طراحی سیستم اطفاء حریق با گاز دی اکسیدکربن

IMG 1594

اثرات بازشوها بر طراحی و عملکرد سیستم اطفاء حریق با گاز دی اکسیدکربن

NFPA12 ANNEX-E

ضمیمه E – آتش‌سوزی‌های سطحی
این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

E.1 الزامات ارائه‌شده در بخش 5.3 عوامل مختلفی را که می‌توانند بر عملکرد سامانه دی‌اکسید کربن تأثیر بگذارند، در نظر گرفته‌اند. پرسش در مورد محدودیت بازشوهایی که قابل‌بسته شدن نیستند، اغلب مطرح می‌شود و پاسخ دقیق به آن دشوار است.
از آنجا که آتش‌سوزی‌های سطحی معمولاً از نوعی هستند که می‌توان آن‌ها را با روش‌های اطفاء موضعی خاموش کرد، انتخاب بین روش غرقاب کامل و روش کاربرد موضعی را می‌توان بر اساس مقدار دی‌اکسید کربن مورد نیاز انجام داد.

این انتخاب در مثال‌های زیر برای فضای محصور نمایش‌داده‌شده در شکلE.1(a) نشان داده شده است.

9k=

عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۱۷ پوند بر دقیقه بر فوت مربع برای غلظت ۳۴ درصد در ارتفاع ۷ فوت خواهد بود.
دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):

17 X 5= 85 lb

مجموع دی‌اکسید کربن مورد نیاز:

111 + 85= 196 lb

9k=

عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۸۵کیلوگرم بر دقیقه بر متر مربع برای غلظت ۳۴ درصد در ارتفاع ۲.۱ متر خواهد بود.
دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۸۵ × ۰.۵ = ۴۲.۵ کیلوگرم
مجموع دی‌اکسید کربن مورد نیاز:
۴۸.۶ + ۴۲.۵ = ۹۱.۱ کیلوگرم

9k=

دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۱۷ × ۱۰ = ۱۷۰ پوند
مجموع دی‌اکسید کربن مورد نیاز:
۱۱۱ + ۱۷۰ = ۲۸۱ پوند
از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۰.۲۵ پوند بر دقیقه بر فوت مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
مساحت کل بازشدگی‌ها: ۲۰ فوت مربع
مساحت کل دیوارها: (۱۰ + ۱۰ + ۲۰ + ۲۰) × ۱۰ = ۶۰۰ فوت مربع
نرخ تخلیه:
(۲۰ ÷ ۶۰۰) × (۱۰.۲۵) + ۰.۲۵ = ۰.۲۷ پوند بر دقیقه بر فوت مکعب
نرخ کل تخلیه:
۰.۲۷ × ۲۰۰۰ = ۵۴۰ پوند بر دقیقه
مقدار دی‌اکسید کربن:
۵۴۰ ÷ ۲ = ۲۷۰ پوند

کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
زمانی که بازشدگی‌ها به ۲۰ فوت مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

2Q==

دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۸۵ × ۱.۰ = ۸۵ کیلوگرم
مجموع دی‌اکسید کربن مورد نیاز:
۴۸.۶ + ۸۵ = ۱۳۳.۶ کیلوگرم
از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۴ کیلوگرم بر دقیقه بر متر مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
مساحت کل بازشدگی‌ها: ۲.۰ متر مربع
مساحت کل دیوارها: (۳ + ۳ + ۶ + ۶) × ۳ = ۵۴ متر مربع
نرخ تخلیه:
(۲ ÷ ۵۴) × (۱۶۴) + ۴ = ۴.۴ کیلوگرم بر دقیقه بر متر مکعب
نرخ کل تخلیه:
۴.۴ × ۵۴ = ۲۳۷.۶ کیلوگرم بر دقیقه بر متر مکعب
مقدار دی‌اکسید کربن:
۲۳۷.۶ ÷ ۲ = ۱۱۸.۸ کیلوگرم
کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
زمانی که بازشدگی‌ها به ۲.۰ متر مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

9k=

p

نوشته‌های مشابه

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.

     

  • معرفی دتکتورهای تاندا

    WhatsApp Image 2025 09 28 at 3.15.10 PM

    بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

    مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

    WhatsApp Image 2025 09 28 at 3.15.10 PM1

    در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

    در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

    در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

    از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

    WhatsApp Image 2025 09 28 at 3.15.10 PM2

    هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

    از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

    بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

    WhatsApp Image 2025 09 28 at 3.15.11 PM

    بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

    اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

    WhatsApp Image 2025 09 28 at 3.15.11 PM1

    از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

    برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

    قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

    برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

    تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

    وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.

     

     

  • مواد نصب و نگهدارنده‌های لوله در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    پایه‌ها و آویزهای نگهدارنده
    شبکه لوله‌کشی با استفاده از پایه‌های نصب لوله، همان‌طور که در شکل ۶ در سمت چپ نشان داده شده است، به سقف یا اجزای سازه‌ای محکم نصب می‌شود. همچنین می‌توان آن را با استفاده از بست‌های ساده لوله، آویزهای یو (Clevis)، بست‌های قابل تنظیم، گیره‌های C شکل و میل‌گردهای رزوه‌شده از سقف بتنی آویزان کرد. انواع مختلفی از پایه‌ها نیز موجود است، از جمله کلیپس‌ها، بست‌های زینی یا بست‌های کمربندی، همان‌طور که در شکل ۷ در بالا نشان داده شده است. انتخاب ابزار نصب بستگی به نوع مصالح نصب، شرایط محیطی و کدها و مقررات محلی دارد.

    فواصل نصب بست‌ها و نگهدارنده‌های لوله نمونه‌برداری بر اساس دما و قطر لوله تعیین می‌شود، همان‌طور که در جدول ۱ زیر نشان داده شده است.

    نصب بست‌ها و آویزهای نگهدارنده با فواصل مشخص‌شده بسیار حائز اهمیت است تا از خم شدن لوله و ایجاد فشار در محل اتصالات، زانویی‌ها و رابط‌ها جلوگیری شود؛ چراکه این فشار ممکن است باعث ترک‌خوردگی یا شکستگی لوله گردد.

    IMG 1306

    کلیپس‌های نصب باز نباید به‌صورت وارونه استفاده شوند، به‌طوری‌که قسمت باز آن‌ها رو به پایین قرار گیرد، زیرا ممکن است لوله به‌صورت ناگهانی از کلیپس خارج شود.

    در کاربردهایی که لوله نمونه‌برداری زیر کف کاذب نصب می‌شود، می‌توان لوله را مستقیماً به پایه‌های کف کاذب با استفاده از بست‌های سیمی، بست‌های کانال یا سایر تجهیزات نصب، متصل کرد.

    برچسب‌گذاری لوله‌ها
    طبق استانداردهای شناخته‌شده‌ای مانند NFPA 72، FIA و سایر کدها و مقررات، لازم است لوله‌های سیستم اسپیراتینگ برچسب‌گذاری شوند تا از سایر لوله‌ها متمایز شده و به‌طور مشخص به‌عنوان بخشی از سیستم تشخیص حریق شناسایی گردند.

    هم شبکه لوله‌کشی نمونه‌برداری و هم هر سوراخ نمونه‌برداری باید مشخص شوند. لوله و سوراخ‌های نمونه‌برداری باید در محل‌های زیر برچسب‌گذاری شوند:

    ۱. در محل تغییر جهت یا انشعاب لوله‌کشی
    ۲. در هر دو طرف نفوذ از دیوارها، کف‌ها یا سایر موانع
    ۳. در فواصل مناسب روی لوله‌ها به‌گونه‌ای که در فضا قابل مشاهده باشند، اما فاصله بین آن‌ها بیشتر از ۶۱ متر (۲۰ فوت) نباشد
    ۴. در محل هر سوراخ نمونه‌برداری

    لوله باید با عبارتی مشابه این برچسب‌گذاری شود:
    «لوله نمونه‌برداری آشکارساز دود – از جابه‌جایی خودداری شود»
    برای مشاهده نمونه برچسب لوله و سوراخ نمونه‌برداری به شکل ۸مراجعه کنید.

    IMG 1307 IMG 1308 IMG 1309

    اجزاء نگهداری
    پیشنهاد می‌شود که یک شیر توپی ایزوله و یک اتصالات T-joint همراه با درپوش انتهایی روی لوله نمونه‌برداری نصب شود، تقریبا ۵ تا ۳۰ سانتیمتر (۶ اینچ تا ۱ فوت) از ورودی لوله آشکارسازدتکتور دودی مکشی. این شیر در طول نگهداری مکرر استفاده خواهد شد. این موضوع به‌ویژه برای سیستم‌های دتکتور دودی مکشی که از محیط‌های کثیف محافظت می‌کنند یا در مکان‌هایی که نیاز به نگهداری مکرر است، اهمیت دارد. شکل ۹ را در زیر سمت چپ مشاهده کنید.

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • سیستم‌های اطفاء حریق دی‌اکسید کربن با کاربرد موضعی NFPA12-ANNEX F- Local Application Carbon Dioxide Systems

    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاع‌رسانی ارائه شده است.

    F.1 یک سیستم اطفاء حریق دی‌اکسید کربن با کاربرد موضعی طراحی شده است تا دی‌اکسید کربن را مستقیماً به آتش‌سوزی‌ای که می‌تواند در یک ناحیه یا فضایی بدون محصورسازی واقعی رخ دهد، اعمال کند. چنین سیستم‌هایی باید به گونه‌ای طراحی شوند که دی‌اکسید کربن را در حین عملکرد سیستم به نحوی به خطر مورد اطفاء برسانند که تمام سطوح سوختنی یا شعله‌ور را پوشش داده یا احاطه کند.

    نرخ جریان و مدت زمان کاربرد مورد نیاز بستگی به نوع ماده قابل احتراق درگیر، ماهیت خطر (اینکه آیا سطح مایع مانند مخزن غوطه‌وری یا مخزن کوئنچ است یا یک قطعه ماشین‌آلات پیچیده مانند دستگاه چاپ) و محل و فاصله اسپرینکلرهای دی‌اکسید کربن نسبت به خطر دارد.

    عوامل مهمی که در طراحی یک سیستم کاربرد موضعی باید در نظر گرفته شود عبارتند از: نرخ جریان، محدودیت‌های ارتفاع و مساحت اسپرینکلرهای استفاده‌شده، میزان دی‌اکسید کربن مورد نیاز، و سیستم لوله‌کشی. مراحل زیر برای طراحی یک سیستم لازم است:

    (۱) تعیین مساحت خطر مورد اطفاء. در تعیین این مساحت، مهم است که نقشه دقیق خطر را با نشان دادن تمام ابعاد و محدودیت‌ها جهت جانمایی اسپرینکلرها ترسیم کنید. حدود خطر باید با دقت تعریف شوند تا تمام مواد قابل احتراق که می‌توانند در خطر گنجانده شوند را شامل شود، و احتمال وجود کالا یا سایر موانع در یا نزدیک خطر باید به دقت بررسی شود.

    (۲) برای اسپرینکلرهای نوع سقفی، با توجه به محدودیت‌های ارتفاع خطر مورد اطفاء، اسپرینکلرها را به گونه‌ای جانمایی کنید که خطر را تحت پوشش قرار دهند، با استفاده از اسپرینکلرهای مختلف در محدوده‌های ارتفاع و مساحت مجاز که در لیست‌ها یا تأییدیه‌های این اسپرینکلرها بیان شده است. حدود پوشش مساحت یک اسپرینکلر برای یک ارتفاع خاص از اطلاعات لیست شده تعیین می‌شود که در قالبی مشابه شکل F.1(a) ارائه شده است. در نظر داشته باشید که تمام پوشش‌های اسپرینکلر بر اساس مربع‌های تقریبی ترسیم می‌شوند. این مرحله برای اسپرینکلرهای کنار مخزن یا خطی حذف می‌شود.

    (۳) بر اساس ارتفاع هر اسپرینکلر از سطح خطر، نرخ جریان بهینه‌ای که هر اسپرینکلر باید برای اطفاء خطر داشته باشد را تعیین کنید. این مقدار از یک نمودار مانند شکل F.1(b) که در لیست‌های جداگانه یا تأییدیه‌های اسپرینکلرها ارائه شده است، به دست می‌آید. برای اسپرینکلرهای کنار مخزن یا خطی، بر اساس شکل خطر، اسپرینکلرها را در محدوده‌های فاصله‌ای مجاز طبق تأییدیه یا لیست جانمایی کنید. بر اساس فاصله یا مساحت پوشش، نرخ جریان مناسب را از نمودارهای تأیید شده‌ای مانند شکل F.1(c) و F.1(d) انتخاب کنید. این مرحله برای اسپرینکلرهای نوع سقفی حذف می‌شود.

    (۴) مدت زمان تخلیه برای خطر را تعیین کنید. این زمان همیشه حداقل ۳۰ ثانیه خواهد بود، اما می‌تواند طولانی‌تر باشد، بسته به عواملی مانند ماهیت ماده در خطر و احتمال نیاز برخی نقاط داغ به زمان خنک‌کنندگی بیشتر.

    (۵) نرخ جریان تک‌تک اسپرینکلرها را جمع کنید تا نرخ جریان کل به دست آید و این مقدار را در مدت زمان تخلیه ضرب کنید تا مقدار کل دی‌اکسید کربن مورد نیاز برای اطفاء خطر محاسبه شود. سپس این عدد را در ۱.۴ (برای سیستم‌های پرفشار) ضرب کنید تا ظرفیت کل سیلندرهای ذخیره‌سازی به دست آید.

    (۶) محل استقرار مخزن یا سیلندرهای ذخیره‌سازی را تعیین کرده و لوله‌کشی اتصال‌دهنده اسپرینکلرها به مخازن ذخیره را طراحی کنید.

    (۷) از سیلندرهای ذخیره شروع کرده و افت فشار را در طول لوله‌کشی سیستم تا هر اسپرینکلر محاسبه کنید تا فشار نهایی در هر اسپرینکلر به دست آید (به بخش C.1 مراجعه شود). مطمئن شوید که طول معادل لوله برای اتصالات و اجزای سیستم را در محاسبات لحاظ کرده‌اید. طول‌های معادل اجزای سیستم در لیست‌ها یا تأییدیه‌های جداگانه این اجزا موجود است. شرایط ذخیره‌سازی را برای سیستم‌های پرفشار برابر با ۷۵۰ psi (۵۱۷۱kPa) و برای سیستم‌های کم‌فشار برابر با ۳۰۰ psi (۲۰۶۸ kPa) در نظر بگیرید. در طراحی اولیه، باید اندازه‌های لوله‌ها را در نقاط مختلف سیستم فرض کنید. پس از انجام محاسبات برای تعیین فشار اسپرینکلرها، ممکن است لازم باشد اندازه لوله‌ها را برای دستیابی به فشارهای بالاتر یا پایین‌تر تغییر دهید تا نرخ جریان مناسب حاصل شود.

    (۸) بر اساس فشار اسپرینکلرها از مرحله (۷) و نرخ جریان جداگانه هر اسپرینکلر از مرحله (۳)، یک اوریفیس معادل را انتخاب کنید که بیشترین تطابق را با مساحت مورد نیاز برای تولید نرخ جریان طراحی شده داشته باشد، با استفاده از جدول‌های 4.7.5.2.1، 4.7.5.3.1، و A4.7.4.4.3.

    2Q==

    IMG 1522 1 IMG 1523 IMG 1524

  • دستورالعمل نصب دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

    دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.33 PM

    دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

    دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

    عملکرد

    حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

    ملاحظات طراحی

    طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

    * NFPA-72، کد ملی اعلام حریق

    * NEC 760، کد ملی برق

    * هرگونه الزامات محلی نصب

    * الزامات مرجع قانونی ذی‌صلاح (AHJ)

    ۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

    ۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

    ۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

    ۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
    ۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

    سیم‌کشی مدار تحریک

    دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.34 PM

    • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
      ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
    • WhatsApp Image 2025 09 15 at 4.12.34 PM1
    • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

    WhatsApp Image 2025 09 15 at 4.12.35 PM

    . دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
    ۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
    ۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

    WhatsApp Image 2025 09 15 at 4.12.35 PM1

    نصب کابل دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

    WhatsApp Image 2025 09 15 at 4.12.35 PM2

    ⚠️ هشدار
    در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

    هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
    اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

    ۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

    ۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

    ۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

    WhatsApp Image 2025 09 15 at 4.12.36 PM

    . کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

    ۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

    WhatsApp Image 2025 09 15 at 4.12.36 PM1

    . انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

    ۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

    ۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

    WhatsApp Image 2025 09 15 at 4.12.37 PM

    . بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

    ⚠️ هشدار
    هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

    ۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

    اتصال کابل دتکتور (SENSOR CABLE SPLICING)

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
    به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

    روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
    روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

    ۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

    • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
    • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
    • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

    اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

    ۲. استفاده از جعبه تقسیم:
    هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

    💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
    در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

    در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

    مراحل اتصال درون‌خطی:

    ۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

    ۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

    ۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

    ۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    ۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    🧪تست عملکردی (TESTING):

    تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

    مراحل تست:

    ۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

    ۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

    ۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

    نگهداری
    کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

    🔧 آسیب به کابل دتکتور:
    در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
    برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

    • بررسی چشمی
    • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
    • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
      در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
      حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

    🔥 پس از وقوع آتش‌سوزی:
    از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
    اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.