

    برای مثال، یک قفسه به ارتفاع ۱۸ فوت (۵.۵ متر) باید دارای دو مسیر کابل باشد، در حالی که برای سیستم قفسه‌ای به ارتفاع ۴۰ فوت (۱۲ متر) چهار مسیر کابل مورد نیاز است.

    برای جزئیات بیشتر به استاندارد NFPA 72 در مورد این نوع نصب‌ها مراجعه شود.

    ذخیره‌سازی قفسه‌ای باز با اطفاء حریق اسپرینکلر
    در مورد قفسه‌های تکی یا دو ردیفه، یک مسیر دتکتور حرارتی خطی برای هر تراز اسپرینکلر مورد نیاز است، همان‌طور که در شکل ۴۳ نشان داده شده است. کابل دتکتور باید به تیر بارگذاری در تراز اسپرینکلر متصل شده و در فضای دودکش عرضی عبور داده شود.

    Z

    برای قفسه‌های چند ردیفه، هر خط اسپرینکلر نیاز به یک مسیر کابل دتکتور متناظر خواهد داشت.

    مناطق سردخانه‌ای
    هنگام استفاده از دتکتور حرارتی خطی به ‌عنوان تجهیز آغازگر در سیستم‌های اسپرینکلر پیش‌فعال در مناطق سردخانه‌ای، باید به دستورالعمل‌های ارائه‌شده توسط Factory Mutual (FM) توجه شود. این دستورالعمل‌ها را می‌توان در برگه‌های اطلاعات پیشگیری از خسارت FM مانند 8-29 یافت. به‌طور کلی، تأییدیهFM مستلزم آن است که دتکتور حرارتی خطی با فاصله‌ای نصب شود که از حداکثر فاصله مجاز برای سیستم اسپرینکلر سقفی بیشتر نباشد.

    به همین دلیل، در مواقعی که تشخیص در سقف در مناطق سردخانه‌ای مورد نیاز است، می‌توان کابل دتکتور سقفی را به لوله اسپرینکلر متصل نمود. هنگام برنامه‌ریزی چنین نصبی، حتماً با مرجع ذی‌صلاح (AHJ) هماهنگی شود.

    در نصب دتکتور حرارتی خطی همراه با سیستم اسپرینکلر در یک سیستم قفسه‌ای، باید دستورالعمل‌های FM و همچنین توصیه‌های سازنده رعایت گردد.

    در مورد قفسه‌های تکی یا دو ردیفه، یک مسیر دتکتور حرارتی خطی برای هر تراز اسپرینکلر لازم است. کابل دتکتور باید به تیر بارگذاری در تراز اسپرینکلر متصل شده و در فضای دودکش عرضی یا طولی عبور داده شود. در قفسه‌های چند ردیفه، هر خط اسپرینکلر نیاز به یک مسیر کابل دتکتور حرارتی خطی متناظر دارد.

    نصب:
    کابل رابط از پنل کنترل/رهاسازی اطفاء حریق به یک جعبه اتصال(J-Box) که روی قفسه و برای ناحیه خاصی نصب شده، کشیده می‌شود. سپس دتکتور خرارتی خطی را از جعبه اتصال از میان قفسه‌ها مطابق شکل‌های ۴۴ و ۴۵ عبور داده می‌شود و ممکن است به سیستم قفسه‌ای دوم در آن سوی راهرو ادامه یابد.

    هنگام نصب کابل دتکتور روی تیر افقی بارگذاری، از نبشی یا کانال‌های باز موجود در ساختار قفسه برای محافظت کابل در برابر آسیب احتمالی ناشی از لیفتراک یا محصول استفاده شود. کابل می‌تواند با استفاده از بست‌های ساخته‌شده از نایلون  که مقاومت کافی در برابر اشعه یووی آفتاب و دمای سرد یا زیر صفر را دارد، مهار شود.

    هنگام عبور کابل از راهروها، باید آن را در ارتفاعی نصب کرد که از هرگونه آسیب احتمالی ناشی از لیفتراک، جرثقیل یا کالا در امان باشد. کابل دتکتور را می‌توان یک تراز بالاتر از سطح اسپرینکلر نصب کرد تا از آسیب همزمان به لوله اسپرینکلر و کابل دتکتور که ممکن است منجر به فعال‌سازی سیستم و جاری شدن آب شود، جلوگیری شود.

    2Q==

    9k=

    یک انبار سردخانه‌ای ممکن است به مدار تشخیص کلاس “A” به‌جای کلاس “B” نیاز داشته باشد. برای این نوع نصب، یک سیم مسی از جعبه اتصال (J-Box) در انتهای ناحیه کابل دتکتور حرارتی خطی تا پنل کشیده می‌شود تا مدار کامل شود

    دتکتور حرارتی خطی هنگام کاهش دما در انبار سردخانه‌ای و رسیدن به دمای عملیاتی، دچار جمع‌شدگی می‌شود. در نصب‌هایی که پیش از خنک‌سازی در مناطق سردخانه‌ای انجام می‌شوند، باید میزان مشخصی از افتادگی کابل در حین نصب لحاظ شود تا جمع‌شدگی ناشی از سرما جبران شود.

    شکل ۴۶ نموداری است که در تعیین میزان افتادگی مورد نیاز بین بست‌های نصب، کمک می‌کند.

    9k=

    سینی کابل
    در کاربرد دتکتور حرارتی خطی روی سینی کابل، باید از الگوی موج سینوسی همان‌طور که در شکل‌های ۴۷ و ۴۸ نشان داده شده استفاده شود. حداکثر فاصله بین هر قله یا دره نباید بیش از ۶ فوت (۱.۸ متر) باشد. کابل دتکتور حرارتی خطی باید از کناره‌های سینی کابل، با استفاده از مناسب‌ترین بست نصب متناسب با نوع ساختار سینی، مهار شود.

    برای اطلاعات مربوط به تجهیزات نصب در سینی کابل به بخش های قبلی این دفترچه مراجعه شود. این تجهیزات نصب، باعث تضمین نصب صحیح و تماس مناسب با کابل‌های داخل سینی کابل می‌شود.

    Z

    2Q==

    برآورد طول دتکتور حرارتی خطی برای سینی کابل
    از آنجایی که در نصب توصیه‌شده، دتکتور حرارتی خطی باید به‌صورت موج سینوسی عبور داده شود، ممکن است برآورد دقیق طول مورد نیاز برای یک مسیر خاص دشوار باشد. محاسبه زیر به تعیین تقریبی مقدار کابل مورد نیاز در نصب سینی کابل کمک خواهد کرد (شکل ۴۹).

    برای تعیین تعداد نقاط نصب در طول سینی کابل، طول سینی کابل را بر ۳ تقسیم کرده و عدد ۱ را به حاصل اضافه کنید.

    2Q==

    نقاله‌ها
    در سیستم‌های نقاله، چند ناحیه رایج وجود دارد که نیاز به حفاظت دارند. غلتک‌هایی که به دلیل اصطکاک ناشی از از‌دست‌رفتن روانکاری بیش از حد گرم می‌شوند و بیرینگ‌های غلتک داغ ممکن است موجب آتش‌گرفتن تسمه یا محصول روی آن شوند. مواد موجود روی نقاله نیز ممکن است بر اثر اصطکاک یا جرقه شعله‌ور شوند. خرابی و کارکرد بیش از حد نیز می‌تواند باعث داغ‌شدن بیش از حد موتورهای محرک شده و موجب آتش‌سوزی گردد. این‌ها همه از نواحی رایج برای حفاظت در سیستم‌های نقاله هستند. جزئیات مربوط به کاربرد در نقاله‌ها در شکل‌های ۵۰ و ۵۱نشان داده شده‌اند.

    در برخی موارد ممکن است لازم باشد دتکتور حرارتی خطی با استفاده از سیم راهنما پشتیبانی شود (بخش های قبلی را بخوانید). در این نوع نصب‌ها، سیم باید در هر ۱۵ فوت (۴.۵ متر) مهار شود. این کار از افتادگی سیم جلوگیری می‌کند، که ممکن است در عملکرد نقاله اختلال ایجاد کند یا توسط مواد حمل‌شده آسیب ببیند.

    اطمینان حاصل شود که با اپراتورهای کارخانه در خصوص ارتفاع مواد حمل‌شده و نحوه بارگذاری آن‌ها روی نقاله مشورت شود. برای مثال، اگر نقاله از سمت راست بارگیری می‌شود، احتمالاً ارتفاع مواد در سمت چپ نقاله بیشتر خواهد بود. بنابراین، باید دقت بیشتری در تعیین محل نصب کابل دتکتور حرارتی خطی به خرج داد. در نظر گرفتن این نکات از آسیب غیرضروری به کابل دتکتور جلوگیری می‌کند.

    Z

    2Q==

    بگ‌هاوس‌ها – غبارگیرها
    شکل و طراحی بگ‌هاوس‌ها و غبارگیرها متفاوت است. محیط بیرونی این واحدها باید مطابق شکل ۵۲ محافظت شود. بسته به طراحی دستگاه، دتکتور حرارتی خطی ممکن است در محیط داخلی نیز نصب شود، همان‌طور که در شکل ۵۳ نشان داده شده است. در صورت نیاز، کابل دتکتور حرارتی خطی می‌تواند از طریق لوله به سطح بالاتری در داخل واحد منتقل شود.

    برای نصب کابل دتکتور حرارتی خطی تقریباً در ارتفاع ۳ فوت (۰.۹ متر) بالاتر از کف واحد، می‌توان از سیم راهنما یا براکت‌های L شکل استفاده کرد. هنگام استفاده از براکت‌های L، اطمینان حاصل شود که کابل دتکتور در حداکثر هر ۳ فوت (۰.۹متر) مهار شده باشد.

    9k=

    9k=

    کاربرد در تونل‌ها
    هنگام طراحی سیستم دتکتور حرارتی خطی برای تونل‌ها، باید در نظر داشت که هر ناحیه می‌تواند تا ۱۰٬۰۰۰ فوت (۳٬۰۴۸ متر) طول داشته باشد. همان‌طور که در نمودار زیر نشان داده شده، در بیشتر موارد، کابل دتکتور در سقف بالای مناطق عبور ترافیک نصب می‌شود.

    یک طراحی کامل باید نه‌تنها مناطق ترافیکی، بلکه تجهیزات، اتاق‌های مکانیکی، مسیرهای سینی کابل و سیستم‌های تهویه تونل را نیز پوشش دهد. شکل ۵۴ یک کاربرد ساده در تونل را نشان می‌دهد.

    با حداکثر طول ۱۰٬۰۰۰ فوت (۳٬۰۴۸ متر) برای هر ناحیه، ترکیب‌های متنوعی برای پیکربندی‌های مختلف نصب قابل اجرا است. فواصل استاندارد توضیح داده‌شده در بخش های پیشین را می‌توان برای کاربردهای تونل نیز به‌کار برد.

    2Q==

    مخازن ذخیره‌سازی با سقف شناور
    در طراحی سیستم برای مخازن ذخیره‌سازی با سقف شناور، دتکتور حرارتی خطی باید در اطراف محیط داخلی مخزن نصب شود. برای مهار کابل دتکتور در ناحیه بین آب‌بند اولیه و آب‌بند ثانویه یا روی سد فوم در بالای آب‌بند ثانویه، از براکت‌های L شکل به همراه گیره‌های کابل با پوشش روی  استفاده می‌شود. توضیحات مربوط به این تجهیزات نصب در این دفترچه آمده است.

    یک کابل راهنما از تابلوی اعلام و اطفاء حریق تا یک جعبه تقسیم(J-Box) که درون محفظه مخصوص جمع‌آوری کابل لیدر بر روی سقف شناور نصب شده، کشیده می‌شود. این محفظه کابل لیدر را در هنگام بالا و پایین رفتن سقف شناور جمع‌آوری می‌کند.

    سپس دتکتور حرارتی خطی از جعبه تقسیم در اطراف محیط مخزن به سمت جعبه ELR با مقاومت انتهایی برای مدار تشخیص نوع کلاس “B” کشیده می‌شود. در صورتی که مدار تشخیص نوع کلاس “A” مورد نیاز باشد، دتکتور حرارتی خطی به جعبه تقسیم دوم متصل می‌شود و از آنجا یک سیم مسی به سمت تابلو اعلام حریق برگشت داده می‌شود تا مدار تکمیل گردد.

    9k=

    کاربردهای بیرونی
    هنگام طراحی یک سیستم تشخیص توسط دتکتور حرارتی خطی برای استفاده در فضای باز، باید چند عامل مهم را در نظر گرفت. تأثیر گرمای خورشیدی، به‌ویژه زمانی که سیم تشخیص در معرض مستقیم نور خورشید نصب شده باشد، می‌تواند باعث شود دمای محیط از حد مجاز فراتر رود. باید نصب یک پوشش محافظ بر روی دتکتور حرارتی خطی را در نظر گرفت تا به کاهش اثرات نور خورشید و در نتیجه کاهش دما کمک کند. پوشش محافظ همچنین می‌تواند با محافظت از دتکتور حرارتی خطی در برابر اثرات تابش فرابنفش شدید، عمر مفید آن را افزایش دهد. اگرچه دتکتور حرارتی خطی استاندارد برای استفاده در فضای باز تأیید شده است، نوع پوشش‌دار نایلونی آن ممکن است برای مقاومت بیشتر در برابر تابش فرابنفش استفاده شود. هنگام استفاده از دتکتور حرارتی خطی که در داخل لوله نصب شده برای کاربردهای بیرونی مانند پل‌ها، در انتخاب درجه حرارت مناسب دقت کنید. تابش آفتاب بر روی لوله ممکن است دمای داخلی را به اندازه‌ای افزایش دهد که دتکتور حرارتی خطی فعال شود. تمام اتصالات و اتصال‌دهنده‌های بیرونی باید در جعبه تقسیم با درجه حفاظتیNEMA 4 انجام شوند. جعبه‌های J/ELR-Box وHDJ/HDELR-Box محفظه‌هایی با درجه NEMA 4 هستند که برای استفاده در کاربردهای بیرونی تأیید شده‌اند.

    نصب دتکتور حرارتی خطی
    دتکتور حرارتی خطی به عنوان یک دستگاه فعال‌شونده بر اثر حرارت برای استفاده با پنل کنترل/آزادسازی اعلام حریق تحت نظارت تأیید شده است. دتکتور حرارتی خطی در دماهای مختلف عرضه می‌شود و درجه‌بندی‌های آن مشابه آشکارسازهای حرارتی و اسپرینکلرها است. برای انتخاب دتکتور حرارتی خطی مناسب با محیط خود به نمودار درجه حرارت ما (شکل ۳) مراجعه کنید. دتکتور حرارتی خطی را می‌توان هم برای محافظت ناحیه‌ای و هم برای کاربردهای موضعی (نزدیک به خطر یا منبع احتمالی حرارت) نصب کرد تا واکنش سریع‌تری داشته باشد.
    نصب دتکتور حرارتی خطی باید مطابق با کد ملی برق NFPA 70، کد اعلام حریق NFPA 72 یا طبق دستور مقام محلی ذی‌صلاح انجام شود. استفاده از آن باید همراه با پنل کنترل/آزادسازی اعلام حریق تأییدشده باشد و در مسیرهای پیوسته بدون انشعاب یا خطوط فرعی (T-Taps یا branch lines) نصب گردد.
    دتکتور حرارتی خطی باید همیشه در داخل لوله محافظ نصب شود در موارد زیر: زمانی که در ارتفاع ۶ فوت (۱.۸ متر) یا کمتر از سطح زمین نصب می‌شود، در تمام عبورها از کف زمین، یا در ورود به ایستگاه کششی دستی (manual pull station).

    نصب دتکتور حرارتی خطی
    در طول نصب، مهم است که با احتیاط با دتکتور حرارتی خطی برخورد شود. پوشش خارجی پلیمری آن بسیار مقاوم است، اما سیم‌های داخلی و پوشش حرارتی واکنشی آن در صورت عدم مراقبت صحیح ممکن است آسیب ببینند. دستورالعمل‌های زیر جهت کمک به جلوگیری از آسیب به دتکتور حرارتی خطی و اطمینان از نصب موفق و بدون مشکل ارائه شده‌اند.

    توجه: برای جلوگیری از جمع شدن ناگهانی سیم، هنگام باز کردن آن همواره مقداری کشش روی کابل حفظ شود.
    همواره کابل دتکتور حرارتی را در فواصل ۳ تا ۵ فوت (۱ تا ۱.۵متر) با استفاده از بست‌های مناسب پشتیبانی کنید.
    همواره قبل از نصب، کابل را با یک مولتی‌متر تست کنید تا از عدم وجود اتصال کوتاه در کابل دتکتور حرارتی اطمینان حاصل شود. سلامت دتکتور حرارتی خطی همچنین پیش از ارسال، برای تضمین کیفیت آزمایش می‌شود.
    همواره در طول نصب، کابل دتکتور حرارتی را تحت کشش نگه دارید تا از جمع شدن ناگهانی آن جلوگیری شود.
    همواره هنگام نصب کابل دتکتور حرارتی، مقدار افت مناسب (شُل بودن) را رعایت کنید. برای اطلاعات دقیق‌تر به نمودار افت کابل در زیر (شکل ۵۶) مراجعه نمایید.

    9k=

    همواره اطمینان حاصل کنید که نصب دتکتور حرارتی خطی مطابق با کدها و دستورالعمل‌های نصب محلی انجام شود.
    همواره در هنگام نصب دتکتور حرارتی خطی دقت کنید که کابل را بیش از حد نکشید یا روی اجسام یا گوشه‌های تیز نکشید. با وجود مقاومت بالای پوشش خارجی، در صورت عدم رعایت نکات احتیاطی، این پوشش ممکن است آسیب ببیند.
    همواره قبل از ورود به جعبه تقسیم (J-Box / ELR-Box)، یک حلقه در کابل دتکتور حرارتی خطی ایجاد کنید (شکل ۵۷). این کار کمک می‌کند از کشش بیش از حد ناشی از انبساط و انقباض یا جدا شدن تصادفی از ترمینال جلوگیری شود.

    9k=

    همواره اطمینان حاصل کنید که کانکتور کاهش فشار (Strain Relief Connector) به‌طور مناسب سفت شده باشد تا کابل دتکتور حرارتی خطی به‌درستی مهار شده و یک آب‌بندی مقاوم در برابر رطوبت ایجاد شود.
    هرگز کابل دتکتور حرارتی خطی را به‌گونه‌ای نصب نکنید که کابل از یک ناحیه (زون) به ناحیه دیگر امتداد یابد.
    هرگز کابل دتکتور حرارتی خطی را روی سطوحی مانند لوله‌ها، تیرآهن‌ها یا قفسه‌های فلزی که ممکن است به‌عنوان جذب‌کننده حرارت (Heat Sink) عمل کنند نصب نکنید، زیرا این کار ممکن است باعث تأخیر در زمان فعال‌سازی شود.
    هرگز بست‌های نصب را آن‌قدر سفت نکنید که کابل دتکتور تحت فشار، کشیدگی یا گیر افتادگی قرار گیرد یا نتواند به‌آسانی در داخل وسیله نصب حرکت کند.
    هرگز کابل دتکتور را با زاویه ۹۰ درجه خم نکنید. تمام خم‌ها یا چرخش‌ها باید به‌صورت منحنی با حداقل شعاع ۳ اینچ (۷.۶سانتی‌متر) باشند، همان‌طور که در شکل ۵۸ نشان داده شده، و در فاصله شش اینچی از زاویه، مهار شوند.

    2Q==

    هرگز طبق الزامات UL و FM، سیم دتکتور حرارتی خطی را رنگ نکنید.
    هرگز از کانکتورهای سیم (Wire Nut) یا ابزارهای مشابه استفاده نکنید؛ تمام اتصالات باید با استفاده از تکنیک‌های اتصال تأییدشده و ترمینال‌های پیچی (Screw Terminals) که در بخش های قبل توضیح داده شده‌اند انجام شوند.
    هرگز کابل دتکتور حرارتی خطی را نکشید؛ همواره مقداری شُل بودن (Slack) در مسیر کابل در نظر بگیرید، به‌ویژه در کاربردهای سردخانه‌ای.
    هرگز کابل دتکتور را در محل‌هایی قرار ندهید که ممکن است در اثر رفت‌وآمد افراد، تجهیزات یا وسایل نقلیه آسیب ببیند.
    هرگز کابل دتکتور را در مکان‌هایی نگهداری نکنید که دمای محیط به دمای نصب مجاز کابل نزدیک یا از آن بیشتر باشد.
    هرگز دتکتور حرارتی خطی را با بست‌های غیرمجاز نصب نکنید؛ این کار ممکن است باعث آسیب به کابل، ایجاد آلارم‌های کاذب، و باطل شدن گارانتی شود.

    کانکتورهای ترمینال پیچی و لوازم جانبی اتصال
    هنگام اتصال (Splicing) دتکتور حرارتی خطی، استفاده از کانکتور ترمینال پیچی ضروری است تا اتصال بادوام و صحیح برقرار شود. همچنین از نوار اتصال برای پوشش محل اتصال استفاده می‌شود تا از نفوذ رطوبت و تجمع آلودگی جلوگیری شود. در صورت نیاز، نوار آب‌بندی مخصوص اتصال‌های مقاوم در برابر شرایط جوی نیز در بازار موجود است. شکل ۵۹ لوازم اتصال و اتصال‌دهی در دسترس را نشان می‌دهد.

    Z

    نوار اتصال (Splicing Tape)

    نوار اتصال برای پوشاندن محل اتصال کابل دتکتور حرارتی خطی پس از استفاده از کانکتور ترمینال پیچی به‌کار می‌رود. این نوار باعث محافظت از محل اتصال در برابر رطوبت، گرد و غبار و آلودگی می‌شود و از بروز مشکلاتی مانند اتصال کوتاه یا خرابی عملکرد جلوگیری می‌کند. استفاده از نوار اتصال بخشی ضروری از فرآیند اتصال استاندارد طبق دستورالعمل‌های نصب می‌باشد.

    اتصال در جعبه تقسیم (J-Box) – گزینه ۲
    برای ایجاد یک اتصال بادوام که بیشترین محافظت را در برابر رطوبت، گرد و غبار و جدا شدن تصادفی فراهم کند، باید از اتصال در جعبه تقسیم (J-Box) طبق شکل ۶۱ استفاده شود. علاوه بر این، تمام اتصالات در فضای باز نیز باید درون J-Box انجام شوند.

    در این روش، دتکتور حرارتی خطی از طریق کانکتور کاهش فشار (Strain Relief Connector) وارد جعبه تقسیم (J-Box) یا HDJ-Box می‌شود. کانکتور کاهش فشار از طریق سوراخی به قطر ۷/۸ اینچ که در بدنه جعبه ایجاد می‌شود نصب می‌گردد. برای بهترین نتیجه، از اره گرد (Hole Saw) برای ایجاد سوراخ استفاده کنید، نه مته معمولی.

    اتصال کابل دتکتور حرارتی خطی در داخل جعبه تقسیم با استفاده از ترمینال پیچی انجام می‌شود. حتماً پیچ‌های ترمینال را محکم ببندید تا از جدا شدن تصادفی جلوگیری شود.

    نصب و سیم‌کشی پنل کنترل اعلام حریق

    دتکتور حرارتی خطی می‌تواند با هر پنل کنترل/آزادسازی متعارف اعلام حریق مورد استفاده قرار گیرد. طول کل کابل دتکتور حرارتی خطی برای هر زون بسته به قابلیت‌های پنل متفاوت است. برای تعیین حداکثر طول مجاز برای یک پنل خاص، لطفاً با شرکت سازنده تماس بگیرید یا به دیتاشیت محصول مراجعه کنید.

    نصب پنل

    پنل کنترل/آزادسازی اعلام حریق معمولاً در ارتفاعی نصب می‌شود که دسترسی آسان برای پیکربندی، برنامه‌ریزی و نگهداری را فراهم کند.
    تمام سیم‌های سیگنال باید دارای پوشش (شیلددار) بوده و از نوع مناسب باشند. نوع خاص سیم مورد استفاده ممکن است بسته به مقررات محلی آتش‌نشانی متفاوت باشد. لطفاً در مرحله برنامه‌ریزی با مرجع مسئول (AHJ) مشورت کنید.
    پنل نباید در مکان‌هایی نصب شود که دما یا رطوبت آن خارج از محدوده عملکرد مجاز باشد.
    پنل نباید در نزدیکی تجهیزاتی نصب شود که احتمال تولید سطوح بالای فرکانس رادیویی (مانند آژیرهای رادیویی) یا انرژی الکتریکی زیاد (مانند موتورهای بزرگ یا ژنراتورها) را دارند.
    هرگز روی قسمت بالای پنل سوراخ ایجاد نکنید، زیرا براده‌های فلزی ممکن است باعث آسیب به اجزای الکترونیکی داخل پنل شوند.

    نقشه سیم‌کشی برای مدارهای کلاس “A”

    شکل ۶۳ یک نمونه سیم‌کشی مدار کلاس “A” را نشان می‌دهد که در آن کابل اصلی (Leader Cable) از پنل کنترل به داخل یک جعبه تقسیم (J-Box) وارد شده و به دتکتور حرارتی خطی متصل می‌شود. انتهای مسیر کابل دتکتور حرارتی خطی به یک جعبه تقسیم دوم ختم می‌شود، جایی که به سیم مسی تأییدشده با سایز مناسب متصل شده و به سمت پنل کنترل بازمی‌گردد تا مدار کلاس “A” تکمیل شود.

    مقاومت انتهایی (End of Line Resistor) در داخل پنل کنترل اعلام حریق قرار دارد، یا در صورت استفاده از مدل‌هایاعلام حریق آدرس پذیر ، در داخل ماژول کلاس “A” تعبیه شده است.

    نقشه سیم‌کشی برای مدارهای کلاس “B”

    شکل ۶۴ یک نمونه سیم‌کشی مدار کلاس “B” را نشان می‌دهد که در آن کابل اصلی (Leader Cable) از پنل کنترل وارد یک جعبه تقسیم (J-Box) شده و به دتکتور حرارتی خطی متصل می‌شود.

    انتهای مسیر دتکتور حرارتی خطی در یک جعبه ELR (ELR-Box) خاتمه می‌یابد، که مقاومت انتهایی (End of Line Resistor) در داخل آن قرار دارد و مدار را به‌عنوان یک مدار کلاس “B” تکمیل می‌کند.

  • دتکتورهای شعله: کلید یک سیستم مؤثر اطفای حریق

    اولین گام در مقابله با آتش‌سوزی، شناسایی به موقع وقوع آن است که بهترین راه برای این کار، انتخاب و به‌کارگیری دتکتورهای مناسب برای تشخیص شعله و در عین حال نادیده گرفتن شرایط هشدار کاذب می‌باشد.

    مقدمه
    بسیاری از کارخانه‌ها و تاسیسات فرآیندی مقادیر زیادی مایعات و گازهای قابل اشتعال و حتی انفجاری به عنوان محصولات، مواد اولیه یا سوخت‌ها دارند. حتی وقتی بهترین روش‌ها به دقت رعایت شوند، گاهی خطاهای تجهیزات یا اپراتورها باعث می‌شود این مواد از محفظه خود خارج شده و با هوا مخلوط شوند که منجر به آتش‌سوزی می‌شود.

    در حالی که اکثر مردم درباره فجایع انفجار و آتش‌سوزی‌های بزرگ شنیده‌اند، بسیاری از حوادث بالقوه در همان مراحل اولیه با فعال شدن دتکتور شعله و آغاز سیستم خودکار اطفای حریق مهار می‌شوند. این سیستم منبع سوخت را قطع کرده و آتش را خاموش می‌کند، معمولاً با استفاده از فومی خاص، تا حداقل آسیب به تجهیزات، صدمات جانی و اثرات زیست‌محیطی را فراهم کند. دتکتور شعله همچنین پرسنل پاسخ‌دهنده اولیه را مطلع می‌کند تا سریعاً به محل حادثه برسند.

    دستیابی به چنین نتیجه مثبتی مستلزم سیستم‌های ایمنی مؤثر و آموزش پرسنل است. در اولویت قرار دادن این موضوع، این سیستم‌ها باید بتوانند به سرعت شروع حریق را تشخیص دهند و به‌موقع مراحل اصلاحی صحیح را فعال کنند تا حادثه فرصت تشدید نیابد

     

    تشخیص شعله‌ها
    انسان‌ها آتش را با دیدن نور مرئی آن و احساس حرارت تابیده شده تشخیص می‌دهند. اما هر کسی که ماهیت آتش را مطالعه کرده باشد می‌داند که سوخت‌های مختلف می‌توانند انواع بسیار متفاوتی از آتش ایجاد کنند. الکل در حال سوختن نسبت به نفت در حال سوختن تقریباً نامرئی است. خوشبختانه، ابزارهایی که برای تشخیص شعله طراحی شده‌اند محدودیت چشم انسان را ندارند. دتکتورشعله‌ها می‌توانند تابش‌های داغ حاصل از محصولات احتراق، رادیکال‌ها و گونه‌های دیگر را در بخش‌های مختلف طیف الکترومغناطیسی جستجو کنند و در صورت قرارگیری مؤثر، ظرف چند ثانیه واکنش نشان دهند.

    اکثر محصولاتی که به عنوان قابل اشتعال شناخته می‌شوند حاوی کربن هستند و بنابراین دی‌اکسید کربن را به عنوان محصول اصلی تولید می‌کنند. با این حال، کربن لازم نیست که سوخت باشد، همانطور که در محصولاتی غیرآلی مانند هیدروژن، آمونیاک، اکسیدهای فلزی، سیلان و غیره دیده می‌شود. بسیاری از اینها حاوی هیدروژن بوده و بنابراین بخار آب تولید می‌کنند. الکل‌ها، هیدروکربن‌ها و بسیاری از سوخت‌های دیگر هم هیدروژن و هم کربن دارند و بنابراین هر دو محصول را تولید می‌کنند.

    صرف‌نظر از منبع سوخت، شعله‌ها و گازهای داغ حاصل تابش الکترومغناطیسی در طول‌موج‌های مختلف (شکل ۲) از فرابنفش (UV)، طیف مرئی تا مادون قرمز (IR) ایجاد می‌کنند. مقدار و طول‌موج این تابش بستگی به منبع سوخت دارد. دی‌اکسید کربن داغ دارای قله شدید در ۴.۲ تا ۴.۵ میکرومتر و بخار آب داغ در ۲.۷ میکرومتر است. دتکتورشعله‌ها معمولاً برای تشخیص تابش نوری در این طول‌موج‌ها طراحی می‌شوند که الگوهای شدت آنها در شعله‌های باز رایج است.

     

    کارخانه‌های قدیمی بیشتر به اپراتورهای انسانی برای اعلام هشدار و شروع عملیات اطفای حریق وابسته بودند، اغلب به دلیل کمبود دتکتورهای شعله مؤثر. اما با کاهش تعداد کارکنان در اکثر کارخانه‌ها و بهبود چشمگیر دتکتورهای شعله، سیستم‌های خودکار به بهترین روش برای آغاز عملیات تبدیل شده‌اند.

    فناوری‌های تشخیص حریق اشکال مختلفی دارند. در فضاهای مسکونی و تجاری، دتکتورهای دود وجود دارند که به دنبال محصولات خاص احتراق یا تیرگی هوا می‌گردند، اما این دتکتورها به فضاهای بسته نیاز دارند تا میزان کافی از دود یا ذرات به حد قابل تشخیص برسد که زمان‌بر است. دتکتورهای حرارتی نیز همین مشکل را دارند. از آنجایی که کارخانه‌های فرآیندی اغلب باز به فضای بیرون هستند، دتکتورهای دود ممکن است برای هشدار زودهنگام مناسب نباشند.

    سریع‌ترین روش برای تشخیص حریق، شناسایی شعله است. شعله‌ها بلافاصله هنگام سوختن گازها یا مایعات شکل می‌گیرند و نیازی به انتظار برای تجمع محصولات احتراق یا افزایش حرارت نیست. اگرچه این مفهوم ساده است، اما توانایی شناسایی دقیق شعله با سرعت پاسخ‌دهی بالا چالش‌برانگیز است.

    WhatsApp Image 2025 09 24 at 3.21.18 AM

    اجتناب از هشدارهای کاذب
    شرایطی که دتکتورشعله به آن‌ها واکنش نشان می‌دهد همیشه محدود به نوع آتش‌سوزی‌هایی نیست که تأسیسات نگران آن هستند. دی‌اکسید کربن و بخار آب داغ ممکن است توسط اگزوز کامیون یا موتور ثابت ایجاد شوند. نور فرابنفش می‌تواند توسط جوشکار یا بازتاب نور خورشید تولید شود. اگر دتکتورشعله این موارد را به اشتباه به عنوان آتش واقعی تشخیص دهد و منجر به صدور هشدار و فعال‌سازی خودکار سیستم‌های کنترل برای خاموش کردن آتش شود، این واکنش می‌تواند بسیار پرهزینه و مزاحم باشد و احتمالاً منجر به ثبت یک حادثه شود.

    علاوه بر پاکسازی، تولید متوقف می‌شود و در بسیاری از موارد برای مدت طولانی پس از آماده شدن تمام سیستم‌ها، به دلیل دوره انتظار برای تحقیقات علت ریشه‌ای، گزارش‌های نظارتی و سایر مجوزهای لازم برای راه‌اندازی مجدد، توقف ادامه می‌یابد. به دلیل این موارد و الزامات دیگر، هشدار کاذب می‌تواند تقریباً به اندازه یک آتش واقعی مزاحمت ایجاد کند.

    این واقعیت باعث توسعه دتکتورشعله‌هایی شده که قادر به تشخیص و رد هشدارهای کاذب هستند و نیاز به تنظیمات نادرست و نامناسب توسط پرسنل را کاهش می‌دهند. یکی از رایج‌ترین، اگرچه نامناسب‌ترین روش‌ها، کاهش حساسیت دتکتورشعله است که به منظور کاهش احتمال هشدار کاذب انجام می‌شود. این کار پوشش تشخیص را کاهش می‌دهد و در یک حادثه در حال پیشرفت، آتش باید به حدی برسد که دتکتور تنظیم‌شده پایین‌تر فعال شود، که مبارزه و خاموش کردن آن را سخت‌تر می‌کند.

    راه‌حل بهتر اما پرهزینه‌تر، استفاده از روش اثبات شده به کارگیری چندین دتکتورشعله در قالب یک سیستم رأی‌گیری است. این روش در سایر سیستم‌های حیاتی ایمنی متداول است اما هزینه پیاده‌سازی و یکپارچه‌سازی آن بالا است. با این وجود، به کارگیری چند دتکتور و سیستم‌های پشتیبان معمولاً هزینه کمتری نسبت به مدیریت یک هشدار کاذب واحد دارد.

    نیاز به استفاده از این روش‌ها با پیشرفت سیستم‌های پردازش سیگنال دتکتورشعله و توانایی آن‌ها در تمایز بین آتش واقعی و منابع احتمالی دیگر کاهش یافته است

    WhatsApp Image 2025 09 24 at 3.21.16 AM

    برای مثال، آیا منبع تابش فرابنفش تشخیص داده شده از یک شعله است یا یک جوشکار؟ اگرچه هر دو ممکن است در طول‌موج‌های مشابه تابش داشته باشند، ماهیت خروجی از نظر شدت و نوسان بسیار متفاوت است و یک دتکتور هوشمند می‌تواند تفاوت آن‌ها را تشخیص دهد.

    زمان پاسخ سریع که با دتکتورشعله حساس و پیشرفته امکان‌پذیر است می‌تواند تفاوت بین یک حادثه فاجعه‌بار و یک آتش خاموش شده با حداقل تأثیر باشد. این نوع دتکتورها همچنین می‌توانند از توقف تولید ناشی از هشدارهای کاذب جلوگیری کنند.

    دتکتورشعله‌ها براساس مقاومتشان در برابر منابع خاص هشدار کاذب ارزیابی می‌شوند، بنابراین در ارزیابی هر محصول باید این موارد به دقت بررسی شود. این دسته‌بندی‌ها شامل مواردی مانند چراغ‌های فلورسنت، چراغ‌های هالوژنی، کویل‌های داغ درخشان، جوشکاری قوسی، نور خورشید و غیره است. اکثر آن‌ها فاصله‌ای برای مقاومت در برابر این منابع را مشخص می‌کنند.

     

  • ملاحظات مربوط به اسپیراتینگ ها یا دتکتورهای دودی مکشی بر اساس اصول عملکرد آن‌ها

    اثر رقیق‌سازی
    حساسیت یک سامانه تشخیص مکشی به دو عامل اصلی بستگی دارد: تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی و آستانه‌های قابل برنامه‌ریزی تشخیص دود. تعداد سوراخ‌های نمونه‌برداری می‌تواند بر میزان رقیق‌سازی هوای بازگشتی به محفظه حسگر تأثیر بگذارد.
    برای مثال، زمانی که دود از یک سوراخ نمونه‌برداری وارد می‌شود، غلظت دود به‌دلیل عبور از سایر سوراخ‌هایی که هوای پاک (بدون دود) را جذب می‌کنند، کاهش می‌یابد. زمانی که این هوای تمیز با هوای آلوده به دود ترکیب می‌شود و به محفظه تشخیص وارد می‌گردد، هوای آلوده به دود رقیق می‌شود. به این پدیده «اثر رقیق‌سازی» گفته می‌شود (شکل ۷ در پایین).

    در شکل ۷، رنگ خاکستری نشان‌دهنده دودی است که از دورترین سوراخ نمونه‌برداری در لوله وارد می‌شود. این دود در حین عبور از لوله با هوای پاک ترکیب شده و غلظت آن کاهش می‌یابد. اثر رقیق‌سازی به‌طور مستقیم با تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی مرتبط است. هرچه تعداد سوراخ‌ها بیشتر باشد، حجم هوایی که به سمت ASD منتقل می‌شود نیز بیشتر شده و در نتیجه دود معلق در هوا بیشتر رقیق می‌شود.
    برای مثال، اگر لوله نمونه‌برداری ۵۰ متر (۱۶۴ فوت) طول داشته باشد و در هر ۵ متر (۱۶ فوت) یک سوراخ تعبیه شده باشد، در مجموع ۱۰ سوراخ از جمله درپوش انتهایی خواهیم داشت.

    در این مثال ساده، فرض می‌شود که هر سوراخ مقدار تقریباً برابری از هوا را وارد می‌کند. اگر یک منبع دود با غلظت ۲٪ انسداد بر متر (obs/m) در انتهای لوله قرار گیرد و از سایر سوراخ‌ها دود وارد نشود، دود در مسیر حرکت خود با هوای پاک ترکیب می‌شود. زمانی که نمونه به آشکارساز می‌رسد، غلظت آن به ۰.۲٪ obs/m، یا یک‌دهم مقدار اولیه کاهش یافته است. بنابراین، اگر آستانه هشدار اولیه روی ۰.۲٪ obs/m تنظیم شده باشد، غلظت دود در خارج از سوراخ باید بیش از ۲٪ obs/m باشد تا هشدار به صدا درآید.

    در نتیجه، هرچه طول لوله و تعداد سوراخ‌های نمونه‌برداری بیشتر باشد، سامانه بیشتر در معرض اثر رقیق‌سازی قرار می‌گیرد. در این شرایط، بهتر است بر اساس بدترین حالت ممکن طراحی صورت گیرد.
    در واقعیت، محاسبه رقیق‌سازی به سادگی مثال بالا نیست و عوامل بیشتری دخیل‌اند. هر سامانه ویژگی‌های متفاوتی دارد، بنابراین محاسبه دقیق آن بسیار پیچیده است. عواملی که بر نرخ رقیق‌سازی تأثیر می‌گذارند شامل اندازه و تعداد سوراخ‌ها، سه‌راهی‌ها و زانویی‌ها در شبکه لوله‌کشی، قطر لوله، و عوامل محیطی مانند دما، فشار و رطوبت هوا می‌شوند.

     

    زمان انتقال

    زمان انتقال، مدت‌زمانی است که ذرات دود برای رسیدن به محفظه حسگر در دتکتور دودی مکشی نیاز دارند. این زمان (بر حسب ثانیه) از لحظه ورود ذرات به نقطه نمونه‌برداری تا رسیدن آن‌ها به محفظه تشخیص اندازه‌گیری می‌شود. این زمان‌ها با استفاده از نرم‌افزار طراحی دتکتور دودی مکشی محاسبه شده و در فرآیند راه‌اندازی و تأیید نهایی در میدان، به‌صورت عملی ارزیابی و تأیید می‌گردند.

    WhatsApp Image 2025 09 30 at 3.50.36 PM

    چندین پارامتر در تعیین زمان انتقال تأثیرگذار هستند، از جمله:

    • اندازه و تعداد سوراخ‌های نمونه‌برداری
    • تنظیم سرعت مکنده (دور بر دقیقه)
    • تنظیم حساسیت آشکارساز
    • مقدار کل و چیدمان لوله‌های نمونه‌برداری

    استانداردها و آیین‌نامه‌های مدرن، زمان‌های انتقال مشخصی را برای کلاس‌های مختلف دتکتورهای دودی مکشی الزام می‌کنند. حداکثر زمان انتقال ممکن است بسته به نوع کاربرد، از ۶۰ ثانیه برای دتکتورهای بسیار زودهنگام، ۹۰ ثانیه برای دتکتورهای زودهنگام، یا ۱۲۰ ثانیه برای دتکتورهای استاندارد متغیر باشد.

    برای تعیین زمان‌های مجاز انتقال، به استانداردهای EN 54-20، NFPA 72، NFPA 76 و آیین‌نامه‌های محلی مربوطه مراجعه شود.