دتکتور حرارتی خطی در حفاظت از انبارها و آشیانه ها

Linear thermal detector pro

انبارها و آشیانه‌ها – تشخیص حرارت خطی با استفاده از فناوری فیبر نوری

فناوری تشخیص حرارت خطی (LHD) مبتنی بر سنجش دمای توزیعی (DTS)، سابقه موفقی در ارائه راهکارهای ایمنی حریق و تشخیص آتش به‌ویژه در فضاهای صنعتی و بزرگ دارد. این فناوری به دلیل نیاز به نگهداری پایین، هزینه مالکیت کم، قابلیت اطمینان بالا و تشخیص مؤثر حریق، گزینه‌ای بسیار مناسب برای پایش فضاهای وسیعی مانند انبارها و آشیانه‌ها محسوب می‌شود.

مقدمه

انبارها و آشیانه‌ها در زمینه ایمنی حریق با چالش‌های منحصربه‌فردی روبرو هستند. این فضاها می‌توانند مناطق پرتردد با اقلام قابل اشتعال و بار حرارتی بالا باشند. چالش‌های رایج شامل موارد زیر است:
• سقف‌های بلند، سازه‌های نامنظم، قفسه‌بندی‌ها، آتریوم‌ها و نواحی سخت‌دسترس
• دتکتورهای نقطه‌ای دود و حرارت هزینه نصب و نگهداری بالایی دارند و ممکن است فاصله زیادی با منبع دود/حرارت داشته باشند
• وجود گردوغبار و آلودگی محیط که می‌تواند هم‌زمان عامل افزایش خطر آتش‌سوزی و بروز هشدارهای کاذب برای دتکتورهای بیم و مکشی باشد
• سیستم تهویه و تهویه مطبوع می‌تواند حرکت دود را مختل کرده و باعث تأخیر در شناسایی حریق توسط دتکتورهای دود شود
• نگهداری و آزمون‌های دوره‌ای دتکتورها به دلیل دسترسی دشوار مشکل است

نصب سیستم در انبارها

در انبارهای پرچگالی، حتی آتش‌سوزی‌های کوچک می‌توانند به سرعت در طول قفسه‌ها و به صورت عمودی گسترش یابند. این امر می‌تواند منجر به نرم شدن سازه‌های فلزی و فروپاشی قفسه‌ها شود و کار را برای سیستم‌های اطفای حریق و نیروهای آتش‌نشانی دشوارتر کند.
در سیستم‌های دتکتور حرارتی خطی فیبر نوری، کابل دتکتور می‌تواند مستقیماً در داخل قفسه‌ها نصب شود و همیشه به منبع آتش نزدیک باشد.

به این ترتیب، افزایش دم

ا به‌سرعت شناسایی شده و احتمال کنترل و مهار آتش به‌مراتب افزایش می‌یابد.

WhatsApp Image 2025 09 15 at 4.32.30 PM

کنترلرها معمولاً در نزدیکی تابلوی کنترل حریق نصب می‌شوند و دارای نمایشگر LCD برای نمایش مستقل هشدارها و همچنین انتقال اطلاعات به پنل اعلام حریق هستند.

WhatsApp Image 2025 09 15 at 4.32.30 PM1

کابل دتکتور

کابل دتکتور یک عنصر کاملاً غیرفعال است و بر اساس فیبر نوری استاندارد مخابراتی طراحی شده است. در صنعت حریق، پیکربندی رایج فیبر، فیبر نوری 62.5/125 است که عملکرد برتری تا فاصله 10 کیلومتر ارائه می‌دهد.

مزایای کابل فیبر نوری غیرفعال شامل:
• پوشش پیوسته بدون دتکتورهای مجزا؛ سیستم  نقاط اندازه‌گیری را هر ۵۰ سانتی‌متر ثبت می‌کند

  • WhatsApp Image 2025 09 15 at 4.32.30 PM2
    ایمن در برابر تداخلات الکترومغناطیسی؛ مناسب برای مناطق دارای نویز الکترومغناطیسی بالا
    • مقاوم در برابر خوردگی و ارتعاش؛ با طول عمر بیش از ۳۰ سال

کابل‌های سری FireFiber به‌گونه‌ای طراحی شده‌اند که ضمن حفظ انتقال حرارتی سریع برای واکنش سریع سیستم، بسیار سبک، انعطاف‌پذیر و نصب آسان هستند.

 

نصب و جانمایی کابل

کابل دتکتور معمولاً یا از سقف آویزان می‌شود یا روی قفسه‌ها با روش‌های مختلف نصب می‌شود. حداقل سطح حفاظت با نصب کابل در ارتفاع سقف حاصل می‌شود. روش نصب باید با رعایت فاصله‌های استاندارد نصب (معمولاً ۱٫۵ متر) انجام شود.

WhatsApp Image 2025 09 15 at 4.32.31 PM

WhatsApp Image 2025 09 15 at 4.32.31 PM1

هشدارهای هوشمند و پوشش کامل

WhatsApp Image 2025 09 15 at 4.32.31 PM2

دو مزیت اصلی سیستم‌های دتکتور حرارتی خطی فیبر نوری بر پایه DTS عبارتند از هشدارهای هوشمند و اندازه‌گیری توزیعی.
در این سیستم‌ها، سه نوع هشدار قابل پیکربندی است که منجر به تشخیص سریع‌تر حریق و کاهش قابل توجه ریسک می‌شود.

در مقایسه با سیستم‌های سنتی تشخیص حریق، دتکتورهای دود به هشدارهای کاذب ناشی از آلودگی حساس‌اند و دتکتورهای حرارتی نقطه‌ای تنها زمانی مؤثرند که آتش مستقیماً زیر آن‌ها رخ دهد. سیستم  در هر ۰٫۵ متر یک نقطه اندازه‌گیری دارد و به‌همین دلیل هیچ «نقطه‌ کور» در پوشش وجود ندارد.

 

مزایای نسبت به فناوری‌های دیگر

سیستم‌های دتکتور حرارتی خطی فیبر نوری به‌واسطه هشدارهای هوشمند و پوشش پیوسته، مزایای متعددی نسبت به سایر فناوری‌ها دارند.

WhatsApp Image 2025 09 15 at 4.32.32 PMWhatsApp Image 2025 09 15 at 4.32.32 PM1

گردوغبار و ذرات موجود در محیط می‌توانند باعث هشدار کاذب یا انسداد در سایر دتکتورها شوند، در حالی که سیستم‌های فیبر نوری از این آسیب‌ها مصون‌اند.

WhatsApp Image 2025 09 15 at 4.32.33 PM

WhatsApp Image 2025 09 15 at 4.32.33 PM1

یکپارچه‌سازی با سایر سیستم‌ها

سیستم تشخیص حریقی که شامل فناوری DTS باشد، به‌محض شناسایی آتش، اقدامات حفاظتی از پیش‌برنامه‌ریزی‌شده (سیگنال هشدار، کنترل تهویه، اطفا حریق و…) را فعال می‌کند.

این سیستم باید محل دقیق حریق و داده‌های کلیدی درباره گسترش آن را ارائه دهد تا اقدامات نجات یا اطفا به‌طور مؤثر انجام شود. واحد مرکزی کنترل، دمای هر نقطه را در طول کابل دتکتور اندازه‌گیری می‌کند. این کابل در نرم‌افزار به نواحی مختلف تشخیص حریق تقسیم می‌شود و هر ناحیه می‌تواند آستانه هشدار اختصاصی خود را داشته باشد.

 

پیکربندی هوشمند زون ها

سیستم دتکتور حرارتی خطی فیبر نوری امکان پیکربندی هشدارهای هوشمند همراه با نواحی هوشمند را فراهم می‌کند. هر ناحیه می‌تواند با توجه به شرایط محیطی خاص یا هماهنگی با سایر اجزای سیستم، تنظیمات ویژه‌ای داشته باشد؛ مانند: خروجی‌های اضطراری، نواحی تهویه، یا نواحی اطفای حریق.

با توجه به اینکه سیستم مکان و دمای دقیق هر رویداد را مشخص می‌کند، می‌توان نحوه واکنش سیستم را به‌دقت برنامه‌ریزی کرد:
• یک ناحیه می‌تواند با رله به تابلو اعلام حریق متصل شده و سیستم اطفای آن ناحیه را فعال کند
• یا داده‌ها از طریق پروتکل‌هایی مانند Modbus به سیستم مرکزی ارسال شوند تا اقدامات مناسب تعیین گردد

 

پایداری سیستم (Redundancy)

بسته به نیاز مشتری، سطوح مختلفی از پایداری سیستم تعریف می‌شود:
پایداری کابل: در صورت قطع کابل، سیستم به کار خود ادامه می‌دهد (در عین هشدار برای اقدام تعمیراتی)
پایداری کنترلر: در صورت خرابی یکی از کنترلرها، عملکرد سیستم حفظ می‌شود

در کاربردهای سقفی، معمولاً فقط یک کنترلر استفاده می‌شود و پایداری از طریق کابل فراهم می‌شود.

 

نرم‌افزار پیشرفته نمایش تصویری

نرم‌افزار MaxView از شرکت Bandweaver قابلیت نمایش گرافیکی پیشرفته‌ای ارائه می‌دهد. در نصب‌های پیچیده با چندین ناحیه، اپراتور می‌تواند محل حادثه را به‌صورت بصری، سریع و دقیق شناسایی کند. این موضوع به‌ویژه در هشدارهای اولیه قبل از فعال شدن سیستم اطفای حریق اهمیت دارد.

در مثال ارائه‌شده، از ۱۱ سیستم دتکتور حرارتی خطی در ۴۶ ردیف قفسه (در دو ناحیه، هر ناحیه ۲۳ ردیف) استفاده شده است. هر قفسه دارای ۸ طبقه است و نرم‌افزار MaxView موقعیت را با دقت تا نزدیک‌ترین ۱ متر در هر طبقه نمایش می‌دهد.

 

نوشته‌های مشابه

  • معرفی سیستم‌های اطفاء حریق با گاز دی‌اکسید کربن

    1 محدودیت‌ها برای محفظه‌های معمولاً اشغال‌شده
    4.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی نباید در محفظه‌های معمولاً اشغال‌شده نصب شوند، مگر در مواردی که در بندهای 4.1.1.1، 4.1.1.2، 4.1.1.3، 4.1.1.4 یا 4.1.1.5 مجاز شمرده شده باشد.

    4.1.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از پایین‌ترین سطح اثرات منفی مشاهده‌شده (LOAEL) را ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.1.2 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده برای آتش‌سوزی‌های مربوط به تجهیزات الکتریکی فعال با ولتاژ بیشتر از 400 ولت و کابل‌های الکتریکی گروهی باشند، جایی که هیچ عامل گازی جایگزین به‌طور موفقیت‌آمیزی آزمایش نشده باشد.

    4.1.1.3 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که روش‌های طراحی یا سخت‌افزار یا هر دو برای درزگیری بازشوها یا تخلیه طولانی‌مدت برای دیگر عوامل گازی در دسترس نباشند.

    4.1.1.4 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های بارگیری کشتی‌های دریایی باشند.

    4.1.1.5 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده در اتاق‌های موتور کشتی‌های دریایی باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از LOAEL ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.2 سیستم‌های موجود. سیستم‌های دی‌اکسید کربن به‌صورت سیلابی موجود باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، مشروط بر اینکه به‌طور کامل با شیرهای قفل‌کننده سیستم، آلارم‌های پیش‌تخلیه پنوماتیک و تأخیرهای زمانی پنوماتیک مشخص‌شده در بند 4.5.6 مجهز شده باشند.

    4.2 استفاده و محدودیت‌های دی‌اکسید کربن
    4.2.1 سیستم‌های اطفاء حریق با دی‌اکسید کربن که از مناطق در برابر انفجار محافظت می‌کنند، باید از نازل‌های فلزی استفاده کنند و کل سیستم باید به‌طور کامل به زمین متصل شود.

    4.2.2 علاوه بر این، اشیاء در معرض تخلیه از نازل‌های دی‌اکسید کربن باید به‌طور کامل به زمین متصل شوند تا از تجمع بارهای الکترواستاتیکی احتمالی جلوگیری شود.

    4.3 ایمنی پرسنل
    4.3.1 خطرات برای پرسنل
    4.3.1.1 باید به احتمال حرکت و نشستن گاز دی‌اکسید کربن در مکان‌های مجاور خارج از فضای محافظت‌شده توجه شود. (به بند 4.3.1.3 مراجعه کنید.)

    4.3.1.2 همچنین باید به محل‌هایی توجه شود که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از یک دستگاه تخلیه ایمنی در یک مخزن ذخیره، مهاجرت یا جمع شود.

    4.3.1.3 در هر استفاده از گاز دی‌اکسید کربن، باید به احتمال گرفتار شدن پرسنل در جو یا ورود به جوی که به دلیل تخلیه دی‌اکسید کربن خطرناک شده است، توجه شود.

    4.3.1.3.1 تدابیری باید فراهم شود تا از تخلیه سریع پرسنل اطمینان حاصل شود، ورود به چنین جوهایی که در بند 4.3.1.3 توضیح داده شده است جلوگیری شود، و روش‌هایی برای نجات سریع پرسنل گرفتار شده فراهم گردد.

    4.3.1.3.2 باید آموزش‌های لازم به پرسنل ارائه شود.

    4.3.2 علائم
    4.3.2.1 علائم هشدار باید در مکان‌های قابل مشاهده در هر فضای محافظت‌شده، در هر ورودی به فضاهای محافظت‌شده، در فضاهای نزدیک به فضاهای محافظت‌شده که مشخص شده است گاز دی‌اکسید کربن ممکن است مهاجرت کرده و خطراتی برای پرسنل ایجاد کند، و در هر ورودی به اتاق‌های ذخیره‌سازی دی‌اکسید کربن و جایی که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از دستگاه ایمنی یک مخزن ذخیره جمع شود، نصب شوند.

    4.3.2.2 فرمت، رنگ، سبک حروف کلمات سیگنال، حروف‌نگاری پیام، اندازه حروف و مقررات ایمنی نمادها باید مطابق با استاندارد ANSI Z535.2 باشد.

    4.3.2.3 علائم ایمنی و کلمات پیام باید با استفاده از فرمت سه‌پنلی که در بندهای 4.3.2.3.1 تا 4.3.2.3.6.2 مشخص شده است، ارائه شوند.

    4.3.2.3.1 علائم نشان داده‌شده در شکل 4.3.2.3.1 باید در هر فضای محافظت‌شده استفاده شود.

    4.3.2.3.2 علائم نشان داده‌شده در شکل 4.3.2.3.2 باید در هر ورودی به فضای محافظت‌شده استفاده شود.

    4.3.2.3.3 علائم نشان داده‌شده در شکل 4.3.2.3.3 باید در هر ورودی به فضای محافظت‌شده برای سیستم‌هایی که با بوگیر سبز زمستانی تجهیز شده‌اند، استفاده شود.

    2Q==

    9k=

    ۴.۳.۲.۳.۴ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۴ باید در هر فضای مجاور که احتمال تجمع گاز دی‌اکسید کربن تا سطح خطرناک وجود دارد، نصب شود.

    ۴.۳.۲.۳.۵ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۵ باید در بیرون از هر ورودی اتاق ذخیره‌سازی دی‌اکسید کربن نصب شود.

    ۴.۳.۲.۳.۶ تابلوها برای عملکرد دستی:

    ۴.۳.۲.۳.۶.۱ تابلوهای هشدار باید در تمام مکان‌هایی که عملکرد دستی سیستم ممکن است انجام شود، نصب شوند.

    ۴.۳.۲.۳.۶.۲ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۶.۲ باید در کنار هر ایستگاه فعال‌سازی دستی نصب شود.

    Z

    2Q==

    2Q==

    ۴.۳.۲.۴ برای نصب‌هایی که دارای تابلوهای موجودی هستند که با الزامات بند ۴.۳.۲.۳ تفاوت دارند اما با الزامات بند ۴.۳.۲.۱مطابقت دارند، این تابلوهای موجود قابل‌قبول تلقی می‌شوند، مشروط بر اینکه مرکز دارای برنامه آموزشی تابلوها باشد که کلیه تابلوهای مرتبط با سیستم اطفاء را پوشش دهد و تمام افرادی که به فضای تحت حفاظت دسترسی دارند یا آموزش‌های لازم را دیده باشند یا همیشه با فرد آموزش‌دیده در آن فضا همراه باشند.
    در تأسیسات مشمول این بند، در نصب‌های جدید باید از همان نوع تابلوهایی استفاده شود که در تابلوهای موجود مرکز استفاده شده است. تمام تابلوها در یک مرکز باید سبک و قالب یکسانی داشته باشند.

    ۴.۳.۳ روش‌های تخلیه:

    ۴.۳.۳.۱ تمام افرادی که ممکن است در هر زمان وارد فضای تحت حفاظت با دی‌اکسید کربن شوند باید نسبت به خطرات موجود هشدار داده شوند و روش‌های ایمن تخلیه به آنان آموزش داده شود.

    ۴.۳.۳.۱.۱ باید تدابیری اتخاذ شود تا از ورود افراد فاقد تجهیزات ایمنی به فضاهایی که در اثر تخلیه دی‌اکسید کربن ناایمن شده‌اند، جلوگیری گردد، تا زمانی که فضا تهویه شود و آزمایش‌های مناسب ایمنی محیط را تأیید کرده باشند. افرادی که آموزش ندیده‌اند یا مجهز به دستگاه تنفسی مستقل (SCBA) نیستند، نباید در فضاهایی که غلظت گاز از ۴ درصد بیشتر است باقی بمانند.

    ۴.۳.۳.۲ هشداردهنده‌های صوتی و نوری باید طبق بند ۴.۵.۶فراهم شوند.

    ۴.۳.۳.۳* به تمام کارکنان اطلاع داده شود که تخلیه گاز دی‌اکسید کربن از سیستم‌های با فشار بالا یا پایین به‌صورت مستقیم روی فرد، می‌تواند باعث آسیب به چشم، گوش یا حتی زمین خوردن در اثر فشار شدید گاز شود.

    ۴.۳.۳.۴ در تمام سیستم‌ها به‌جز مواردی که محدودیت‌های ابعادی وجود دارد و مانع ورود افراد به فضای تحت حفاظت می‌شود، باید قفل ایمنی (lockout) فراهم شود.

    ۴.۳.۳.۴.۱ شیر قفل ایمنی باید روی تمام سیستم‌هایی که امکان مهاجرت دی‌اکسید کربن و ایجاد خطر برای افراد وجود دارد، نصب شود.

    ۴.۳.۳.۴.۲ در سیستم‌های فشار پایین، شیر قطع مخزن نباید به‌عنوان شیر قفل ایمنی در نظر گرفته شود، مگر طبق مجوز بند ۴.۳.۳.۴.۳.

    ۴.۳.۳.۴.۳ در مواردی که یک مخزن فشار پایین تنها یا چند سیستم را تغذیه می‌کند که خطرات مرتبط به هم را پوشش می‌دهند، و هیچ‌کدام از این خطرات در صورت خاموش بودن تجهیزات نیاز به حفاظت ندارند، می‌توان از شیر قطع مخزن به‌عنوان شیر قفل ایمنی برای کل سیستم استفاده کرد.

    ۴.۳.۳.۴.۴* کلید قطع سرویس نباید به‌جای شیر قفل ایمنی برای جلوگیری از تخلیه عامل مورد استفاده قرار گیرد. (به بند ۴.۵.۴.۱۲ مراجعه شود.)

    ۴.۳.۳.۴.۵ هنگام انجام تعمیرات یا آزمایش روی سیستم، باید سیستم قفل شود یا فضای حفاظت‌شده و فضاهای در معرض مهاجرت گاز تخلیه شوند.

    ۴.۳.۳.۴.۶ زمانی که قرار است در دوره قفل ایمنی حفاظت ادامه یابد، باید فرد یا افرادی به‌عنوان “نگهبان حریق” با تجهیزات اطفاء دستی یا نیمه‌ثابت مناسب یا ابزار لازم برای بازیابی حفاظت تعیین شوند.

    ۴.۳.۳.۴.۶.۱ نگهبان حریق باید به یک محل با پایش دائمی ارتباط داشته باشد.

    ۴.۳.۳.۴.۶.۲ مقامات مسئول تداوم حفاظت باید از قفل ایمنی و بازگردانی مجدد سیستم مطلع شوند.

    ۴.۳.۳.۵* هنگام حمل سیلندرهای سیستم، باید دستورالعمل‌های ایمنی رعایت شود.

    ۴.۳.۴ فاصله‌های الکتریکی:

    ۴.۳.۴.۱* تمام اجزای سیستم باید به‌گونه‌ای قرار گیرند که حداقل فاصله از اجزای برقدار مطابق با جدول ۴.۳.۴.۱ و شکل ۴.۳.۴.۱حفظ شود.

    ۴.۳.۴.۲* در ارتفاعات بیش از ۳۳۰۰ فوت (۱۰۰۰ متر)، فاصله از اجزای برقدار باید به میزان ۱ درصد برای هر ۳۳۰ فوت (۱۰۰متر) افزایش در ارتفاع، افزایش یابد.

    ۴.۳.۴.۳* برای هماهنگی فاصله موردنیاز با طراحی الکتریکی، باید سطح عایق‌کاری پایه طراحی (BIL) تجهیزات تحت حفاظت ملاک قرار گیرد، اگرچه در ولتاژهای نامی ۱۶۱ کیلوولت یا کمتر، این موضوع تأثیرگذار نیست.

    ۴.۳.۴.۴* فاصله انتخاب‌شده تا زمین باید بر اساس بیشترین مقدار بین پیک سوئیچینگ یا وظیفه BIL تعیین شود، نه صرفاً بر اساس ولتاژ نامی.

    ۴.۳.۴.۵ فاصله بین اجزای بدون عایق و برقدار سیستم الکتریکی و هر بخش از سیستم دی‌اکسید کربن نباید کمتر از حداقل فاصله‌ای باشد که برای ایزولاسیون سیستم الکتریکی در نظر گرفته شده است.

    Z

    Z

    4.3.4.6 زمانی که BIL طراحی در دسترس نباشد و زمانی که ولتاژ نامی برای معیار طراحی استفاده شود، بالاترین حداقل فاصله مشخص شده برای این گروه باید استفاده شود.

    4.3.5* مدت زمان حفاظت. برای سیستم‌های سیلاب کامل، غلظت مؤثر عامل اطفاء حریق باید به مدت زمانی حفظ شود که اقدامات اضطراری مؤثر توسط پرسنل آموزش دیده امکان‌پذیر باشد.

    4.3.6* آلارم‌های قابل مشاهده پیش از تخلیه باید مطابق با موارد زیر باشند: (1) آنها باید در تمام فضای محافظت‌شده قابل مشاهده باشند. (2) آنها باید از سیگنال آلارم حریق ساختمان و سایر سیگنال‌های آلارم متمایز باشند. (3) دستگاه‌های قابل مشاهده، به جز پوشش‌ها، نیازی به هم‌زمانی با یکدیگر یا با آلارم‌های حریق ساختمان ندارند.

    4.4 مشخصات، نقشه‌ها و تأییدیه‌ها.

    4.4.1 مشخصات. 4.4.1.1 مشخصات برای سیستم‌های اطفاء حریق دی‌اکسید کربن باید تحت نظارت شخصی با تجربه و صلاحیت کامل در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن و با مشاوره مقام مسئول تهیه شوند. 4.4.1.2 مشخصات باید شامل تمام موارد ضروری برای طراحی سیستم مانند تعیین مقام مسئول، انحرافات از استاندارد که توسط مقام مسئول مجاز است، و نوع و میزان آزمایش‌های تأییدیه‌ای که پس از نصب سیستم انجام خواهد شد، باشد. 4.4.1.3 آزمایش‌های سیستم حفاظت آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شوند.

    4.4.2 نقشه‌ها. 4.4.2.1 نقشه‌ها و محاسبات باید قبل از آغاز نصب به تأیید مقام مسئول ارسال شوند. 4.4.2.2 نقشه‌ها و محاسبات باید توسط افراد کاملاً واجد شرایط در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن تهیه شوند. 4.4.2.3 این نقشه‌ها باید به مقیاس مشخص یا با ابعاد دقیق ترسیم شوند. 4.4.2.4 نقشه‌ها باید به‌گونه‌ای تهیه شوند که به راحتی قابل تکثیر باشند. 4.4.2.5 این نقشه‌ها باید جزئیات کافی برای ارزیابی خطر یا خطرات و ارزیابی اثربخشی سیستم توسط مقام مسئول را فراهم کنند. 4.4.2.6 جزئیات نقشه‌ها باید شامل موارد زیر باشد: (1) مواد موجود در خطرات محافظت‌شده (2) محل خطرات (3) محصورسازی یا محدودیت و جداسازی خطرات (4) نواحی اطراف که می‌توانند بر خطرات محافظت‌شده تأثیر بگذارند

    4.4.2.7 جزئیات سیستم باید شامل موارد زیر باشد: (1) اطلاعات و محاسبات در مورد مقدار دی‌اکسید کربن (2) محل و نرخ جریان هر نازل، شامل شماره کد دهانه و قطر واقعی دهانه.

    (3) محل، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ
    (4) محل و اندازه تأسیسات ذخیره‌سازی دی‌اکسید کربن

    4.4.2.8 جزئیات روش کاهش اندازه لوله (کوپلینگ کاهنده یا بوشینگ) و جهت‌گیری سه‌راهی‌ها باید به‌وضوح مشخص شوند.
    4.4.2.9 اطلاعات مربوط به محل و عملکرد دستگاه‌های آشکارساز، دستگاه‌های عملیاتی، تجهیزات کمکی و مدارهای الکتریکی (در صورت استفاده) باید ارائه شوند.
    4.4.2.10 اطلاعاتی باید ارائه شود که دستگاه‌ها و تجهیزات مورد استفاده را شناسایی کند.
    4.4.2.11 هر ویژگی خاص باید به‌طور کافی توضیح داده شود.
    4.4.2.12 زمانی که شرایط در محل اجرای پروژه نیازمند تغییرات قابل توجه از نقشه‌های تأییدشده باشد، تغییرات باید برای تأیید به مقام مسئول ارائه شوند.
    4.4.2.13 اگر نصب نهایی با نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدیدی که نصب واقعی (as-built) را نشان می‌دهند باید تهیه شوند.
    4.4.2.13.1 نقشه‌های as-built باید ارتباط بین خاموش‌سازی تجهیزات موردنیاز و قطع سوخت با سیستم اطفاء حریق را نشان دهند.
    4.4.2.14 مالک سیستم باید دفترچه راهنمای دستورالعمل و نگهداری شامل توالی کامل عملکرد را نگهداری کرده و مجموعه کامل نقشه‌ها و محاسبات سیستم را در یک محفظه محافظت‌شده حفظ کند.

    4.4.3* تأیید نصب‌ها
    4.4.3.1* سیستم کامل‌شده باید توسط پرسنل واجد شرایط بازرسی، آزمایش و مستندسازی شده و به تأیید مقام مسئول برسد.
    4.4.3.1.1 آزمایش پذیرش مورد نیاز در بند 4.4.3.1 باید در قالب یک گزارش آزمایش مستندسازی شود.
    4.4.3.1.2 گزارش آزمایش پذیرش باید تا پایان عمر سیستم توسط مالک سیستم نگهداری شود.
    4.4.3.2* فقط تجهیزات و دستگاه‌های فهرست‌شده یا تأییدشده باید در سیستم استفاده شوند.
    4.4.3.3 برای اطمینان از نصب صحیح سیستم و عملکرد آن مطابق مشخصات، مراحل 4.4.3.3.1 تا 4.4.3.3.4.2 باید انجام شوند.

    4.4.3.3.1 بازرسی بصری. یک بازرسی بصری کامل از سیستم نصب‌شده و ناحیه دارای خطر باید انجام شود.
    4.4.3.3.1.1 لوله‌کشی، تجهیزات عملیاتی و نازل‌های تخلیه باید از نظر اندازه و محل مناسب بررسی شوند.
    4.4.3.3.1.2 محل آلارم‌ها و مکانیزم‌های دستی اضطراری باید تأیید شوند.
    4.4.3.3.1.3 پیکربندی ناحیه خطر باید با مشخصات اولیه خطر مقایسه شود.
    4.4.3.3.1.4 ناحیه خطر باید از نظر وجود بازشوهای غیرقابل بسته‌شدن و منابع نشت عامل اطفاء که ممکن است در مشخصات اولیه نادیده گرفته شده باشند، با دقت بررسی شود.

    4.4.3.3.2 برچسب‌گذاری.
    4.4.3.3.2.1 بررسی برچسب‌گذاری تجهیزات برای اطمینان از تطابق با نام‌گذاری و دستورالعمل‌های صحیح باید انجام شود.

    4.4.3.3.2.2 اطلاعات پلاک شناسایی روی مخازن ذخیره‌سازی باید با مشخصات تطبیق داده شود.
    4.4.3.3.3 آزمایش‌های عملکردی. آزمایش‌های عملکردی غیرمخرب بر روی تمام دستگاه‌های لازم برای عملکرد سیستم، از جمله دستگاه‌های کشف، فعال‌سازی و هشداردهنده، باید انجام شود.
    4.4.3.3.4* آزمایش تخلیه کامل.
    4.4.3.3.4.1 یک آزمایش تخلیه کامل باید بر روی هر سیستم نصب‌شده انجام شود.
    4.4.3.3.4.2 در مواردی که چند خطر از یک منبع مشترک محافظت می‌شوند، یک آزمایش تخلیه کامل برای هر خطر باید انجام شود.
    4.4.3.4 پیش از انجام آزمایش، رویه‌های ایمنی باید مرور شوند. (رجوع شود به بخش 4.4)

    4.4.4 آزمایش سیستم‌ها. سیستم‌ها باید طبق بندهای 4.4.4.1 تا 4.4.4.3 آزمایش شوند.
    4.4.4.1 کاربرد موضعی. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن به طور مؤثر خطر را برای مدت زمان مورد نیاز بر اساس مشخصات طراحی پوشش می‌دهد و تمام تجهیزات فشاری عملکرد صحیح دارند.
    4.4.4.2 سیلاب کامل. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن در ناحیه خطر تخلیه می‌شود، غلظت مورد نظر حاصل شده و به مدت زمان مشخص‌شده در طراحی حفظ می‌شود، و تمام تجهیزات فشاری به درستی عمل می‌کنند.
    4.4.4.3 شیلنگ‌های دستی.
    4.4.4.3.1 یک آزمایش تخلیه کامل بر روی سیستم‌های شیلنگ دستی باید انجام شود.
    4.4.4.3.2 ارائه شواهدی از جریان مایع از هر نازل با الگوی پوشش‌دهی مناسب الزامی است.

    4.5 کشف، فعال‌سازی و کنترل.
    4.5.1 طبقه‌بندی. سیستم‌ها باید بر اساس روش‌های فعال‌سازی شرح‌داده‌شده در بندهای 4.5.1.1 تا 4.5.1.3.2 به صورت خودکار یا دستی طبقه‌بندی شوند.
    4.5.1.1 عملکرد خودکار. عملکردی که به هیچ اقدام انسانی نیاز ندارد به عنوان عملکرد خودکار در نظر گرفته می‌شود.
    4.5.1.2 عملکرد عادی دستی.
    4.5.1.2.1 عملکرد سیستم که نیاز به اقدام انسانی دارد و محل دستگاه فعال‌کننده به گونه‌ای است که در همه زمان‌ها به راحتی در دسترس خطر قرار دارد، عملکرد عادی دستی تلقی می‌شود. (رجوع شود به 4.5.4.5)
    4.5.1.2.2 عملکرد یک کنترل باید تمام موارد لازم برای راه‌اندازی کامل سیستم را انجام دهد.
    4.5.1.3* عملکرد اضطراری دستی.
    4.5.1.3.1 عملکرد سیستم توسط انسان که دستگاه فعال‌کننده کاملاً مکانیکی بوده و در محل یا نزدیک دستگاه کنترل‌شونده قرار دارد، عملکرد اضطراری دستی تلقی می‌شود.

    4.5.1.3.2 استفاده از فشار سیستم برای تکمیل عملکرد دستگاه کاملاً مکانیکی مجاز است. (رجوع شود به 4.5.4.6)

    4.5.2* کشف خودکار و فعال‌سازی خودکار. کشف خودکار و فعال‌سازی خودکار باید استفاده شود، مگر در شرایط زیر:

    1. فعال‌سازی فقط دستی در صورتی که مورد تأیید مرجع ذی‌صلاح باشد و آزادسازی خودکار باعث افزایش خطر شود، مجاز است.
    2. کشف خودکار و فعال‌سازی خودکار برای سیستم‌های شیلنگ دستی و رایزر ثابت (standpipe) کاربرد ندارد.
    3. کشف خودکار و فعال‌سازی خودکار در سیستم‌های دریایی اعمال نمی‌شود، مگر طبق بند 9.3.3 مجاز باشد.

    4.5.2.1* کنترل‌های فعال‌سازی خودکار باید به گونه‌ای تنظیم شوند که نیازمند دریافت سیگنال مداوم هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه باشند و فعال‌سازی هرگونه تأخیر زمانی برقی پیش از تخلیه و هشدارهای برقی پیش از تخلیه را پیش از فعال‌سازی دستگاه‌های آزادسازی الزامی کنند.

    4.5.3* کشف خودکار. کشف خودکار باید با هر روش یا دستگاه فهرست‌شده یا مورد تأیید که توانایی کشف و اعلام گرما، شعله، دود، بخارات قابل اشتعال یا شرایط غیرعادی در ناحیه خطر مانند مشکلات فرآیندی که احتمال آتش‌سوزی دارد را داشته باشد، انجام گیرد.

    4.5.4 دستگاه‌های عملکردی. دستگاه‌های عملکردی باید شامل دستگاه‌ها یا شیرهای آزادسازی دی‌اکسید کربن، کنترل‌های تخلیه، و دستگاه‌های خاموشی تجهیزات باشند که برای عملکرد موفق سیستم لازم هستند.

    4.5.4.1 فهرست‌شده و مورد تأیید. 4.5.4.1.1 عملکرد باید از طریق روش‌های مکانیکی، برقی یا پنوماتیکی فهرست‌شده یا مورد تأیید انجام شود. 4.5.4.1.2 تجهیزات کنترلی باید به‌طور خاص برای تعداد و نوع دستگاه‌های فعال‌سازی به‌کاررفته فهرست‌شده یا مورد تأیید باشند، و سازگاری آن‌ها نیز باید فهرست‌شده یا مورد تأیید باشد.

    4.5.4.2 طراحی دستگاه. 4.5.4.2.1 تمامی دستگاه‌ها باید برای شرایط کاری مورد انتظار طراحی شده باشند و نباید به راحتی غیرفعال شوند یا مستعد عملکرد تصادفی باشند. 4.5.4.2.2 دستگاه‌ها باید به‌طور معمول برای عملکرد در بازه دمایی °F 20- تا °F 150 (°C 29- تا °C 66) طراحی شده باشند یا محدودیت دمایی آن‌ها به‌طور واضح روی آن‌ها درج شده باشد.

    4.5.4.3 تمامی دستگاه‌ها باید به گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌هایی که می‌توانند باعث از کار افتادن آن‌ها شوند، قرار نگیرند.

    4.5.4.4 دستگاه‌هایی که از اتصالات خاص تولیدکننده برای کنترل آزادسازی دی‌اکسید کربن استفاده می‌کنند باید دارای اتصالاتی باشند که مشخص یا به وضوح نشانه‌گذاری شده باشند، در مواردی که احتمال نصب نادرست وجود دارد.

    4.5.4.4.1 دستگاه‌های جدید معرفی‌شده پس از ۱ ژانویه ۲۰۰۸باید با این الزامات مطابقت داشته باشند.

    4.5.4.5* کنترل‌های دستی معمول برای فعال‌سازی باید در تمامی زمان‌ها از جمله هنگام آتش‌سوزی به راحتی در دسترس باشند.

    4.5.4.5.1 کنترل(های) دستی باید ظاهر مشخص و قابل تشخیص برای هدف مورد نظر داشته باشند.

    ۴.۵.۴.۵.۲ کنترل(های) دستی باید باعث عملکرد کامل سیستم به صورت عادی شود.

    ۴.۵.۴.۵.۳ عملکرد این کنترل دستی نباید باعث بازتنظیم تأخیر زمانی شود. (رجوع شود به ۴.۵.۶.۲.۲)

    ۴.۵.۴.۶* همه شیرهایی که کنترل آزادسازی و توزیع دی‌اکسید کربن را بر عهده دارند باید مجهز به کنترل دستی اضطراری باشند.

    ۴.۵.۴.۶.۱ کنترل دستی اضطراری برای سیلندرهای تحت فشار تبعی الزامی نیست.

    ۴.۵.۴.۶.۲ وسیله اضطراری باید به آسانی در دسترس بوده و در نزدیکی شیرهای مربوطه قرار داشته باشد.

    ۴.۵.۴.۶.۳ این دستگاه‌ها باید با یک پلاک هشدار مشخص نشانه‌گذاری شوند تا مفهوم بند ۴.۵.۴.۶.۲ را بیان کنند.

    ۴.۵.۴.۷* سیلندرها

    ۴.۵.۴.۷.۱ در مواردی که برای آزادسازی سیلندرهای تبعی از فشار گاز سیلندرهای پیلوت استفاده می‌شود که از طریق منیفولد تخلیه سیستم (یعنی با استفاده از فشار برگشتی به جای خط پیلوت جداگانه) تغذیه می‌شوند و تعداد کل سیلندرها کمتر از سه عدد است، باید حداقل یک سیلندر برای این عملیات اختصاص یابد.

    ۴.۵.۴.۷.۲ در مواردی که فشار گاز از سیلندرهای پیلوت از طریق منیفولد تخلیه سیستم برای آزادسازی سیلندرهای تبعی استفاده می‌شود و تعداد کل سیلندرها سه یا بیشتر است، باید حداقل یک سیلندر پیلوت بیشتر از حداقل مورد نیاز برای فعال‌سازی سیستم در نظر گرفته شود.

    ۴.۵.۴.۷.۳ در طول تست پذیرش تخلیه کامل، سیلندر پیلوت اضافی باید به‌گونه‌ای تنظیم شود که مانند یک سیلندر تبعی عمل کند.

    ۴.۵.۴.۷.۴* کنترل‌های فعال‌سازی خودکار باید به صورت زیر تنظیم شوند: ۱) نیاز به یک سیگنال پیوسته هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه داشته باشند.
    ۲) فعال‌سازی هرگونه تأخیر زمانی یا هشدارهای برقی پیش از تخلیه باید پیش از فعال‌سازی دستگاه‌های آزادسازی انجام شود.

    ۴.۵.۴.۸ کنترل‌های دستی

    ۴.۵.۴.۸.۱ کنترل‌های دستی نباید نیاز به نیروی کششی بیش از ۴۰ پوند (۱۷۸ نیوتن) یا حرکتی بیش از ۱۴ اینچ (۳۵۶ میلی‌متر) برای عملکرد داشته باشند.

    ۴.۵.۴.۸.۲ حداقل یک کنترل دستی برای فعال‌سازی باید در ارتفاعی حداکثر ۴ فوت (۱.۲ متر) از سطح زمین نصب شود.

    ۴.۵.۴.۹ در مواردی که ادامه عملکرد تجهیزات مرتبط با خطری که در حال اطفاء آن است می‌تواند به تداوم آتش‌سوزی کمک کند، منبع برق یا سوخت آن تجهیزات باید به صورت خودکار قطع شود.

    ۴.۵.۴.۹.۱ همه دستگاه‌های خاموش‌کننده باید به عنوان اجزای جدایی‌ناپذیر سیستم در نظر گرفته شده و همراه با عملکرد سیستم فعال شوند.

    ۴.۵.۴.۹.۲ الزامات بند ۴.۵.۴.۹ در مورد سیستم‌های روغن‌کاری مرتبط با تجهیزات دوار بزرگ که در آن‌ها سیستم تخلیه ممتد برای دوره کاهش سرعت یا خنک‌سازی طراحی شده باشد، اعمال نمی‌شود.

    ۴.۵.۴.۱۰ همه دستگاه‌های دستی باید به گونه‌ای شناسایی شوند که خطر مربوطه، عملکرد مورد انتظار و روش استفاده آن‌ها مشخص باشد.

    ۴.۵.۴.۱۱ استفاده از کلید قطع اضطراری (Abort switches) در سیستم‌های دی‌اکسید کربن مجاز نیست.

    ۴.۵.۴.۱۲ در سیستم‌هایی که به‌صورت الکتریکی عمل می‌کنند، باید یک کلید قطع سرویس تعبیه شود تا امکان آزمایش سیستم بدون فعال‌سازی سیستم اطفاء حریق فراهم شود. هنگام استفاده از این کلید، مدار آزادسازی سیستم اطفاء حریق قطع شده و سیگنال نظارتی در پنل آزادسازی سیستم اطفاء ایجاد می‌شود.

    ۴.۵.۴.۱۳ کلید فشار تخلیه

    ۴.۵.۴.۱۳.۱ یک کلید فشار تخلیه باید بین منبع دی‌اکسید کربن و شیر قفل‌کن نصب شود.

    ۴.۵.۴.۱۳.۲ در سیستم‌های دی‌اکسید کربن با فشار پایین، در صورتی که شیر قطع اصلی دستی و نظارت‌شده به عنوان شیر قفل‌کن در نظر گرفته شود (یعنی الزامات بندهای ۴.۳.۳.۴ تا ۴.۳.۳.۴.۵ را داشته باشد)، کلید فشار باید در پایین‌دست شیر خودکار (شیر انتخاب‌گر اصلی یا شیر انتخاب‌گر) که به اتاق سرور یا اتاق‌های سرور تغذیه می‌کند، نصب شود.

    ۴.۵.۴.۱۳.۳ کلید فشار تخلیه باید سیگنالی برای شروع هشدار به پنل آزادسازی ارسال کند تا دستگاه‌های هشدار برقی/الکترونیکی را فعال نماید.

    ۴.۵.۵ نظارت و شیرهای قفل‌کن

    ۴.۵.۵.۱ نظارت بر سیستم‌های خودکار و شیرهای قفل‌کن دستی باید فراهم باشد مگر اینکه توسط مرجع ذیصلاح به‌طور خاص مستثنا شود.

    ۴.۵.۵.۲* ارتباطات بین اجزای ضروری برای کنترل سیستم و ایمنی جانی باید تحت نظارت باشد.

    ۴.۵.۵.۳ ارتباطات لوله و لوله‌کشی که به‌طور معمول تحت فشار نیستند، ملزم به رعایت بند ۴.۵.۵.۲ نیستند.

    ۴.۵.۵.۴ در صورت وجود مدار باز، اتصال زمین ناخواسته یا از دست رفتن یکپارچگی در خطوط کنترل پنوماتیکی که موجب اختلال در عملکرد کامل سیستم می‌شود، باید سیگنال اشکال (trouble) ارسال گردد.

    ۴.۵.۵.۵ سیگنال‌های هشدار و اشکال باید از طریق یکی از روش‌های تعریف‌شده در استاندارد NFPA 72 ارسال شوند.

    ۴.۵.۵.۶ اتصالات سیلندرهای تبعی که با پنوماتیک فشار بالا کار می‌کنند و در مجاورت مستقیم با سیلندرهای پیلوت قرار دارند، الزامی به نظارت ندارند.

    ۴.۵.۵.۷ در مواردی که بای‌پس دستی وجود دارد و این بای‌پس می‌تواند در حالت باز باقی بماند، این بای‌پس‌ها باید تحت نظارت باشند.

    ۴.۵.۶* هشدارها. هشدارهای دیداری و شنیداری باید برای مقاصد زیر فراهم شوند:

    ۱) هشدار به افراد برای عدم ورود به فضایی که ممکن است به دلیل حضور غلظت بالای دی‌اکسید کربن، خطرناک باشد.
    ۲) فراهم‌کردن فرصت برای خروج افراد از فضاهایی که با تخلیه سیستم دی‌اکسید کربن ممکن است ناایمن شوند.

    ۴.۵.۶.۱ هشدارهای شنیداری و دیداری سیستم دی‌اکسید کربن باید از سایر هشدارها از جمله سیستم اعلام حریق ساختمان متمایز باشند.

    ۴.۵.۶.۲ هشدار پیش از تخلیه و تأخیر زمانی. یک هشدار پیش‌تخلیه پنوماتیکی، تأخیر زمانی پنوماتیکی و هشدار دیداری پیش‌تخلیه باید برای اتاق‌های سرور زیر فراهم شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تحت پوشش سیستم‌های غرقاب کامل هستند، به جز موارد بیان‌شده در بند ۴.۵.۶.۲.۳
    ۲) سیستم‌های اعمال موضعی که از خطراتی محافظت می‌کنند و تخلیه آن‌ها باعث قرار گرفتن افراد در معرض غلظت‌هایی از دی‌اکسید کربن بیش از ۷.۵ درصد حجمی در هوا به مدت بیش از ۵ دقیقه می‌شود

    ۴.۵.۶.۲.۱ هشدارهای پیش‌تخلیه، در صورت نیاز، باید در داخل فضای محافظت‌شده نصب شوند.

    ۴.۵.۶.۲.۲ تأخیر زمانی پیش‌تخلیه باید مدت زمانی کافی را برای هشدار پیش‌تخلیه فراهم کند تا امکان تخلیه افراد از دورترین نقاط فضا نسبت به خروجی‌ها فراهم باشد.

    ۴.۵.۶.۲.۳* حذف تأخیر زمانی برای فضاهای قابل اشغال مجاز است، در صورتی که فراهم کردن تأخیر زمانی باعث ایجاد خطر غیرقابل‌قبول برای افراد یا آسیب غیرقابل‌قبول به تجهیزات حیاتی شود.

    ۴.۵.۶.۲.۴ در مواردی که تأخیر زمانی حذف می‌شود، باید تدابیری اتخاذ گردد تا در زمانی که افراد در فضای محافظت‌شده حضور دارند، سیستم دی‌اکسید کربن در وضعیت قفل باشد و فعال نشود.

    ۴.۵.۶.۲.۵ آزمایش‌های خشک (Dry Runs) باید انجام شود تا حداقل زمان مورد نیاز برای تخلیه افراد از منطقه خطر به‌دست آید، با در نظر گرفتن زمان لازم برای تشخیص سیگنال هشدار.

    ۴.۵.۶.۲.۶ دستگاه‌های هشدار شنیداری باید یا سطح صدا مطابق با بندهای ۴.۵.۶.۲.۶.۱ و ۴.۵.۶.۲.۶.۲ داشته باشند یا ویژگی‌های صوتی مطابق با بند ۱۸.۴.۶ استاندارد NFPA 72 را دارا باشند.

    ۴.۵.۶.۲.۶.۱ هشدارهای پیش‌تخلیه شنیداری باید حداقل ۱۵دسی‌بل بالاتر از سطح نویز محیط یا ۵ دسی‌بل بالاتر از حداکثر سطح صدا، هرکدام که بیشتر است، باشند؛ این اندازه‌گیری باید در ارتفاع ۱.۵ متری از کف فضای قابل اشغال انجام شود.

    ۴.۵.۶.۲.۶.۲ دستگاه‌های هشدار شنیداری نباید صدایی بیش از ۱۲۰ دسی‌بل در حداقل فاصله شنوایی از دستگاه هشدار داشته باشند.

    ۴.۵.۶.۲.۶.۳ هشدار پیش‌تخلیه باید دارای حداقل قدرت صدای ۹۰ دسی‌بل در فاصله ۳ متری باشد.

    ۴.۵.۶.۳ هشدارهای دیداری و شنیداری باید در بیرون از هر ورودی به فضاهای زیر نصب شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که توسط سیستم غرقاب کامل دی‌اکسید کربن محافظت می‌شوند
    ۲) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تخلیه از سیستم موضعی ممکن است افراد را در معرض غلظت‌های خطرناک دی‌اکسید کربن قرار دهد
    ۳) فضاهای معمولاً اشغال‌شده یا قابل اشغال که دی‌اکسید کربن ممکن است به آن‌ها نشت کرده و برای افراد خطر ایجاد کند

    ۴.۵.۶.۳.۱ این هشدارها باید قبل از تخلیه یا همزمان با شروع تخلیه فعال شوند.

    ۴.۵.۶.۳.۲* این هشدارها باید پس از تخلیه عامل ادامه یابند تا یکی از شرایط زیر حاصل شود:

    ۱) اقدام مثبت دیگری برای جلوگیری از ورود افراد به فضایی که به دلیل تخلیه دی‌اکسید کربن ناایمن شده، انجام شود.
    ۲) فضا تهویه شده و ایمنی جو برای ورود افراد بدون تجهیزات حفاظتی تأیید گردد.

    ۴.۵.۶.۳.۳ پس از انجام اقدامات مندرج در بند ۴.۵.۶.۳.۲(۱)، قطع هشدار شنیداری در حالی که هشدار دیداری همچنان فعال باقی بماند، مجاز است.

    ۴.۵.۶.۳.۴ هشدارهای دیداری باید تا زمانی که تهویه فضا مطابق با بند ۴.۵.۶.۳.۲(۲) انجام نشده، فعال باقی بمانند.

    ۴.۵.۶.۴ باید یک هشدار یا نشانگر وجود داشته باشد که نشان دهد سیستم فعال شده و نیاز به شارژ مجدد دارد.

    ۴.۵.۶.۵* باید هشداری فراهم شود که فعال شدن سیستم‌های خودکار را اعلام کرده و نشان دهد که واکنش فوری کارکنان مورد نیاز است.

    ۴.۵.۶.۶ هشدارهای مربوط به خرابی تجهیزات یا دستگاه‌های تحت نظارت باید سریع و قطعی بوده و به‌طور واضح از هشدارهای مربوط به فعال شدن سیستم یا شرایط خطرناک متمایز باشند.

    ۴.۵.۷ منابع تغذیه

    ۴.۵.۷.۱ منبع اصلی انرژی برای عملکرد و کنترل سیستم باید ظرفیت لازم برای سرویس مورد نظر را داشته و قابل اطمینان باشد.

    ۴.۵.۷.۱.۱ در مواردی که از دست رفتن منبع اصلی انرژی باعث به خطر افتادن حفاظت از خطر یا ایمنی جان افراد (یا هر دو) می‌شود، یک منبع تغذیه ثانویه (اضطراری) مستقل باید در صورت قطع کامل یا افت ولتاژ (کمتر از ۸۵ درصد ولتاژ اسمی) منبع اصلی، انرژی مورد نیاز سیستم را تأمین کند.

    ۴.۵.۷.۱.۲ منبع تغذیه ثانویه (اضطراری) باید بتواند سیستم را تحت حداکثر بار معمولی به مدت ۲۴ ساعت فعال نگه دارد و سپس به مدت کامل دوره تخلیه طراحی‌شده به‌طور مداوم عمل کند.

    ۴.۵.۷.۱.۳ منبع تغذیه اضطراری باید به‌طور خودکار در مدت ۳۰ثانیه پس از از دست رفتن منبع تغذیه اصلی به سیستم متصل شده و آن را فعال کند.

    ۴.۵.۷.۲ تمامی تجهیزات الکتریکی باید قادر به کارکرد در بازه ۸۵ تا ۱۰۵ درصد ولتاژ نامی باشند.

    ۴.۶ تأمین دی‌اکسید کربن

    ۴.۶.۱* مقدار: مقدار تأمین اصلی دی‌اکسید کربن در سیستم باید حداقل به اندازه کافی برای بزرگ‌ترین خطر منفرد یا گروهی از خطرات که به‌صورت همزمان محافظت می‌شوند، باشد.

    ۴.۶.۱.۱ در صورتی که شیلنگ‌های دستی برای استفاده در یک خطر تحت حفاظت سیستم ثابت فراهم شده باشند، باید تأمین جداگانه‌ای برای آن‌ها وجود داشته باشد، مگر اینکه مقدار کافی از دی‌اکسید کربن موجود باشد تا اطمینان حاصل شود که حفاظت ثابت برای بزرگ‌ترین خطر مربوط به شیلنگ دستی به خطر نیفتد. (به بخش ۷.۴ و A.7.1.1 مراجعه شود.)

    ۴.۶.۱.۲ در صورتی که مرجع صلاحیت‌دار تشخیص دهد که حفاظت مداوم مورد نیاز است، مقدار ذخیره باید مضربی از مقادیر مورد نیاز در بندهای ۴.۶.۱ و ۴.۶.۱.۱ باشد، بسته به نظر مرجع مربوطه.

    ۴.۶.۱.۳ تأمین اصلی و ذخیره برای سیستم‌های ثابت باید به‌صورت دائم به لوله‌کشی متصل بوده و به‌گونه‌ای تنظیم شده باشد که تعویض آن‌ها به‌راحتی انجام شود، مگر آنکه مرجع صلاحیت‌دار اجازه ذخیره جداگانه بدون اتصال را صادر کند.

    ۴.۶.۲ تأمین مجدد: مدت زمان مورد نیاز برای تهیه دی‌اکسید کربن جهت شارژ مجدد سیستم‌ها به وضعیت عملیاتی، باید به عنوان یک عامل مهم در تعیین مقدار ذخیره در نظر گرفته شود.

    ۴.۶.۳* کیفیت: دی‌اکسید کربن باید دارای ویژگی‌های حداقلی زیر باشد:
    ۱) فاز بخار باید حداقل ۹۹.۵٪ دی‌اکسید کربن باشد، بدون هرگونه بوی نامطبوع یا طعم قابل تشخیص.
    ۲) میزان آب در فاز مایع باید مطابق با استاندارد CGA G-6.2 باشد.
    ۳) میزان روغن نباید بیشتر از ۱۰ پی‌پی‌ام (قسمت در میلیون) وزنی باشد.

    ۴.۶.۴ ظروف ذخیره‌سازی

    ۴.۶.۴.۱ ظروف ذخیره‌سازی و تجهیزات جانبی باید به‌گونه‌ای قرار داده و تنظیم شوند که بازرسی، نگهداری و شارژ مجدد به‌راحتی انجام شود.
    ۴.۶.۴.۲ اختلال در عملکرد حفاظت باید به حداقل برسد.
    ۴.۶.۴.۳ ظروف ذخیره‌سازی باید تا حد امکان به نزدیک‌ترین محل نسبت به خطرات تحت حفاظت نصب شوند، اما نباید در جایی قرار گیرند که در معرض آتش‌سوزی یا انفجار ناشی از همان خطر قرار بگیرند.
    ۴.۶.۴.۴ ظروف نباید در محل‌هایی قرار گیرند که در معرض شرایط آب و هوایی شدید، یا آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌ها باشند.
    ۴.۶.۴.۵ در صورت پیش‌بینی شرایط محیطی یا مکانیکی شدید، محافظ یا محفظه‌هایی باید برای محافظت فراهم شود.

    ۴.۶.۵ سیلندرهای پرفشار*

    مقدار دی‌اکسید کربن باید در سیلندرهای قابل شارژ نگهداری شود که برای نگهداری دی‌اکسید کربن به‌صورت مایع در دمای محیط طراحی شده‌اند.

    ۴.۶.۵.۱ ظروف مورد استفاده باید مطابق با الزامات وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا، یا مرجع معادل آن طراحی شده باشند.
    ۴.۶.۵.۲* سیلندرهای پرفشار استفاده شده در سیستم‌های اطفا حریق نباید بدون انجام تست هیدرواستاتیک و برچسب‌گذاری مجدد، در صورتی که بیش از ۵ سال از تاریخ آخرین تست گذشته باشد، مجدداً شارژ شوند.
    ۴.۶.۵.۲.۱ سیلندرهایی که به‌طور پیوسته در سرویس بوده‌اند بدون تخلیه، می‌توانند حداکثر تا ۱۲ سال پس از آخرین تست هیدرواستاتیک در سرویس باقی بمانند.
    ۴.۶.۵.۲.۲ در پایان ۱۲ سال، سیلندرهایی که بدون تخلیه در سرویس مانده‌اند، باید تخلیه شده، تست مجدد انجام شده و سپس دوباره وارد سرویس شوند.

    ۴.۶.۵.۳ دستگاه اطمینان فشار (Pressure Relief Device)
    ۴.۶.۵.۳.۱ هر سیلندر باید دارای یک دستگاه اطمینان فشار از نوع دیسک شکستنی (rupture disk) باشد.
    ۴.۶.۵.۳.۲ این دستگاه باید مطابق با الزامات بخش‌های ۴۹CFR 171 تا ۱۹۰ مقررات DOT، اندازه‌گذاری و نصب شود.

    ۴.۶.۵.۴ سیلندرهای منیفولد شده

    ۴.۶.۵.۴.۱ هنگامی که سیلندرها به صورت منیفولد نصب می‌شوند، باید در قفسه‌ای که مخصوص این کار طراحی شده نصب و نگهداری شوند و امکان سرویس‌دهی و وزن‌کشی جداگانه سیلندرها فراهم باشد.
    ۴.۶.۵.۴.۲ باید تمهیدات خودکاری در نظر گرفته شود که در صورت راه‌اندازی سیستم زمانی که یکی از سیلندرها برای نگهداری جدا شده است، از نشت دی‌اکسید کربن از منیفولد جلوگیری کند.

    ۴.۶.۵.۴.۳ در سیستم‌هایی با چند سیلندر، تمامی سیلندرهایی که به یک خروجی منیفولد مشترک برای توزیع عامل متصل هستند، باید قابل تعویض بوده و از یک سایز انتخاب‌شده و مشخص باشند.

    ۴.۶.۵.۵ دمای نگهداری محیطی

    ۴.۶.۵.۵. سیستم‌های محلی (local application) نباید در دمایی بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) یا پایین‌تر از ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) نگهداری شوند.
    ۴.۶.۵.۵.۱ در سیستم‌های غرقابی کلی (total flooding)، دمای نگهداری نباید از ۱۳۰ درجه فارنهایت (۵۴ درجه سانتی‌گراد) بیشتر و از ۰ درجه فارنهایت (۱۸- درجه سانتی‌گراد) کمتر باشد، مگر اینکه طراحی سیستم برای کار در دماهای خارج از این محدوده انجام شده باشد.
    ۴.۶.۵.۵.۲ استفاده از گرمایش یا سرمایش خارجی برای نگه‌داشتن دما در محدوده مشخص‌شده در ۴.۶.۵.۵.۱ مجاز است.
    ۴.۶.۵.۵.۳ در مواردی که از بارگذاری‌های خاص سیلندر برای جبران دماهای خارج از محدوده‌های اعلام‌شده در ۴.۶.۵.۵ و ۴.۶.۵.۵.۱ استفاده می‌شود، سیلندرها باید به‌صورت دائم و قابل‌اطمینان علامت‌گذاری شوند.

    ۴.۶.۶ ظروف ذخیره‌سازی کم‌فشار*

    ظروف ذخیره‌سازی کم‌فشار باید برای نگهداری دی‌اکسید کربن در فشار اسمی ۳۰۰ psi (2068 kPa)، معادل با دمای تقریبی ۰°F (۱۸-°C) طراحی شده باشند.

    ۴.۶.۶.۱ الزامات ظروف

    ۴.۶.۶.۱.۱ ظرف تحت فشار باید مطابق با مشخصات فعلی کدAPI-ASME برای مخازن بدون شعله مخصوص مایعات و گازهای نفتی ساخته، تست، تأیید، تجهیز و علامت‌گذاری شود. در مورد ظروف تأمین سیار، در صورت لزوم، الزامات 49CFR 171-190 وزارت حمل‌ونقل آمریکا (DOT) نیز باید رعایت شود.
    ۴.۶.۶.۱.۲ فشار طراحی ظرف باید حداقل ۳۲۵ psi (2241 kPa) باشد.

    ۴.۶.۶.۲ تجهیزات مورد نیاز اضافی*

    علاوه بر الزامات کدهای ASME و DOT، هر ظرف تحت فشار باید مجهز به موارد زیر باشد:

    گیج سطح مایع
    گیج فشار
    آلارم نظارتی فشار بالا/پایین که باید در فشار حداکثر ۹۰٪از حداکثر فشار کاری مجاز طراحی‌شده (MAWP) و حداقل ۲۵۰ psi (1724 kPa) فعال شود.

    ۴.۶.۶.۳ عایق و سیستم کنترل دما

    ظرف تحت فشار باید عایق‌بندی شده و در صورت لزوم مجهز به سیستم‌های سرمایشی یا گرمایشی کنترل‌شده خودکار(یا هر دو) باشد.

    ۴.۶.۶.۴ سیستم سرمایش

    سیستم سرمایش باید توانایی حفظ فشار ۳۰۰ psi (2068 kPa) در دمای بالاترین حد پیش‌بینی‌شده محیطی را داشته باشد.

    ۴.۶.۶.۵ سیستم گرمایش

    ۴.۶.۶.۵.۱ در صورت نیاز، سیستم گرمایش باید توانایی حفظ دمای ۰°F (۱۸-°C) در ظرف تحت فشار را در پایین‌ترین دمای محیطی مورد انتظار داشته باشد.
    ۴.۶.۶.۵.۲ سیستم گرمایش فقط در صورتی لازم است که داده‌های هواشناسی، احتمال وقوع دماهایی را نشان دهند که ممکن است محتویات مخزن را به دمایی برسانند که فشار به کمتر از ۲۵۰ psi (1724 kPa) کاهش یابد (تقریباً برابر با ۱۰-°F یا ۲۳-°C).

    ۴.۷* سیستم‌های توزیع
    ۴.۷.۱* لوله‌کشی باید از مواد فلزی غیرقابل احتراق باشد که ویژگی‌های فیزیکی و شیمیایی آن به‌گونه‌ای باشد که تغییرات آن تحت فشار با اطمینان قابل پیش‌بینی باشد.
    ۴.۷.۱.۱ در محل‌هایی که لوله‌کشی در معرض محیط‌های بسیار خورنده نصب می‌شود، باید از مواد یا پوشش‌های مقاوم به خوردگی ویژه استفاده گردد.
    ۴.۷.۱.۲ مواد مورد استفاده در لوله‌کشی و استانداردهای مربوط به آن‌ها باید مطابق با بندهای ۴.۷.۱.۲.۱ تا ۴.۷.۱.۲.۵ باشند.
    ۴.۷.۱.۲.۱ لوله‌های فولادی سیاه یا گالوانیزه باید از نوع بدون درز یا جوش الکتریکی طبق ASTM A53، گرید A یا B، یا طبقASTM A106، گرید A، B یا C باشند.
    ۴.۷.۱.۲.۱.۱ لوله‌های ASTM A120 و لوله‌های چدنی معمولی نباید استفاده شوند.
    ۴.۷.۱.۲.۱.۲ فولاد ضدزنگ برای اتصالات پیچی باید TP304 یاTP316 و برای اتصالات جوشی باید TP304، TP316، TP304L یا TP316L باشد.
    ۴.۷.۱.۲.۲ در سیستم‌هایی با منبع پرفشار، لوله‌هایی به قطر ¾ اینچ (۲۰ میلی‌متر) و کمتر مجاز به استفاده از Schedule 40 می‌باشند.
    ۴.۷.۱.۲.۲.۱ لوله‌هایی با قطر ۱ تا ۴ اینچ (۲۵ تا ۱۰۰ میلی‌متر) باید حداقل Schedule 80 باشند.
    ۴.۷.۱.۲.۲.۲ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز نیست.
    ۴.۷.۱.۲.۳ در سیستم‌هایی با منبع کم‌فشار، لوله‌ها باید حداقلSchedule 40 باشند.
    ۴.۷.۱.۲.۳.۱ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز است.
    ۴.۷.۱.۲.۴ در انتهای هر شاخه لوله‌کشی، باید یک تله‌گیرنده گرد و خاک که شامل یک سه‌راهی با یک نیپل درپوش‌دار به طول حداقل ۲ اینچ (۵۱ میلی‌متر) باشد نصب گردد.
    ۴.۷.۱.۲.۵ مقاطع لوله‌کشی که معمولاً در معرض اتمسفر قرار ندارند، نیاز به پوشش داخلی مقاوم به خوردگی ندارند.
    ۴.۷.۱.۳* اجزای انعطاف‌پذیر سیستم لوله‌کشی که به‌طور خاص در این استاندارد پوشش داده نشده‌اند، باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴,۴۷۴ kPa) برای سیستم‌های پرفشار یا ۱۸۰۰ psi (۱۲,۴۱۱ kPa) برای سیستم‌های کم‌فشار را داشته باشند.
    ۴.۷.۱.۴ اتصالات Class 150 و اتصالات چدنی نباید استفاده شوند.
    ۴.۷.۱.۵ اتصالات برای سیستم‌های پرفشار و کم‌فشار باید طبق بندهای ۴.۷.۱.۵.۱ و ۴.۷.۱.۵.۲ باشند.
    ۴.۷.۱.۵.۱ سیستم‌های پرفشار:
    ۴.۷.۱.۵.۱.۱ برای سایزهای اسمی تا ۲ اینچ، باید از اتصالات چکش‌خوار Class 300 و برای سایزهای بزرگ‌تر، از اتصالات فولادی فورج‌شده استفاده شود.
    ۴.۷.۱.۵.۱.۲ فلنج‌هایی که قبل از هر شیر قطع نصب می‌شوند، باید Class 600 باشند.
    ۴.۷.۱.۵.۱.۳ فلنج‌هایی که بعد از شیر قطع یا در سیستم‌هایی بدون شیر قطع نصب می‌شوند، مجاز به استفاده از Class 300 هستند.
    ۴.۷.۱.۵.۱.۴ یونیون‌های پیچی باید حداقل معادل اتصالات فولاد فورج‌شده Class 2000 باشند.

    ۴.۷.۱.۵.۱.۵ اتصالات فولاد ضدزنگ باید از نوع ۳۰۴ یا ۳۱۶، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۵.۲ سیستم‌های کم‌فشار:
    ۴.۷.۱.۵.۲.۱ اتصالات چکش‌خوار یا داکتیل آهنی کلاس ۳۰۰باید برای لوله‌هایی تا سایز اسمی ۳ اینچ (۸۰ میلی‌متر) و اتصالات فولادی فورج‌شده برای سایزهای بزرگ‌تر استفاده شوند.
    ۴.۷.۱.۵.۲.۲ اتصالات فلنجی باید از نوع کلاس ۳۰۰ باشند.
    ۴.۷.۱.۵.۲.۳ اتصالات فولاد ضدزنگ باید برای اتصالات پیچی از نوع ۳۰۴ یا ۳۱۶ و برای اتصالات جوشی از نوع ۳۰۴، ۳۱۶، ۳۰۴L یا ۳۱۶L، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، کلاس ۲۰۰۰، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳ میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۶ اتصالات لوله:
    ۴.۷.۱.۶.۱ اتصالات جوشی، پیچی یا فلنجی (چکش‌خوار یا داکتیل آهنی) مجاز به استفاده هستند.
    ۴.۷.۱.۶.۲ استفاده از کوپلینگ‌ها و اتصالات مکانیکی شیار‌دار مجاز است، مشروط بر اینکه مخصوص سرویس دی‌اکسیدکربن باشند.
    ۴.۷.۱.۶.۳ استفاده از بوشینگ‌های هم‌سطح مجاز نیست.
    ۴.۷.۱.۶.۴ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش یک سایز استفاده می‌شود، باید از بوشینگ فولادی کلاس ۳۰۰۰جهت حفظ استحکام کافی استفاده گردد.
    ۴.۷.۱.۶.۵ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش بیش از یک سایز استفاده می‌شود، باید مطابق بند ۴.۷.۱.۵ عمل شود.
    ۴.۷.۱.۶.۶ اتصالات فلر، نوع فشاری یا لحیم‌شده باید با لوله‌های سازگار استفاده شوند.
    ۴.۷.۱.۶.۷ در مواردی که از اتصالات لحیم‌شده استفاده می‌شود، آلیاژ لحیم باید نقطه ذوبی برابر یا بالاتر از ۱۰۰۰ درجه فارنهایت (۵۳۸ درجه سانتی‌گراد) داشته باشد.

    ۴.۷.۱.۷ منبع پرفشار:
    ۴.۷.۱.۷.۱* در سیستم‌هایی که از منبع پرفشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۷.۲ فشار داخلی برای این محاسبه باید ۲۸۰۰ psi (۱۹,۳۰۶ kPa) در نظر گرفته شود.

    ۴.۷.۱.۸ منبع کم‌فشار:
    ۴.۷.۱.۸.۱* در سیستم‌هایی که از منبع کم‌فشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۸.۲ فشار داخلی برای این محاسبه باید ۴۵۰ psi (۳۱۰۳kPa) در نظر گرفته شود.

    ۴.۷.۲ سیستم لوله‌کشی نباید در معرض آسیب قرار گیرد.
    ۴.۷.۲.۱ لوله‌ها باید قبل از مونتاژ، پخ‌زده و تمیز شوند و پس از مونتاژ، کل سیستم لوله‌کشی باید پیش از نصب نازل‌ها یا تجهیزات تخلیه، کاملاً پاک‌سازی گردد.
    ۴.۷.۲.۲ در سیستم‌هایی که آرایش شیرآلات باعث ایجاد بخش‌هایی از لوله‌کشی بسته می‌شود، این بخش‌ها باید به تجهیزات تخلیه فشار مجهز شوند یا شیرها باید به گونه‌ای طراحی شده باشند که از محبوس شدن دی‌اکسیدکربن مایع جلوگیری کنند.

    ۴.۷.۲.۲.۱ برای سیستم‌های پرفشار، تجهیزات تخلیه فشار باید در فشاری نه کمتر از ۲۴۰۰ psi (۱۶٬۵۴۷ kPa) و نه بیشتر از ۳۰۰۰ psi (۲۰٬۶۸۴ kPa) عمل کنند.

    ۴.۷.۲.۲.۲ برای سیستم‌های کم‌فشار، تجهیزات تخلیه فشار باید در فشاری حداکثر ۴۵۰ psi (۳۱۰۳ kPa) عمل کنند.

    ۴.۷.۲.۲.۳ در مواردی که از شیر سیلندر با عملکرد فشاری استفاده می‌شود، باید تمهیدی برای تخلیه نشتی گاز سیلندر از منیفولد در نظر گرفته شود، به‌گونه‌ای که همزمان از اتلاف گاز در هنگام عملکرد سیستم جلوگیری شود.

    ۴.۷.۲.۳ کلیه تجهیزات تخلیه فشار باید به‌گونه‌ای طراحی و نصب شوند که تخلیه دی‌اکسیدکربن از آن‌ها به پرسنل آسیب نرساند.

    ۴.۷.۳ شیرآلات:

    ۴.۷.۳.۱ کلیه شیرآلات باید برای کاربرد موردنظر، خصوصاً از نظر ظرفیت جریان و عملکرد، مناسب باشند.

    ۴.۷.۳.۲ کلیه شیرآلات فقط باید در دماها و شرایطی استفاده شوند که برای آن‌ها فهرست‌شده یا مورد تأیید قرار گرفته‌اند.

    ۴.۷.۳.۳ شیرهایی که در سیستم‌هایی با ذخیره‌سازی پرفشار و فشار دائمی استفاده می‌شوند، باید حداقل فشار ترکیدگی ۶۰۰۰psi (۴۱٬۳۶۹ kPa) را تحمل کنند، درحالی‌که شیرهایی که تحت فشار دائمی نیستند باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴٬۴۷۴ kPa) را داشته باشند.

    ۴.۷.۳.۴ شیرهایی که در سیستم‌هایی با ذخیره‌سازی کم‌فشار استفاده می‌شوند، باید بدون ایجاد تغییر شکل دائمی، آزمایش هیدرواستاتیکی تا ۱۸۰۰ psi (۱۲٬۴۱۱ kPa) را تحمل کنند.

    ۴.۷.۳.۵ برای شیرهای فلنجی، باید از کلاس و نوع فلنج متناسب با اتصال فلنجی شیر استفاده شود.

    ۴.۷.۳.۶ شیرها باید به‌گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب مکانیکی، شیمیایی یا سایر آسیب‌هایی که عملکرد آن‌ها را مختل می‌کند، قرار نگیرند.

    ۴.۷.۳.۷ شیرها باید برای طول معادل با لوله یا لوله‌کشی‌ای که قرار است در آن استفاده شوند، رتبه‌بندی شوند.

    ۴.۷.۳.۸ طول معادل شیر سیلندر باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۴.۷.۴* نازل‌های تخلیه: نازل‌های تخلیه باید برای کاربرد موردنظر طراحی شده و برای ویژگی‌های تخلیه، فهرست‌شده یا تأییدشده باشند.

    ۴.۷.۴.۱ نازل‌های تخلیه باید دارای استحکام کافی برای کار در فشار کاری مورد انتظار بوده، در برابر ضربات مکانیکی معمول مقاوم باشند و بتوانند دماهای مورد انتظار را بدون تغییر شکل تحمل کنند.

    ۴.۷.۴.۲ دهانه‌های تخلیه باید از فلز مقاوم در برابر خوردگی ساخته شوند.

    ۴.۷.۴.۳ نازل‌های تخلیه مورد استفاده در سیستم‌های کاربرد موضعی باید به‌گونه‌ای متصل و نگهداری شوند که به‌راحتی از تنظیم خارج نشوند.

    ۴.۷.۴.۴* نازل‌های تخلیه باید به‌طور دائم علامت‌گذاری شوند تا نازل را شناسایی کرده و قطر معادل دهانه تک‌سوراخی را بدون توجه به شکل و تعداد سوراخ‌ها نشان دهند.

    ۴.۷.۴.۴.۱ این قطر معادل باید به قطر دهانه نازل نوع تک‌سوراخ استاندارد با همان نرخ جریان اشاره داشته باشد.

    ۴.۷.۴.۴.۲ این علامت‌گذاری باید پس از نصب نیز به‌راحتی قابل مشاهده باشد.

    ۴.۷.۴.۴.۳* دهانه استاندارد باید دهانه‌ای با ورودی مخروطی و ضریب تخلیه‌ای نه کمتر از ۰.۹۸ باشد و دارای مشخصات جریان مطابق با جدول ۴.۷.۵.۲.۱ و جدول ۴.۷.۵.۳.۱ باشد.

    ۴.۷.۴.۴.۴ اندازه‌های دهانه‌ای غیر از آنچه در جدولA.4.7.4.4.3 نشان داده شده‌اند، مجاز به استفاده هستند و می‌توانند به‌صورت تجهیزاتی با دهانه اعشاری علامت‌گذاری شوند.

    ۴.۷.۴.۵ تجهیزات تخلیه:

    ۴.۷.۴.۵.۱ نازل‌های تخلیه باید در مواردی که احتمال انسداد توسط مواد خارجی وجود دارد، به دیسک‌های شکننده یا درپوش‌های قابل‌انفجار مجهز شوند.

    ۴.۷.۴.۵.۲ این تجهیزات باید در زمان عملکرد سیستم، دهانه‌ای بدون مانع را فراهم کنند.

    ۴.۷.۵ تعیین اندازه لوله و دهانه: اندازه لوله‌ها و مساحت دهانه‌ها باید بر اساس محاسباتی انتخاب شوند که نرخ جریان مورد نیاز در هر نازل را تأمین کند.

    ۴.۷.۵.۱* معادله زیر یا منحنی‌های حاصل از آن باید برای تعیین افت فشار در لوله‌کشی استفاده شود:

    8B1Wpg4ugRDmYAAAAASUVORK5CYII=

    که در آن:

    Q = نرخ جریان [پوند/دقیقه (کیلوگرم/دقیقه)]
    D = قطر داخلی واقعی لوله [اینچ (میلی‌متر)]
    L = طول معادل خط لوله [فوت (متر)]
    [۴.۷.۵.۱]
    Y و Z = ضرایبی وابسته به فشار ذخیره‌سازی و فشار خط لوله

    ۴.۷.۵.۲ در سامانه‌هایی با ذخیره‌سازی فشار پایین، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۳۰۰ psi (۲۰۶۸ kPa) در طول تخلیه انجام شود.
    ۴.۷.۵.۲.۱ نرخ تخلیه برای اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۲.۱ باشد.
    ۴.۷.۵.۲.۲ فشار طراحی اسپرینکلر نباید کمتر از ۱۵۰ psi (۱۰۳۴ kPa) باشد.

    ۴.۷.۵.۳ در سامانه‌هایی با ذخیره‌سازی فشار بالا، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۷۵۰ psi (۵۱۷۱ kPa) در طول تخلیه در دمای عادی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) انجام شود.
    ۴.۷.۵.۳.۱ نرخ تخلیه از طریق اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۳.۱ باشد.
    ۴.۷.۵.۳.۲ فشار طراحی اسپرینکلر در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) باید برابر یا بیشتر از ۳۰۰ psi (۲۰۶۸kPa) باشد.

    ۴.۷.۶* آویزها و تکیه‌گاه‌های لوله باید مطابق با استانداردهای شناخته‌شده صنعتی و دستورالعمل‌های سازنده طراحی و نصب شوند.
    ۴.۷.۶.۱ تمام آویزها و تکیه‌گاه‌های لوله باید مستقیماً به یک سازه سخت و ثابت متصل شوند.
    ۴.۷.۶.۲ تمام آویزها و اجزا باید از جنس فولاد باشند.
    ۴.۷.۶.۳ استفاده از آویزها/تکیه‌گاه‌های چدنی معمولی، بست‌های کانال یا بست‌های “C” مجاز نیست.
    ۴.۷.۶.۴ تمامی تکیه‌گاه‌های لوله باید به گونه‌ای طراحی و نصب شوند که از حرکت جانبی لوله در هنگام تخلیه سیستم جلوگیری کرده و همزمان امکان حرکت طولی برای جبران انبساط و انقباض ناشی از تغییرات دما را فراهم کنند.
    ۴.۷.۶.۴.۱ آویزهای صلب باید در هر نقطه‌ای که تغییر ارتفاع یا جهت وجود دارد، نصب شوند.
    ۴.۷.۶.۴.۲ اسپرینکلرها باید به نحوی پشتیبانی شوند که در هنگام تخلیه حرکت نکنند.
    ۴.۷.۶.۵ در مواردی که مهاربندی لرزه‌ای مورد نیاز باشد، این مهاربندی باید مطابق با کدهای محلی و الزامات مرجع ذی‌صلاح انجام شود.

    Z

    9k=

    ۴.۸* بازرسی، نگهداری و دستورالعمل
    ۴.۸.۱* بازرسی: حداقل هر ۳۰ روز یک‌بار باید بازرسی برای ارزیابی وضعیت عملکردی سیستم انجام شود.

    ۴.۸.۲ آزمون شیلنگ
    ۴.۸.۲.۱ تمام شیلنگ‌های سیستم، از جمله آنهایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید برای سامانه‌های فشار بالا در فشار ۲۵۰۰ psi (۱۷٬۲۳۹ kPa) و برای سامانه‌های فشار پایین در فشار ۹۰۰ psi (۶٬۲۰۵ kPa) آزمایش شوند.
    ۴.۸.۲.۲ شیلنگ باید به صورت زیر آزمایش شود:
    (۱) شیلنگ باید از هرگونه اتصال جدا شود.
    (۲) شیلنگ‌های مورد استفاده در خطوط دستی باید از نظر پیوستگی الکتریکی بین کوپلینگ‌ها بررسی شوند.
    (۳) مجموعه شیلنگ باید در محفظه محافظی قرار گیرد که امکان مشاهده مستقیم آزمون را فراهم کند.
    (۴) شیلنگ باید پیش از آزمایش به طور کامل از آب پر شود.
    (۵) فشار باید به گونه‌ای اعمال شود که ظرف یک دقیقه به فشار آزمایش برسد.
    (۶) فشار آزمایش باید به مدت یک دقیقه کامل حفظ شود.
    (۷) سپس باید هرگونه تغییر شکل یا نشتی مورد مشاهده قرار گیرد.
    (۸) در صورتی که فشار کاهش نیافته و کوپلینگ‌ها جابه‌جا نشده باشند، فشار آزاد می‌شود.
    (۹) در صورتی که هیچ‌گونه تغییر شکل دائمی رخ نداده باشد، مجموعه شیلنگ، آزمون هیدرواستاتیک را با موفقیت گذرانده تلقی می‌شود.
    (۱۰) شیلنگی که آزمون را با موفقیت پشت سر گذاشته، باید به طور کامل از داخل خشک شود.
    (۱۱) در صورت استفاده از گرما برای خشک‌کردن، دما نباید از ۱۵۰ درجه فارنهایت (۶۶ درجه سانتی‌گراد) تجاوز کند.
    (۱۲) شیلنگ‌هایی که در این آزمون مردود شوند، باید علامت‌گذاری، نابود و با شیلنگ‌های جدید جایگزین شوند.
    (۱۳) شیلنگ‌هایی که آزمون را با موفقیت پشت سر می‌گذارند، باید با تاریخ آزمون بر روی خود علامت‌گذاری شوند.

    ۴.۸.۲.۳ تمام شیلنگ‌های سیستم، از جمله آن‌هایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید هر پنج سال یک‌بار مطابق با بند ۴.۸.۲ مورد آزمون قرار گیرند.

    ۴.۸.۳* نگهداری
    ۴.۸.۳.۱ رویه‌های آزمون و نگهداری: یک رویه آزمون و نگهداری از طرف سازنده باید به مالک ارائه شود تا آزمون و نگهداری سیستم طبق آن انجام شود. این رویه باید شامل آزمون اولیه تجهیزات و نیز بازرسی‌های دوره‌ای و نگهداری سیستم باشد. فعال‌سازی، اختلال و بازیابی این سامانه اطفاء حریق باید بلافاصله به مرجع ذی‌صلاح گزارش شود.

    ۴.۸.۳.۲ موارد زیر باید حداقل سالی یک‌بار توسط افراد متخصص و با استفاده از مستندات موجود طبق بند ۴.۴.۲.۱۴تأیید شوند:
    (۱) بررسی و آزمون عملکرد سیستم دی‌اکسید کربن
    (۲) بررسی اینکه هیچ تغییری در اندازه، نوع یا پیکربندی خطر و سیستم ایجاد نشده باشد
    (۳) بررسی و آزمون عملکرد تمام تاخیرهای زمانی
    (۴) بررسی و آزمون عملکرد تمام هشدارهای صوتی
    (۵) بررسی و آزمون عملکرد تمام سیگنال‌های دیداری
    (۶) بررسی اینکه تمام تابلوهای هشدار مطابق با الزامات نصب شده‌اند

    (۷) بررسی شود که رویه‌های مندرج در بند ۴.۵.۶ مناسب بوده و تجهیزات اشاره‌شده در بند ۴.۵.۶ قابل بهره‌برداری باشند.
    (۸) هر آشکارساز باید طبق روش‌های مشخص‌شده در NFPA 72 بررسی و آزمایش شود.

    ۴.۸.۳.۲.۱ هدف از انجام عملیات نگهداری و آزمون، تنها اطمینان از عملکرد کامل سیستم نیست، بلکه باید نشان دهد که این وضعیت تا زمان بازرسی بعدی نیز به احتمال زیاد حفظ خواهد شد.

    ۴.۸.۳.۲.۲ آزمون‌های تخلیه باید در صورت لزوم و در مواقعی که نگهداری سیستم آن را ضروری نشان می‌دهد، انجام شوند.

    ۴.۸.۳.۲.۳ پیش از انجام آزمون‌ها، رویه‌های ایمنی باید مورد بازبینی قرار گیرند. (به بند ۴.۳ و پیوست A.4.3 مراجعه شود.)

    ۴.۸.۳.۳ گزارش نگهداری همراه با پیشنهادات لازم باید به مالک ارائه شود.

    ۴.۸.۳.۴ هرگونه نفوذ یا سوراخ‌کاری در محفظه‌ای که توسط سیستم غرقه‌سازی کلی دی‌اکسید کربن محافظت می‌شود، باید بلافاصله مهر و موم شود. روش مهر و موم باید مقاومت در برابر حریق اولیه محفظه را بازگرداند.

    ۴.۸.۳.۵ وزن سیلندرهای پرفشار
    ۴.۸.۳.۵.۱ حداقل هر شش ماه یک‌بار، تمامی سیلندرهای پرفشار باید وزن شوند و تاریخ آخرین آزمون هیدرواستاتیک یادداشت شود. (به بند ۴.۶.۵.۲ مراجعه شود.)
    ۴.۸.۳.۵.۲ اگر در هر زمان، کاهش بیش از ۱۰ درصد در میزان خالص محتویات یک سیلندر مشاهده شود، آن سیلندر باید دوباره پر یا تعویض گردد.

    ۴.۸.۳.۶ سطح مایع مخازن کم‌فشار
    ۴.۸.۳.۶.۱ سطح مایع در مخازن کم‌فشار باید حداقل به‌صورت هفتگی از طریق گیج‌های سطح مایع بررسی شود.
    ۴.۸.۳.۶.۲ اگر در هر زمان کاهش بیش از ۱۰ درصد در محتویات مشاهده شود، مخزن باید پر شود، مگر اینکه هنوز حداقل مقدار گاز موردنیاز فراهم باشد.

    ۴.۸.۴ آموزش
    افرادی که وظیفه بازرسی، آزمون، نگهداری یا بهره‌برداری از سیستم‌های اطفاء حریق دی‌اکسید کربن را بر عهده دارند، باید در عملکردهای مربوطه آموزش کامل دیده باشند.

  • دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

    WhatsApp Image 2025 09 14 at 9.31.18 AM

    کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

    طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

    دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

    ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

    WhatsApp Image 2025 09 14 at 9.31.19 AM

    • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
    • تولید دود کم و بدون هالوژن (LS0H)
    • ساختار مقاوم برای استفاده در محیط‌های سخت
    • نصب آسان با گزینه‌های متنوع برای نصب
    • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
    • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

    WhatsApp Image 2025 09 14 at 9.31.19 AM1

    • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
    • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
    • طیف گسترده‌ای از کاربردهای اثبات‌شده

    WhatsApp Image 2025 09 14 at 9.31.20 AM

    اصول عملکرد

    دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

    مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

    WhatsApp Image 2025 09 14 at 9.31.20 AM1

    این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

    ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

    در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

    رجوع شود به:
    «ویژگی‌ها به عنوان کابل تشخیص آتش»

    کاربردها

    دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

    دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

    دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

    این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

    نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

    کاربردهای رایج:

    • تونل‌ها، کانال‌ها و سقف‌های کاذب
    • پله‌های برقی و مسیرهای متحرک
    • مخازن ذخیره‌سازی پتروشیمی
    • سالن‌های رنگ و اتاقک‌های اسپری
    • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
    • فضاهای سقفی و زیرشیروانی
    • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
    • مناطق تأسیسات نیروگاه هسته‌ای
    • انبارهای سرد و سردخانه‌ها
    • تابلوهای کنترل و کلیدهای برق
    • قفسه‌های مرتفع انبارها
    • سکوهای نفتی دریایی
    • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
    • سیلوهای غلات و انبارهای کشاورزی
    • محفظه‌های موتور خودروهای جاده‌ای / ریلی
    • نشت بخار و خطاهای گرمایش ردیابی‌شده
    • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
    • فضاهای زیرکفی اتاق‌های کامپیوتر

    ویژگی‌ها به عنوان کابل تشخیص آتش

    در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

    • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
    • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

    ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

    WhatsApp Image 2025 09 14 at 9.31.21 AM

    همچنین به مثال ارائه‌شده رجوع شود.

    مثال

    این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

    • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
    • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
    • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

    عملکرد دو مرحله‌ای

    اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

    .  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

    عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

    یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

    مشخصات پایه

    • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
    • رنگ: قرمز
    • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
    • بافت: سیم مسی قلع‌زده
    • دی‌الکتریک داخلی: سفید
    • رسانای مرکزی: فولاد با روکش مس
    • استحکام کششی: ۲۰۰ نیوتن

    WhatsApp Image 2025 09 14 at 9.31.21 AM1

    دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

    ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

    با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

    انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

    پیکربندی سیستم و سازگاری تجهیزات

    دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

    دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

  • راهنمای طراحی دتکتور دودی مکشی برای مهندسین

    قسمت نخست: مفاهیم و ساختارها

    ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

    سطوح حفاظت به شرح زیر خواهند بود:

    1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
      2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
      3. SFD (تشخیص حریق استاندارد Standard Fire Detection

    4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

    الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

    هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

    • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
    • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
    • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
      ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
      ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
      ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

    بخش ۲
    اصول تشخیص دود به روش مکشی (ASD)
    دینامیک جریان هوا

    یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

    • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
    • آشکارساز دود مکشی که شامل موارد زیر است:
      – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
      – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
      – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
    • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

    شبکه لوله‌کشی نمونه‌برداری
    شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

    روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

    • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

    WhatsApp Image 2025 09 29 at 11.40.01 PM

    • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

    WhatsApp Image 2025 09 29 at 11.40.01 PM1

    • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
    • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
    • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
    • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

    WhatsApp Image 2025 09 29 at 11.40.02 PM2

    WhatsApp Image 2025 09 29 at 11.40.02 PM1

  • آشکارسازهای دودی بیم (Beam Smoke Detectors): چشم‌های نامرئی نگهبان در برابر حریق‌های وسیع

    چکیده: آشکارسازهای دودی بیم، ستون فقرات سیستم‌های پیشرفته اعلام حریق در فضاهای بزرگ و وسیع محسوب می‌شوند. این مقاله به بررسی عمیق اصول فیزیکی و مهندسی نهفته در عملکرد آشکارسازهای دودی بیم می‌پردازد، از مکانیسم تشخیص دود بر پایه پراکندگی و تضعیف نور مادون قرمز گرفته تا پیکربندی‌های مختلف و ملاحظات طراحی در کاربردهای عملی. با تحلیل جزئیات نحوه عملکرد این دتکتورها در حالت عادی و در شرایط حریق، چالش‌های احتمالی و راهکارهای غلبه بر آن‌ها، و همچنین مقایسه با سایر روش‌های تشخیص دود، تصویری جامع از اهمیت و کارایی این فناوری ارائه می‌شود. هدف این مقاله، ارائه یک دیدگاه علمی و کاربردی برای متخصصان، طراحان سیستم‌های ایمنی، و علاقه‌مندان به فناوری‌های اعلام حریق است.

    WhatsApp Image 2025 09 28 at 3.14.16 PM

    مقدمه: امنیت در برابر حریق، از دیرباز یکی از مهم‌ترین دغدغه‌های جوامع بشری بوده است. با توسعه سازه‌های بزرگ و پیچیده نظیر انبارهای وسیع، سالن‌های کنفرانس، آتریوم‌ها، و مراکز خرید، چالش تشخیص زودهنگام حریق در این فضاهای گسترده به مراتب افزایش یافته است. آشکارسازهای دودی نقطه‌ای سنتی، که برای پوشش مساحت‌های محدودتری طراحی شده‌اند، در چنین محیط‌هایی کارایی لازم را ندارند. اینجاست که آشکارسازهای دودی بیم، با قابلیت پوشش دهی مسافت‌های طولانی، به عنوان یک راه حل بی‌بدیل مطرح می‌شوند. این مقاله به کاوش در اعماق این تکنولوژی پرداخته و پیچیدگی‌های علمی و کاربردی آن را آشکار می‌سازد.

    WhatsApp Image 2025 09 28 at 3.14.16 PM1

    1. اساس فیزیکی تشخیص دود: برهم‌کنش نور و ذرات معلق در قلب عملکرد آشکارسازهای دودی بیم، پدیده‌های فیزیکی پراکندگی (Scattering) و تضعیف (Attenuation) نور توسط ذرات دود قرار دارد. نور، به عنوان یک موج الکترومغناطیسی، هنگام عبور از محیطی حاوی ذرات معلق، مانند دود، با این ذرات برهم‌کنش می‌کند. این برهم‌کنش به دو شکل اصلی بروز می‌یابد:
    2. WhatsApp Image 2025 09 28 at 3.14.17 PM
    • تضعیف (Absorption & Scattering): بخشی از انرژی نور توسط ذرات دود جذب شده یا در جهات مختلف پراکنده می‌شود. این امر منجر به کاهش شدت نور عبوری از مسیر می‌شود. آشکارسازهای دودی بیم، عمدتاً بر پایه اندازه‌گیری همین کاهش شدت نور عمل می‌کنند.
    • WhatsApp Image 2025 09 28 at 3.14.17 PM1
    • پراکندگی (Scattering): ذرات دود، نور را در تمامی جهات پراکنده می‌کنند. میزان و الگوی پراکندگی نور به اندازه ذرات، طول موج نور و زاویه دید بستگی دارد. این پدیده، اساس کار آشکارسازهای دودی از نوع پراکندگی نور (مانند برخی دتکتورهای نقطه‌ای) است، اما در دتکتورهای بیم، تمرکز اصلی بر تضعیف کلی پرتو است.
    • WhatsApp Image 2025 09 28 at 3.14.17 PM2

    برای افزایش حساسیت و کاهش تأثیر عوامل محیطی نامطلوب (مانند گرد و غبار)، اکثر آشکارسازهای دودی بیم از نور مادون قرمز (Infrared – IR) استفاده می‌کنند. طول موج‌های مادون قرمز کمتر توسط بخار آب و ذرات بسیار ریز هوا پراکنده می‌شوند، اما به طور مؤثر توسط ذرات بزرگ‌تر دود تضعیف می‌گردند.

    WhatsApp Image 2025 09 28 at 3.14.18 PM

    1. اجزای اصلی و پیکربندی‌های آشکارسازهای دودی بیم یک سیستم آشکارساز دودی بیم معمولاً از سه جزء اصلی تشکیل شده است:
    2. WhatsApp Image 2025 09 28 at 3.14.18 PM1
    • فرستنده (Transmitter): این بخش شامل یک منبع نور مادون قرمز (IR LED) است که یک پرتو نوری متمرکز و کنترل‌شده را تولید می‌کند. لنزهای اپتیکی در این بخش وظیفه متمرکز کردن پرتو را بر عهده دارند تا پرتو با حداقل واگرایی به سمت گیرنده حرکت کند. در برخی مدل‌های پیشرفته، از چندین IR LED برای افزایش قدرت پرتو و پوشش دهی مسافت‌های طولانی‌تر استفاده می‌شود.
    • گیرنده (Receiver): این واحد شامل یک فوتودیود (Photodiode) یا یک آرایه از فوتودیودها است که وظیفه دریافت پرتو نور فرستاده شده و تبدیل آن به یک سیگنال الکتریکی را بر عهده دارد. کیفیت و حساسیت فوتودیود در تشخیص تغییرات جزئی در شدت نور حیاتی است. لنزهای گیرنده نیز به جمع‌آوری نور و هدایت آن به سمت فوتودیود کمک می‌کنند.
    • کنترل‌کننده (Controller/Control Unit): این بخش که معمولاً جدا از فرستنده و گیرنده نصب می‌شود، مسئول پردازش سیگنال‌های دریافتی از گیرنده، مقایسه آن‌ها با مقادیر مرجع (آستانه‌های از پیش تعیین شده)، و اعلام وضعیت‌های مختلف (عادی، پیش‌هشدار، حریق، خطا) است. این واحد همچنین قابلیت تنظیم حساسیت، انجام تست‌های خودکار (Auto Alignment و Drift Compensation) و اتصال به پنل مرکزی اعلام حریق را فراهم می‌کند.

    پیکربندی‌ها: آشکارسازهای دودی بیم را می‌توان به دو دسته اصلی از نظر پیکربندی تقسیم کرد:

    • نوع جداگانه (Separate Type – Transmitter/Receiver): در این پیکربندی، فرستنده و گیرنده در دو واحد مجزا و در فواصل معینی (معمولاً 5 تا 120 متر، و در برخی مدل‌ها تا 150-200 متر) روبروی یکدیگر نصب می‌شوند. پرتو نور از فرستنده ساطع شده و مستقیماً به گیرنده می‌رسد. این رایج‌ترین نوع آشکارساز بیم است و برای پوشش دهی مسیرهای طولانی مناسب است.
    • نوع بازتابنده (Reflector Type – Transceiver/Reflector): در این حالت، فرستنده و گیرنده در یک واحد مشترک (Transceiver) قرار دارند و پرتو نور به سمت یک بازتابنده (Reflector) که در فاصله دوری نصب شده، ارسال می‌شود. بازتابنده، پرتو نور را به سمت واحد فرستنده/گیرنده بازتاب می‌دهد. این پیکربندی مزیت سیم‌کشی کمتر (تنها یک واحد به برق و سیم‌کشی نیاز دارد) و سهولت نصب بیشتری دارد، اما معمولاً برای مسافت‌های کمی کوتاه‌تر (معمولاً تا 100 متر) مورد استفاده قرار می‌گیرد و به دلیل عبور نور از مسیر دو بار (رفت و برگشت)، حساسیت کمی متفاوت دارد.
    1. اصل عملکرد در حالت عادی و حریق (بر اساس تصاویر):
    • حالت عادی (Normal State): در شرایط عادی و بدون وجود دود، پرتو نور مادون قرمز که از IR LED ساطع می‌شود، بدون مانع از طریق محفظه شفاف به سمت گیرنده (فوتودیود) حرکت می‌کند. پرتوها با شدت کامل به فوتودیود می‌رسند. فوتودیود این نور را به یک سیگنال الکتریکی تبدیل می‌کند که توسط واحد کنترل به عنوان “حالت عادی” یا “بدون حریق” تفسیر می‌شود. این سیگنال پایه، مرجعی برای مقایسه‌های بعدی است.
    • حالت حریق (Fire Alarm – با حضور دود): هنگامی که دود ناشی از حریق وارد مسیر پرتو نور می‌شود، ذرات دود (که در تصویر به رنگ خاکستری نشان داده شده‌اند) با پرتو نور برهم‌کنش می‌کنند. همانطور که پیشتر توضیح داده شد، این برهم‌کنش باعث تضعیف و پراکندگی پرتو نور می‌شود. در نتیجه، شدت نوری که به فوتودیود می‌رسد، به طور قابل توجهی کاهش می‌یابد. فوتودیود این کاهش شدت نور را به یک سیگنال الکتریکی با دامنه کمتر تبدیل می‌کند. واحد کنترل این کاهش سیگنال را تشخیص داده و در صورتی که این کاهش از یک آستانه از پیش تعیین شده (که معمولاً بر حسب درصد انسداد نور در واحد طول بیان می‌شود) فراتر رود، وضعیت “آلارم حریق” را اعلام می‌کند و به پنل مرکزی اعلام حریق سیگنال ارسال می‌نماید.
    1. تکنیک‌های پیشرفته در آشکارسازهای بیم:
    • جبران رانش (Drift Compensation): با گذشت زمان، عوامل محیطی مانند گرد و غبار یا کثیف شدن لنزها می‌توانند باعث کاهش تدریجی شدت نور دریافتی شوند، حتی در غیاب دود. اگر این کاهش به درستی جبران نشود، می‌تواند منجر به آلارم‌های کاذب یا کاهش حساسیت واقعی شود. تکنولوژی جبران رانش به آشکارساز اجازه می‌دهد تا به آرامی و به صورت هوشمندانه تغییرات طولانی مدت در شدت نور را شناسایی و آستانه آلارم را متناسب با آن تنظیم کند، بدون اینکه بر توانایی تشخیص سریع دود واقعی تأثیر بگذارد.
    • هم‌ترازی خودکار (Auto Alignment): نصب دقیق فرستنده و گیرنده برای اطمینان از هم‌راستایی کامل پرتو نور بسیار حیاتی است. سیستم‌های پیشرفته دارای قابلیت هم‌ترازی خودکار هستند که به طور خودکار موقعیت لنزها یا پرتو را تنظیم می‌کنند تا حداکثر شدت نور به گیرنده برسد. این ویژگی نه تنها نصب را آسان‌تر می‌کند، بلکه عملکرد بهینه را در طول زمان تضمین می‌نماید.
    • فیلترهای نوری و محافظ‌ها: برای جلوگیری از ورود حشرات، ذرات بزرگ گرد و غبار و نورهای مزاحم محیطی (مانند نور خورشید) به محفظه اپتیکی، از فیلترهای نوری و محفظه‌های محافظت شده (مانند Insect Screen و Lightproof Chamber Cover در تصاویر) استفاده می‌شود. این اقدامات به حفظ دقت و پایداری عملکرد آشکارساز کمک می‌کنند.
    • تشخیص چندگانه (Multi-criteria Detection): در برخی سیستم‌های پیشرفته‌تر، آشکارسازهای بیم ممکن است با سنسورهای دیگری نظیر سنسورهای حرارتی یا گاز ترکیب شوند تا اطلاعات بیشتری برای تشخیص دقیق‌تر حریق و کاهش آلارم‌های کاذب فراهم آورند.
    1. کاربردها و مزایا: آشکارسازهای دودی بیم به دلیل ویژگی‌های منحصربه‌فردشان، در طیف گسترده‌ای از کاربردها به کار گرفته می‌شوند:
    • انبارها و سوله های صنعتی: فضاهایی با سقف‌های بلند و مساحت‌های وسیع که نصب تعداد زیادی آشکارساز نقطه‌ای غیرعملی و پرهزینه است.
    • سالن‌های ورزشی، تئاترها و سینماها: فضاهای باز با ارتفاع زیاد که نیاز به پوشش دهی گسترده دارند.
    • آتریوم‌ها و لابی‌های بزرگ: سازه‌های معماری با فضاهای باز عمودی.
    • فرودگاه‌ها و ایستگاه‌های قطار: مکان‌هایی با جریان هوای زیاد و مسافرت دود در مسافت‌های طولانی.
    • مراکز خرید و فروشگاه‌های بزرگ: برای پوشش دهی فضاهای وسیع و راهروها.

    مزایای کلیدی:

    • پوشش دهی وسیع: هر آشکارساز می‌تواند مساحتی به مراتب بزرگتر از آشکارسازهای نقطه‌ای را پوشش دهد، که منجر به کاهش تعداد دتکتورهای مورد نیاز و هزینه‌های نصب می‌شود.
    • مناسب برای سقف‌های بلند: توانایی تشخیص دود در ارتفاعات بالا که دتکتورهای نقطه‌ای ممکن است با تأخیر عمل کنند.
    • مقاومت در برابر آلارم‌های کاذب: با تکنیک‌های جبران رانش و فیلترینگ پیشرفته، این سیستم‌ها در برابر عوامل محیطی مقاوم‌تر هستند.
    • نگهداری آسان: دسترسی برای نگهداری و تمیز کردن معمولاً آسان‌تر از تعداد زیادی دتکتور نقطه‌ای است.
    1. چالش‌ها و ملاحظات طراحی: با وجود مزایای فراوان، نصب و طراحی سیستم‌های آشکارساز دودی بیم نیازمند ملاحظاتی خاص است:
    • هم‌ترازی دقیق: نصب اولیه نیازمند دقت بالا در هم‌ترازی فرستنده و گیرنده است. هرگونه حرکت سازه‌ای کوچک می‌تواند بر عملکرد تأثیر بگذارد.
    • انسداد مسیر: مسیر پرتو نور باید همواره از هرگونه مانع (مانند قفسه‌های بلند، ماشین‌آلات، پرده‌ها یا حتی جرثقیل‌های سقفی) عاری باشد. برنامه‌ریزی دقیق چیدمان فضا ضروری است.
    • تأثیر نور محیط: نور شدید خورشید یا منابع نوری قدرتمند دیگر می‌توانند در عملکرد سیستم اختلال ایجاد کنند. انتخاب مکان مناسب و استفاده از فیلترهای نوری حیاتی است.
    • شرایط محیطی: تغییرات شدید دما، رطوبت، یا وجود ذرات گرد و غبار بسیار زیاد (در محیط‌های بسیار آلوده) می‌تواند بر عملکرد تأثیر بگذارد. برخی مدل‌ها دارای محفظه‌های گرمایشی یا تهویه‌شده برای مقابله با این چالش‌ها هستند.
    • الگوی جریان هوا: در فضاهای بزرگ، الگوی جریان هوا می‌تواند بر نحوه انتشار دود تأثیر بگذارد. طراحی سیستم باید با در نظر گرفتن این الگوها باشد تا اطمینان حاصل شود که دود به موقع وارد مسیر پرتو می‌شود.
    1. مقایسه با سایر آشکارسازها: در مقایسه با آشکارسازهای دودی نقطه‌ای، آشکارسازهای بیم در پوشش دهی مساحت‌های وسیع و ارتفاعات بالا برتری دارند. آشکارسازهای نمونه‌بردار هوا (Aspirating Smoke Detectors – ASD) نیز برای تشخیص بسیار زودهنگام در محیط‌های حساس استفاده می‌شوند، اما پیچیدگی نصب و هزینه بالاتری دارند. آشکارسازهای بیم یک راه حل میانی ارائه می‌دهند که تعادلی بین پوشش دهی، حساسیت و هزینه ایجاد می‌کند.

    نتیجه‌گیری: آشکارسازهای دودی بیم به عنوان یک جزء حیاتی در سیستم‌های مدرن اعلام حریق، نقش بی‌بدیلی در حفاظت از جان و مال در فضاهای بزرگ و پیچیده ایفا می‌کنند. فهم عمیق اصول فیزیکی، مهندسی و ملاحظات طراحی مربوط به این فناوری، برای پیاده‌سازی سیستم‌های ایمنی مؤثر و قابل اعتماد ضروری است. با پیشرفت تکنولوژی، انتظار می‌رود که این دتکتورها هوشمندتر، مقاوم‌تر در برابر عوامل محیطی، و حتی در تشخیص انواع مختلف دود دقیق‌تر شوند، و بدین ترتیب، امنیت ساختمان‌های ما را در برابر بلایای حریق بیش از پیش تضمین کنند. این چشم‌های نامرئی، همواره در کمین کوچکترین نشانه‌ای از خطر، بیدار و هوشیار باقی می‌مانند.

    WhatsApp Image 2025 09 28 at 3.14.16 PM

  • دتکتور حرارتی خطی دو کاناله چیست؟

    ویژگی‌های دتکتور حرارتی خطی فیبر نوری
    ● اندازه‌گیری خطی دما برای تشخیص سریع حریق و تعیین دقیق محل منبع آتش
    ● دو کانال اندازه‌گیری نوری مستقل
    ● حداکثر طول کابل دتکتور بدون نیاز به نگهداری = ۲۰ کیلومتر (۲ × ۱۰ کیلومتر)WhatsApp Image 2025 09 18 at 2.26.41 AM

    پردازش سیگنال با فناوری OFDR (بازتاب‌سنجی ناحیه فرکانس نوری)
    ● ۱۰۰۰ ناحیه قابل برنامه‌ریزی
    ● معیارهای هشدار قابل انتخاب
    ● دقت مکانی بالا تا ۰٫۲۵ متر
    ● ارائه اطلاعات در مورد جهت گسترش آتش
    ● امکان استفاده از سیستم دتکتور افزونه
    ● مناسب برای سرعت باد تا ۱۰ متر بر ثانیه
    ● کلاس لیزر 1M طبق استاندارد DIN EN 60825-1:2014

    اصل اندازه‌گیری
    سیستم FibroLaser بر اساس عبور یک پرتو لیزر از طریق کابل فیبر نوری عمل می‌کند. کابل فیبر نوری در هر نقطه، بخشی کوچک از تابش لیزر را به سمت منبع بازمی‌تاباند. بازتاب اندازه‌گیری‌شده توسط کنترلر ثبت می‌شود.
    دو کابل دتکتور مستقل می‌توانند به یک دتکتور حرارتی خطی دو کاناله متصل شوند. تابش نوری LED لیزری با طول‌موج نزدیک به مادون‌قرمز که منتشر می‌شود، توسط کابل فیبر نوری به شکل‌های مختلفی پراکنده می‌شود:

    WhatsApp Image 2025 09 18 at 2.26.41 AM1

    پراکندگی ریلی (Rayleigh)
    ● پراکندگی استوکس (Stokes)
    ● پراکندگی آنتی‌استوکس (Anti-Stokes)

    نور پراکنده‌شده ریلی دارای همان طول‌موج پرتوی لیزر است، پراکندگی استوکس دارای طول‌موج کمی بالاتر، و آنتی‌استوکس دارای طول‌موجی کمی پایین‌تر است. دو نوع پراکندگی استوکس معمولاً به‌عنوان پراکندگی رامان نیز شناخته می‌شوند. درحالی‌که پراکندگی استوکس وابستگی زیادی به دما ندارد، پراکندگی آنتی‌استوکس تحت تأثیر انرژی حرارتی دمای محلی کابل فیبر نوری قرار دارد؛ شدت آن با افزایش دما افزایش می‌یابد. دمای کابل فیبر نوری با استفاده از نسبت شدت بین پراکندگی استوکس و آنتی‌استوکس محاسبه می‌شود.

    کنترلر
    فرستنده
    – شامل لیزر و مدار کنترل آن است.

    • گیرنده
      – شامل کل سیستم نوری است.
      – کوپل کردن نور لیزر تولیدشده در فرستنده به کابل دتکتور
      – تبدیل نور بازتاب‌شده از فیبر نوری به سیگنال الکتریکی و پردازش آن
    • واحد دیجیتال
      – این ماژول کنترل کامل دستگاه و فرایند اندازه‌گیری را بر عهده دارد.
      – محاسبه پروفایل دما در طول کابل دتکتور بر اساس داده‌های اندازه‌گیری دریافت‌شده
      – مدیریت ۴ ورودی داخلی (قابل افزایش تا ۴۰ ورودی) برای ریست کردن، ارسال آلارم‌های خارجی یا پایش عملکرد
      – کنترل ۱۲ خروجی (قابل افزایش تا ۱۰۶ خروجی) برای انتقال آلارم‌ها و خطاها به تابلوی کنترل اعلام حریق
      – رابط USB یا اترنت برای راه‌اندازی اولیه استفاده می‌شود. در صورت نیاز، رایانه‌ای می‌تواند به این رابط متصل شود تا نواحی و/یا پروفایل دما را نمایش دهد (نرم‌افزار تصویری FibroManager).
      – پشتیبانی از پروتکل‌های کنترلر نسل قبلی (OTS-100, OTS-X)
    • منبع تغذیه
      – تأمین ولتاژ موردنیاز تمام اجزای کنترلر
      – قابل انتخاب به‌صورت ۲۴ ولت DC (پیش‌فرض) یا ۱۱۵/۲۳۰ ولت AC (اختیاری)

    کاربرد
    دتکتورهای حرارتی خطی عمدتاً در کاربردهایی مانند تونل‌های جاده‌ای و تونل‌های ریلی مورد استفاده قرار می‌گیرند. سیستم FibroLaser همچنین برای پایش موارد زیر مناسب است:
    ● نوار نقاله‌ها
    ● سیستم‌های حمل‌ونقل معادن زیرزمینی
    ● پارکینگ‌های طبقاتی
    ● تأسیسات تولید صنعتی
    ● سالن‌های تئاتر و اپرا
    ● سینی کابل و کانال‌های کابل
    ● پله‌برقی‌ها در متروها و مراکز خرید
    ● مناطق مستعد انفجار در پالایشگاه‌ها (نسخه ضدانفجار)
    ● نیروگاه‌ها برای پایش مناطق آلوده به مواد رادیواکتیو (انبار موقت، حوضچه پمپ)

     

  • استفاده از بیم دتکتور با الگوی پیشرفته

    هدف این راهنما ارائه اطلاعات در مورد نصب صحیح بیم دتکتورهای دود در کاربردهای حفاظت از جان و مال است. این راهنما به طور خلاصه اصول عملکرد بیم دتکتورها، الزامات طراحی آنها و کاربردهای عملی آنها به عنوان بخشی از سیستم اعلام حریق را شرح می‌دهد.

    بیم دتکتورها می‌توانند اجزای مهمی از یک سیستم اعلام حریق با طراحی مناسب باشند. قابلیت‌های منحصر به فرد آنها این امکان را فراهم می‌کند تا بسیاری از مشکلات و محدودیت‌های دتکتورهای نقطه‌ای و سیستم‌های مکنده در برخی کاربردها را برطرف کنند. این راهنما برای کمک به درک قابلیت‌ها و محدودیت‌های بیم دتکتورها و تفاوت آنها با دتکتورهای نقطه‌ای تهیه شده است.

    توجه: این سند تنها به عنوان یک راهنمای کلی برای کاربرد بیم دتکتورها در نظر گرفته شده است. همیشه باید به الزامات و دستورالعمل‌های نصب سازنده دتکتور و استانداردهای محلی مراجعه شود.

     

    **دتکتورهای دود مکنده**

    هوا از طریق شبکه‌ای از لوله‌ها مکیده می‌شود تا دود تشخیص داده شود. دود وارد محفظه نمونه‌برداری می‌شود که با تشخیص نور پراکنده‌شده توسط ذرات دود معلق در هوا، وجود آنها را شناسایی می‌کند.

     

    **بیم دتکتور دود نوری (بیم)**

    یک دتکتور آتش که از پرتو نور (معمولاً مادون قرمز) استفاده می‌کند و آن را در یک فضای باز منتشر می‌نماید تا دود ناشی از آتش اولیه را نظارت کند. دو نوع اصلی بیم دتکتور وجود دارد:

    – **انتهایی به انتهایی:** فرستنده و گیرنده در دو انتهای ناحیه تحت حفاظت نصب می‌شوند.

    – **بازتابی:** فرستنده و گیرنده در یک محفظه واحد نصب شده‌اند و پرتو به یک بازتابنده ویژه هدایت می‌شود که در انتهای مقابل ناحیه تحت حفاظت قرار دارد.

     

    **فرستنده (معروف به پرتاب‌کننده، TX)**

    این دستگاه در سیستم بیم دتکتور انتهایی به انتهایی با یک گیرنده اختصاصی جفت می‌شود و سیگنال نوری را در ناحیه تحت حفاظت منتشر می‌کند. فرستنده می‌تواند به صورت یکپارچه با گیرنده در یک واحد ترکیب شود.

     

    گیرنده (معروف به حسگر، RX)
    این دستگاه در سیستم بیم دتکتور دود نوع انتهایی به انتهایی با یک فرستنده اختصاصی جفت می‌شود و سطح سیگنال نور دریافت‌شده پس از عبور از ناحیه تحت حفاظت را نظارت می‌کند.

    کنترلر
    این قطعه از سیستم بیم دتکتور دود نوری است که به مهندس اعلام حریق یا فرد صلاحیت‌دار اجازه می‌دهد تنظیمات، پیکربندی و عیب‌یابی بیم‌ها را در سطح زمین انجام دهد و نیاز به استفاده از تجهیزات دسترسی در ارتفاع را برطرف می‌کند.

    محدوده بیم
    این فاصله کلی بین فرستنده و گیرنده بیم در دتکتورهای نوع انتهایی به انتهایی و فاصله بین فرستنده/گیرنده تا بازتابنده در دتکتورهای بازتابی است.

    این محدوده معمولاً به صورت ‘A تا B’ بیان می‌شود که در آن:

    • A حداقل محدوده عملیاتی (از ۰ متر)
    • B حداکثر محدوده عملیاتی (از ۰ متر) است.

    مثال: محدوده ۵ تا ۱۰۰ متر به این معنی است که بیم می‌تواند در فاصله حداقل ۵ متر و حداکثر ۱۰۰ متر به درستی عمل کند.

    **پوشش دتکتور**

    پوشش دتکتور به ناحیه‌ای گفته می‌شود که در آن دتکتور قادر به تشخیص مؤثر آتش‌سوزی در حال وقوع است. این ناحیه بر اساس استانداردهای محلی و بین‌المللی تعریف می‌شود و معمولاً به صورت عرضی یا مدور از مرکز دتکتور محاسبه می‌گردد.

     

    **جبران انحراف (دریفت)**

    این قابلیت به دتکتور اجازه می‌دهد به صورت خودکار موقعیت و/یا سیگنال ارسالی را تنظیم کند تا همترازی بهینه حفظ شود. این ویژگی با محدودیت‌هایی طراحی شده تا:

    – توانایی تشخیص آتش‌های با رشد کند (آتش‌های کم‌دود) حفظ شود

    – اثرات تجمع آلودگی روی سطوح دتکتور خنثی گردد

    – جابجایی‌های جزئی ساختمان جبران شود

     

    **منشور (بازتابنده)**

    این قطعه در بیم‌های بازتابی استفاده می‌شود. ویژگی بازتاب بالای آن امکان بازگرداندن نور به منبع نور و حسگر مجاور را حتی در مسافت‌های طولانی فراهم می‌کند. با استفاده از آرایه‌ای از منشورها می‌توان به بردهای تا ۱۲۰ متر دست یافت.

     

    **تیرگی (ابسکیوریشن)**

    تیرگی مقدار کاهش شدت نور در اثر وجود ذرات یا مواد نیمه‌شفاف در مسیر بیم است. این مقدار معمولاً به صورت درصد یا کاهش دسی‌بل (dB) بیان می‌شود و معیاری برای تشخیص دود محسوب می‌گردد.

     

    **حساسیت**

    توانایی دتکتور دود در واکنش به سطح معینی از دود. این ویژگی در بیم دتکتورها معمولاً قابل تنظیم است.

     

    **دتکتور نقطهای**

    دستگاهی که آتش اولیه را در یک نقطه مشخص تشخیص میدهد و معمولاً از فناوری تشخیص دود نوری یا یونیزاسیون و یا تشخیص حرارت استفاده میکند. محدوده پوشش دتکتور نقطهای توسط استانداردهای محلی یا ملی تعریف میشود.

     

    **لایهبندی (استراتیفیکیشن)**

    پدیدهای که هنگام گرمتر بودن دود از هوای اطراف رخ میدهد، به طوری که دود تا رسیدن به دمای برابر با هوای اطراف بالا میرود و سپس متوقف میشود.

     

    **چه کسانی باید این راهنما را مطالعه کنند؟**

    در صورتی که یکی از موارد زیر در مورد شما صدق میکند، این راهنما برای شما مفید خواهد بود:

    – شما مسئول طراحی یا مشخص کردن سیستمهای تشخیص حریق هستید

    – مسئول سیستم حفاظت از حریق ساختمان هستید

    – مسئول ایمنی آتش (مارشال آتش) در محل کار خود هستید

    – قصد نصب بیم دتکتور دود یا سایر سیستمهای تشخیص دود را دارید

    – در حوزه ارزیابی ریسک حفاظت از حریق فعالیت میکنید

    – در پشتیبانی یا فروش سیستمهای تشخیص حریق نقش دارید

    – در خدمات آتشنشانی و نجات فعالیت میکنید

     

    **توجه:** این راهنما تنها راهنمای کلی ارائه میدهد. شما باید مقررات محلی و ملی و همچنین مشخصات فنی سازنده را برای دتکتورهای خاص نیز بررسی کنید

    **بیم دتکتور دودی اعلام حریق چیست؟**

     

    رایج‌ترین نوع دتکتور دود، **دتکتور نقطهای دودی** است. این دستگاه شامل یک پرتو نور مادون قرمز است که درون محفظه‌ای کوچک در بدنه دستگاه تابیده می‌شود. هنگام ورود دود به محفظه از طریق منافذ بدنه، پرتو نور تحت تأثیر قرار گرفته و دستگاه را به حالت هشدار می‌برد.

     

    **بیم دتکتورهای دودی اعلام حریق** بر همین اصل کار می‌کنند، با این تفاوت که پرتو نور در فضای باز ساختمان منتشر می‌شود. این سیستم به‌طور مؤثر کل فضای ساختمان را به یک محفظه تشخیص دود تبدیل می‌کند که امکان شناسایی دود در طول مسیر پرتو را فراهم می‌نماید.

    WhatsApp Image 2025 09 27 at 11.49.58 PM

     

    **نحوه عملکرد بیم دتکتور دودی اعلام حریق**

    سیستم تشخیص دود با پرتو نوری به این صورت عمل می‌کند:

    1. **تشکیل پرتو نامرئی**: یک پرتو مادون قرمز نامرئی بین فرستنده و گیرنده برقرار می‌شود.
    2. **تأثیر دود بر پرتو**: هنگام عبور دود از مسیر پرتو، ذرات جامد و قطرات مایع موجود در دود باعث پراکندگی و انعکاس فوتون‌های نور می‌شوند.
    3. **کاهش شدت نور**: این پراکندگی منجر به کاهش شدت نور در سمت مقابل ابر دود می‌گردد.
    4. **تشخیص و هشدار**: سیستم این کاهش شدت نور (که به عنوان تیرگی شناخته می‌شود) را تشخیص داده و آن را به عنوان علامت وجود آتش تفسیر می‌کند.

     

    **مزایای کلیدی:**

    – پوشش گسترده‌تر نسبت به دتکتورهای نقطهای

    – حساسیت تنظیم‌پذیر برای تشخیص دود

    – مناسب برای فضاهای بزرگ و سقف‌های بلند

    WhatsApp Image 2025 09 27 at 11.49.58 PM1

    WhatsApp Image 2025 09 27 at 11.49.59 PM

    انواع بیم دتکتورهای موجود چیست؟

    دو نوع پیکربندی اصلی برای بیم دتکتورها وجود دارد:

    و یا رفلکتوری و انتها به انتها**بازتابشی** و **انتهایی**.

    هر دو شامل یک فرستنده (T) (منبع نور) و یک گیرنده (R) (دتکتور) هستند.

    WhatsApp Image 2025 09 27 at 11.49.59 PM1

    **نصب و نگهداری**

    بیم دتکتورهای بازتابشی نصب و نگهداری آسان‌تر و کم‌هزینه‌تری نسبت به نوع انتهایی دارند، زیرا تنها به کابل‌کشی الکتریکی در یک سمت فضای تحت حفاظت نیاز است و تنها یک دستگاه برای تمیزکاری و نگهداری در زمان سرویس وجود دارد.

     

    **ترازکردن**

    معمولاً ترازکردن بیم بازتابشی ساده‌تر است، زیرا تنها یک قطعه تجهیز در یک انتهای بیم نیاز به تنظیم دارد (معمولاً بازتابنده قابل تنظیم نیست)، درحالی که دتکتورهای انتهایی نیاز به تنظیم در هر دو انتهای بیم دارند.

     

    **فضای مورد نیاز بیم**

    بیم بازتابشی با عبور از فضای بازگشتی از بازتابنده، واگرا می‌شود و بنابراین فضای بیشتری اشغال می‌کند. درحالی که یک بیم انتهایی می‌تواند از فاصله‌ای باریک‌تر عبور کند

    WhatsApp Image 2025 09 27 at 11.49.59 PM2

    تفاوت آن‌ها با سایرین چیست؟
    دتکتورهای دود نقطه‌ای، همان‌طور که از نامشان پیداست، دود را در فاصله‌های بسیار کوتاه و با استفاده از یک محفظه درون خود دتکتور شناسایی می‌کنند. برخی مدل‌ها از اصل پراکندگی نور استفاده می‌کنند، جایی که وجود دود جهت پرتو نور را تغییر می‌دهد تا توسط یک فوتودیود تشخیص داده شود. مدل‌های دیگر تغییر در ویژگی‌های الکتریکی هوای داخل دتکتور را که ناشی از وجود دود است، شناسایی می‌کنند.

    دتکتورهای دود مکنده، هوا را از طریق شبکه‌ای از نقاط نمونه‌برداری متصل به سیستم لوله‌کشی به یک محفظه حسگر می‌کشند. تشخیص دود در این سیستم‌ها بر اساس اصول مشابه دتکتورهای نقطه‌ای انجام می‌شود.

    مهم‌ترین تفاوت بین این فناوری‌ها، نحوه پایش منطقه تحت حفاظت است.

    نحوه نصب صحیح بیم دتکتورهای نوری
    رعایت دستورالعمل‌های زیر عملکرد بهینه دتکتورها را تضمین کرده و از خطاها و هشدارهای کاذب جلوگیری می‌کند:

    نصب بر سطوح سازه‌ای مستحکم:
    فرستنده/گیرنده/بازتابنده را بر بخش‌های سازه‌ای ثابت ساختمان نصب کنید که حداقل جابجایی ناشی از تغییرات دما، ارتعاش یا نشست را تجربه می‌کنند. از دتکتورهای دارای قابلیت تنظیم مجدد خودکار برای جبران جابجایی‌های طولانی‌مدت ساختمان استفاده نمایید.

    انتخاب نوع مناسب بیم برای نصب:
    اگر فضای تحت حفاظت برای یک بیم واحد بیش‌ازحد طولانی است، از آرایش‌های پشت‌به‌پشت، رو‌به‌پشت یا رو‌به‌رو استفاده کنید. یا از دتکتورهای مجهز به فازبندی پویا بیم برای جلوگیری از تداخل بیم‌ها و حذف نیاز به محافظ اضافی بهره ببرید.

    تضمین خط دید واضح برای بیم:
    از سطوح براق در مسیر بیم اجتناب کنید و در دتکتورهای بازتابشی این سطوح را حداقل یک متر از مرکز بیم دور نگه دارید (این فاصله در دتکتورهای انتهایی می‌تواند کمتر باشد).

    همراستایی صحیح بیم:
    از دتکتورهای دارای شاخص‌های همترازی مؤثر یا روال‌های تراز خودکار استفاده کنید تا از راه‌اندازی بیم‌های ناهمتراز جلوگیری شود.

    چیدمان بهینه بیم‌ها برای پوشش فضایی مطلوب:
    بیم‌ها می‌توانند بدون ایجاد سیگنال‌های ناخواسته در گیرنده‌ها، یکدیگر را قطع کنند.

    اجتناب از نور مستقیم خورشید:
    در صورت اجتناب‌ناپذیری (مثلاً در آتریوم‌های شیشه‌ای)، از دتکتورهای دارای الگوریتم‌های جبران نور برای تنظیم تغییرات سطح نور محیط استفاده کنید.

    تعیین وظایف/فواصل نگهداری مناسب:
    میزان آلودگی نوری ناشی از گردوغبار یا تعریق را با بررسی سطوح نزدیک به دتکتورها ارزیابی کنید. آستانه هشدار را متناسب با سطح آلودگی احتمالی تنظیم نمایید. از دتکتورهای دارای الگوریتم‌های پایش و تنظیم بهره برای جبران تغییرات تدریجی سیگنال استفاده کنید. برنامه‌ای برای تمیزکاری دوره‌ای اجزای نوری تعیین نمایید.

    تنظیمات مناسب سیستم:
    مشخصه تأخیر تا خطا را متناسب با عملیات ساختمان پیکربندی کنید (مثلاً برای تحمل انسدادهای موقت بیم توسط ماشین‌آلات). اگر تغییرات عملیاتی مکرر است، یک کنترلر سطح پایین نصب کنید تا تنظیمات به‌راحتی بهینه شوند. از دتکتورهای پیشرفته‌ای که روند شدت بیم را پایش می‌کنند، برای تفکیک آتش واقعی از اثرات دیگر استفاده نمایید

    WhatsApp Image 2025 09 27 at 11.50.00 PM

    جلوگیری از نشستن پرندگان:
    در صورت لزوم، تمهیداتی برای ممانعت از نشستن پرندگان روی دتکتورها و انسداد احتمالی بیم بیندیشید

     

    ثبت گزارش سیستم:
    بیم دتکتورها تجهیزات ایمنی حیاتی هستند. مستندسازی نصب برای نگهداری آینده و اطمینان از ایمنی و صحت نصب ضروری است.

    آرایش‌های نصب

    برای نصب بیم دتکتورهای نوری، آرایش‌های مختلفی وجود دارد که بسته به شرایط محیط و نیازهای حفاظتی می‌توان از آنها استفاده کرد:

    1. آرایش انتهایی (End-to-End):
      • فرستنده (T) و گیرنده (R) در دو طرف فضای تحت حفاظت نصب می‌شوند.
      • مناسب برای فضاهای با مسیر مستقیم و بدون مانع.
    2. آرایش بازتابشی (Reflective):
      • فرستنده/گیرنده (TR) در یک سمت و بازتابنده (Reflector) در سمت مقابل نصب می‌شود.
      • مناسب برای مکان‌هایی که کابل‌کشی به سمت مقابل دشوار است.
    3. آرایش پشت‌به‌پشت (Back-to-Back):
      • دو دتکتور به صورت پشت‌به‌هم نصب شده و هر کدام فضای مجاور را پوشش می‌دهند.
      • برای فضاهای بزرگ با نیاز به پوشش چندمنطقه.
    4. آرایش رو‌به‌پشت (Face-to-Back):
      • فرستنده یک دتکتور به گیرنده دتکتور دیگر نشانه‌گیری می‌کند.
      • جهت پوشش‌دهی زوایای خاص یا فضاهای نامنظم.
    5. آرایش رو‌به‌رو (Face-to-Face):
      • فرستنده و گیرنده دو دتکتور به صورت مستقیم به هم نشانه‌گیری می‌کنند.
      • برای افزایش حساسیت در مناطق حساس.

    انتخاب آرایش مناسب به عواملی مانند ابعاد فضای تحت پوشش، موانع فیزیکی، سهولت نصب و هزینه‌های نگهداری بستگی دارد.

    WhatsApp Image 2025 09 27 at 11.50.00 PM1

    **توصیه‌های استاندارد (BS 5839 بخش 1)**

     

    استاندارد **BS 5839 Part 1** راهنمایی برای **طراحی، نصب، راه‌اندازی و نگهداری** سیستم‌های تشخیص خودکار حریق در ساختمان‌های غیرمسکونی ارائه می‌دهد. برخی از توصیه‌های کلیدی مربوط به **بیم دتکتورهای نوری** به شرح زیر است:

     

    *(این مطالب صرفاً جهت راهنمایی کلی است. برای اطلاعات دقیق‌تر به متن استاندارد مراجعه کنید.)*

     

    ### **ارتفاع نصب دتکتورها**

    – بیم دتکتورها باید **تا حد امکان نزدیک به سقف** نصب شوند تا از تجمع و گسترش دود (Smoke Plume) در زمان آتش‌سوزی بهره‌برداری کنند.

    – **حداکثر ارتفاع قابل پوشش** توسط یک دتکتور به دو عامل بستگی دارد:

    1. **تخت بودن یا نبودن سقف**
    2. **حساسیت دتکتور**

     

    **راهنمای ارتفاع بر اساس حساسیت:**

    WhatsApp Image 2025 09 27 at 11.50.01 PM

    – **حساسیت معمولی** (Normal Sensitivity):

    – آستانه هشدار دتکتور >35% تضعیف سیگنال

    – مناسب برای فضاهای با ارتفاع استاندارد.

     

    – **حساسیت افزایش‌یافته** (Enhanced Sensitivity):

    – آستانه هشدار دتکتور ≤35% تضعیف سیگنال

    – در فضاهای بلندتر، **تشخیص مکمل (Supplementary Detection)** در ارتفاع پایین‌تر نیز توصیه می‌شود (به بخش *«فاصله افقی دتکتورها»* مراجعه کنید).

     

     

    ### **ملاحظات اضافی برای فضاهای بلند:**

    – در محیط‌های با ارتفاع زیاد، ممکن است نیاز به **نصب دتکتورهای اضافی در سطوح پایین‌تر** باشد تا از پوشش بهینه اطمینان حاصل شود.

    – در سقف‌های غیرتخت (مانند سقف‌های شیبدار یا قوسی)، محاسبه ارتفاع نصب باید با دقت بیشتری انجام شود.

     

    *(برای جزئیات فنی بیشتر، از جمله جدول‌های دقیق ارتفاع و فاصله، به استاندارد BS 5839 Part 1 مراجعه نمایید.)*

    بیم دتکتورها را می‌توان در ارتفاعی بسیار بیشتر از دتکتورهای نقطه‌ای (حداکثر ۱۰.۵ متر) نصب کرد، زیرا طول بیشتر فضای تحت حفاظت، مشکل تشخیص چگالی کمتر دود را هنگام پراکندگی آن جبران می‌کند

    WhatsApp Image 2025 09 27 at 11.50.01 PM1

    در برخی مکان‌ها مانند آتریوم‌ها یا زیر نورگیرها، نصب بیم‌ها در نزدیکی حداکثر فاصله مجاز زیر سقف ایمن‌تر است تا بتوانند لایه‌های دود طبقه‌بندی شده‌ای را که به سقف نمی‌رسند تشخیص دهند.

    WhatsApp Image 2025 09 27 at 11.50.01 PM2

    فاصله از سطوح عمودی

    WhatsApp Image 2025 09 27 at 11.50.02 PM

    دتکتورها باید حداقل 0.5 متر فاصله از موارد زیر داشته باشند:

    • نزدیک‌ترین دیوار عمودی؛
    • هر سطح نصب‌شده روی سقف (مانند تیر یا کانال) که بیش از 10% از ارتفاع کل سقف به داخل فضا پیش‌آمدگی دارد؛
    • هر سطح نصب‌شده روی کف که کمتر از 300 میلی‌متر به سقف نزدیک شده است
    • فاصله افقی بیم دتکتورها
      در ارتفاع سقف، حداکثر فاصله افقی بین هر نقطه و بخشی از یک بیم باید ۷.۵ متر باشد

    WhatsApp Image 2025 09 27 at 11.50.02 PM1

    • همین محدودیت ۷.۵ متری برای دتکتورهای نقطه‌ای و دتکتورهای مکنده دود نیز اعمال می‌شود که این موضوع مزیت آشکاری برای بیم دتکتور در فضاهای بزرگ فراهم می‌کند، زیرا پوشش‌دهی بسیار کارآمدتری دارد.
      در مثال نشان داده شده برای یک سطح به مساحت ۱۲۶۰ متر مربع، ۲ بیم دتکتور کافی است، در حالی که ۱۲ دتکتور نقطه‌ای یا نقاط نمونه‌برداری مکنده مورد نیاز است
    • بیم دتکتورهایی که در رأس سقف‌های شیب‌دار نصب می‌شوند، به دلیل اثر «هدایت‌کنندگی» سقف، می‌توانند مناطق افقی وسیع‌تری را پوشش دهند.
      فاصله را به ازای هر ۱ درجه شیب سقف، ۱٪ افزایش دهید تا حداکثر افزایش ۲۵٪ حاصل شود (که حداکثر فاصله ۹.۳۸ متر خواهد بود)

    WhatsApp Image 2025 09 27 at 11.50.02 PM2

    استفاده از تشخیص تکمیلی برای ساختمان‌هایی با سقف‌های بسیار بلند توصیه می‌شود. این کار می‌تواند تشخیص زودتر حریق را فراهم کند و از اثر لایه‌بندی جلوگیری نماید.

    WhatsApp Image 2025 09 27 at 11.50.03 PM

    محدودیت‌های فاصله افقی در این حالت کمتر از فاصله در ارتفاع سقف است، زیرا در بالای حجم تحت حفاظت، سطحی وجود ندارد که از پراکندگی ستون دود جلوگیری کند.

    چه ابزاری برای نصب آن نیاز دارید؟
    دستورالعمل‌های نصب، تراز کردن و آزمایش بیم دتکتور اعلام حریق بسته به مدل و سازنده متفاوت است، بنابراین باید دستورالعمل‌های ارائه‌شده همراه با سیستم خود را دنبال کنید. با این حال، ابزارها و تجهیزات زیر هنگام نصب هر نوع سیستم تشخیص مفید هستند:

    ابزارهای لازم برای نصب دتکتورها روی سازه ساختمان:
    دریل، پیچ‌گوشتی چهارسو و دوسو و غیره.

    کیت راه‌اندازی و آزمایش: این کیت از تأمین‌کننده شما قابل تهیه است و شامل تمام ابزارهای لازم برای آزمایش دتکتور در برابر حریق و خطا می‌باشد.

    مولتی‌متر و سیم‌های آزمایش: برای بررسی منبع تغذیه ورودی هنگام عیب‌یابی.

    بالابر قیچی‌شو یا سایر تجهیزات دسترسی در ارتفاع: برای نصب دتکتورها استفاده می‌شود. همچنین میله‌های دسترسی برای آزمایش دتکتورها پس از نصب مفید هستند، زیرا در وقت صرفه‌جویی کرده و از نیاز به کار در ارتفاع جلوگیری می‌کنند.

    الزامات نگهداری برای بیم دتکتور اعلام حریق چیست؟
    برای حفظ عملکرد دتکتورها، به صورت دوره‌ای مراحل زیر را انجام دهید (فاصله زمانی این کار بستگی به میزان تمیزی محیط عملکرد دارد):

    ۱. دتکتورها را از پنل کنترل سیستم اعلام حریق جدا کنید.
    ۲. اجزای نوری (فرستنده/گیرنده/بازتاب‌دهنده) را با یک پارچه نرم و بدون پرز تمیز کنید.
    ۳. دتکتورها را مجدداً تراز کنید تا از بهینه بودن سطح سیگنال اطمینان حاصل شود.
    ۴. دتکتورها را به پنل کنترل سیستم اعلام حریق متصل کنید.
    ۵. دتکتورها را آزمایش کنید (این معمولاً شامل مسدود کردن بیم در محل گیرنده است).

    WhatsApp Image 2025 09 27 at 11.50.03 PM1

    کجا می‌توان آن‌ها را نصب کرد؟
    فاصله‌های طولانی و بدون مانع:
    – انبارها
    – آشیانه هواپیما
    – ترمینال‌های فرودگاه
    – مراکز ورزشی
    – چاه‌های آسانسور

    ساختمان‌های بلند
    – تأسیسات تولیدی
    – ترمینال‌های فرودگاه
    – آشیانه‌های هواپیما
    – کلیساها
    – آتریوم‌ها

    دسترسی محدود
    – پایانه‌های حمل‌ونقل عمومی
    – ترمینال‌های فرودگاه
    – ساختمان‌های دولتی
    – سایت‌های تولیدی

    تعداد محدود دتکتورها قابل قبول است
    – ملاحظات معماری (ساختمان‌های باستانی، سبک‌های مدرن مینیمالیستی)
    – نصب روی سقف امکان‌پذیر نیست (آتریوم‌ها، سقف‌های شیشه‌ای)
    – دفاتر با پلان باز
    – تشخیص غیر ملموس و نامحسوس مطلوب است (نگارخانه‌های هنری، موزه‌ها، کتابخانه‌ها)

    فضاهای انفجاری
    – تجهیزات الکترونیکی می‌توانند در محفظه‌های ضد انفجار مهر و موم شوند.
    – کنترلر سطح پایین در ناحیه‌ای ایمن و دور از محل خطر برای پایش سیستم قرار می‌گیرد.

    WhatsApp Image 2025 09 27 at 11.50.04 PM

    آیا می‌دانستید؟
    بیم دتکتورهای اعلام حریق تنها قادر به محافظت از فضاها به صورت افقی نیستند. این دتکتورها با موفقیت برای محافظت از نصب‌های عمودی مانند چاه‌های آسانسور نیز استفاده شده‌اند، جایی که تنها یک یا دو دتکتور برای محافظت از چندین طبقه نصب و نگهداری می‌شود، به جای تعداد بسیار بیشتری از دتکتورهای نقطه‌ای.