الزامات محل نصب اسپرینکلرها طبق NFPA-13

IMG 2011

ترجمه و تدوین توسط مرکز اطلاعات کامپیوتری شرکت اسپین الکتریک

فصل 9 –الزامات محل نصب اسپرینکلر

9.1 الزامات پایه‌ای

9.1.1 الزامات مربوط به فاصله‌گذاری، محل قرارگیری و موقعیت اسپرینکلرها باید بر اساس اصول زیر باشد:

1. اسپرینکلرها باید در تمام محدوده بنا نصب شوند.
2. اسپرینکلرها باید به‌گونه‌ای قرار گیرند که از حداکثر سطح تحت پوشش مجاز برای هر اسپرینکلر تجاوز نکنند.
3. اسپرینکلرها باید در موقعیتی قرار گیرند که عملکرد رضایت‌بخشی از نظر زمان فعال‌سازی و توزیع داشته باشند.
4. حذف اسپرینکلرها در فضاهایی که این استاندارد به‌طور خاص اجازه می‌دهد، مجاز است.
5. هنگامی که اسپرینکلرها به‌طور خاص آزمایش شده و نتایج آزمایش نشان دهد که انحراف از الزامات فاصله با اجزای سازه‌ای تأثیری بر توانایی اسپرینکلر برای کنترل یا مهار آتش ندارد، نصب آن‌ها بر اساس نتایج آزمایش مجاز است.
6. فاصله‌ای بیش از حداکثر مجاز بین اسپرینکلر و سقف، در صورتی مجاز است که آزمایش‌ها یا محاسبات، حساسیت و عملکردی مشابه اسپرینکلرهای نصب‌شده طبق این بخش‌ها را نشان دهند.

9.2 محل‌های مجاز برای حذف اسپرینکلر

9.2.1 فضاهای پنهان که نیاز به حفاظت با اسپرینکلر ندارند

9.2.1.1 فضاهای پنهان ساخته‌شده با مصالح غیرقابل احتراق یا کم‌احتراق و دارای بار سوختی (combustible loading) اندک، که دسترسی به آن‌ها وجود ندارد، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.1.1 این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در سیستم پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.

9.2.1.1.2 بازشوهای کوچک با هر دو شرط زیر مجاز هستند:

1. مساحت مجموع این بازشوها نباید بیش از ۲۰ درصد از سطح سقف، ویژگی سازه‌ای، یا سطحی باشد که به‌عنوان مرز فضای پنهان در نظر گرفته می‌شود.
2. شکاف‌هایی با طول بیش از ۴ فوت (۱.۲ متر) نباید بیشتر از ۸ اینچ (۲۰۰ میلی‌متر) عرض داشته باشند.

9.2.1.2 فضاهای پنهان با ساختار غیرقابل احتراق یا کم‌احتراق، که دسترسی محدود داشته و اجازه حضور یا نگهداری مواد قابل احتراق را نمی‌دهند، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.2.1 این فضاها حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در سیستم پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شوند.

9.2.1.3 فضاهای پنهانی که توسط استدها یا تیرک‌های چوبی تشکیل شده‌اند و فاصله بین لبه‌های داخلی یا نزدیک این اجزا کمتر از ۶ اینچ (۱۵۰ میلی‌متر) باشد، نیاز به حفاظت با اسپرینکلر ندارند. (به شکل 10.2.6.1.5.1 مراجعه شود.)

9.2.1.4 فضاهای پنهانی که توسط تیرک‌های فلزی شبکه‌ای (bar joists) تشکیل شده‌اند و فاصله بین عرشه سقف یا کف با سقف زیر آن کمتر از ۶ اینچ (۱۵۰میلی‌متر) باشد، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.5 فضاهای پنهانی که توسط سقف‌هایی تشکیل شده‌اند که مستقیماً به تیرک‌های چوبی یا سازه‌های مشابه متصل شده‌اند یا در فاصله‌ای کمتر از ۶ اینچ (۱۵۰ میلی‌متر) از آن‌ها قرار دارند، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.6 فضاهای پنهانی که توسط سقف‌هایی تشکیل شده‌اند که به تیرهای مرکب چوبی (composite wood joist) متصل شده‌اند، خواه به‌صورت مستقیم یا با استفاده از کانال‌های فلزی که عمق آن‌ها از ۱ اینچ (۲۵میلی‌متر) تجاوز نمی‌کند، در صورتی که کانال‌های بین تیرها از بالای عایق پتویی (batt insulation) به حجم‌هایی تقسیم شده باشند که هیچ‌کدام از آن‌ها بیش از ۱۶۰ فوت مکعب (۴٫۵ متر مکعب) نباشد، و حداقل ۳٫۵اینچ (۹۰ میلی‌متر) عایق پتویی در پایین کانال‌ها (در صورت استفاده از کانال فلزی) نصب شده باشد، نیازی به حفاظت با اسپرینکلر ندارند.

9.2.1.7 فضاهای پنهانی که با عایق غیرقابل احتراق پر شده‌اند، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.7.1 وجود یک فاصله هوایی حداکثر ۲ اینچ (۵۰میلی‌متر) در بالای فضا مجاز است.

9.2.1.8 فضاهای پنهانی در سازه‌های تیر چوبی که در آن‌ها فضای بین سقف و لبه پایینی تیر تا عرشه سقف یا کف با عایق غیرقابل احتراق پر شده باشد، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.9 فضاهای پنهانی در سازه‌های تیر مرکب چوبی که در آن‌ها فضای بین سقف و لبه پایینی تیر تا عرشه سقف یا کف با عایق غیرقابل احتراق پر شده باشد، و کانال‌های بین تیرها به حجم‌هایی با حداکثر ۱۶۰ فوت مکعب (۴٫۵ متر مکعب) در عمق کامل تیر با موادی معادل با ساختار شبکه‌ای (web construction) تقسیم شده باشند، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.10 فضاهای پنهانی بالای فضاهای کوچک مجزا که مساحت آن‌ها از ۵۵ فوت مربع (۵٫۱ متر مربع) تجاوز نمی‌کند، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.11 فضاهای پنهانی که در آن‌ها از مواد سخت(rigid materials) استفاده شده و سطوح در معرض دید آن‌ها در حالت نصب‌شده با یکی از شرایط زیر مطابقت دارند، نیاز به حفاظت با اسپرینکلر ندارند:

1. مواد سطحی دارای شاخص گسترش شعله ۲۵ یا کمتر هستند و نشان داده شده که بیش از ۱۰٫۵ فوت (۳٫۲ متر) آتش را گسترش نمی‌دهند، در صورتی که بر اساس آزمون ASTM E84 یا UL 723 و با ۲۰دقیقه اضافه‌شده آزمایش شده باشند.
2. مواد سطحی با الزامات ASTM E2768 مطابقت دارند (آزمون ۳۰ دقیقه‌ای گسترش سطحی آتش).

9.2.1.12 فضاهای پنهانی که تمام سطوح در معرض دید آن‌ها به‌طور کامل از چوب تیمار‌شده مقاوم در برابر آتش ساخته شده‌اند (مطابق با تعریف NFPA 703)، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.13 فضاهای پنهان غیرقابل احتراق که دارای عایق قابل احتراق در معرض دید هستند، در صورتی که محتوای حرارتی سطح و زیرلایه عایق بیش از ۱۰۰۰Btu/ft² (۱۱,۴۰۰ kJ/m²) نباشد، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.14 فضاهای پنهانی که در آن‌ها عایق به‌طور مستقیم روی تیرهای چوبی یا تیرهای مرکب چوبی که به‌عنوان تیرهای سقف استفاده شده‌اند قرار دارد و سقف نیز مستقیماً به پایین تیرها متصل است (در فضایی که در غیر این صورت با اسپرینکلر محافظت شده است)، نیاز به حفاظت با اسپرینکلر ندارند.

9.2.1.15 در چاه‌های عمودی لوله‌کشی با مساحت کمتر از ۱۰ فوت مربع (۰٫۹ متر مربع)، نصب اسپرینکلر الزامی نیست.

9.2.1.15.1 چاه‌های لوله‌کشی مطابق با بند 9.2.1.15 نباید دارای منبع اشتعال باشند.

9.2.1.15.2 در ساختمان‌هایی با بیش از یک طبقه، محل عبور لوله‌ها از هر طبقه باید با استفاده از موادی معادل با ساختار کف، دارای درزبندی مقاوم در برابر حریق(firestopping) باشد.

9.2.1.16 ستون‌های بیرونی با مساحت کمتر از ۱۰ فوت مربع (۰٫۹ متر مربع) که توسط تیرهای چوبی یا چوبی مرکب برای نگه‌داری سایبان‌های بیرونی تشکیل شده‌اند و این سایبان‌ها به‌طور کامل با سیستم اسپرینکلر محافظت شده‌اند، نیازی به حفاظت مجزا با اسپرینکلر ندارند.

9.2.1.17* فضاهای پنهانی که توسط سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود تشکیل شده‌اند و از زیر تیرهای چوبی، تیرهای چوبی مرکب، تیرهای شبکه‌ای چوبی یا خرپاهای چوبی آویزان شده‌اند، در صورتی که عایق تمام فواصل بین پایین‌ترین قسمت این عناصر را پر کرده باشد، و اسپرینکلرها در فضای بالای عایق (داخل تیرها یا خرپاها) نصب شده باشند، نیاز به اسپرینکلر مجزا ندارند.

9.2.1.17.1 محتوای حرارتی روکش، زیرلایه و نگهدارنده مواد عایق نباید بیش از ۱۰۰۰ Btu/ft² (۱۱,۴۰۰ kJ/m²) باشد.

9.2.1.18* فضاهای پنهانی که توسط سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود تشکیل شده‌اند و از زیر تیرهای چوبی یا تیرهای مرکب چوبی (با حداکثر عرض اسمی بند پایین برابر با ۲ اینچ یا ۵۰ میلی‌متر) آویزان شده‌اند، در صورتی که فضاهای بین تیرها به‌طور کامل با عایق پتویی غیرقابل احتراق پر شده باشند و یک فاصله هوایی حداکثر ۲ اینچ (۵۰ میلی‌متر) بین پوشش سقف و بالای عایق وجود داشته باشد، نیاز به اسپرینکلر ندارند.

9.2.1.18.1 در صورتی که سطح زیرین بند پایین تیرها با روکشی از مواد غیرقابل احتراق یا با قابلیت احتراق محدود پوشیده شده و مطابق با دستورالعمل سازنده در محل ثابت شده باشد، نصب اسپرینکلر الزامی نیست.

9.2.1.19 پیش‌آمدگی‌های خارجی شامل: سقف‌های زیرین بیرونی (soffits)، پیش‌آمدگی‌های سقف (eaves)، سقف‌های جلو آمده (overhangs)، و اجزای تزئینی قاب.

9.2.1.19.1 نصب اسپرینکلر در داخل این اجزای قابل احتراق، در صورتی که با شرایط 9.2.1.19.2 تا 9.2.1.19.5 مطابقت داشته باشند، الزامی نیست.

9.2.1.19.2 عرض پیش‌آمدگی‌های قابل احتراق نباید بیش از ۴ فوت (۱٫۲ متر) باشد.

9.2.1.19.3 این پیش‌آمدگی‌ها باید با استفاده از موادی معادل با خود پیش‌آمدگی، دارای تقسیم‌بندی ضد گسترش دود و حرارت (draftstopping) باشند، به‌طوری‌که هیچ حجمی بیش از ۱۶۰ فوت مکعب (۴٫۵ متر مکعب) نباشد.

9.2.1.19.4 این پیش‌آمدگی‌ها باید از فضای داخلی ساختمان توسط دیوارها یا سقف‌هایی با ساختار غیرقابل احتراق یا با قابلیت احتراق محدود جدا شده باشند.

9.2.1.19.5 این پیش‌آمدگی‌ها نباید دارای هیچگونه بازشو یا نفوذ بدون محافظت مستقیم به داخل ساختمان باشند.

9.2.2 فضاهای زیر طبقات هم‌سطح زمین، اسکله‌ها و سکوهای بیرونی:
در صورتی که همه شرایط زیر برقرار باشد، نصب اسپرینکلر در این فضاها الزامی نیست:

9.2.2 فضاهای زیر طبقات هم‌سطح زمین، اسکله‌ها و سکوهای بیرونی

در صورتی که تمامی شرایط زیر برقرار باشند، نصب اسپرینکلر در این فضاها الزامی نیست:

1. فضا برای مقاصد ذخیره‌سازی در دسترس نبوده و در برابر تجمع زباله‌های بادآورده محافظت شده باشد.
2. در فضا هیچ تجهیزاتی مانند نقاله یا واحدهای گرمایشی سوختی وجود نداشته باشد.
3. کف بالای این فضا دارای ساختار کاملاً درزگیر و بسته باشد.
4. در طبقه بالای این فضا، هیچ مایع قابل اشتعال یا قابل احتراقی، یا موادی که در شرایط آتش‌سوزی به مایعات قابل اشتعال یا قابل احتراق تبدیل شوند، فرآوری، نگهداری یا ذخیره نشوند.

9.2.3 پیش‌آمدگی‌های خارجی*

بیشتر بخوانید: رفع خطای سیستم اعلام حریق

9.2.3.1 مگر در صورتی که شرایط بندهای 9.2.3.2، 9.2.3.3، یا 9.2.3.4 برقرار باشند، نصب اسپرینکلر در زیر پیش‌آمدگی‌های خارجی با عرض بیش از ۴ فوت (۱٫۲متر) الزامی است.

9.2.3.2* حذف اسپرینکلر مجاز است در صورتی که سایبان‌ها، بام‌ها، ورودی‌های سرپوشیده، بالکن‌ها، تراس‌ها و پیش‌آمدگی‌های مشابه، از مصالح غیرقابل احتراق، با قابلیت احتراق محدود، یا چوب مقاوم‌شده در برابر آتش (طبق تعریف NFPA 703) ساخته شده باشند؛ یا در صورتی که با استفاده از چهارچوبی از مصالح غیرقابل احتراق، با قابلیت احتراق محدود، یا چوب مقاوم‌شده در برابر آتش به همراه روکشی از پارچه ذاتاً مقاوم در برابر شعله (با اثبات از طریق روش آزمون 2 طبق NFPA 701) ساخته شده باشند.

9.2.3.3 حذف اسپرینکلر از زیر پیش‌آمدگی‌های خارجی از نوع مصالح قابل احتراق، در صورتی مجاز است که مصالح نهایی نمای بیرونی از نوع غیرقابل احتراق، با قابلیت احتراق محدود، یا چوب مقاوم‌شده در برابر آتش طبق NFPA 703 باشد، و پیش‌آمدگی فقط دارای فضاهای پنهان دارای اسپرینکلر یا یکی از فضاهای پنهان قابل احتراق بدون اسپرینکلر زیر باشد:

1. فضاهای پنهان قابل احتراق که به‌طور کامل با عایق غیرقابل احتراق پر شده باشند.
2. اشغال‌های خطر سبک یا معمول که سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود مستقیماً به پایین تیرهای چوبی جامد متصل شده‌اند و فضاهای بین تیرها به حجم حداکثر ۱۶۰ فوت مکعب (۴٫۵ متر مکعب) محدود شده‌اند، شامل فضای زیر عایقی که مستقیماً بر روی تیرها یا درون آن‌ها قرار گرفته در یک فضای اتیک دارای اسپرینکلر [مطابق با بند 19.3.3.1.5.2(4)].
3. فضاهای پنهان در بالای پیش‌آمدگی‌های خارجی مجزای کوچک که مساحت آن‌ها از ۵۵ فوت مربع (۵٫۱ متر مربع) تجاوز نمی‌کند.

9.2.3.4 حذف اسپرینکلر از یک راهروی خروجی بیرونی مجاز است در صورتی که دیوار بیرونی راهرو حداقل ۵۰٪باز باشد و کل ساختار راهرو از مصالح غیرقابل احتراق ساخته شده باشد.

9.2.3.5 نصب اسپرینکلر در زیر تمامی پیش‌آمدگی‌های خارجی با عرض بیش از ۲ فوت (۶۰۰ میلی‌متر) که مواد قابل احتراق در آن‌ها ذخیره می‌شود، الزامی است.

9.2.4 واحدهای مسکونی

9.2.4.1 حمام‌ها

9.2.4.1.1* مگر در صورتی که بندهای 9.2.4.1.2 یا 9.2.4.1.3 نصب اسپرینکلر را الزامی کرده باشند، اسپرینکلر در حمام‌هایی که:

درون واحدهای مسکونی قرار دارند،
مساحت آن‌ها از ۵۵ فوت مربع (۵٫۱ متر مربع) تجاوز نمی‌کند،
دیوارها و سقف‌های آن‌ها از مواد غیرقابل احتراق یا با قابلیت احتراق محدود با مقاومت حرارتی ۱۵ دقیقه‌ای ساخته شده‌اند (شامل سطوح پشت دوش یا وان)

نیاز نیست.

9.2.4.1.2 در حمام‌های تأسیسات مراقبت محدود و خانه‌های سالمندان (مطابق با تعریف در NFPA 101)، نصب اسپرینکلر الزامی است.

9.2.4.1.3

در حمام‌هایی که مستقیماً به راهروهای عمومی یا مسیرهای خروج باز می‌شوند، نصب اسپرینکلر الزامی است.

9.2.4.2 کمدها و انبارهای کوچک*

در هتل‌ها و متل‌ها، نصب اسپرینکلر در کمدهای لباس، کمدهای ملحفه، و انبارهای کوچک داخل واحدهای مسکونی الزامی نیست، به شرط آنکه:

مساحت این فضاها از ۲۴ فوت مربع (۲٫۲ متر مربع) تجاوز نکند،
و دیوارها و سقف‌ها با مصالح غیرقابل احتراق یا با قابلیت احتراق محدود پوشیده شده باشند.

9.2.5 کمدهای لباس در بیمارستان‌ها*

در اتاق‌های خواب بیماران در بیمارستان‌ها، نصب اسپرینکلر در کمدهای لباس الزامی نیست، به شرط آنکه:

مساحت کمد از ۶ فوت مربع (۰٫۶ متر مربع) تجاوز نکند،
و فاصله بین اسپرینکلر نصب‌شده در اتاق خواب بیمار تا دیوار پشتی کمد، از حداکثر فاصله مجاز مطابق بند 9.5.3.2 بیشتر نباشد.

9.2.6 اتاق‌های تجهیزات الکتریکی*

در صورتی که تمامی شرایط زیر برقرار باشد، نصب اسپرینکلر در اتاق‌های تجهیزات الکتریکی الزامی نیست:

1. اتاق منحصراً به تجهیزات الکتریکی اختصاص داشته باشد.
2. فقط تجهیزات الکتریکی از نوع خشک یا مایع (با سیال K-class دارای لیست) در آن استفاده شود.
3. تجهیزات در محفظه‌ای با مقاومت آتش دو ساعته نصب شده باشند (از جمله محافظت از نفوذها).
4. نگهداری یا ذخیره‌سازی در این اتاق مجاز نباشد.

9.2.7 سقف‌های ابری (Cloud Ceilings)

9.2.7.1*

در صورتی که تمام شرایط زیر برقرار باشد، نصب اسپرینکلر در بالای سقف‌های ابری الزامی نیست:

1. مجموع مساحت کل بازشوها اطراف سقف ابری، حداکثر برابر با ۲۰ درصد از مساحت سقف یا سازه‌ای باشد که برای تعیین مرزهای فضا استفاده شده است.
2. عرض شکاف‌ها و حداکثر سطح حفاظت اسپرینکلر مطابق با جدول 9.2.7.1 باشد.
3. الزامات بند 9.2.7.2 رعایت شده باشند.
4. فضاهای بالای سقف ابری از مصالح غیرقابل احتراق یا با قابلیت احتراق محدود ساخته شده و بار قابل احتراق در آن حداقل باشد.

9.2.7.2

زمانی که نصب اسپرینکلر در بالای سقف ابری مطابق بند 9.2.7.1 حذف شده باشد، الزامات این بخش باید رعایت شود:

9.2.7.2.1 تمامی اسپرینکلرها باید از نوع واکنش سریع (Quick Response)، اسپری استاندارد، یا نوع آویز یا ایستاده با پوشش گسترده (Extended Coverage) باشند.
9.2.7.2.2 حداکثر ارتفاع سقف ابری نباید از ۲۰ فوت (۶٫۱ متر) بیشتر باشد.
9.2.7.2.3 حداکثر فاصله و سطح پوشش اسپرینکلر نباید از مقادیر مندرج در جدول 10.2.4.2.1(a) برای خطر سبک و جدول 10.2.4.2.1(b) برای خطر معمول تجاوز کند.

2Q==

9.2.7.2.3.1

در صورت استفاده از اسپرینکلرهای پوشش گسترده(Extended Coverage)، حداکثر فاصله بین اسپرینکلرها نباید از ۱۶ فوت (۴٫۹ متر) بیشتر باشد.

9.2.7.2.4

سقف‌های ابری باید از نوع سقف صاف باشند.

9.2.7.2.5*

در مورد سقف‌های ابری با شکل نامنظم (غیر مستطیلی)، حداقل عرض ابری باید برابر با کمترین عرض آن باشد، و در مورد فاصله بین ابرها یا دیوارهای مجاور، بیشترین فاصله موجود لحاظ شود.

9.2.8 محفظه‌های درب گردان

نصب اسپرینکلر در داخل محفظه‌های درب گردان الزامی نیست.

9.2.9

نصب اسپرینکلر در مبلمان‌هایی مانند کمدهای قابل حمل، کابینت‌ها، ویترین‌ها و وسایل مشابهی که برای اقامت یا حضور انسان طراحی نشده‌اند، الزامی نیست. این نوع وسایل می‌توانند به سازه نهایی متصل باشند.

9.2.10 محفظه‌های تجهیزات*

نصب اسپرینکلر در داخل تجهیزات الکتریکی، مکانیکی یا واحدهای تهویه مطبوعی که برای اقامت انسان طراحی نشده‌اند، الزامی نیست.

9.2.11 شفت‌های عمودی غیرقابل احتراق

در بالای شفت‌های عمودی غیرقابل احتراق یا با قابلیت احتراق محدود که غیرقابل دسترس هستند (مانند شفت‌های برق، مکانیکی یا کانال‌ها)، در صورتی که با بندهای 9.3.3.1.1 و 9.3.3.1.2 مطابقت داشته باشند، نصب اسپرینکلر الزامی نیست.

9.2.12 راه‌پله‌های غیرقابل احتراق

9.2.12.1 در پایین راه‌پله‌هایی که با الزامات بند 9.3.4.2.3.1 مطابقت دارند، نصب اسپرینکلر الزامی نیست.
9.2.12.2 در برج‌های راه‌پله خارجی که با بند 9.3.4.2.4 مطابقت دارند، نصب اسپرینکلر الزامی نیست.

9.2.13 چاه آسانسور و اتاق‌های دستگاه

در محل‌هایی که با بندهای 9.3.6.4، 9.3.6.5 یا 9.3.6.6 مطابقت دارند، نصب اسپرینکلر در چاه آسانسور یا اتاق دستگاه الزامی نیست.

9.2.14 محافظت از کانال‌ها

در رایزرهای عمودی کانال‌ها که با بند 9.3.9.1.2 مطابقت دارند، نصب اسپرینکلر الزامی نیست.

9.2.15 سقف‌های شبکه باز (Open-Grid)

در زیر سقف‌های شبکه‌باز که با بند 9.3.10 مطابقت دارند، نصب اسپرینکلر الزامی نیست.

9.2.16 سقف‌های Drop-Out

در زیر سقف‌های Drop-Out که با بند 9.3.11 مطابقت دارند، نصب اسپرینکلر الزامی نیست.

9.2.17 نورگیرها (Skylights)

در نورگیرهایی که با بند 9.3.16 مطابقت دارند، نصب اسپرینکلر الزامی نیست.

9.2.17.1

در نورگیرهایی که امکان تهویه (غیر از تهویه دود و حرارت مطابق با بند 12.1.1) دارند، باید اسپرینکلر در داخل نورگیر نصب شود.

9.3 شرایط ویژه

9.3.1 دستگاه‌های تولید حرارت در ساختار تیر چوبی مرکب

در مواردی که دستگاه‌های تولید حرارت مانند کوره‌ها یا تجهیزات فرآیندی در کانال تیرها (Joist Channels) و بالای سقفی که مستقیماً به زیر تیرهای چوبی مرکب متصل است نصب شده‌اند ـ در حالی که این فضاها معمولاً نیازی به اسپرینکلر ندارند ـ باید در هر کانال تیر در دو طرف دستگاه گرمایشی اسپرینکلر نصب گردد.

استفاده در فضاهای پنهان افقی قابل احتراق

در فضاهای پنهان افقی قابل احتراق (با شیب بیش از ۲در ۱۲ مجاز نیست)، که دارای ساختار خرپای چوبی، تیر چوبی، یا تیر مشبک فلزی با سطح بالایی قابل احتراق هستند و عمق فضا از کف تا کف، یا از کف تا سقف، کمتر از ۳۶ اینچ (۹۰۰ میلی‌متر) است، یا در ساختار دوبل تیر چوبی با حداکثر فاصله ۳۶ اینچ (۹۰۰ میلی‌متر) بین بالای تیر پایینی و پایین تیر بالایی، باید از اسپرینکلرهایی استفاده شود که به طور خاص برای این کاربرد فهرست شده باشند (دارای گواهی‌نامه معتبر باشند).

9.3.2.1

اسپرینکلرهایی که به‌طور خاص برای محافظت از فضاهای پنهان قابل احتراق تعریف‌شده در بند 9.3.2 فهرست شده‌اند، در صورتی که عمق فضا کمتر از ۱۲اینچ (۳۰۰ میلی‌متر) از کف تا کف یا از کف تا سقف باشد، می‌توانند طبق بند 9.4.1.2 استفاده شوند.

9.3.2.2

اگر بخشی از فضا عمقی بیش از ۳۶ اینچ (۹۰۰میلی‌متر) داشته باشد، اسپرینکلرهای مخصوص فضاهای پنهان قابل احتراق مطابق با بند 9.4.1.2 می‌توانند در کل آن فضا استفاده شوند.

9.3.2.3

اسپرینکلرهایی که به‌طور خاص برای محافظت از فضاهای پنهان قابل احتراق فهرست شده‌اند، می‌توانند برای محافظت از ساختار تیر چوبی مرکب (Composite Wood Joist) مطابق با بند 9.4.1.2 به‌کار روند.

9.3.3 شفت‌های عمودی

9.3.3.1 کلیات

مگر اینکه الزامات بندهای 9.3.3.1.1 یا 9.3.3.1.2 رعایت شوند، باید یک اسپرینکلر در بالای شفت‌ها نصب گردد.

9.3.3.1.1

شفت‌های کانال عمودی غیرقابل احتراق یا با قابلیت احتراق محدود که غیرقابل دسترس هستند، نیاز به اسپرینکلر ندارند.

9.3.3.1.2

شفت‌های عمودی برق یا مکانیکی غیرقابل احتراق یا با قابلیت احتراق محدود که غیرقابل دسترس هستند، نیاز به اسپرینکلر ندارند.

9.3.3.2 شفت‌هایی با سطوح قابل احتراق*

9.3.3.2.1

در شفت‌های عمودی که دارای سطوح قابل احتراق هستند، باید در هر طبقه‌ی متناوب، یک اسپرینکلر نصب شود.

9.3.3.2.2

اگر شفت دارای سطوح قابل احتراق دارای ناحیه‌های بسته (Trapped Sections) باشد، باید در بالای هر بخش بسته یک اسپرینکلر اضافی نصب گردد.

9.3.3.3 شفت‌های قابل دسترس با سطوح غیرقابل احتراق

در شفت‌های عمودی قابل دسترسی که سطوح آن‌ها غیرقابل احتراق است، باید یک اسپرینکلر در نزدیکی پایین شفت نصب شود.

9.3.4 راه‌پله‌ها

9.3.4.1 ساختار قابل احتراق

در تمام راه‌پله‌هایی که ساختار آن‌ها قابل احتراق است، باید در زیر پله‌ها اسپرینکلر نصب گردد.

9.3.4.1.1

در بالای شفت راه‌پله‌های قابل احتراق، باید اسپرینکلر نصب شود.

9.3.4.1.2*

در زیر پاگردها (Landing) در هر طبقه باید اسپرینکلر نصب شود.

9.3.4.1.3

در زیر پایین‌ترین پاگرد میانی، باید اسپرینکلر نصب شود.

9.3.4.2 ساختار غیرقابل احتراق

9.3.4.2.1

در شفت‌های پله غیرقابل احتراق که دارای پله‌های غیرقابل احتراق با سطوح داخلی غیرقابل احتراق یا با قابلیت احتراق محدود هستند، باید یک اسپرینکلر در بالای شفت و یکی در زیر اولین پاگرد قابل دسترس بالای پایین‌ترین بخش شفت نصب شود.

9.3.4.2.1

در چاه‌های راه‌پله با مصالح غیرقابل احتراق که دارای پلکان غیرقابل احتراق با روکش‌های غیرقابل احتراق یا با قابلیت احتراق محدود هستند، اسپرینکلر باید در بالای چاه و زیر اولین پاگرد قابل دسترس بالای پایین‌ترین نقطه‌ی چاه نصب شود.

9.3.4.2.2

چنانچه چاه‌های راه‌پله‌ی غیرقابل احتراق به‌وسیله‌ی دیوار یا در تقسیم شده باشند، باید در هر دو سمت این جداسازی اسپرینکلر نصب شود.

9.3.4.2.3

در زیر پاگردها یا راه‌پله‌ها، در صورتی که فضای زیر آن‌ها برای انبار کردن استفاده شود، اسپرینکلر باید نصب گردد.

9.3.4.2.3.1

می‌توان نصب اسپرینکلر در پایین چاهک راه‌پله را حذف کرد، مشروط بر اینکه فضای زیر پله‌ها در پایین چاهک به‌گونه‌ای مسدود شده باشد که امکان انبار کردن در آن وجود نداشته باشد.

9.3.4.2.4

در برجک‌های پلکان خارجی، زمانی که دیوارهای خارجی برجک حداقل ۵۰ درصد باز باشند و تمامی اجزای برجک از مصالح غیرقابل احتراق ساخته شده باشند، می‌توان از نصب اسپرینکلر صرف‌نظر کرد.

9.3.4.3* پله‌هایی که به دو یا چند بخش متصل می‌شوند

وقتی پله‌ها در دو طرف یک دیوار آتش باز می‌شوند، باید در چاه پله، در هر پاگردی که دارای چندین بازشو است، اسپرینکلر نصب گردد.

9.3.5 بازشوهای عمودی*

9.3.5.1 کلیات*

مگر اینکه شرایط بند 9.3.5.4 برآورده شود، در مواردی که پله‌های متحرک، راه‌پله‌ها یا بازشوهای مشابه در کف، بدون پوشش (unenclosed) باشند و حفاظت با اسپرینکلر به عنوان جایگزینی برای محصور کردن بازشوی عمودی در نظر گرفته شده باشد، این بازشوهای کف باید با اسپرینکلرهای نزدیک به هم در ترکیب با موانع هدایت دود (draft stops) مطابق بندهای 9.3.5.2 و 9.3.5.3 محافظت شوند.

9.3.5.2 موانع هدایت دود (Draft Stops)

موانع هدایت دود باید دارای شرایط زیر باشند:

1. دقیقاً در مجاورت بازشو قرار گیرند؛
2. حداقل عمق آن‌ها ۱۸ اینچ (۴۵۰ میلی‌متر) باشد؛
3. از مواد غیرقابل احتراق یا با قابلیت احتراق محدود ساخته شده باشند که در هنگام فعال شدن اسپرینکلر در جای خود باقی بمانند.

9.3.5.3 اسپرینکلرها

9.3.5.3.1

اسپرینکلرها باید با فاصله‌ای بیش از ۶ فوت (۱.۸ متر) از یکدیگر نصب نشوند و در فاصله‌ای بین ۶ تا ۱۲ اینچ (۱۵۰ تا ۳۰۰ میلی‌متر) از مانع هدایت دود، در سمت دور از بازشو قرار گیرند.

9.3.5.3.2

اگر فاصله‌ی اسپرینکلرها از یکدیگر کمتر از ۶ فوت (۱.۸متر) باشد، باید بافل‌های عرضی (cross baffles)طبق بند 10.2.5.4.2 نصب شوند.

9.3.5.4 بازشوهای بزرگ

در اطراف بازشوهای بزرگ مانند آن‌هایی که در مراکز خرید، ساختمان‌های آتریوم و سازه‌های مشابه یافت می‌شوند، در صورتی که کلیه طبقات و فضاهای مجاور مطابق این استاندارد توسط اسپرینکلر اتوماتیک محافظت شوند و بازشوها دارای ابعاد افقی حداقل ۲۰ فوت (۶.۱متر) بین لبه‌های مقابل و حداقل مساحت ۱۰۰۰ فوت مربع (۹۳ متر مربع) باشند، نیازی به نصب اسپرینکلرهای نزدیک به هم و موانع هدایت دود نیست.

9.3.6 چاه آسانسور و اتاق‌های تجهیزات آسانسور

9.3.6.1*

اسپرینکلرهای دیواری باید در پایین هر چاه آسانسور و در ارتفاعی حداکثر تا ۲ فوت (۶۰۰ میلی‌متر) از کف چاه نصب شوند.

9.3.6.2

اسپرینکلر ذکرشده در بند 9.3.6.1 برای چاه‌های بسته، غیرقابل احتراق آسانسور که فاقد مایعات هیدرولیک قابل احتراق هستند، مورد نیاز نمی‌باشد.

9.3.6.3

نصب اسپرینکلرهای اتوماتیک در اتاق‌های ماشین‌آلات آسانسور، فضاهای ماشین‌آلات آسانسور، فضاهای کنترل، یا چاه‌های آسانسور کششی که مطابق با مقررات مربوطه در NFPA 101 یا کد ساختمانی مربوطه نصب شده‌اند، الزامی نیست، مشروط بر اینکه تمامی شرایط زیر رعایت شده باشند:

1. اتاق ماشین‌آلات، فضای ماشین‌آلات، اتاق کنترل، فضای کنترل یا چاه آسانسور کششی منحصراً به تجهیزات آسانسور اختصاص داشته باشد.
2. این فضاها به وسیله‌ی آشکارسازهای دود یا دیگر سیستم‌های اعلام حریق خودکار مطابق باNFPA 72 محافظت شده باشند.
3. فضای ماشین‌آلات، اتاق کنترل، فضای کنترل یا چاه آسانسور کششی با دیوارها و مجموعه‌های سقف/کف یا سقف/بام دارای درجه‌ی مقاومت در برابر آتش مطابق با حداقل‌های مشخص‌شده در کد ساختمانی مربوطه، از سایر بخش‌های ساختمان جدا شده باشد.
4. هیچ ماده‌ای که ارتباطی با تجهیزات آسانسور ندارد در این فضاها ذخیره نشده باشد.
5. تجهیزات آسانسور هیدرولیکی نباشند.

9.3.6.4*

اسپرینکلرهای اتوماتیک نصب‌شده در اتاق ماشین‌آلات آسانسور یا در بالای چاه آسانسور باید دارای درجه حرارتی معمولی یا میانی باشند.

9.3.6.5*

اسپرینکلرهای اسپری قائم، آویخته (pendent) یا دیواری(sidewall) باید در بالای چاه آسانسور نصب شوند.

9.3.6.6

اسپرینکلر الزامی در بند 9.3.6.5 نیازی به نصب ندارد، در صورتی که:

چاه آسانسور مسافربر از مصالح غیرقابل احتراق یا با قابلیت احتراق محدود ساخته شده باشد، و
مواد داخل کابین آسانسور با الزامات ASME A17.1 (کد ایمنی برای آسانسورها و پله‌های برقی) مطابقت داشته باشند.

9.3.6.7 استفاده از تعلیق قابل احتراق در آسانسورها

9.3.6.7.1

در آسانسورهایی که از وسایل تعلیق قابل احتراقمانند تسمه‌های فولادی با روکش الاستومری یا پلی‌یورتانی غیرمدور استفاده می‌کنند، باید اسپرینکلرها در بالا و پایین چاه آسانسور نصب شوند.

9.3.6.7.2

در صورتی که این وسایل تعلیق دارای درجه‌ی حداقلFT-1 طبق آزمون سوختن عمودی استاندارد UL 62 وUL 1581 باشند، نیازی به نصب اسپرینکلر در چاه آسانسور نمی‌باشد.

9.3.7* فضاهای کتابخانه و ذخیره‌سازی اسناد

در جایی که کتاب‌ها یا اسناد در قفسه‌های باز ثابت نگهداری می‌شوند، اسپرینکلرها باید مطابق با یکی از موارد زیر نصب شوند:

1. در صورت وجود حداقل ۱۸ اینچ (۴۵۰میلی‌متر) فاصله بین منحرف‌کننده‌ی اسپرینکلر و بالای قفسه‌ها، اسپرینکلرها می‌توانند بدون توجه به راهروها نصب شوند.
2. اگر فاصله‌ی ۱۸ اینچ (۴۵۰ میلی‌متر) بین منحرف‌کننده‌ی اسپرینکلر و بالای قفسه‌ها قابل حفظ نیست، باید در هر راهرو و در هر طبقه از قفسه‌ها اسپرینکلر نصب شود، به‌طوری‌که فاصله بین اسپرینکلرها در امتداد راهروها از ۱۲ فوت (۳.۷ متر) بیشتر نشود (طبق شکل 9.3.7(a)).
3. اگر فاصله‌ی ۱۸ اینچ حفظ نشود و در عین حال، جداکننده‌های عمودی قفسه‌ها ناقص بوده و اجازه‌ی توزیع آب به راهروهای مجاور را بدهند، می‌توان اسپرینکلرها را در راهروهای یک‌درمیاندر هر طبقه حذف کرد، مشروط بر اینکه بازشوهای تهویه‌ای در کف طبقات نیز فراهم شده باشند. در این حالت، اسپرینکلرها باید به صورت زیگزاگی در ارتفاع نصب شوند (طبق شکل 9.3.7(b)).

9.3.8* کوره‌ها و فرهای صنعتی

(این بند دارای محتوای گسترده‌تری است که در ادامه یا منبع اصلی باید بررسی شود.)

9.3.9 محافظت از کانال‌ها (Duct Protection)

در جایی که توسط مرجع ذی‌صلاح یا کد یا استاندارد مرجع مربوطه مورد نیاز باشد، محافظت از کانال‌ها باید با الزامات بند 9.3.8 مطابقت داشته باشد.

2Q==

9.3.9.1 محل نصب اسپرینکلرها

9.3.9.1.1

مگر اینکه الزامات بندهای 9.3.9.1.2 یا 9.3.9.1.3 رعایت شده باشند، در بالای هر رایزر عمودی و در نقطه‌ی میانی هر انحراف (offset) از کانال‌ها، باید یک اسپرینکلر نصب گردد.

9.3.9.1.2

در صورتی که رایزر عمودی در خارج از ساختمان قرار داشته باشد و در معرض مواد قابل احتراق نباشد یا در صورتی که فاصله‌ی افقی بین خروجی هود و رایزر عمودی حداقل ۲۵ فوت (۷٫۶ متر) باشد، نصب اسپرینکلر الزامی نیست.

9.3.9.1.3

در کانال‌های افقی خروجی دود (exhaust ducts)، اسپرینکلرها باید با فاصله‌های ۱۰ فوت (۳ متر)نصب شوند و نخستین اسپرینکلر حداکثر در فاصله‌ی ۵ فوت (۱٫۵ متر) از ورودی کانال قرار گیرد.

9.3.9.2 محافظت در برابر یخ‌زدگی

اسپرینکلرهایی که در کانال‌های خروجی قرار دارند و در معرض خطر یخ‌زدگی هستند، باید به‌درستی در برابر یخ‌زدگی محافظت شوند. (رجوع شود به بند 16.4.1)

9.3.9.3 دسترسی به اسپرینکلرها

باید امکان دسترسی برای بازرسی، آزمایش و نگهداری تمامی اسپرینکلرها فراهم باشد.

9.3.9.4 فیلتر خطی (Strainers)

در سیستم‌هایی که از اسپرینکلرهایی با ضریب K کمتر از K-2.8 (40) استفاده می‌شود، باید یک صافی خطی فهرست‌شده (listed line strainer) در مسیر اصلی آب تغذیه نصب شود.

9.3.10 سقف‌های مشبک (Open-Grid Ceilings)

سقف‌های مشبک فقط در صورتی می‌توانند در زیر اسپرینکلرها نصب شوند که یکی از شرایط زیر برقرار باشد:

(1)

سقف‌های مشبکی که:

ابعاد کوچک‌ترین دهانه‌ی شبکه حداقل ۱/۴ اینچ (۶ میلی‌متر) باشد؛
ضخامت یا عمق مصالح سقف بیشتر از کوچک‌ترین دهانه نباشد؛ و
این دهانه‌ها حداقل ۷۰٪ از سطح کل سقف را تشکیل دهند.

در این صورت، فواصل نصب اسپرینکلرها مطابق موارد زیر باید رعایت شود:

(a) در فضاهای با خطر کم (light hazard):

اگر فاصله‌ی اسپرینکلرها کمتر از ۱۰ × ۱۰ فوت (۳ × ۳ متر) باشد:
حداقل فاصله‌ی عمودی بین منحرف‌کننده و بالای سقف مشبک باید ۱۸ اینچ (۴۵۰میلی‌متر) باشد.
اگر فاصله‌ی اسپرینکلرها بیش از ۱۰ × ۱۰ ولی کمتر از ۱۰ × ۱۲ فوت (۳ × ۳٫۷ متر) باشد:
برای اسپرینکلرهای اسپری، حداقل فاصله‌ی ۲۴ اینچ (۶۰۰ میلی‌متر) و
برای اسپرینکلرهای قدیمی (old-style)، حداقل فاصله‌ی ۳۶ اینچ (۹۰۰ میلی‌متر) الزامی است.
اگر فاصله‌ی اسپرینکلرها بیش از ۱۰ × ۱۲ فوت (۳ × ۳٫۷ متر) باشد:
حداقل فاصله باید ۴۸ اینچ (۱٫۲ متر) باشد.

(b) در فضاهای با خطر معمولی (ordinary hazard):

تنها استفاده از اسپرینکلرهای اسپری مجاز است.
اگر فاصله‌ی اسپرینکلرها کمتر از ۱۰ × ۱۰ فوت باشد:
حداقل فاصله‌ی عمودی باید ۲۴ اینچ (۶۰۰میلی‌متر) باشد.
اگر فاصله‌ی اسپرینکلرها بیشتر از ۱۰ × ۱۰ فوت باشد:
حداقل فاصله باید ۳۶ اینچ (۹۰۰ میلی‌متر)باشد.

(2)

سایر انواع سقف‌های مشبک نیز در صورتی مجاز به نصب در زیر اسپرینکلرها هستند که برای این منظور فهرست شده باشند (listed) و مطابق با دستورالعمل‌های درج‌شده در بسته‌بندی سقف نصب شوند.

9.3.11 سقف‌ها و مصالح سقفی رهاشونده(Drop-Out Ceilings and Ceiling Materials)

9.3.11.1*

نصب سقف‌ها و مصالح سقفی رهاشونده در زیر اسپرینکلرها مجاز است، مشروط بر اینکه این پنل‌ها یا مصالح برای این کاربرد فهرست‌شده باشند و مطابق با مشخصات مندرج در فهرست خود نصب شوند.

9.3.11.2

سقف‌ها و مصالح سقفی رهاشونده که با معیارهای بند 9.3.11.1 مطابقت دارند، نباید در زیر اسپرینکلرهای واکنش سریع (quick-response) یا با پوشش گسترده (extended coverage) نصب شوند، مگر اینکه به‌طور خاص برای این کاربرد فهرست شده باشند.

9.3.11.3

سقف‌ها و مصالح سقفی رهاشونده که با معیارهای بند 9.3.11.1 مطابقت دارند، در چارچوب این استاندارد به عنوان سقف محسوب نمی‌شوند.

9.3.11.4*

لوله‌کشی‌هایی که در بالای سقف‌های رهاشونده مطابق با بند 9.3.11.1 نصب شده‌اند، به‌عنوان لوله‌کشی پنهان (concealed piping) در نظر گرفته نمی‌شوند.

9.3.11.5*

نصب اسپرینکلر در زیر سقف‌های رهاشونده یا مصالح سقفی مطابق با بند 9.3.11.1 مجاز نیست.

9.3.12*

در خزانه‌های نگهداری پوست خز (fur storage vaults)، باید از اسپرینکلرهای قدیمی (old-style sprinklers) استفاده شود.

9.3.13 صحنه‌ی نمایش (Stages)

9.3.13.1

در مکان‌های زیر باید اسپرینکلر نصب گردد:

زیر سقف در بالای صحنه؛
در فضاهای زیر صحنه که دارای مصالح قابل احتراق هستند یا با مصالح قابل احتراق ساخته شده‌اند؛
در تمام فضاهای مجاور، اتاق‌های گریم، انبارها و کارگاه‌ها.

9.3.13.2

در مواردی که محافظت از بازشوی پروسنیوم(proscenium opening) مورد نیاز باشد، باید یک سیستم دلوژ (deluge system) با اسپرینکلرهای باز(open sprinklers) فراهم شود که:

حداکثر در فاصله ۳ فوت (۹۰۰ میلی‌متر) از سمت صحنه‌ی قوس پروسنیوم نصب شوند؛
با فاصله‌ی حداکثر ۶ فوت (۱٫۸ متر) از یکدیگر قرار گیرند.
(برای معیارهای طراحی، به فصل 11 مراجعه شود.)

9.3.14 فضاهای بالای سقف‌ها

9.3.14.1

در فضاهایی که سقف آن‌ها از ارتفاع باقی‌مانده‌ی ناحیه پایین‌تر است، فضای بالای این سقف باید دارای اسپرینکلر باشد، مگر اینکه با الزامات بند 9.2.1 مربوط به فضاهای پنهان مجاز بدون اسپرینکلر مطابقت داشته باشد.

9.3.14.2

در صورتی که فضای بالای سقف کاذب دارای اسپرینکلر باشد، سیستم اسپرینکلر باید با الزامات بند 19.2.2 و بخش 20.10 مطابقت داشته باشد.

9.3.14.3*

در حالتی که یک فضای غیرقابل احتراق در بالای سقف کاذب غیرقابل احتراق یا با قابلیت احتراق محدودقرار داشته باشد و:

آن فضا به دلیل باز بودن به فضای مجاور دارای اسپرینکلر، اسپرینکلرگذاری شده باشد؛ و
هیچ امکانی برای نگهداری یا ذخیره‌سازی در بالای سقف کاذب وجود نداشته باشد؛

در این صورت، سیستم اسپرینکلر می‌تواند فقط تا فاصله‌ای برابر با ۰٫۶ برابر ریشه‌ی مربع مساحت طراحی سیستم در فضای مجاور، در آن فضا امتداد یابد.

9.3.14.3.1

سیستم اسپرینکلر باید حداقل تا فاصله ۲۴ فوت (۷٫۳ متر) در فضای بالای سقف امتداد یابد.

9.3.15 شیشه‌های محافظت‌شده با اسپرینکلر(Sprinkler-Protected Glazing)*

در مواردی که از اسپرینکلر به همراه شیشه به عنوان جایگزینی برای دیوار یا پنجره‌ی دارای درجه‌ی مقاومت حریق استفاده می‌شود، مجموعه‌ی شیشه-اسپرینکلر باید با موارد زیر مطابقت داشته باشد:

(1)

اسپرینکلرها باید برای کاربرد خاص روی پنجره‌ها فهرست شده باشند، مگر اینکه استفاده از اسپرینکلرهای استاندارد اسپری به‌طور خاص توسط کد ساختمانی مجاز شده باشد.

(2)

اسپرینکلرها باید از طریق یک سیستم لوله‌کشی تر(wet pipe system) تغذیه شوند.

(3)

شیشه باید از نوع گرما-مقاوم، سکوریت‌شده(tempered)، یا سرامیک شیشه‌ای (glass ceramic) باشد و به صورت ثابت نصب گردد.

9.3.15 (4)

در مواردی که مجموعه‌ی شیشه‌ای نیاز به محافظت از هر دو طرف دارد، باید در هر دو سمت شیشه اسپرینکلر نصب گردد.

9.3.15 (5)

استفاده از شیشه‌ی محافظت‌شده با اسپرینکلر محدود به دیوارهای غیر باربر (non-load-bearing walls)است.

9.3.15 (6)

مجموعه‌ی شیشه‌ای نباید دارای اعضای افقی باشدکه باعث اختلال در پخش یکنواخت آب بر سطح شیشه گردد، و همچنین نباید هیچ مانعی بین اسپرینکلر و شیشه وجود داشته باشد که پخش آب را مختل کند.

9.3.15 (7)

مدت زمان تأمین آب برای ناحیه‌ی طراحی که اسپرینکلرهای پنجره را شامل می‌شود، نباید کمتر از درجه‌بندی الزامی مجموعه‌ی شیشه‌ای باشد.

9.3.16 نورگیرها (Skylights)

9.3.16.1

در مورد نورگیرهایی که مساحت آن‌ها بیش از ۳۲فوت مربع (۳٫۰ متر مربع) نیست، صرف‌نظر از طبقه‌بندی خطر (hazard classification)، در صورتی که حداقل ۱۰ فوت (۳٫۰ متر) به‌صورت افقی از هر نورگیر محافظت‌نشده یا تورفتگی سقفی بدون محافظت جدا شده باشند، می‌توان از نصب اسپرینکلر در آن‌ها صرف‌نظر کرد.

9.3.16.1.1

هنگامی که اسپرینکلری مستقیماً در زیر نورگیری با مساحت حداکثر ۳۲ فوت مربع (۳٫۰ متر مربع)نصب شده باشد، فاصله تا سقف باید به‌گونه‌ای اندازه‌گیری شود که گویی نورگیر وجود ندارد و به صفحه‌ی سقف فرضی نسبت داده شود.

9.3.16.2

نورگیرهایی با مساحت حداکثر ۳۲ فوت مربع (۳٫۰ متر مربع) می‌توانند دارای پوشش پلاستیکی باشند.

9.3.17 فضاهای پنهان (Concealed Spaces)

9.3.17.1 فضاهای پنهانی که نیاز به محافظت با اسپرینکلر دارند

فضاهای پنهان دارای ساختار قابل احتراق نمایان(exposed combustible construction)، باید با اسپرینکلر محافظت شوند، مگر در مواردی که بر اساس بندهای 9.2.1.1 تا 9.2.1.19 و 9.2.2 نصب اسپرینکلر الزامی نباشد.

9.3.17.1.1*

الزامات طراحی برای فضاهای پنهان
اسپرینکلرها در فضاهای پنهانی که برای ذخیره‌سازی یا استفاده دیگر قابل دسترسی نیستند، باید مطابق با الزامات نواحی کم‌خطر (light hazard occupancy) نصب شوند.

9.3.17.1.2 حفاظت موضعی از مصالح قابل احتراق نمایان یا مواد قابل احتراق نمایان

در صورتی که فضاهای پنهان با ساختار غیرقابل احتراق یا با قابلیت احتراق محدود که در حالت عادی نیاز به اسپرینکلر ندارند، دارای نواحی موضعی از مصالح یا مواد قابل احتراق نمایان باشند، این نواحی قابل احتراق می‌توانند طبق موارد زیر به‌صورت موضعی محافظت شوند:

(1)

اگر مواد قابل احتراق نمایان در پارتیشن‌ها یا دیوارهای عمودی اطراف تمام یا بخشی از فضاقرار داشته باشند، می‌توان از یک ردیف اسپرینکلر با فاصله حداکثر ۱۲ فوت (۳٫۷ متر) از یکدیگر و حداکثر ۶ فوت (۱٫۸ متر) از سطح داخلی پارتیشن‌ها برای محافظت از سطح استفاده کرد.
اولین و آخرین اسپرینکلر در این ردیف نباید بیش از ۵ فوت (۱٫۵ متر) از انتهای پارتیشن فاصله داشته باشند.

(2)

اگر مواد قابل احتراق نمایان در صفحه‌ی افقی قرار داشته باشند، ناحیه‌ی مورد نظر می‌تواند با اسپرینکلرهایی با فواصل مربوط به مناطق کم‌خطر محافظت شود.
اسپرینکلرهای اضافی باید حداکثر در فاصله‌ی ۶فوت (۱٫۸ متر) بیرون از محدوده‌ی مواد قابل احتراق و با فواصل حداکثر ۱۲ فوت (۳٫۷ متر) در طول مرز اطراف آن نصب شوند.
هنگامی که مرز به دیوار یا مانع دیگری ختم شود، آخرین اسپرینکلر نباید بیش از ۶ فوت (۱٫۸ متر) از دیوار یا مانع فاصله داشته باشد.

9.3.18 فضاهای زیر کف‌های زمینی، سکوها و باراندازهای بیرونی

9.3.18.1

مگر اینکه الزامات بند 9.2.2 رعایت شده باشند، در تمام فضاهای زیر کف‌های زمینی قابل احتراق و زیر سکوها و باراندازهای بیرونی قابل احتراق باید اسپرینکلر نصب گردد.

9.3.19 پیش‌آمدگی‌های بیرونی (Exterior Projections)

9.3.19.1*

مگر اینکه الزامات بندهای 9.2.3.2، 9.2.3.3، یا 9.2.3.4 رعایت شده باشند، زیر تمام پیش‌آمدگی‌های بیرونی که عرض آن‌ها بیش از ۴ فوت (۱٫۲ متر) باشد باید اسپرینکلر نصب گردد.

9.3.19.2*

در زیر تمام پیش‌آمدگی‌های بیرونی با عرض بیش از ۴ فوت (۱٫۲ متر) که در آن‌ها مواد قابل احتراق ذخیره می‌شود، باید اسپرینکلر نصب گردد.

9.3.20 تجهیزات الکتریکی

9.3.20.1*

مگر اینکه الزامات بند 9.2.6 رعایت شده باشند، نصب سیستم اسپرینکلر در اتاق‌های تجهیزات الکتریکی الزامی است.

9.4 استفاده از اسپرینکلرها (Use of Sprinklers)

9.4.1 کلیات

9.4.1.1*

اسپرینکلرها باید مطابق با مشخصات درج‌شده در فهرست آن‌ها (listing) نصب شوند.

9.4.1.2

در مواردی که هیچ اسپرینکلری به‌طور خاص برای ویژگی‌های خاص سازه یا موقعیت‌های ویژه‌ای که نیاز به توزیع غیرمعمول آب دارند فهرست نشده باشد، الزامات بند 9.4.1.1 اعمال نمی‌شود، و استفاده از اسپرینکلرهای فهرست‌شده در موقعیت‌هایی غیر از آنچه در فهرست‌شان پیش‌بینی شده مجاز است، به شرطی که نتیجه‌ی خاصی مدنظر باشد.

9.4.1.3*

اسپرینکلرهای عمودی (Upright sprinklers) باید به گونه‌ای نصب شوند که بازوهای قاب (frame arms) آن‌ها موازی با خط انشعاب (branch line) باشد، مگر اینکه مشخصاً برای جهت‌گیری دیگر فهرست شده باشند.

9.4.1.4

در مواردی که از چسب حلالی (solvent cement)برای اتصال لوله‌ها و اتصالات استفاده می‌شود، اسپرینکلر نباید پیش از چسب‌کاری در اتصالات نصب شود.

9.4.1.5 درپوش‌ها و تسمه‌های محافظ(Protective Caps and Straps)

9.4.1.5.1*

درپوش‌ها و تسمه‌های محافظ باید با روشی برداشته شوند که با دستورالعمل نصب تولیدکننده مطابقت داشته باشد.

9.4.1.5.2*

تمام درپوش‌ها و تسمه‌های محافظ باید پیش از زمان راه‌اندازی سیستم اسپرینکلر از روی اسپرینکلرها برداشته شوند.

9.4.1.5.3

درپوش‌ها و تسمه‌های محافظ مربوط به اسپرینکلرهای عمودی یا اسپرینکلرهایی که در ارتفاع بیش از ۱۰ فوت (۳٫۰ متر) از کف نصب می‌شوند، می‌توانند بلافاصله پس از نصب اسپرینکلر برداشته شوند.

9.4.2 درجه‌بندی دمایی (Temperature Ratings)

9.4.2.1*

مگر اینکه الزامات بندهای 9.4.2.2، 9.4.2.3، 9.4.2.4 یا 9.4.2.5 رعایت شده باشند، در سراسر ساختمان باید از اسپرینکلرهای با دمای معمولی(Ordinary) یا میانی (Intermediate) استفاده شود.

9.4.2.2

در مواردی که بیشینه دمای سقف از 100 درجه فارنهایت (38 درجه سلسیوس) بیشتر باشد، باید اسپرینکلرهایی با درجه‌بندی دمایی متناسب با دمای سقف طبق جدول 7.2.4.1 استفاده شود.

9.4.2.3

استفاده از اسپرینکلرهای با درجه حرارت بالا(high-temperature) در سرتاسر اشغال‌های با خطر معمولی (Ordinary)، خطر زیاد (Extra Hazard)، اشغال‌های انباری (Storage) و همچنین در موارد مجاز در این استاندارد و سایر استانداردها و کدهای NFPA مجاز است.

9.4.2.4

اسپرینکلرهای با طبقه‌بندی دمایی میانی(Intermediate) و بالا (High) باید در مکان‌هایی خاص طبق الزامات بند 9.4.2.5 نصب شوند.

9.4.2.5*

برای انتخاب اسپرینکلرهایی با طبقه‌بندی دمایی غیر از معمولی (Ordinary)، مگر اینکه دمای دیگری مشخص شده باشد یا اسپرینکلرهای با دمای بالا در تمام محل استفاده شوند، باید رویه‌های زیر رعایت شود. انتخاب دما باید مطابق با جداول 9.4.2.5(a)، 9.4.2.5(b)، 9.4.2.5(c) و شکل 9.4.2.5 انجام شود:

1. اسپرینکلرهایی که در ناحیه‌ی دمای بالا قرار دارند، باید از نوع دمای بالا بوده و اسپرینکلرهایی که در ناحیه‌ی دمای میانی قرار دارند، باید از نوع دمای میانی باشند.
2. اسپرینکلرهایی که در فاصله‌ی ۱۲ اینچ (۳۰۰میلی‌متر) از یک طرف یا ۳۰ اینچ (۷۵۰میلی‌متر) بالای لوله بخار، کویل گرمایشی، یا رادیاتور بدون پوشش قرار دارند، باید از نوع دمای میانی باشند.
3. اسپرینکلرهایی که در فاصله‌ی ۷ فوت (۲٫۱ متر)از شیر تخلیه فشار پایین که در یک اتاق بزرگ به‌طور آزاد تخلیه می‌شود قرار دارند، باید از نوع دمای بالا باشند.
4. اسپرینکلرهای زیر نورگیرهای شیشه‌ای یا پلاستیکی که در معرض مستقیم نور خورشید هستند، باید از نوع دمای میانی باشند.
5. اسپرینکلرهایی که در فضای بسته، زیر سقف بدون عایق، یا در اتاقک زیر شیروانی بدون تهویه قرار دارند، باید از نوع دمای میانیباشند.
6. اسپرینکلرهایی که در ویترین‌های نمایشگاهی بدون تهویه و دارای چراغ‌های برقی پرقدرت نزدیک سقف هستند، باید از نوع دمای میانیباشند.
7. اسپرینکلرهایی که تجهیزات پخت‌وپز تجاری و سامانه‌های تهویه آن‌ها را محافظت می‌کنند، باید از نوع دمای بالا یا خیلی بالا باشند، که این انتخاب باید بر اساس دستگاه اندازه‌گیری دما صورت گیرد. (به بند 8.9.6 مراجعه شود.)
8. اسپرینکلرهایی که در مناطق مسکونی، نزدیک منابع حرارتی خاص (طبق جدول 9.4.2.5(c)) نصب می‌شوند، باید مطابق همان جدول نصب گردند.
9. اسپرینکلرهای با دمای معمولی که در کنار کانال‌های گرمایش با دمای خروجی کمتر از 100 درجه فارنهایت (38 درجه سلسیوس) قرار دارند، نیازی به رعایت فاصله‌ی مشخص‌شده در جدول 9.4.2.5(a) یا (c) ندارند.
10. اسپرینکلرهایی که در یخچال‌ها یا فریزرهایWalk-in دارای سیستم ذوب یخ خودکار نصب می‌شوند، باید از نوع دمای میانی یا بالاتر باشند.
11. اسپرینکلرهایی که در کمدهایی با خشک‌کن بدون خروجی (Ventless Dryer) قرار دارند، باید از نوع دمای میانی یا بالاتر باشند.

9.4.2.6

در صورت تغییر کاربری که منجر به تغییر دما می‌شود، نوع اسپرینکلرها نیز باید متناسب با آن تغییر یابند.

9.4.2.7*

حداقل دمای اسمی اسپرینکلرهای سقفی در انبارهای عمومی، انبارهای قفسه‌ای، انبار لاستیک خودرو، انبار رول کاغذ، و انبار پنبه‌ی فشرده باید برابر با 150 درجه فارنهایت (66 درجه سلسیوس) باشد.

9.4.3 حساسیت حرارتی (Thermal Sensitivity)

9.4.3.1*

اسپرینکلرهای مورد استفاده در اشغال‌های با خطر سبک (Light Hazard) باید یکی از انواع زیر باشند:

1. اسپرینکلرهای واکنش سریع (Quick-Response) طبق تعریف بند 3.3.205.4.16
2. اسپرینکلرهای مسکونی طبق الزامات فصل 12
3. اسپرینکلرهای CMSA واکنش سریع
4. اسپرینکلرهای ESFR
5. اسپرینکلرهای واکنش استاندارد برای اصلاحات یا الحاقات سیستم‌های موجود با اسپرینکلرهای واکنش استاندارد
6. اسپرینکلرهای واکنش استاندارد که برای جایگزینی واحدی در سیستم‌های موجود با اسپرینکلرهای واکنش استاندارد استفاده می‌شوند

9.4.3.2

در مواردی که اسپرینکلر واکنش سریع نصب شده، تمام اسپرینکلرهای درون یک فضای بسته(compartment) باید از نوع واکنش سریع باشند، مگر در موارد مجاز در بندهای 9.4.3.3، 9.4.3.4، یا 9.4.3.5.

9.4.3.3

در صورت نبود اسپرینکلر واکنش سریع در بازه دمایی مورد نیاز، استفاده از اسپرینکلر واکنش استاندارد مجاز است.

9.4.3.4

الزامات بند 9.4.3.2 در مورد اسپرینکلرهای داخل قفسه‌ای (in-rack sprinklers) اعمال نمی‌شود.

9.4.3.5

در اشغال‌هایی به‌جز خطر سبک، چنانچه یک اسپرینکلر دارای فهرست برای هر دو نوع واکنش سریع و واکنش استاندارد باشد (با نواحی پوشش متفاوت)، می‌توان آن را در یک فضا با هر دو نوع فاصله‌گذاری نصب کرد، بدون نیاز به جداسازی نواحی پوشش.

9.4.3.6

زمانی که یک سیستم موجود برای اشغال‌های با خطر سبک به اسپرینکلرهای واکنش سریع یا مسکونی تغییر می‌کند، باید تمام اسپرینکلرهای داخل یک فضا تعویض شوند.

9.4.4 اسپرینکلرهایی با K-فاکتور کمتر از K-5.6 (80)

9.4.4.1

مگر در موارد مجاز طبق بند 9.4.4، اسپرینکلرها باید حداقل K-فاکتور اسمی برابر با 5.6 (80) داشته باشند.

9.4.4.2

در اشغال‌های با خطر سبک، استفاده از اسپرینکلرهایی با K-فاکتور کمتر از 5.6 (80) مجاز است، به شرط رعایت موارد زیر:

1. سیستم باید به‌صورت هیدرولیکی محاسبه شود.
2. این اسپرینکلرها فقط در سیستم‌های لوله‌تر (wet pipe) یا طبق محدودیت‌های بندهای 9.4.4.3 یا 9.4.4.4 نصب شوند.
3. برای اسپرینکلرهایی با K-فاکتور کمتر از 2.8(40) باید صافی (Strainer) فهرست‌شده در سمت تأمین نصب گردد.

9.4.4.3

نصب اسپرینکلرهای با K-فاکتور کمتر از 5.6 (80) طبق بند 19.4.2 برای حفاظت در برابر آتش‌سوزی‌های ناشی از منابع خارجی (Exposure Fires) مجاز است.

9.4.4.4

اسپرینکلرهایی با K-فاکتور اسمی K-4.2 (57) می‌توانند در سیستم‌های خشک (Dry Pipe) و واکنش تأخیری (Preaction) برای اشغال‌های با خطر سبک، به شرطی که لوله‌کشی مقاوم به خوردگی یا گالوانیزه داخلی باشد، استفاده شوند.

9.4.5 محدودیت‌های اندازه رزوه

اسپرینکلرهایی با K-فاکتور بیشتر از 5.6 (80) که دارای رزوه NPT با قطر 1/2 اینچ (15 میلی‌متر)هستند، نباید در سیستم‌های جدید نصب شوند.

9.5 موقعیت، مکان، فاصله‌گذاری، و کاربرد اسپرینکلرها

9.5.1 کلیات

9.5.1.1

اسپرینکلرها باید مطابق با الزامات بخش 9.5، در مکان مناسب قرار گیرند، فاصله‌گذاری شوند، و در موقعیت صحیح نصب گردند.

2Q==

2Q==

9.5.1.2

اسپرینکلرها باید به‌گونه‌ای موقعیت‌دهی شوند که حفاظت از منطقه را متناسب با اهداف کلی این استاندارد تأمین کنند، از طریق کنترل موقعیت نصب و مساحت مجاز پوشش برای هر اسپرینکلر.

9.5.1.3

الزامات بندهای 9.5.2 تا 9.5.6 باید برای تمام انواع اسپرینکلرها اعمال شود، مگر اینکه قوانین سخت‌گیرانه‌تری در فصل‌های 10 تا 15 ارائه شده باشد.

9.5.2 مساحت‌های حفاظت‌شده توسط هر اسپرینکلر

9.5.2.1 تعیین مساحت پوشش حفاظتی(Protection Area of Coverage)

9.5.2.1.1

مساحت پوشش حفاظتی هر اسپرینکلر (As) باید به‌صورت زیر تعیین شود:

1. در امتداد لوله‌های شاخه‌ای (Branch Lines):

(a) فاصله بین اسپرینکلرها (یا تا دیوار یا مانع، در مورد اسپرینکلر انتهایی در خط شاخه) را در دو جهت بالا دست و پایین دست اندازه‌گیری کنید.

(b) بزرگ‌ترِ دو مقدار زیر را انتخاب کنید:

o دو برابر فاصله تا دیوار
o فاصله تا اسپرینکلر بعدی

(c) این بُعد را به عنوان S تعریف کنید.

2. بین لوله‌های شاخه‌ای (Branch Lines):

(a) فاصله عمود تا اسپرینکلر روی خط شاخه مجاور (یا تا دیوار یا مانع، در مورد آخرین خط شاخه‌ای) را از هر طرف خط شاخه‌ای که اسپرینکلر مدنظر روی آن نصب شده، اندازه‌گیری کنید.

(b) بزرگ‌ترِ دو مقدار زیر را انتخاب کنید:

o دو برابر فاصله تا دیوار یا مانع
o فاصله تا اسپرینکلر بعدی

(c) این بُعد را به عنوان L تعریف کنید.

9k=

۹.۵.۲.۱.۲ مساحت پوشش حفاظتی اسپرینکلر باید با ضرب بُعد S در بُعد L تعیین شود، به‌صورت زیر:

AN1wD20YkoW1AAAAAElFTkSuQmCC

۹.۵.۲.۲ حداکثر مساحت پوشش حفاظتی
۹.۵.۲.۲.۱ حداکثر مساحت مجاز پوشش حفاظتی برای هر اسپرینکلر (As) باید مطابق با مقدار مشخص‌شده در بخش مربوط به هر نوع یا سبک اسپرینکلر باشد.
۹.۵.۲.۲.۲ حداکثر مساحت پوشش هر اسپرینکلر نباید از ۴۰۰ فوت مربع (۳۷ متر مربع) تجاوز کند.

۹.۵.۳ فاصله‌گذاری اسپرینکلر
۹.۵.۳.۱ حداکثر فاصله بین اسپرینکلرها
۹.۵.۳.۱.۱ حداکثر فاصله مجاز بین اسپرینکلرها باید بر اساس فاصله مرکز به مرکز اسپرینکلرهای مجاور باشد.
۹.۵.۳.۱.۲ این فاصله باید در امتداد شیب سقف اندازه‌گیری شود.
۹.۵.۳.۱.۳ این فاصله باید با مقدار مشخص‌شده در بخش مربوط به هر نوع یا سبک اسپرینکلر مطابقت داشته باشد.

۹.۵.۳.۲ حداکثر فاصله از دیوارها
۹.۵.۳.۲.۱ فاصله اسپرینکلرها از دیوار نباید از نصف فاصله مجاز بین اسپرینکلرها بیشتر باشد.
۹.۵.۳.۲.۲ این فاصله باید تا دیواری که پشت مبلمانی مانند کمد، کابینت یا ویترین قرار دارد اندازه‌گیری شود.
۹.۵.۳.۲.۳ زمانی که اسپرینکلرها در نزدیکی پنجره‌ها نصب می‌شوند و فضای کف اضافی ایجاد نمی‌شود، فاصله باید تا دیوار اندازه‌گیری شود.

۹.۵.۳.۳ حداقل فاصله از دیوارها
۹.۵.۳.۳.۱ حداقل فاصله مجاز بین اسپرینکلر و دیوار باید مطابق با مقدار مشخص‌شده در بخش مربوط به هر نوع یا سبک اسپرینکلر باشد.
۹.۵.۳.۳.۲ این فاصله باید به‌صورت عمود بر دیوار اندازه‌گیری شود.

۹.۵.۳.۴ حداقل فاصله بین اسپرینکلرها
۹.۵.۳.۴.۱ باید حداقل فاصله‌ای بین اسپرینکلرها حفظ شود تا از خیس شدن اسپرینکلرهای مجاور توسط اسپرینکلر فعال‌شده و از عدم فعال شدن آنها جلوگیری شود.
۹.۵.۳.۴.۲ حداقل فاصله مجاز باید با مقدار مشخص‌شده در بخش مربوط به هر نوع یا سبک اسپرینکلر مطابقت داشته باشد.

۹.۵.۴ موقعیت پخش‌کننده (دفلکتور)
۹.۵.۴.۱ فاصله از سقف
۹.۵.۴.۱.۱ فاصله بین دفلکتور اسپرینکلر و سقف باید بر اساس نوع اسپرینکلر و نوع سازه انتخاب شود.
۹.۵.۴.۱.۲ سقف‌های فلزی موج‌دار:
۹.۵.۴.۱.۲.۱ برای سقف‌هایی با موج‌هایی به عمق حداکثر ۳ اینچ (۷۵ میلی‌متر)، فاصله باید از پایین‌ترین نقطه موج اندازه‌گیری شود.
۹.۵.۴.۱.۲.۲ برای سقف‌هایی با عمق بیش از ۳ اینچ، فاصله باید از بالاترین نقطه موج اندازه‌گیری شود.
۹.۵.۴.۱.۳ در سقف‌هایی که عایق مستقیماً زیر سقف یا سازه نصب شده، فاصله دفلکتور باید از پایین عایق اندازه‌گیری شود و با الزامات ۹.۵.۴.۱.۳.۱ تا ۹.۵.۴.۱.۳.۳ مطابقت داشته باشد.
۹.۵.۴.۱.۳.۱ عایق مورد استفاده باید از نوع پشمی یا مقاوم در برابر نیروی مکش ۳ پوند بر فوت مربع (۰.۱۳کیلوگرم بر متر مربع) باشد.
۹.۵.۴.۱.۳.۲ اگر عایق به‌صورت صاف و موازی با سقف نصب شده باشد، فاصله دفلکتور از زیر عایق اندازه‌گیری می‌شود.
۹.۵.۴.۱.۳.۳ اگر عایق دچار افتادگی شود، فاصله دفلکتور باید از وسط اختلاف ارتفاع نقطه بالا و پایین عایق اندازه‌گیری شود.
(A) اگر افتادگی عایق بیش از ۶ اینچ (۱۵۰ میلی‌متر) باشد، فاصله باید از نقطه بالای عایق اندازه‌گیری شود.
(B) دفلکتور نباید بالاتر از پایین‌ترین نقطه عایق قرار گیرد.
۹.۵.۴.۱.۴ استفاده از جمع‌کننده حرارتی برای کمک به فعال‌سازی اسپرینکلر مجاز نیست.

۹.۵.۴.۲ جهت‌گیری دفلکتور
دفلکتور اسپرینکلرها باید موازی با سقف، بام یا شیب راه‌پله قرار گیرد.

۹.۵.۵ موانع در برابر پاشش اسپرینکلر
۹.۵.۵.۱ هدف عملکردی
اسپرینکلرها باید به‌گونه‌ای نصب شوند که موانع پاشش را به حداقل برسانند، مطابق با تعریف در ۹.۵.۵.۲ و ۹.۵.۵.۳، یا اسپرینکلرهای اضافی جهت اطمینان از پوشش مناسب خطر نصب شوند.
(به شکل A.9.5.5.1 مراجعه شود.)

۹.۵.۵.۲ موانع توسعه الگوی پاشش
۹.۵.۵.۲.۱ موانع پیوسته یا ناپیوسته که در فاصله‌ای کمتر یا مساوی ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دفلکتور قرار دارند و از توسعه کامل الگوی پاشش جلوگیری می‌کنند، باید مطابق با ۹.۵.۵.۲ باشند.
۹.۵.۵.۲.۲ اسپرینکلرها باید در فاصله‌ای مناسب از موانعی مانند خرپا، لوله‌ها، ستون‌ها و وسایل نصب شوند، مطابق با بخش‌های ۱۰.۲ تا ۱۴.۲.

۹.۵.۵.۳ موانعی که از رسیدن آب به خطر جلوگیری می‌کنند
موانع پیوسته یا ناپیوسته‌ای که در صفحه افقی، بیش از ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دفلکتور قرار دارند و باعث اختلال در رسیدن جریان آب به ناحیه حفاظت‌شده می‌شوند، باید مطابق با ۹.۵.۵.۳ باشند

۹.۵.۵.۳.۱* اسپرینکلرها باید زیر موانع ثابت با عرض بیش از ۴ فوت (۱.۲ متر) نصب شوند.
۹.۵.۵.۳.۱.۱* کف‌پوش‌های مشبک باز با عرض بیش از ۴فوت (۱.۲ متر) نیاز به حفاظت اسپرینکلری در زیر مشبک دارند.
۹.۵.۵.۳.۱.۲* اسپرینکلرهای قرارگرفته زیر موانع باید با یکی از موارد زیر مطابقت داشته باشند:
(۱) زیر مانع نصب شوند
(۲) در کنار مانع نصب شوند، به شرطی که فاصله آن‌ها از لبه بیرونی مانع بیش از ۳ اینچ (۷۵ میلی‌متر) نباشد
۹.۵.۵.۳.۱.۳ چنانچه اسپرینکلرها در کنار مانع نصب شوند، باید از نوع طبقه میانی قفسه‌ای باشند.
۹.۵.۵.۳.۱.۴ دفلکتور اسپرینکلرهای خودکار نصب‌شده زیر موانع ثابت نباید بیش از ۱۲ اینچ (۳۰۰ میلی‌متر) پایین‌تر از کف مانع قرار گیرد.
۹.۵.۵.۳.۱.۵ نصب اسپرینکلر زیر موانع غیرقابل‌احتراق با عرض بیش از ۴ فوت (۱.۲ متر) در صورتی که کف مانع حداکثر ۲۴ اینچ (۶۰۰ میلی‌متر) بالاتر از کف یا دک باشد، الزامی نیست.

۹.۵.۵.۳.۲* نصب اسپرینکلر زیر موانعی که ثابت نیستند، مانند میزهای کنفرانس، الزامی نیست.
۹.۵.۵.۳.۳ اسپرینکلرهای نصب‌شده زیر موانع باید از همان نوع (اسپری، CMSA، ESFR، مسکونی) باشند که در سقف نصب شده‌اند، مگر طبق بند ۹.۵.۵.۳.۳.۱.
۹.۵.۵.۳.۳.۱ استفاده از اسپرینکلرهای اسپری زیر درب‌های بالابر مجاز است.
۹.۵.۵.۳.۴* اسپرینکلرهای نصب‌شده زیر کف‌پوش‌های مشبک باید از نوع طبقه میانی/قفسه‌ای باشند یا به نحوی محافظت شوند که از پاشش اسپرینکلرهای سقفی در امان باشند.

۹.۵.۵.۴ کمدها
در تمام کمدها و محفظه‌ها، از جمله کمدهایی که تجهیزات مکانیکی در آن‌ها قرار دارند و حجم آن‌ها بیشتر از ۴۰۰فوت مکعب (۱۱ متر مکعب) نیست، یک اسپرینکلر در بالاترین سطح سقف کافی است، بدون توجه به موانع یا حداقل فاصله از دیوار.

۹.۵.۶ فاصله بین دفلکتور و ذخیره‌سازی
۹.۵.۶.۱* مگر اینکه الزامات بندهای ۹.۵.۶.۲، ۹.۵.۶.۳، ۹.۵.۶.۴ یا ۹.۵.۶.۵ رعایت شده باشند، فاصله بین دفلکتور اسپرینکلر و بالاترین نقطه ذخیره‌سازی یا محتویات اتاق باید حداقل ۱۸ اینچ (۴۵۰ میلی‌متر) باشد.
۹.۵.۶.۲ در مواردی که استانداردهای دیگر حداقل فاصله بیشتری را برای ذخیره‌سازی مشخص کرده باشند، باید همان‌ها رعایت شوند.
۹.۵.۶.۳ برای اسپرینکلرهای خاص، فاصله حداقل ۳۶اینچ (۹۰۰ میلی‌متر) تا ذخیره‌سازی مجاز است.
۹.۵.۶.۴ فاصله‌ای کمتر از ۱۸ اینچ (۴۵۰ میلی‌متر) بین بالای ذخیره‌سازی و دفلکتور اسپرینکلر سقفی، در صورتی مجاز است که از طریق آزمون‌های آتش‌سوزی بزرگ‌مقیاس موفق برای خطر خاص، اثبات شده باشد.
۹.۵.۶.۵ در مواردی که تایرهای لاستیکی ذخیره شده‌اند، فاصله بین بالای ذخیره‌سازی و دفلکتور اسپرینکلر نباید کمتر از ۳۶ اینچ (۹۰۰ میلی‌متر) باشد.
۹.۵.۶.۶ مقدار ۱۸ اینچ (۴۵۰ میلی‌متر) نباید ارتفاع قفسه‌ها روی دیوار یا در برابر دیوار را مطابق با بندهای ۱۰.۲.۸، ۱۰.۳.۷، ۱۱.۲.۶، و بخش‌های ۱۱.۳ و ۱۲.۱محدود کند.
۹.۵.۶.۶.۱ در مواردی که قفسه‌ها بر روی دیوار نصب شده‌اند و مستقیماً زیر اسپرینکلر نیستند، قفسه‌ها و اقلام ذخیره‌شده روی آن‌ها می‌توانند از سطحی که در ارتفاع ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دفلکتور اسپرینکلر سقفی قرار دارد، فراتر روند.
۹.۵.۶.۶.۲ قفسه‌ها و هر نوع ذخیره‌سازی روی آن‌ها که مستقیماً زیر اسپرینکلرها قرار دارند، نباید از سطحی که در ارتفاع ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دفلکتور اسپرینکلر سقفی قرار دارد، بالاتر روند.

نوشته‌های مشابه

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

     

  • دتکتور حرارتی خطی دو کاناله چیست؟

    ویژگی‌های دتکتور حرارتی خطی فیبر نوری
    ● اندازه‌گیری خطی دما برای تشخیص سریع حریق و تعیین دقیق محل منبع آتش
    ● دو کانال اندازه‌گیری نوری مستقل
    ● حداکثر طول کابل دتکتور بدون نیاز به نگهداری = ۲۰ کیلومتر (۲ × ۱۰ کیلومتر)WhatsApp Image 2025 09 18 at 2.26.41 AM

    پردازش سیگنال با فناوری OFDR (بازتاب‌سنجی ناحیه فرکانس نوری)
    ● ۱۰۰۰ ناحیه قابل برنامه‌ریزی
    ● معیارهای هشدار قابل انتخاب
    ● دقت مکانی بالا تا ۰٫۲۵ متر
    ● ارائه اطلاعات در مورد جهت گسترش آتش
    ● امکان استفاده از سیستم دتکتور افزونه
    ● مناسب برای سرعت باد تا ۱۰ متر بر ثانیه
    ● کلاس لیزر 1M طبق استاندارد DIN EN 60825-1:2014

    اصل اندازه‌گیری
    سیستم FibroLaser بر اساس عبور یک پرتو لیزر از طریق کابل فیبر نوری عمل می‌کند. کابل فیبر نوری در هر نقطه، بخشی کوچک از تابش لیزر را به سمت منبع بازمی‌تاباند. بازتاب اندازه‌گیری‌شده توسط کنترلر ثبت می‌شود.
    دو کابل دتکتور مستقل می‌توانند به یک دتکتور حرارتی خطی دو کاناله متصل شوند. تابش نوری LED لیزری با طول‌موج نزدیک به مادون‌قرمز که منتشر می‌شود، توسط کابل فیبر نوری به شکل‌های مختلفی پراکنده می‌شود:

    WhatsApp Image 2025 09 18 at 2.26.41 AM1

    پراکندگی ریلی (Rayleigh)
    ● پراکندگی استوکس (Stokes)
    ● پراکندگی آنتی‌استوکس (Anti-Stokes)

    نور پراکنده‌شده ریلی دارای همان طول‌موج پرتوی لیزر است، پراکندگی استوکس دارای طول‌موج کمی بالاتر، و آنتی‌استوکس دارای طول‌موجی کمی پایین‌تر است. دو نوع پراکندگی استوکس معمولاً به‌عنوان پراکندگی رامان نیز شناخته می‌شوند. درحالی‌که پراکندگی استوکس وابستگی زیادی به دما ندارد، پراکندگی آنتی‌استوکس تحت تأثیر انرژی حرارتی دمای محلی کابل فیبر نوری قرار دارد؛ شدت آن با افزایش دما افزایش می‌یابد. دمای کابل فیبر نوری با استفاده از نسبت شدت بین پراکندگی استوکس و آنتی‌استوکس محاسبه می‌شود.

    کنترلر
    فرستنده
    – شامل لیزر و مدار کنترل آن است.

    • گیرنده
      – شامل کل سیستم نوری است.
      – کوپل کردن نور لیزر تولیدشده در فرستنده به کابل دتکتور
      – تبدیل نور بازتاب‌شده از فیبر نوری به سیگنال الکتریکی و پردازش آن
    • واحد دیجیتال
      – این ماژول کنترل کامل دستگاه و فرایند اندازه‌گیری را بر عهده دارد.
      – محاسبه پروفایل دما در طول کابل دتکتور بر اساس داده‌های اندازه‌گیری دریافت‌شده
      – مدیریت ۴ ورودی داخلی (قابل افزایش تا ۴۰ ورودی) برای ریست کردن، ارسال آلارم‌های خارجی یا پایش عملکرد
      – کنترل ۱۲ خروجی (قابل افزایش تا ۱۰۶ خروجی) برای انتقال آلارم‌ها و خطاها به تابلوی کنترل اعلام حریق
      – رابط USB یا اترنت برای راه‌اندازی اولیه استفاده می‌شود. در صورت نیاز، رایانه‌ای می‌تواند به این رابط متصل شود تا نواحی و/یا پروفایل دما را نمایش دهد (نرم‌افزار تصویری FibroManager).
      – پشتیبانی از پروتکل‌های کنترلر نسل قبلی (OTS-100, OTS-X)
    • منبع تغذیه
      – تأمین ولتاژ موردنیاز تمام اجزای کنترلر
      – قابل انتخاب به‌صورت ۲۴ ولت DC (پیش‌فرض) یا ۱۱۵/۲۳۰ ولت AC (اختیاری)

    کاربرد
    دتکتورهای حرارتی خطی عمدتاً در کاربردهایی مانند تونل‌های جاده‌ای و تونل‌های ریلی مورد استفاده قرار می‌گیرند. سیستم FibroLaser همچنین برای پایش موارد زیر مناسب است:
    ● نوار نقاله‌ها
    ● سیستم‌های حمل‌ونقل معادن زیرزمینی
    ● پارکینگ‌های طبقاتی
    ● تأسیسات تولید صنعتی
    ● سالن‌های تئاتر و اپرا
    ● سینی کابل و کانال‌های کابل
    ● پله‌برقی‌ها در متروها و مراکز خرید
    ● مناطق مستعد انفجار در پالایشگاه‌ها (نسخه ضدانفجار)
    ● نیروگاه‌ها برای پایش مناطق آلوده به مواد رادیواکتیو (انبار موقت، حوضچه پمپ)

  • تشخیص گاز در سردخانه ها

    مقدمه
    تشخیص گاز و نشت‌یابی دو فعالیت مجزا هستند که به موضوعی یکسان می‌پردازند، اما روش‌های آن‌ها بسیار متفاوت است.
    تشخیص گاز شامل آنالیز نمونه‌های هوا برای تعیین وجود گاز مبرد است.
    نشت‌یابی، بازرسی نظام‌مند یک سیستم تبرید به‌منظور مشخص کردن وجود نشتی است.
    اصطلاحات تشخیص گاز و نشت‌یابی قابل جایگزینی با یکدیگر نیستند و نباید با هم اشتباه گرفته شوند.

    دتکتورهای نشت معمولاً تجهیزات دستی هستند که توسط افراد حمل می‌شوند و برای شناسایی نشتی‌ها در سیستم‌های تبرید مورد استفاده قرار می‌گیرند.
    انواع مختلفی از دتکتورهای نشت در دسترس است، از روش‌های ساده‌ای مانند آب صابون گرفته تا ابزارهای الکتریکی پیشرفته.

    دتکتورهای گاز معمولاً در نصب‌های ثابت به کار می‌روند و شامل تعدادی دتکتور هستند که در مکان‌هایی قرار می‌گیرند که در صورت نشت از تأسیسات، احتمال تجمع گاز مبرد وجود دارد.
    این مکان‌ها به چیدمان اتاق ماشین‌آلات و فضاهای مجاور، پیکربندی سیستم و نوع مبرد بستگی دارند.

    پیش از انتخاب دتکتور مناسب تشخیص گاز، باید به چند پرسش پاسخ داده شود:

    • کدام گازها باید اندازه‌گیری شوند و در چه مقادیری؟
      – کدام اصل عملکرد دتکتور برای این کار مناسب‌تر است؟
      – چه تعداد دتکتور مورد نیاز است؟
      – دتکتورها در کجا و چگونه باید نصب و کالیبره شوند؟
    • حدود هشدار مناسب کدام است؟
      – چند سطح هشدار لازم است؟
      – اطلاعات هشدار چگونه باید پردازش شود؟

    این راهنمای کاربردی به این پرسش‌ها پاسخ خواهد داد.

     

    فناوری دتکتور

    انتخاب فناوری دتکتور برای تشخیص گاز مبرد به نوع گاز هدف و محدوده ppm مورد نیاز بستگی دارد.
    دتکتورهای مختلفی وجود دارند که با گازهای رایج، محدوده‌های ppm مناسب و الزامات ایمنی برای سیستم‌های تبرید سازگارند.

    EC – دتکتور الکتروشیمیایی
    دتکتورهای الکتروشیمیایی عمدتاً برای گازهای سمی استفاده می‌شوند و برای آمونیاک مناسب هستند.
    این دتکتورها شامل دو الکترود هستند که در یک محیط الکترولیت غوطه‌ور شده‌اند.
    واکنش اکسایش/کاهش جریان الکتریکی تولید می‌کند که با غلظت گاز متناسب است.
    این دتکتورها بسیار دقیق هستند (±۲٪) و عمدتاً برای گازهای سمی که به روش دیگری قابل شناسایی نیستند یا در مواردی که دقت بالا نیاز است، استفاده می‌شوند.
    دتکتورهای EC مخصوص آمونیاک با محدوده تا ۰ تا ۵۰۰۰ ppm عرضه می‌شوند و طول عمر مورد انتظار آن‌ها حدود ۲ سال است که بستگی به میزان تماس با گاز هدف دارد.
    تماس با نشت‌های بزرگ آمونیاک یا وجود دائمی آمونیاک در پس‌زمینه، طول عمر دتکتور را کاهش می‌دهد.
    دتکتورهای EC تا زمانی که حساسیت آن‌ها بالای ۳۰٪ باشد، قابل کالیبراسیون مجدد هستند.
    این دتکتورها بسیار انتخاب‌پذیر هستند و به ندرت دچار تداخل متقابل می‌شوند. ممکن است به تغییرات ناگهانی رطوبت واکنش نشان دهند اما به سرعت پایدار می‌شوند.

    SC – دتکتور نیمه‌رسانا (حالت جامد)
    عملکرد دتکتور نیمه‌رسانا بر پایه اندازه‌گیری تغییر مقاومت است (متناسب با غلظت)، زمانی که گاز روی سطح یک نیمه‌رسانا که معمولاً از اکسیدهای فلز ساخته شده، جذب می‌شود.
    این دتکتورها برای طیف گسترده‌ای از گازها از جمله گازهای قابل اشتعال، سمی و گازهای مبرد قابل استفاده هستند.

    ادعا می‌شود که این نوع دتکتورها در تشخیص گازهای قابل احتراق در غلظت‌های پایین تا ۱۰۰۰ ppm عملکرد بهتری نسبت به نوع کاتالیستی دارند. این دتکتورها کم‌هزینه، با طول عمر بالا، حساس هستند و می‌توان از آن‌ها برای تشخیص طیف گسترده‌ای از گازها از جمله تمامی مبردهای HCFC، HFC، آمونیاک و هیدروکربن‌ها استفاده کرد.

    با این حال، این دتکتورها انتخاب‌پذیر نیستند و برای تشخیص یک گاز خاص در مخلوط یا در مواردی که احتمال وجود غلظت بالایی از گازهای تداخل‌زا وجود دارد، مناسب نیستند.

    تداخل ناشی از منابع کوتاه‌مدت (مانند گاز اگزوز کامیون) که منجر به هشدارهای اشتباه می‌شود، را می‌توان با فعال کردن تأخیر در آلارم برطرف کرد.

    دتکتورهای نیمه‌رسانا برای هالوکربن‌ها می‌توانند بیش از یک گاز یا یک مخلوط را به طور هم‌زمان تشخیص دهند. این ویژگی به‌ویژه در نظارت بر اتاق ماشین‌آلات با چندین مبرد مختلف مفید است.

    P – دتکتور پلستور
    پلستورها (که گاهی مهره یا کاتالیتیکی نیز نامیده می‌شوند) عمدتاً برای گازهای قابل احتراق از جمله آمونیاک استفاده می‌شوند و در سطوح بالای تشخیص، محبوب‌ترین دتکتورها برای این کاربرد هستند. عملکرد این دتکتور بر اساس سوزاندن گاز در سطح مهره و اندازه‌گیری تغییر مقاومت حاصل‌شده در مهره (که متناسب با غلظت است) می‌باشد.

    این دتکتورها نسبتاً کم‌هزینه، جاافتاده و قابل‌فهم هستند و طول عمر خوبی دارند (عمر مورد انتظار ۳ تا ۵ سال). زمان پاسخ‌دهی معمولاً کمتر از ۱۰ ثانیه است.

    در برخی کاربردها ممکن است دچار مسمومیت شوند.
    مسمومیت به کاهش واکنش دتکتور نسبت به گاز هدف در اثر وجود (آلودگی) یک ماده دیگر در سطح کاتالیست گفته می‌شود که یا با آن واکنش می‌دهد یا لایه‌ای روی آن تشکیل می‌دهد که ظرفیت واکنش با گاز هدف را کاهش می‌دهد. رایج‌ترین مواد مسموم‌کننده ترکیبات سیلیکونی هستند.

    پلستورها عمدتاً برای گازهای قابل احتراق استفاده می‌شوند و بنابراین برای آمونیاک و مبردهای هیدروکربنی در غلظت‌های بالا مناسب هستند. این دتکتورها تمامی گازهای قابل احتراق را تشخیص می‌دهند اما با نرخ‌های مختلف، و بنابراین می‌توان آن‌ها را برای گازهای خاص کالیبره کرد. نسخه‌های خاصی برای آمونیاک وجود دارد.

    IR – مادون قرمز
    فناوری مادون قرمز از این واقعیت بهره می‌برد که بیشتر گازها دارای باند جذب مشخصی در ناحیه مادون قرمز طیف هستند و از این ویژگی برای تشخیص آن‌ها استفاده می‌شود. مقایسه با پرتو مرجع امکان تعیین غلظت را فراهم می‌سازد.

    اگرچه نسبت به دتکتورهای دیگر نسبتاً گران‌قیمت هستند، اما طول عمر بالایی تا ۱۵ سال، دقت زیاد و حساسیت متقابل پایین دارند.

    به دلیل اصل اندازه‌گیری، دتکتورهای مادون قرمز ممکن است در محیط‌های دارای گرد و غبار دچار مشکل شوند، زیرا حضور ذرات زیاد در هوا ممکن است خوانش را مختل کند.

    این دتکتورها برای تشخیص دی‌اکسید کربن توصیه می‌شوند و رایج هستند. اگرچه فناوری آن برای گازهای دیگر نیز وجود دارد، اما معمولاً در راه‌حل‌های تجاری مشاهده نمی‌شود.

    کدام دتکتور برای مبرد خاص مناسب است؟
    بر اساس گاز مبرد هدف و محدوده ppm مورد نظر، جدول زیر نمای کلی از مناسب‌بودن فناوری‌های مختلف دتکتورهای ارائه‌شده توسط دانفوس را ارائه می‌دهد.

    زمان پاسخ‌دهی دتکتور
    زمان پاسخ‌دهی، مدت‌زمان لازم برای خواندن درصد مشخصی از مقدار واقعی در اثر تغییر ناگهانی غلظت گاز هدف توسط دتکتور است.
    زمان پاسخ‌دهی برای اغلب دتکتورها به صورت t90 بیان می‌شود، به این معنا که مدت‌زمانی که طول می‌کشد دتکتور ۹۰ درصد از غلظت واقعی را بخواند. شکل ۴ نمونه‌ای از دتکتوری با زمان پاسخ‌دهی t90 برابر با ۹۰ ثانیه را نشان می‌دهد.

    همان‌طور که در نمودار مشخص است، واکنش دتکتور پس از عبور از ۹۰ درصد کندتر شده و مدت‌زمان بیشتری برای رسیدن به ۱۰۰ درصد نیاز دارد.

    نیاز به تشخیص گاز
    دلایل متعددی برای نیاز به تشخیص گاز وجود دارد. دو دلیل آشکار، محافظت از افراد، تولید و تجهیزات در برابر تأثیر نشت احتمالی گاز و رعایت مقررات است. دلایل مهم دیگر عبارتند از:

    • کاهش هزینه خدمات (هزینه گاز جایگزین و مراجعه تعمیرکار)
      • کاهش هزینه مصرف انرژی به دلیل فقدان مبرد
      • خطر آسیب به محصولات ذخیره‌شده در اثر نشت گسترده
    • امکان کاهش هزینه‌های بیمه
      • مالیات یا سهمیه مربوط به مبردهای ناسازگار با محیط زیست
      کاربردهای مختلف سامانه‌های تبرید به دلایل متفاوتی نیازمند تشخیص گاز هستند.

    آمونیاک به عنوان ماده‌ای سمی با بوی بسیار خاص طبقه‌بندی می‌شود، بنابراین به‌طور طبیعی «هشداردهنده» است. با این حال، استفاده از دتکتورهای گاز برای صدور هشدار اولیه و پایش نواحی‌ای که همواره افراد حضور ندارند (مانند اتاق‌های ماشین‌آلات) الزامی است. باید توجه داشت که آمونیاک تنها مبرد رایج است که از هوا سبک‌تر می‌باشد. در بسیاری از موارد، این ویژگی باعث می‌شود آمونیاک به بالای ناحیه تنفسی صعود کرده و شناسایی نشتی برای افراد دشوار شود. استفاده از دتکتور گاز در نواحی مناسب، هشدارهای اولیه در صورت نشتی آمونیاک را تضمین می‌کند.

    هیدروکربن‌ها به‌عنوان مواد قابل اشتعال طبقه‌بندی می‌شوند. بنابراین، ضروری است که غلظت آن‌ها در اطراف سامانه تبرید از حد اشتعال فراتر نرود.

    مبردهای فلوئوردار همگی دارای اثرات منفی خاصی بر محیط زیست هستند و به همین دلیل باید از هرگونه نشتی آن‌ها جلوگیری کرد.

    دی‌اکسید کربن (CO₂) مستقیماً در فرآیند تنفس دخیل است و باید متناسب با آن با آن برخورد شود. حدود ۰٫۰۴٪ دی‌اکسید کربن به‌طور طبیعی در هوا وجود دارد. در غلظت‌های بالاتر، برخی واکنش‌های منفی مشاهده شده است که با افزایش نرخ تنفس (حدود ۱۰۰٪ در غلظت ۳٪) آغاز شده و به از دست دادن هوشیاری و مرگ در غلظت‌های بالاتر از ۱۰٪ منجر می‌شود.

    مقررات و استانداردها
    الزامات مربوط به تشخیص گاز در کشورهای مختلف جهان متفاوت است. در صفحات بعد نمایی کلی از قوانین و مقررات رایج ارائه شده است.

    اروپا
    استاندارد ایمنی فعلی برای سامانه‌های تبرید در اروپا، EN 378:2016 است.

    سطوح هشدار مشخص‌شده در EN 378:2016 به‌گونه‌ای تعیین شده‌اند که امکان تخلیه ایمن ناحیه را فراهم کنند. این سطوح بازتابی از اثرات ناشی از مواجهه بلندمدت با مبردهای نشت‌یافته نیستند. به‌عبارت‌دیگر، در EN 378 وظیفه دتکتور گاز، هشدار در هنگام وقوع نشتی ناگهانی و زیاد است، در حالی که تهویه اتاق ماشین و اقدامات کیفی سامانه باید اطمینان حاصل کنند که نشتی‌های کوچک تأثیرات منفی برای سلامتی ایجاد نکنند.

    توجه
    الزامات مربوط به دتکتور گاز در اروپا تحت پوشش قوانین ملی کشورهای مختلف قرار دارد و ممکن است با الزامات مندرج در EN 378 تفاوت داشته باشد.

    با چند استثناء، دتکتور گاز مطابق با استانداردهای EN 378:2016 و ISO 5149:2014 برای تمام نصب‌هایی که احتمال دارد غلظت گاز در اتاق از حد عملی فراتر رود، الزامی است.

    در مورد مبردهای سمی و قابل اشتعال، این موضوع تقریباً شامل تمام سامانه‌های صنعتی و تجاری می‌شود. در مورد مبردهای گروه A1، امکان طراحی سامانه‌های کوچکی وجود دارد که نیازی به دتکتور گاز ندارند. اما در بیشتر تأسیسات بزرگ، در صورت بروز نشتی عمده، احتمالاً غلظت مبرد از حد عملی فراتر خواهد رفت و در نتیجه استفاده از دتکتور گاز الزامی می‌گردد.

    راهنمایی‌هایی در بخش ۳ استاندارد EN 378:2016 یا بخش ۳ استاندارد ISO 5149:2014 ارائه شده‌اند. الزامات این دو استاندارد بسیار مشابه بوده و در شکل ۵ خلاصه شده‌اند.

    در صورتی که با انجام محاسبات مشخص شود غلظت مبرد در یک اتاق هرگز به حد عملی نمی‌رسد، دیگر نیازی به استفاده از دتکتور گاز ثابت نیست، به‌جز در مورد خاصی در استاندارد EN 378 که سیستم در زیرزمین نصب شده و بار مبرد آن از مقدار m2 فراتر رود (تقریباً معادل ۱ کیلوگرم پروپان). ISO 5149 چنین استثنایی را ندارد.

    مقدار m2 برابر است با ۲۶ مترمکعب ضرب در LFL (حد پایین اشتعال‌پذیری). برای پروپان، این مقدار برابر است با:
    ۲۶ m³ × ۰٫۰۳۸ kg/m³ = ۰٫۹۸۸ kg
    یا اگر LFL برحسب گرم اندازه‌گیری شود:
    ۲۶ m³ × ۳۸ g/m³ = ۹۸۸ g
    در نتیجه، m2 دارای واحد نیست، چرا که واحد نهایی آن به واحد انتخاب‌شده برای LFL بستگی دارد.

    بیشتر هیدروکربن‌ها دارای مقدار LFL مشابه هستند، بنابراین مقدار m2 معمولاً در حدود ۱ کیلوگرم است.

    با این حال، اگر غلظت بتواند به حد عملی برسد، حتی برای مبردهای گروه A1، نصب دتکتور ثابت الزامی است – البته با چند استثناء جزئی.
    حدود عملی برای مبردهای مختلف در پیوست II که از بخش ۱ استاندارد EN 378-2016 استخراج شده، ارائه شده است. در این جداول، حد عملی آمونیاک بر اساس سمیت آن تعیین شده است. حدود عملی هیدروکربن‌ها بر اساس قابلیت اشتعال آن‌ها و معادل ۲۰ درصد از حد پایین اشتعال‌پذیری تعیین شده‌اند. حدود عملی برای تمامی مبردهای گروه A1 بر اساس حد مواجهه با سمیت حاد (ATEL) تعیین شده است.
    اگر کل بار مبرد در یک اتاق تقسیم بر حجم خالص اتاق بیشتر از «حد عملی» (مطابق پیوست II) باشد، به‌طور منطقی می‌توان نتیجه گرفت که باید سامانه دتکتور گاز ثابت نصب شود.
    هر دو استاندارد EN378:2016 و ISO 5149:2014 الزام می‌کنند که دستگاه نمایشگری برای نشان دادن فعال شدن شیر اطمینان در سامانه‌هایی با مبرد ۳۰۰ کیلوگرم یا بیشتر نصب شود. یکی از روش‌ها، نصب دتکتور گاز در خط تخلیه است.

    مقررات F-Gas
    مقررات F-Gas (EC) شماره ۵۱۷/۲۰۱۴
    یکی از اهداف مقررات F-Gas محدود کردن، جلوگیری و کاهش انتشار گازهای گلخانه‌ای فلوئوردار تحت پوشش پروتکل کیوتو است. این دستورالعمل برای همه کشورهای عضو اتحادیه اروپا و همچنین سه کشور منطقه اقتصادی اروپا (EEA) شامل ایسلند، لیختن‌اشتاین و نروژ اجباری است.
    این مقررات موضوعات متعددی از جمله واردات، صادرات و استفاده از گازهای سنتی HFC و PFC در تمام کاربردهایشان را پوشش می‌دهد. این مقررات از اول ژانویه ۲۰۱۵ لازم‌الاجرا شده است.

    الزامات بازرسی نشتی به منظور پیشگیری از نشت و تعمیر هرگونه نشتی کشف‌شده، بر اساس معادل‌های دی‌اکسید کربن مبرد در هر مدار محاسبه می‌شود. معادل دی‌اکسید کربن برابر است با مقدار شارژ (کیلوگرم) ضرب در پتانسیل گرمایش جهانی (GWP) مبرد.

    بازرسی دوره‌ای نشتی توسط افراد مجاز با فرکانس زیر لازم است که بستگی به مقدار مبرد مصرفی دارد:
    • معادل ۵ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۱۲ ماه – به استثناء سیستم‌های کاملاً بسته که کمتر از ۱۰ تن معادل CO2 دارند
    • معادل ۵۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه (۱۲ ماه در صورت وجود سامانه مناسب تشخیص نشتی)
    • معادل ۵۰۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه. سامانه مناسب تشخیص نشتی الزامی است. سامانه تشخیص نشتی باید حداقل هر ۱۲ ماه یک‌بار بررسی شود.

     

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • طراحی سیستم اطفاء حریق با گاز دی اکسیدکربن


    اثرات بازشوها بر طراحی و عملکرد سیستم اطفاء حریق با گاز دی اکسیدکربن

    NFPA12 ANNEX-E

    ضمیمه E – آتش‌سوزی‌های سطحی
    این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

    E.1 الزامات ارائه‌شده در بخش 5.3 عوامل مختلفی را که می‌توانند بر عملکرد سامانه دی‌اکسید کربن تأثیر بگذارند، در نظر گرفته‌اند. پرسش در مورد محدودیت بازشوهایی که قابل‌بسته شدن نیستند، اغلب مطرح می‌شود و پاسخ دقیق به آن دشوار است.
    از آنجا که آتش‌سوزی‌های سطحی معمولاً از نوعی هستند که می‌توان آن‌ها را با روش‌های اطفاء موضعی خاموش کرد، انتخاب بین روش غرقاب کامل و روش کاربرد موضعی را می‌توان بر اساس مقدار دی‌اکسید کربن مورد نیاز انجام داد.

    این انتخاب در مثال‌های زیر برای فضای محصور نمایش‌داده‌شده در شکلE.1(a) نشان داده شده است.

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۱۷ پوند بر دقیقه بر فوت مربع برای غلظت ۳۴ درصد در ارتفاع ۷ فوت خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):

    17 X 5= 85 lb

    مجموع دی‌اکسید کربن مورد نیاز:

    111 + 85= 196 lb

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۸۵کیلوگرم بر دقیقه بر متر مربع برای غلظت ۳۴ درصد در ارتفاع ۲.۱ متر خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۰.۵ = ۴۲.۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۴۲.۵ = ۹۱.۱ کیلوگرم

    9k=

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۱۷ × ۱۰ = ۱۷۰ پوند
    مجموع دی‌اکسید کربن مورد نیاز:
    ۱۱۱ + ۱۷۰ = ۲۸۱ پوند
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۰.۲۵ پوند بر دقیقه بر فوت مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲۰ فوت مربع
    مساحت کل دیوارها: (۱۰ + ۱۰ + ۲۰ + ۲۰) × ۱۰ = ۶۰۰ فوت مربع
    نرخ تخلیه:
    (۲۰ ÷ ۶۰۰) × (۱۰.۲۵) + ۰.۲۵ = ۰.۲۷ پوند بر دقیقه بر فوت مکعب
    نرخ کل تخلیه:
    ۰.۲۷ × ۲۰۰۰ = ۵۴۰ پوند بر دقیقه
    مقدار دی‌اکسید کربن:
    ۵۴۰ ÷ ۲ = ۲۷۰ پوند

    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲۰ فوت مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    2Q==

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۱.۰ = ۸۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۸۵ = ۱۳۳.۶ کیلوگرم
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۴ کیلوگرم بر دقیقه بر متر مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲.۰ متر مربع
    مساحت کل دیوارها: (۳ + ۳ + ۶ + ۶) × ۳ = ۵۴ متر مربع
    نرخ تخلیه:
    (۲ ÷ ۵۴) × (۱۶۴) + ۴ = ۴.۴ کیلوگرم بر دقیقه بر متر مکعب
    نرخ کل تخلیه:
    ۴.۴ × ۵۴ = ۲۳۷.۶ کیلوگرم بر دقیقه بر متر مکعب
    مقدار دی‌اکسید کربن:
    ۲۳۷.۶ ÷ ۲ = ۱۱۸.۸ کیلوگرم
    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲.۰ متر مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    9k=

    p

  • ملاحظات برای جانمایی مؤثر دتکتور گاز

    دتکتورهای گاز هشدارهایی را به کارکنان تأسیسات درباره نشت گاز قابل اشتعال ارائه می‌دهند تا اقدامات لازم، چه به‌صورت خودکار و چه دستی، برای کنترل نشت قبل از بروز خسارت جدی انجام گیرد. این اقدامات می‌توانند شامل خاموش کردن سیستم فرآیند، فعال‌سازی سامانه‌های سرکوب یا کاهش اثرات باشند. یک دتکتور گاز که به‌درستی طراحی و نصب شده باشد، سطح ایمنی تأسیسات را افزایش می‌دهد.

    تعیین هدف از نصب دتکتور گاز در آغاز طراحی و استفاده از مدل‌سازی انتشار و پراکندگی گاز برای ایجاد یک طرح مؤثر ضروری است. مگر آن‌که بودجه‌ای نامحدود داشته باشید و بتوانید در هر نقطه‌ی ممکن از نشت، یک دتکتور نصب کنید، استفاده از مدل‌سازی‌های رایانه‌ای می‌تواند در تعیین محل دتکتورها به‌صورت مقرون‌به‌صرفه کمک کند. دامنه و هدف دتکتور گاز باید از ابتدا مشخص شود تا در طول طراحی، سازگاری در انتخاب تجهیزات و نحوه نصب حفظ گردد.

    WhatsApp Image 2025 09 22 at 12.57.03 AM

    هدف دتکتور گاز
    هدف اصلی از استفاده از دتکتور گاز باید کاهش احتمال آتش‌سوزی و/یا انفجار و پیشگیری از خسارات گسترده به تجهیزات، توقف تولید، آسیب به افراد و تلفات جانی باشد. عامل مهم دیگر، خطر سمیت ناشی از نشت گازهایی است که هم خاصیت سمی و هم خاصیت قابل اشتعال دارند.

    هدف از نصب دتکتور گاز باید در ابتدای پروژه به‌صورت شفاف تعریف شود تا تحلیل خطرات، انتخاب نوع دتکتور و محل نصب آن‌ها متناسب با هدف نصب باشد. این پارامترها بسته به منطقه مورد نظر در تأسیسات متفاوت هستند. برای مثال، در ناحیه ذخیره‌سازی گاز مایع، دتکتورها ممکن است فقط جهت ایجاد هشدار به‌کار روند، زیرا منابع احتراق وجود ندارد و آن ناحیه از سایر فرآیندها جدا است. در مقابل، در بخش‌های دیگر کارخانه ممکن است هدف از نصب دتکتور، خاموش‌سازی فرآیند یا فعال‌سازی سامانه‌های پاشش آب برای رقیق‌سازی نشت گاز باشد.

    WhatsApp Image 2025 09 22 at 12.57.04 AM

    بخشی از طراحی کامل سیستم باید شامل رویه‌هایی باشد که اقدامات کارکنان تأسیسات را هنگام فعال شدن هشدار دتکتور گاز مشخص می‌کند. این رویه‌ها باید شامل اقداماتی باشند که در هر سطح هشدار انجام می‌شوند، واکنش‌های لازم در بخش‌های مختلف کارخانه، و تأثیر شرایط کاری کارخانه (حالت عادی، توقف، یا ناپایداری) بر تصمیمات عملیاتی را نیز در بر گیرند.

    ویژگی‌های شیمیایی و شرایط فرآیندی

    پس از تعیین هدف از نصب دتکتور گاز، مرحله بعدی جمع‌آوری داده‌هاست. موادی که قرار است توسط دتکتور شناسایی شوند باید مشخص گردند. شناسایی نشت شامل ارزیابی ویژگی‌های شیمیایی و فیزیکی مواد مورد نظر و همچنین شرایط فرآیندی حاکم است. این ویژگی‌ها و شرایط در محاسبات مدل‌سازی برای تعیین خصوصیات مختلف نشت مانند نرخ نشت ماده و شکل و اندازه‌ی ابر نشت مورد استفاده قرار می‌گیرند.

    دامنه‌ی اشتعال‌پذیری مواد بررسی می‌شود. این ویژگی اطلاعاتی درباره‌ی احتمال اشتعال نشت قبل از پراکنده شدن آن فراهم می‌کند. نقطه‌ی جوش و گرمای نهان تبخیر هر ماده در سناریوهای مشخص‌شده بررسی می‌شود. این ویژگی‌های فیزیکی برای ارزیابی میزان فرّاری بودن مواد در شرایط استفاده شده، مفید هستند.

    موادی که در شرایط محیطی به صورت گازهای قابل اشتعال وجود دارند، در صورت نشت به عنوان گاز در نظر گرفته می‌شوند. موادی که در دمای محیط به صورت مایع هستند، بسته به شرایط فرآیندی، ممکن است به‌صورت مایع یا بخار ارزیابی شوند.

    پارامترهای فرآیندی شامل دما، فشار و نرخ جریان همراه با ویژگی‌های ماده برای ارزیابی احتمال آتش‌سوزی و انفجار بررسی می‌شوند. برای مثال، یک مایع قابل اشتعال که دمای آن پایین‌تر از نقطه اشتعال باشد، ممکن است در صورت نشت مشکلی ایجاد نکند؛ اما اگر از بخشی از فرآیند با دمایی ۱۰۰ درجه فارنهایت بالاتر از نقطه اشتعال نشت کند، مشکل‌ساز خواهد بود. این پارامترها به همراه مقدار ماده‌ای که ممکن است نشت کند، برای ارزیابی اندازه احتمالی نشت در نظر گرفته می‌شوند. همچنین این اطلاعات برای تعیین ماهیت نشت‌ها در سناریوهای مشخص کاربرد دارند.

    WhatsApp Image 2025 09 22 at 12.57.04 AM1

    در ادامه نمونه‌ای از معیارهای انتخاب سناریوی نشت در یکی از پروژه‌های اخیر آورده شده است. بخش‌هایی از فرآیند که باید از نظر جانمایی دتکتور گاز بررسی شوند، شامل تجهیزاتی هستند که یکی از شرایط زیر در آن‌ها وجود دارد:

    • گازهای قابل اشتعال به‌صورت مایع‌شده در فرآیند درگیر هستند
    • مواد قابل اشتعال/احتراق در دمایی بالاتر از نقطه اشتعال خود قرار دارند
    • گازهای قابل اشتعال/احتراق در فشاری بیش از ۵۰۰ psig قرار دارند

    این معیارها صرفاً یک نمونه هستند. باید محدوده‌ی تحلیلی مورد نظر مشخص شود. اگر این محدوده بیش از حد گسترده باشد، تحلیل پیچیده و دشوار می‌شود؛ و اگر بیش از حد محدود باشد، احتمال نادیده گرفتن سناریوهای نشت مهم وجود دارد.

    اکثر ویژگی‌های مواد و شرایط فرآیندی در تحلیل خطر فرآیند (PHA) قابل دسترسی هستند. اگر تحلیل PHA انجام نشده یا اطلاعات کافی نداشته باشد، داده‌ها می‌توانند از نقشه‌های فرآیند (P&ID) و نمودارهای جریان فرآیند استخراج شوند. مهندسان فرآیند و اپراتورهای واحد، مطلع‌ترین افراد نسبت به فرآیند خاص هستند و می‌توانند اطلاعات ارزشمندی در این زمینه ارائه دهند.

    WhatsApp Image 2025 09 22 at 12.57.05 AM

    انتخاب حالت‌های خرابی

    باید نوع نقاط احتمالی نشت که قرار است تحلیل شوند مشخص گردد. فرض بر این است که خرابی‌های معقول می‌توانند رخ دهند. تحلیل سناریویی مانند پارگی آنی یک مخزن بزرگ یا شکست کامل لوله‌ی فولادی جوش‌خورده برای تعیین محل نصب دتکتور گاز منطقی نیست. اگرچه این رخدادهای فاجعه‌آمیز ممکن‌اند اتفاق بیفتند، اما تشخیص مؤثر باید بر رویدادهای محتمل‌تر تمرکز داشته باشد؛ یعنی همان نشت‌های کوچک‌تری که اگر به‌موقع شناسایی شوند و اقدام مناسب انجام شود، می‌توان آن‌ها را کنترل کرد.

    نمونه‌هایی از خرابی‌هایی که باید در نظر گرفته شوند عبارت‌اند از:

    • خرابی آب‌بند پمپ یا کمپرسور
    • خرابی فلنج‌ها
    • خرابی اتصالات لوله‌کشی
    • خرابی اتصالات ابزار دقیق
    • خرابی شیلنگ‌ها و اتصالات انعطاف‌پذیر

    WhatsApp Image 2025 09 22 at 12.57.05 AM1

    مکان‌های نشت

    گام بعدی تعیین مکان‌های احتمالی نشت است. این مکان‌ها جایی هستند که نوع ماده، شرایط ماده و نوع خرابی معمول در آن نقطه با یکدیگر تطابق دارند. هر مکان نشت باید به‌صورت جداگانه تحلیل شود تا داده‌های مورد نیاز برای مدل‌سازی نشت و پراکندگی جمع‌آوری شود. این اطلاعات شامل اندازه دهانه، ارتفاع و جهت‌گیری آن و همچنین پارامترهای فرآیندی در محل نشت خواهد بود.

    سناریوهای نشت و موقعیت آن‌ها باید پیش از آغاز مدل‌سازی اولیه توسط افرادی که مستقیماً با واحد یا کارخانه درگیر هستند، بررسی و تأیید شوند. مهندس فرآیند و اپراتور واحد اطلاعات دقیقی درباره منطقه مورد نظر دارند و می‌توانند اطلاعاتی ارائه دهند که اعتبار سناریوهای نشت انتخاب‌شده را افزایش دهد. در صورت امکان، بهتر است از ابتدا این افراد در تیم پروژه حضور داشته باشند.

    ملاحظات هواشناسی

    پیش از شروع مدل‌سازی پراکندگی، شرایط هواشناسی محل باید بررسی شود. پارامترهای هواشناسی شامل سرعت باد غالب، جهت باد، آشفتگی جو و شرایط حرارتی باید مدنظر قرار گیرد. پارامترهایی انتخاب می‌شوند که بدترین شرایط ممکن برای معیارهای نصب دتکتور را نشان دهند. ممکن است بدترین شرایط هواشناسی برای تشخیص، همان شرایط غالب در محل نباشند، اما باید در محدوده شرایط قابل وقوع در آن محل باشند.

    مدل‌سازی نشت و پراکندگی

    پس از گردآوری تمام اطلاعات مربوط به سناریوهای نشت و ترکیب آن با اطلاعات فیزیکی خاص هر محل نشت، مرحله مدل‌سازی آغاز می‌شود. مدل پراکندگی اطلاعاتی در خصوص اندازه و غلظت گاز پراکنده‌شده در زمان‌های مختلف نشت ارائه می‌دهد.

    مدل کامپیوتری می‌تواند نرخ نشت ماده و شرایط آن در نقطه نشت را مشخص کند. ماده ممکن است به‌صورت بخار، مایع یا مایع فوران‌کننده (flashing liquid) آزاد شود. سرمایش ناشی از انبساط ممکن است دمای ماده را تغییر داده باشد که می‌تواند تأثیر قابل توجهی بر نحوه پراکندگی داشته باشد. این مدل اطلاعات لازم برای تعیین میزان خطر ناشی از نشت را فراهم می‌کند.

    گروه‌بندی نشت‌های مشابه

    نشت‌های مشابه باید در یک گروه قرار گیرند تا از انجام مدل‌سازی‌های غیرضروری جلوگیری شود. برای مثال، اگر هفت نشت احتمالی از یک ماده وجود دارد که فقط در دمای آن‌ها ۲۰ درجه فارنهایت اختلاف است، اجرای مدل پراکندگی برای هر هفت مورد سود چندانی نخواهد داشت. باید بررسی حساسیت نتایج مدل پراکندگی انجام شود تا تأثیر پارامترهای ورودی متغیر مانند شرایط آب‌وهوایی و جهت‌گیری نشت بر نتایج پراکندگی مشخص شود.

    بسیاری از مدل‌ها در تخمین غلظت گاز در نزدیکی محل نشت (منبع نشت) دقت بالایی ندارند، اما می‌توانند اطلاعاتی درباره وسعت خطر ارائه دهند. این اطلاعات می‌توانند برای ارزیابی و مقایسه میزان خطر نشت‌ها به تأسیسات و/یا جوامع اطراف مورد استفاده قرار گیرند. برای مثال، یک نشت ممکن است فقط در همان محل تأثیر داشته باشد، در حالی که نشت دیگری ممکن است ابری از گاز قابل اشتعال ایجاد کند که تا بخاری‌های شعله‌دار مجاور گسترش می‌یابد. حالت دوم خطر بیشتری دارد، زیرا احتمال رسیدن مخلوط قابل احتراق به منبع جرقه وجود دارد. مدل‌سازی می‌تواند در اولویت‌بندی محل نصب دتکتور گاز کمک کند.

    نرم‌افزارهای مدل‌سازی نشت و پراکندگی

    نرم‌افزارهای متعددی برای مدل‌سازی پراکندگی گاز وجود دارند. هدف این متن بررسی این نرم‌افزارها نیست، بلکه اشاره به این است که چگونه می‌توان از آن‌ها برای تعیین محل نصب دتکتور گاز استفاده کرد. برخی از این نرم‌افزارها عبارت‌اند از:

    • SuperChems® از شرکت A. D. Little
    • CHARM® از شرکت Radian
    • نرم‌افزارهای متن‌باز مانند ARCHIE، DEGADIS، CAMEO و SLAB

    هر برنامه مزایا و معایب خاص خود را از نظر سهولت استفاده، گزینه‌های خروجی و توانمندی مدل‌سازی دارد. برخی مدل‌ها می‌توانند نشت و پراکندگی را در یک مرحله مدل‌سازی کنند، در حالی که برخی دیگر نیاز دارند که مدل نشت و مدل پراکندگی به‌صورت جداگانه اجرا شوند و خروجی مدل نشت به مدل پراکندگی وارد شود. باید بررسی شود که مدل انتخاب‌شده برای شرایط خاص پروژه مناسب است یا خیر.

    تعیین محل نصب دتکتور

    معیارهای نصب دتکتور گاز بر اساس شناسایی نشت قبل از تشکیل ابری از بخار قابل احتراق است که می‌تواند منجر به انفجار شود. اگرچه برای یک انفجار، حداقل پنج تن ماده نیاز است، اما حتی مقادیر بسیار کمتر نیز می‌توانند باعث آتش‌سوزی‌های شدید شوند. بنابراین، شناسایی نشت باید در سریع‌ترین زمان ممکن انجام شود تا پیش از تشکیل ابر بخار، فرصت انجام اقدامات اصلاحی فراهم باشد.

    برای نواحی مختلف یک تأسیسات معمولاً معیارهای متفاوتی جهت مکان‌یابی دتکتورها تدوین می‌شود. به‌عنوان مثال، در نواحی فرآیندی نیاز به تشخیص سریع‌تر حتی مقادیر کم گاز وجود دارد، اما در نواحی ذخیره‌سازی این الزام کمتر است. در نواحی فرآیندی، منابع احتراق متعددی وجود دارند. اگر بخار قابل احتراق به منبع احتراقی با انرژی کافی برخورد کند، آتش‌سوزی سریع رخ خواهد داد. همچنین ازدحام تجهیزات در این مناطق می‌تواند منجر به تسریع گسترش آتش شود. بنابراین، در نواحی فرآیندی تشخیص سریع مقادیر کم گاز مناسب و ضروری است.

     

    نشت‌های بزرگ‌تر معمولاً در نواحی ذخیره‌سازی قابل‌تحمل‌تر هستند، زیرا در این نواحی منابع احتراق محدودتری وجود دارد، تجهیزات و سازه‌ها کمتر متراکم هستند و جرم بیشتر تجهیزات و سازه‌ها، زمان بیشتری برای جذب اثرات حرارتی در هنگام آتش‌سوزی فراهم می‌کند. در نتیجه، در این مناطق می‌توان نشت‌های بزرگ‌تری را مدنظر قرار داد.

    مثال

    یک نمونه از شناسایی سناریوی نشت، مدل‌سازی پراکندگی گاز و معیارهای تعیین محل نصب دتکتور گاز که در یک پروژه اخیر به‌کار گرفته شده، بر پایه تشخیص در سطح غلظت ۲۰ درصد حد انفجار پایین (LEL) از یک ماده است که از فرآیند از طریق یک روزنه به قطر یک‌چهارم اینچ در مدت یک دقیقه یا قبل از آزاد شدن ۱۰۰۰ پوند ماده نشت می‌کند. این معیار به‌منظور ایجاد زمان کافی برای اقدام اصلاحی توسط کارکنان بهره‌بردار جهت کاهش میزان ماده نشت‌شده در نظر گرفته شده است. همچنین این معیار از نصب دتکتورهایی که بیش از حد حساس بوده و منجر به هشدارهای مزاحم می‌شوند جلوگیری می‌کند.

    مکان‌یابی دتکتورها در این پروژه وابسته به جهت باد نیست. در این حالت، جهت غالب باد متغیر است. معیار تعیین محل دتکتور گاز در این پروژه، نصب دتکتورها در ناحیه‌ای است که توسط پهنای ایزوپلت غلظت پراکندگی در نقطه نشت تعریف می‌شود. پهنای ایزوپلت در نقطه نشت یک ناحیه دایره‌ای را تعریف می‌کند که فاصله احتمالی گسترش نشت در خلاف جهت باد را مشخص می‌سازد. این رویکرد منجر به نصب دتکتورها با احتمال بالاتر شناسایی نشت در شرایط مختلف جهت باد می‌شود و اتکا به جهت غالب باد را کاهش می‌دهد. قانون مورفی بیان می‌کند که اگر نشت رخ دهد و مکان دتکتور بر اساس جهت غالب باد تعیین شده باشد، احتمال زیادی وجود دارد که باد از جهت مخالف (۱۸۰ درجه) بوزد.

    استفاده از روش‌های مدرن جمع‌آوری داده، مدل‌سازی رایانه‌ای و تجهیزات دتکتور گاز جایگزین قضاوت منطقی نمی‌شود. هنگام نصب دتکتورها، باید دقت شود که در مکان‌هایی قرار نگیرند که از منبع نشت گاز پنهان باشند.

    اجزای سیستم دتکتور گاز و عملکرد آن‌ها

    یک سیستم دتکتور گاز قابل اشتعال از چند جزء تشکیل شده است، از جمله دتکتور، مانیتورهای نمایش‌دهنده، آلارم‌های صوتی و آلارم‌های نوری. این سیستم ممکن است قابلیت اتصال به سایر سیستم‌های کنترل و پایش تأسیسات را نیز داشته باشد.

    سیستم‌های دتکتور گاز قابل اشتعال معمولاً به‌گونه‌ای طراحی می‌شوند که در دو سطح متفاوت از غلظت گاز هشدار دهند. این سیستم می‌تواند دستگاه‌های هشداردهنده خروجی را فعال کرده و همچنین نشان دهد که سطح خاصی از گاز قابل اشتعال وجود دارد. دو نقطه هشدار رایج ۲۰ درصد LEL و ۴۰ درصد LEL هستند. در سطح ۲۰ درصد LEL، سیستم چراغ هشدار را روی پنل روشن کرده و آلارم محلی را در ناحیه‌ای که دتکتور فعال شده ایجاد می‌کند. این کار می‌تواند منجر به تخلیه منطقه، افزایش نرخ تهویه و/یا بررسی فوری منطقه توسط پرسنل مجرب شود.

    در سطح ۴۰ درصد LEL، سیستم هشدار دیگری را فعال کرده، آلارم‌های صوتی و نوری را به فراتر از منطقه محلی گسترش می‌دهد، تجهیزات فرآیندی را به‌صورت خودکار خاموش یا تخلیه می‌کند، سامانه‌های پراکندگی بخار را فعال کرده و پرسنل اضطراری را مطلع می‌سازد تا اقدامات لازم را انجام دهند.

    فارغ از چیدمان خاص سیستم، اجزای ضروری آن شامل قابلیت تشخیص دتکتوری است که آلارم را فعال کرده (و در نتیجه موقعیت آن)، گازی که شناسایی شده، و غلظت گاز. بدون این اطلاعات، اقدامات مؤثر محدود خواهند بود. روش‌های متعددی برای سازمان‌دهی این اطلاعات و بازیابی آن در مواقع نیاز وجود دارد. برچسب‌گذاری ساده می‌تواند برای سامانه‌های کوچک کافی باشد. برای برخی دیگر، استفاده از برگه‌های داده جمع‌آوری‌شده کاربرد دارد. با این حال، در اغلب نصب‌های امروزی از سامانه‌های منطقی قابل برنامه‌ریزی استفاده می‌شود که قابلیت اتصال به تجهیزات دتکتور گاز را دارند. بدین ترتیب، قابلیت‌های مناسبی برای بازیابی اطلاعات فراهم می‌شود. بنابراین، پس از شناسایی گاز قابل اشتعال توسط یک دتکتور، کلیه اطلاعات مربوط به حادثه می‌تواند به‌صورت فوری بر روی صفحه‌نمایش رایانه نشان داده شود.

    انواع دتکتور گاز

    امروزه دو نوع دتکتور گاز برای گازهای قابل اشتعال استفاده می‌شود: نوع نقطه‌ای و نوع بیم. هر دو نوع کاربردها، مزایا و معایب خاص خود را دارند.

    در نوع نقطه‌ای از یک مهره کاتالیستی به‌عنوان دتکتور استفاده می‌شود. این مهره گرم می‌شود تا زمانی‌که گاز قابل اشتعال در مجاورت آن قرار گیرد، بسوزد و دمای مهره افزایش یابد. این افزایش دما باعث تغییر مقاومت الکتریکی در مهره می‌شود. این تغییر مقاومت با مهره مرجع در داخل دتکتور مقایسه می‌شود تا شرایط محیطی در نظر گرفته شود. سیستم این تغییر مقاومت را به‌صورت درصدی از حد انفجار پایین (LEL) تفسیر می‌کند.

    دتکتورهای نوع بیم بر اساس این اصل عمل می‌کنند که هیدروکربن‌ها تابش مادون قرمز را در طول موج‌های مشخصی جذب می‌کنند. دتکتور نوع بیم، یک پرتو آشکارساز و یک پرتو مرجع را در فضا منتشر می‌کند. این پرتو یا به یک گیرنده جداگانه می‌رسد یا در صورت ترکیب فرستنده/گیرنده، از آینه بازتاب داده می‌شود. این پرتو می‌تواند تا فاصله ۱۰۰ متر (۳۲۸ فوت) ارسال شود.

    مشخصات معمول هر دو نوع دتکتور در ادامه آمده است. این ویژگی‌ها بسته به سازنده خاص دتکتور ممکن است متفاوت باشد. هر یک از این عوامل باید هنگام انتخاب دستگاه مناسب مورد توجه قرار گیرد.

    دتکتورهای نوع نقطه‌ای:
    − مناسب برای پایش در محل‌های خاص یا اجزای تجهیزات، مانند ورودی هوای اتاق‌های کنترل یا تجهیزات مجزا
    − اندازه‌گیری کمی غلظت گاز در یک مکان معین
    − قیمت نسبتاً پایین
    − تعویض دتکتور ساده است
    − مستعد مسمومیت توسط برخی مواد مانند ترکیبات سیلیکونی
    − گاز باید به دتکتور برسد (در صورت قرارگیری نادرست یا کم‌بودن تعداد دتکتورها، دقت کاهش می‌یابد)
    − احتمال قرائت نادرست به دلیل تداخل‌ها وجود دارد
    − نیاز به نگهداری مکرر جهت بررسی کالیبراسیون
    − طول عمر عملکردی ممکن است در حضور گازهای پس‌زمینه دائمی کاهش یابد

     

    دتکتورهای نوع بیم:
    − ممکن است در صورتی‌که محل‌های بالقوه نشت در یک خط قرار داشته باشند (مانند ردیفی از پمپ‌ها در امتداد یک مسیر لوله‌کشی)، از نظر هزینه نسبت به دتکتورهای نقطه‌ای مقرون‌به‌صرفه‌تر باشند
    − نیاز به نگهداری کم، زیرا تجهیزات در معرض مسمومیت قرار نمی‌گیرند
    − پایش نشت گاز در یک منطقه وسیع را فراهم می‌کند
    − تحت تأثیر سطوح بالای گاز پس‌زمینه قرار نمی‌گیرد
    − میانگین غلظت در یک فاصله کوتاه را ارائه می‌دهد (غلظت دقیق در یک نقطه خاص را نشان نمی‌دهد)
    − فرستنده پرتو باید دید مستقیم با گیرنده یا بازتاب‌دهنده داشته باشد (فعالیت در یک ناحیه ممکن است پرتو را مختل کرده و باعث شود آن منطقه بدون پایش باقی بماند)
    − سرویس‌دهی پرهزینه و زمان‌بر است، زیرا تعویض دتکتورهای معیوب نیاز به تکنسین‌های ماهر دارد

    استفاده از دتکتورهای نقطه‌ای در مقایسه با دتکتورهای نوع بیم ممکن است برای مناطقی مناسب‌تر باشد که در آن، همپوشانی دایره‌های پراکنش، امکان شناسایی نشت از بیش از یک منبع را با یک دتکتور فراهم می‌کند. دتکتور نوع بیم زمانی مناسب‌تر است که یک سری نقاط نشت احتمالی در یک خط مستقیم قرار دارند یا زمانی که هدف، شناسایی نشت گاز پیش از عبور از مرز یک واحد فرایندی باشد. یک سیستم کامل ممکن است شامل استفاده از هر دو نوع دتکتور به‌صورت متناسب با شرایط باشد.

    خلاصه
    در ابتدای تحلیل باید هدف مشخصی برای سیستم دتکتور گاز تعیین شود. آنچه که انتظار دارید به آن دست یابید باید مشخص شود تا بتوان برنامه‌ای برای رسیدن به این هدف تدوین کرد.

    استفاده از مدل‌های نشت و پراکنش می‌تواند در مکان‌یابی مؤثر دتکتور گاز مفید باشد، زیرا اطلاعاتی در مورد اندازه نشت بر اساس نوع خرابی‌های فرض‌شده ارائه می‌دهد. ممکن است مدل نشان دهد که برخی از خرابی‌های احتمالی در یک منطقه، مقدار گاز کافی برای ایجاد نگرانی فوری را آزاد نمی‌کنند. به این ترتیب می‌توان تلاش‌ها را بر روی نشت‌های مهم‌تر متمرکز کرد و بودجه را به‌صورت مؤثرتری خرج نمود.

    نصب دتکتور گاز در ناحیه‌ای که با چند ایزوپلت غلظت پراکنش همزمان باشد می‌تواند تعداد نقاط مورد نیاز برای شناسایی را کاهش دهد. یک دستگاه در موقعیتی قرار می‌گیرد که می‌تواند نشت را از چند محل نزدیک شناسایی کند. به‌عنوان مثال، دتکتوری که بین دو پمپ مجاور قرار دارد، بسته به فاصله بین آن‌ها، می‌تواند نشت از هر دو پمپ را شناسایی کند.

    استفاده از روش‌های پیشرفته جمع‌آوری داده، مدل‌سازی رایانه‌ای، و تجهیزات دتکتور گاز، جایگزینی برای قضاوت فنی نیست. مدل‌سازی فقط تقریب شرایطی است که ممکن است رخ دهد. حتماً نظر افرادی که با کارخانه آشنایی دارند را جویا شوید، زیرا ممکن است اطلاعاتی داشته باشند که با فرض‌های اشتباه، نتایج پیشرفته‌ترین مدل‌ها را بی‌اثر کند.

    دتکتورهای نوع بیم و نقطه‌ای هر دو کاربردهای مناسب خود را دارند که بسته به موقعیت، متفاوت خواهد بود. یک راه‌حل مقرون‌به‌صرفه نیازمند بررسی همه گزینه‌های موجود برای شناسایی است. آنچه که در یک بخش از کارخانه مؤثر است، ممکن است در بخشی دیگر کاملاً ناکارآمد باشد.