نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن

IMG 1596

1 مقدمه: مواد ضمیمه زیر برای نشان دادن مثال‌های معمول از نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن ثابت ارائه شده است. لازم به ذکر است که روش‌های توضیح داده‌شده به‌عنوان تنها روش‌های قابل استفاده در نظر گرفته نمی‌شوند. این روش‌ها فقط به منظور کمک به تفسیر و توضیح اهداف استاندارد در مواردی که ممکن است کاربرد صحیح آن‌ها مورد سوال باشد، به‌کار می‌روند.

B.2 پخت غذا در صنایع/تجاری (سرخ‌کن‌های روغن داغ): سرخ‌کن‌های بزرگ روغن داغ که برای پخت مداوم غذاهایی مانند گوشت، ماهی و تنقلات استفاده می‌شوند، خطرات آتش‌سوزی دارند که نیاز به توجه ویژه هنگام طراحی سیستم اطفاء حریق دی‌اکسید کربن برای حفاظت از آن‌ها دارد.
اگر روغن پخت بیش از حد گرم شود، پیش از آنکه به جوش بیاید، به دمای خودآتش‌زنی می‌رسد. بنابراین، آتش‌سوزی که شامل بخارات روغن پخت است، ممکن است پس از تخلیه اولیه دی‌اکسید کربن با دمای بالای روغن داغ در مخزن پخت دوباره شعله‌ور شود، مگر اینکه روغن تا زیر دمای آتش‌زنی خنک شود. طراحی بهینه و انرژی‌ساز مخازن پخت مدرن باعث می‌شود که فرایند خنک‌سازی کند باشد.
چیدمان تجهیزات برای محافظت از آن‌ها برای طراحی صحیح سیستم از اهمیت ویژه‌ای برخوردار است.
اولاً، استفاده از سرخ‌کن ممکن است شامل گرم‌کردن خارجی روغن با چرخش مجدد روغن از طریق مخزن پخت باشد. این مورد را می‌توان به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
ثانیاً، برخی از سرخ‌کن‌ها به‌گونه‌ای طراحی شده‌اند که هود بخار و نقاله توسط یک سیستم هیدرولیکی بالا و پایین می‌روند. مایعات هیدرولیکی قابل اشتعال و سازگار با غذا که برای این کار استفاده می‌شوند، ناحیه دیگری از حفاظت را به‌وجود می‌آورند و می‌توان آن‌ها را به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
ثالثاً، نگرانی‌هایی وجود دارد که یک عملیات با تولید بالا ممکن است سیستم تهویه‌ای داشته باشد که شامل سیستم حذف بخار باشد. این نگرانی باید به‌عنوان بخشی از خطر در نظر گرفته شود. (به 6.2.1 مراجعه کنید.)
صفحه تخلیه، زمانی که در معرض چکه روغن در انتهای خروجی نقاله قرار دارد، باید پوشانده شود. (به 6.2.1 مراجعه کنید.)
در نهایت، مخزن بزرگ‌ترین مساحت برای محافظت و بیشترین نیاز به خنک‌سازی کافی را به‌وجود می‌آورد.

B.2.1 خلاصه‌ای از حفاظت: موارد زیر یک مرجع سریع برای معیارهای حفاظت در طراحی سیستم است.

B.2.1.1 مخزن: زمانی که مخزن دارای هود متحرک باشد، حفاظت از طریق سیل‌کردن کامل زیر هود طبق 5.1.2 مجاز نیست، مگر اینکه شرایط زیر رعایت شود: (1) هود نباید در حین عملیات پخت بالا برده شود که این به‌معنای موارد زیر است: (a) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قطع می‌شود هنگامی که هود بالا می‌رود (مثلاً برای نگهداری یا تمیزکاری). (b) یک سوئیچ حد دمایی مکانیکی باید استفاده شود که هر زمان که دمای روغن بیشتر از حد دمای تنظیم‌شده به میزان بیش از 20 درصد (درجه فارنهایت یا درجه سلسیوس) از دمای حداکثر معمولی روغن افزایش یابد، عمل کند. این عمل باید موجب موارد زیر شود: i. قطع برق به سیستم گرم‌کننده روغن ii. جلوگیری از بالا بردن هودهای الکتریکی iii. فعال‌سازی آلارم‌های شنیداری و دیداری برای هشدار به عدم بالا بردن هود به‌صورت دستی (c) سوئیچ باید دارای یک دمای بازنشانی خودکار باشد که از 60°F (33.3°C) کمتر از دمای خودآتش‌زنی روغن پخت باشد.

(2) قبل از اینکه هود بالا برده شود (برای نگهداری و تمیزکاری)،باید یک شیر قطع کن نظارتی بسته شود تا از تخلیه سیستم دی‌اکسید کربن جلوگیری شود. بسته شدن شیر قطع کن باید باعث فعال شدن آلارم دوگانه نظارتی در واحد کنترل شود. (3) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قبل از تخلیه سیستم یا همزمان با آن قطع می‌شود. (4) مقدار دی‌اکسید کربن و مدت زمان تخلیه باید کافی باشد تا یک جو بی‌اکسیژن در مخزن حفظ شود تا دمای روغن پخت کاهش یابد و از شعله‌ور شدن مجدد جلوگیری شود طبق 5.3.5.6. توصیه می‌شود که دما حداقل 60°F (33.3°C) پایین‌تر از دمای خودآتش‌زنی روغن باشد. (5) طراحی سیستم باید بر اساس آزمایش‌های تخلیه برای مدل خاص سرخ‌کن انجام شود تا نشان دهد که با بند B.2.1.1 (4) تطابق دارد. مستندات آزمایش باید در صورت درخواست مقامات ذی‌صلاح یا کاربر نهایی در دسترس باشد. (6) شناسایی حرارتی باید سیستم دی‌اکسید کربن را زمانی که دما برابر یا پایین‌تر از دمای خودآتش‌زنی روغن پخت باشد، فعال کند.

B.2.1.2 محفظه دائمی: سیستم کاربرد محلی باید به‌گونه‌ای طراحی شود که هود در موقعیت کامل بالا باشد.

B.2.1.3 تخته تخلیه: استفاده از سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت طبق بخش 6.4 مناسب است.

B.2.1.4 سیستم تهویه بخار و حذف بخار: سیل کردن کامل با استفاده از غلظت 65 درصد طبق 5.4.2.1 مناسب است.

B.2.1.5 گرم‌کن روغن خارجی: سیستم کاربرد محلی برای تجهیزات و فیلترهای چرخشی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)، بسته به پیکربندی تجهیزات، مناسب است.

B.2.1.6 سیستم روغن هیدرولیک: سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)،بسته به پیکربندی تجهیزات، مناسب است.
زیرا مخزن به حداقل 3 دقیقه تخلیه مایع نیاز دارد (به 6.3.3.5.1 مراجعه کنید)، طراحی سیستم دی‌اکسید کربن می‌تواند شامل دو سیستم لوله‌کشی تخلیه باشد، یکی برای مخزن و دیگری برای خطرات متقابل دیگر.

B.2.1.7 خاموش کردن تجهیزات: (به بند 4.5.4.9 مراجعه کنید.) همچنین باید به ایمنی شخصی (به بخش 4.3 مراجعه کنید) در هنگام طراحی سیستم توجه شود.

B.3 هودهای اجاق رستوران، کانال‌های متصل و خطرات مرتبط: حفاظت از هودهای اجاق در آشپزخانه و کانال‌ها با ترکیبی از سیستم‌های سیل کردن کامل و سیستم‌های کاربرد محلی انجام می‌شود. کانال یا دودکش و منطقه پلومن بالای فیلترها می‌توانند با سیل کردن کامل محافظت شوند. سطح زیرین فیلترها و هرگونه خطر خاص مانند سرخ‌کن‌های روغن داغ می‌توانند با کاربرد محلی محافظت شوند. ممکن است لازم باشد که حفاظت کاربرد محلی به سطوح زیر هود و سطوح اجاق گسترش یابد اگر خطر تجمع چربی یا چکه کردن از هود یا کانال در شرایط آتش‌سوزی وجود داشته باشد.
در حفاظت از کانال با استفاده از ضریب سیل کردن توصیه‌شده 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) حجم کانال، در نظر گرفتن یک دمپر در بالای یا پایین کانال ضروری است، با فراهم آوردن شرایط برای بسته شدن خودکار دمپر در ابتدای تخلیه دی‌اکسید کربن. برای کانال‌هایی که ارتفاع آن‌ها بیشتر از 20 فوت (6.1 متر) یا مسیر افقی آن‌ها بیشتر از 50 فوت (15.3 متر) است، گاز در نقاط میانه معرفی می‌شود تا توزیع مناسب آن تضمین شود. با یک دمپر در بالای دودکش، باید یک نازل درست زیر آن نصب شود و نازل‌های اضافی در بالای آن نصب شوند اگر مسیر کانال از دمپر عبور کند. معمولاً یک نازل در منطقه پلومن مورد نیاز است.

نازل‌ها باید برای پوشش سطح زیرین فیلترها و تخلیه به مدت 30 ثانیه با نرخ سطح پوشش مشخص‌شده در 6.4.3.5 فراهم شوند. در غیر این صورت، مقدار دی‌اکسید کربن مورد نیاز و نرخ‌های کاربردی می‌توانند با استفاده از نازل‌ها یا روش‌های ویژه‌ای که برای این منظور تأیید یا فهرست شده‌اند، تعیین شوند. اگر سطح زیرین هود عمدتاً با یک جداکننده یا سینی چکه‌ای بسته شده باشد، حفاظت می‌تواند با سیل کردن کامل به‌وسیله ضریب 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) انجام شود و مساحت محیط باز جبران گردد. (به 5.3.5 مراجعه کنید.)

مقادیر مورد نیاز برای حفاظت از سرخ‌کن‌های روغن داغ یا سایر خطرات آتش‌سوزی خاص، یا هر دو، زیر هود باید علاوه بر الزامات قبلی باشد. تمام خطرات در حال تهویه از طریق یک کانال مشترک باید به‌طور همزمان محافظت شوند.

شناسایی آتش‌سوزی به‌طور خودکار و فعال‌سازی سیستم برای فضاهای پنهان بالای فیلتر و در سیستم کانال الزامی است. همچنین باید در زیر فیلترها بر روی هر سرخ‌کن روغن داغ، تشخیص‌دهنده‌هایی قرار داده شوند.

شناسایی آتش‌سوزی قابل مشاهده و فعال‌سازی دستی (به بند 4.5.4.5 مراجعه کنید) می‌تواند برای بخش‌های نمایان خطر قابل قبول باشد؛ با این حال، فعال‌سازی از طریق هر یک از روش‌های خودکار یا دستی باید موجب تخلیه کامل سیستم شود. توجه ویژه باید به انتخاب حسگرهای حرارتی صورت گیرد، با در نظر گرفتن سطح دمای عملیاتی عادی و شرایط افزایش دما در تجهیزات اجاق.

فعال‌سازی سیستم باید به‌طور خودکار دمپرها را ببندد، فن‌های تهویه اجباری را خاموش کند، و شیر اصلی سوخت یا کلید برق را برای تمام تجهیزات پخت مرتبط با هود قطع کند. این دستگاه‌ها باید از نوعی باشند که نیاز به بازنشانی دستی دارند. (به بند 4.5.4.9 مراجعه کنید.)

علاوه بر نگهداری معمول سیستم، باید مراقبت ویژه‌ای برای تمیز نگه داشتن حسگرهای حرارتی و نازل‌های تخلیه از تجمع چربی صورت گیرد. به‌طور کلی، مهر و موم‌ها یا درپوش‌های نازل برای جلوگیری از انسداد روزنه‌های نازل مورد نیاز هستند.

برای اطلاعات بیشتر، به NFPA 96 مراجعه کنید.

B.4 دستگاه‌های چاپ روزنامه و دستگاه‌های چاپ روتوگراور: دستگاه‌های چاپ روزنامه، روتوگراور و مشابه آن‌ها خطرات زیادی ایجاد می‌کنند به‌دلیل استفاده از حلال‌های بسیار قابل اشتعال در جوهرها، حضور کاغذ خردشده یا غبار اشباع‌شده با جوهر، روان‌کننده‌ها و غیره. علاوه بر واحدهای چاپ، ممکن است کانال‌های تخلیه، تجهیزات ترکیب جوهر و خطرات الکتریکی مرتبط نیز وجود داشته باشند که نیاز به حفاظت دارند. دستگاه‌های چاپ روتوگراور جوهرهای قابل اشتعال‌تری نسبت به دستگاه‌های چاپ روزنامه استفاده می‌کنند و به همراه درام‌های خشک‌کن حرارتی یا دیگر وسایل خشک‌کن طراحی شده‌اند و خطر بیشتری ایجاد می‌کنند. با این حال، روش حفاظت اصلی برای هر دو دستگاه چاپ روتوگراور و روزنامه مشابه است.

دستگاه‌های چاپ معمولاً به‌صورت ردیفی (خطی) با پوشه‌هایی که به‌طور متناوب قرار می‌گیرند، مرتب شده‌اند. کاغذ می‌تواند از هر دو طرف پوشه‌ها از واحدهای چاپ عبور کند. جرقه‌های الکتریسیته ساکن یک منبع رایج برای ایجاد آتش‌سوزی هستند. گسترش شعله می‌تواند از واحدهای چاپ به سمت پوشه‌ها یا از پوشه‌ها به سمت واحدهای چاپ باشد.

دستگاه‌های چاپ “باز” یا “بسته” هستند، بسته به اینکه آیا از محافظت‌کننده‌های مه یا پوشش‌ها استفاده می‌شود. در دستگاه‌های چاپ باز، معمولاً یک سیستم تهویه برای حذف مه جوهر از دستگاه مورد نیاز است و این سیستم تهویه نیاز به حفاظت همزمان دارد.

اتاق‌های چاپ می‌توانند توسط سیستم‌های سیل کامل محافظت شوند؛ با این حال، سیستم‌های نوع کاربرد محلی معمولاً استفاده می‌شوند. اگرچه خط‌های چاپ و واحدهای چاپ فردی یک سری خطرات در معرض هم هستند، تقسیم‌بندی به‌صورت خط‌ها یا گروه‌بندی مناسب درون خطوط برای دلایل اقتصادی معمول است. کانال‌های تهویه، اتاق‌های ذخیره‌سازی جوهر و اتاق‌های کنترل معمولاً با روش‌های سیل کامل مدیریت می‌شوند.

تمام خطوط چاپ می‌توانند با روش‌های کاربرد محلی محافظت شوند. یک خط چاپ می‌تواند به گروه‌ها تقسیم شود. در همه موارد، سیستم‌ها باید قادر باشند حفاظت خودکار همزمان و مستقل را برای گروه‌های مجاور از خطوط دیگر و همچنین گروه‌های درون‌خطی که ممکن است آتش به آن‌ها گسترش یابد، ارائه دهند. حفاظت باید به‌گونه‌ای طراحی شود که در صورت وقوع آتش نزدیک به محل اتصال گروه‌های مجاور، سیستم‌های محافظت‌کننده هر دو گروه به‌طور همزمان تخلیه شوند.

در گروه‌های چاپ فردی، نرخ کاربرد دی‌اکسید کربن می‌تواند بر اساس روش نرخ بر مساحت یا نرخ بر حجم باشد. (به بخش‌های 6.4 و 6.5 مراجعه کنید.)

اگر از روش نرخ بر مساحت برای دستگاه‌های چاپ استفاده شود، مساحت بر اساس طول کامل رول‌ها، شامل فریم‌های انتهایی، و ارتفاع کامل انبار رول‌ها، شامل مخزن جوهر، محاسبه می‌شود. هر دو طرف انبار رول‌ها باید در نظر گرفته شود. دسته‌های رنگی باید به‌طور مشابه محاسبه شوند. در صورتی که از مخازن جوهر خارجی استفاده شود، حفاظت بر اساس مساحت افقی مخزن است. مساحت کف زیر دستگاه چاپ نیز باید محافظت شود.

در دستگاه‌های چاپ روتوگراور، خشک‌کن‌ها و کانال‌های اتصال با سیل کردن به میزان 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) که در 30 ثانیه تخلیه می‌شوند، محافظت می‌شوند. هنگامی که از روش نرخ بر مساحت برای تعیین مقدار دی‌اکسید کربن مورد نیاز برای پوشه‌ها استفاده می‌شود، دی‌اکسید کربن باید از هر دو طرف درایو و طرف عملیاتی در دو سطح اعمال شود. هر نازل باید مساحتی به عرض 4 فوت (1.2 متر) و ارتفاع 4 فوت (1.2 متر) را پوشش دهد.

هنگامی که از روش نرخ بر حجم استفاده می‌شود، کل گروه دستگاه‌های چاپی که باید به‌عنوان یک بخش محافظت شوند، می‌تواند به‌عنوان یک حجم در نظر گرفته شود. نیازی به افزودن 2 فوت (0.6 متر) به طرفین هر دستگاه چاپ نیست زمانی که فریم به‌عنوان مانع طبیعی عمل می‌کند. یک پوشه منفرد می‌تواند در این حجم گنجانده شود؛ اما یک پوشه دوطبقه نیاز به یک بلوک حجم اضافی برای گنجاندن طبقه بالایی دارد.

نازل‌ها باید به‌گونه‌ای قرار داده شوند که سطوح پوشش داده شده را پوشش دهند؛ با این حال، ممکن است قرار دادن دقیق آن‌ها مطابق با فهرست‌ها یا تأییدها امکان‌پذیر نباشد. نازل‌ها باید به‌گونه‌ای قرار داده شوند که از هر دو انتهای رول‌های چاپ تخلیه شوند تا دی‌اکسید کربن را در داخل حجم دستگاه چاپ حفظ کنند. این موضوع در مورد پوشه‌ها نیز صدق می‌کند.

حفاظت باید به‌گونه‌ای تنظیم شود که زمانی که محافظت‌کننده‌های مه در محل یا خارج از محل قرار دارند، مؤثر باشد.

مقدار دی‌اکسید کربن مورد نیاز برای یک گروه واحد بر اساس تخلیه با نرخ محاسبه‌شده به مدت 30 ثانیه است. ذخیره‌سازی اضافی باید حداقل به اندازه کافی باشد تا از تمام گروه‌های مجاور که ممکن است درگیر شوند محافظت کند، شامل ذخیره‌ای برای گروهی که آتش در آن شروع می‌شود. در سیستم‌های فشار بالا، یک بانک ذخیره واحد می‌تواند به‌عنوان ذخیره برای چندین بانک اصلی استفاده شود؛ با این حال، بانک اصلی برای یک گروه نمی‌تواند به‌عنوان ذخیره برای گروه دیگر استفاده شود، مگر اینکه به‌طور خاص توسط مرجع صلاحیت تأیید شده باشد.

تمام سیستم‌ها باید به‌گونه‌ای تنظیم شوند که قابلیت فعال‌سازی خودکار را داشته باشند و وسیله‌ای برای فعال‌سازی دستی کمکی فراهم باشد. حداقل یک حسگر حرارتی باید در هر واحد چاپ و پوشه قرار گیرد، بسته به طراحی واحد خاص.

به‌دلیل ارتعاشات ذاتی مرتبط با دستگاه‌های چاپ، توجه ویژه‌ای باید به وسایل نصب داده شود تا از آسیب‌های ارتعاشی به لوله‌کشی یا سیم‌کشی سیستم شناسایی جلوگیری شود.

تشخیص فوری به‌ویژه در حفاظت گروهی اهمیت دارد تا از گسترش آتش به سایر گروه‌ها جلوگیری شود. به‌دلیل نیاز به تشخیص سریع برای جلوگیری از گسترش آتش به گروه‌های مجاور یا فعال‌سازی حسگرهای مجاور، یا هر دو، سیستم تشخیص باید از حسگرهای سریع‌العمل با نرخ افزایش، نرخ جبران‌شده یا معادل آن‌ها استفاده کند. خاموشی کامل دستگاه‌های چاپ، تهویه، پمپ‌ها و منابع حرارتی باید همزمان با عملکرد سیستم انجام شود.

آلارم‌های صوتی در اتاق چاپ و در هر زیرزمین، چاه یا سطوح پایین‌تری که دی‌اکسید کربن ممکن است در آن‌ها جریان پیدا کند، باید همزمان با عملکرد سیستم به صدا درآید. (به بخش A.4.3 مراجعه کنید.)

علاوه بر نگهداری معمول سیستم، توجه ویژه‌ای باید به اطمینان از ادامه موقعیت و هم‌راستایی صحیح اسپرینکلرها در طول فرآیندهای نگهداری معمول دستگاه‌های چاپ داشته باشیم. توجه ویژه‌ای نیز باید به تأثیرات ارتعاش دستگاه‌های چاپ بر روی فعال‌کننده‌های حرارتی و لوله‌کشی یا سیم‌کشی‌های متصل به آن‌ها داشت.

B.5 چاه‌های باز:
چاه‌های باز با عمق تا 4 فوت (1.2 متر) یا عمق برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، باید بر اساس کاربرد محلی محافظت شوند. مساحت مورد نظر برای تعیین مقدار دی‌اکسید کربن، مساحت کل کف چاه است به‌جز هر مساحتی که توسط تانک یا تجهیزات دیگری که به‌طور همزمان محافظت می‌شوند و برای آن‌ها مقدار جداگانه محاسبه شده، پوشش داده شده است. اسپرینکلرها باید به‌گونه‌ای قرار داده شوند که پوشش مناسب برای منطقه محافظت‌شده فراهم کنند، طبق داده‌های فهرست یا تأییدیه‌ها. بنابراین، ممکن است لازم باشد اسپرینکلرهای اضافی در مرکز چاه قرار داده شوند.

چاه‌های باز که عمق آن‌ها از 4 فوت (1.2 متر) بیشتر است یا عمقی برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، می‌توانند بر اساس مساحت با استفاده از نرخ تخلیه 4 پوند/دقیقه-فوت مربع (19.5 کیلوگرم/دقیقه-متر مربع) از مساحت کف و زمان تخلیه 30 ثانیه محافظت شوند. اسپرینکلرها باید در اطراف چاه قرار داده شوند تا دی‌اکسید کربن به‌طور یکنواخت از تمام طرف‌ها اعمال شود. باید دقت شود که تعداد مناسبی از اسپرینکلرها با پرتاب کافی برای رسیدن به نواحی مرکزی چاه‌های بزرگ استفاده شود. به‌طور جایگزین، ممکن است بهتر باشد برخی از اسپرینکلرها به‌گونه‌ای قرار داده شوند که مستقیماً در داخل چاه روی تجهیزات نیازمند حفاظت، مانند پمپ‌ها، موتورها یا سایر تجهیزات حیاتی تخلیه شوند.

تانک‌های غوطه‌وری با دهانه باز باید به‌طور جداگانه توسط کاربرد محلی محافظت شوند، به‌ویژه زمانی که سطح مایع کمتر از 4 فوت (1.2 متر) یا یک‌چهارم عرض چاه از دهانه باز چاه باشد. نواحی چنین تانک‌هایی که به‌طور جداگانه در داخل چاه محافظت می‌شوند، می‌توانند از مساحت چاه کسر شوند. اشیاءی که از دهانه چاه بالا می‌روند باید با استفاده از مساحت سطح یا روش‌های محصورسازی فرضی محافظت شوند.

اگر دهانه چاه به‌طور جزئی پوشانده شود به‌طوری که مساحت باز کمتر از 3 درصد حجم مکعبی به‌صورت فوت مربع باشد، مقدار دی‌اکسید کربن مورد نیاز می‌تواند بر اساس روش سیل کامل تعیین شود، با استفاده از مقدار اضافی گاز برای جبران نشت برابر با 1 پوند/فوت مربع (5 کیلوگرم/متر مربع) از مساحت باز.

برای چاه‌های عمیق‌تر از حداقل عمق مشخص‌شده، اسپرینکلرها باید در سطح دو‌سوم از کف قرار داده شوند، مشروط بر اینکه عامل نرخ تخلیه در برابر فاصله از حد مجاز تجاوز نکند، به‌طوری که خطر پاشش مایعاتی که ممکن است موجود باشند، وجود نداشته باشد. در هر صورت، بهتر است اسپرینکلرها زیر دهانه باز قرار گیرند تا از ورود هوای اضافی به داخل چاه جلوگیری شود. اگر عمق چاه از 20 فوت (6.1 متر) بیشتر باشد، مطلوب است که اسپرینکلرها کمی بالاتر از سطح دو‌سوم از کف قرار گیرند تا از اختلاط مناسب در چاه اطمینان حاصل شود.

زمانی که مقدار دی‌اکسید کربن بر اساس روش‌های سیل کامل معمول محاسبه می‌شود، اسپرینکلر باید سرعت و اثرات آشفتگی کافی تولید کند تا حجم چاه به‌طور کامل با جو دی‌اکسید کربن و هوا به‌طور کامل پر شود.

B.6 زیر کف‌های بلند
استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن به روش سیل کامل برای حفاظت از فضاهای زیرکف که معمولاً در اتاق‌های کامپیوتر و مراکز مشابه الکترونیکی یافت می‌شود، سال‌هاست که به‌طور رایج مورد استفاده قرار می‌گیرد. تجربیات نشان داده است که یک مشکل احتمالی در این نوع حفاظت، نشت بیش‌ازحد مرتبط با فضای زیرکف وجود دارد که می‌تواند به‌دلیل ترکیب کاشی‌های کف سوراخ‌دار و آشفتگی ناشی از تخلیه گاز باشد. بنابراین، مهم است که سیستم به‌گونه‌ای طراحی شود که نشت را جبران کند و تخلیه‌ای نرم برای کاهش آشفتگی فراهم آورد. برای راهنمایی دقیق، باید از تولیدکننده سیستم مشاوره گرفته شود.

دی‌اکسید کربن، به‌دلیل سنگین‌تر بودن از هوا، تمایل دارد که در فضا باقی بماند و می‌تواند خطراتی برای پرسنلی که برای انجام تعمیرات پس از آتش‌سوزی وارد فضای زیرکف می‌شوند، ایجاد کند. پس از تخلیه سیستم، لازم است که دی‌اکسید کربن به‌طور کامل از فضای زیرکف تخلیه شود پس از آنکه آتش خاموش شد.

علاوه بر این، اگر هرگونه خدمات یا نگهداری در فضای زیرکف انجام شود، سیستم دی‌اکسید کربن باید قفل شود تا از تخلیه گاز جلوگیری شود.

نوشته‌های مشابه

  • فناوری های تشخیص گاز

    WhatsApp Image 2025 09 25 at 2.25.53 AM

    WhatsApp Image 2025 09 25 at 2.26.01 AM

    دسته‌بندی‌های پایش گاز:

    1. گازهای قابل احتراق / اشتعال‌پذیر
      • خطر انفجار.
      • برای جلوگیری از انفجار، باید سطح گاز در هوا کمتر از حد پایین انفجار (LEL) برای هر گاز نگه داشته شود یا اکسیژن از محیط حذف شود.
      • معمولاً در بازه ۰ تا ۱۰۰ درصد از حد پایین انفجار یا در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شود.
      • دتکتورهای گاز قابل احتراق به‌گونه‌ای طراحی شده‌اند که پیش از وقوع شرایط بالقوه انفجاری هشدار دهند.
    2. گازهای سمی / محرک
      • برای سلامت انسان خطرناک‌اند؛ باید میزان تماس کارکنان با این گازها پایش شود.
      • معمولاً در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شوند.
      • دتکتورهای گاز سمی به‌گونه‌ای طراحی شده‌اند که پیش از رسیدن سطح گاز به غلظت زیان‌آور به کارکنان هشدار دهند.
      • برخی از دتکتورهای گاز سمی می‌توانند میانگین تماس در طول زمان را محاسبه کرده و مقادیر حد تماس کوتاه‌مدت (STEL) و میانگین وزنی زمان‌دار (TWA) را ارائه دهند.
    3. اکسیژن
      • محیط‌هایی با میزان کم اکسیژن (کمتر از ۱۹.۵ درصد حجمی اکسیژن) «کم‌اکسیژن» تلقی شده و تنفس طبیعی انسان را مختل می‌کنند.
      • محیط‌هایی با میزان زیاد اکسیژن (بیش از ۲۵ درصد حجمی اکسیژن) «غنی از اکسیژن» تلقی شده و خطر انفجار در آن‌ها افزایش می‌یابد.
      • در بازه درصد حجمی اندازه‌گیری می‌شود (درصد طبیعی اکسیژن در هوا در سطح دریا ۲۰.۸ درصد حجمی است).
      • دتکتورهای اکسیژن به‌طور کلی به‌گونه‌ای تنظیم می‌شوند که در صورت کم بودن یا زیاد بودن بیش از حد اکسیژن در محیط، هشدار دهند.

     

    فضاهای قابل احتراق

    برای ایجاد شعله، وجود سه شرط ضروری است:
    • یک منبع سوخت (مانند گاز متان یا بخارات بنزین)
    • مقدار کافی اکسیژن (بیش از ۱۰ تا ۱۵ درصد) برای اکسید شدن یا سوختن سوخت
    • یک منبع گرما (جرقه) برای شروع فرآیند

    نمونه‌هایی از منابع گرما و جرقه:
    • شعله‌های باز مانند شعله‌های فندک، مشعل، کبریت و مشعل‌های جوشکاری، رایج‌ترین منابع جرقه هستند.
    • تابش در قالب نور خورشید یا سطوح داغ
    • جرقه‌های ناشی از منابع مختلف مانند روشن یا خاموش کردن وسایل برقی، بیرون کشیدن دوشاخه‌ها، الکتریسیته ساکن یا کلیدهای الکتریکی

    فضاهای قابل احتراق
    عوامل مؤثر در فضاهای قابل احتراق

    بخار در برابر گاز
    اگرچه اصطلاحات «بخار» و «گاز» اغلب به‌جای یکدیگر استفاده می‌شوند، اما معانی یکسانی ندارند. واژه «بخار» به ماده‌ای اطلاق می‌شود که اگرچه در حالت گازی وجود دارد، اما به‌طور معمول در دمای اتاق به صورت مایع یا جامد است. وقتی می‌گوییم یک ماده مایع یا جامد در حال سوختن است، در واقع بخار آن ماده است که می‌سوزد. «گاز» به ماده‌ای گفته می‌شود که به‌طور طبیعی در دمای اتاق در حالت گازی است.

    فشار بخار و نقطه جوش
    فشار بخار، فشاری است که زمانی ایجاد می‌شود که یک جامد یا مایع با بخار خودش در حالت تعادل قرار دارد. این فشار به‌طور مستقیم با دما مرتبط است. مثالی از فشار بخار، فشاری است که توسط بخار یک مایع در یک ظرف بسته نیمه‌پر ایجاد می‌شود. بسته به دما، فشار بخار تا یک آستانه مشخص افزایش می‌یابد. وقتی این آستانه برسد، فضا «اشباع‌شده» در نظر گرفته می‌شود.

    فشار بخار و نقطه جوش یک ماده شیمیایی تعیین می‌کنند که چه میزان از آن احتمال دارد وارد هوا شود. فشار بخار پایین به معنای مولکول‌های کمتری از آن ماده در هواست که قابل اشتعال باشند، بنابراین به‌طور کلی خطر کمتری وجود دارد. این همچنین به این معناست که مولکول‌های کمتری برای آشکارسازی وجود دارد و ممکن است آشکارسازی دشوارتر شده و نیاز به تجهیزات با حساسیت بیشتر باشد. با افزایش فشار بخار و کاهش نقطه جوش، احتمال تبخیر افزایش می‌یابد. اگر ظروف حاوی این نوع مواد شیمیایی باز بمانند یا بر روی سطوح بزرگ پخش شوند، احتمال خطر بیشتری به‌وجود می‌آید.

    نقطه اشتعال (Flashpoint)
    یک ماده قابل اشتعال تا زمانی که به نقطه اشتعال خود نرسد، بخار یا گاز کافی برای شروع آتش تولید نمی‌کند. نقطه اشتعال، پایین‌ترین دمایی است که در آن یک مایع بخار کافی برای ایجاد شعله تولید می‌کند. اگر دما پایین‌تر از این مقدار باشد، مایع بخار کافی برای اشتعال تولید نمی‌کند. اگر نقطه اشتعال برسد و یک منبع خارجی اشتعال مانند جرقه وجود داشته باشد، ماده آتش خواهد گرفت. سند NFPA-325M از آژانس ملی حفاظت در برابر آتش (NFPA) تحت عنوان ویژگی‌های خطر آتش مواد قابل اشتعال، گازها و حلال‌های فرّار، نقطه اشتعال بسیاری از مواد رایج را فهرست کرده است.

    نقطه اشتعال اهمیت دارد زیرا نشان‌دهنده میزان خطر ناشی از یک مایع قابل اشتعال است. به‌طور کلی، هرچه نقطه اشتعال پایین‌تر باشد، تشکیل مخلوط‌های قابل اشتعال سوخت و هوا آسان‌تر بوده و در نتیجه خطر بیشتر است.

    دمای خوداشتعالی
    اگر ماده‌ای تا دمای مشخصی—یعنی دمای اشتعال خودبه‌خودی (یا «خوداشتعالی»)—گرم شود، بیشتر مواد شیمیایی قابل اشتعال می‌توانند بدون وجود منبع خارجی اشتعال، تنها با انرژی گرمایی خود، به‌طور خودبه‌خودی آتش بگیرند.

    چگالی بخار
    چگالی بخار نسبت وزن یک حجم از بخار قابل اشتعال به حجم مساوی از هوا است. بیشتر بخارهای قابل اشتعال سنگین‌تر از هوا هستند، بنابراین به سمت زمین حرکت کرده و در نواحی پایین‌تر تجمع می‌یابند. گاز یا بخاری که چگالی بخار آن بیشتر از ۱ باشد ممکن است در سطوح پایین حرکت کرده و به دنبال یک منبع اشتعال بگردد (برای مثال: هگزان با چگالی بخار ۳.۰). گاز یا بخاری که چگالی بخار آن کمتر از ۱ باشد تمایل دارد به سمت بالا حرکت کند (برای مثال: متان با چگالی بخار ۰.۶). چگالی بخار در تعیین محل بهینه نصب دتکتور اهمیت دارد، زیرا به پیش‌بینی محل احتمالی تجمع گاز یا بخار در یک اتاق یا فضا کمک می‌کند.

    حدود انفجار
    برای ایجاد شعله، مقدار کافی گاز یا بخار باید وجود داشته باشد؛ اما مقدار بیش‌ازحد گاز می‌تواند اکسیژن موجود در فضا را جابه‌جا کرده و مانع از احتراق شود. به همین دلیل، برای غلظت‌های پایین و بالا، حد مشخصی وجود دارد که در آن احتراق می‌تواند رخ دهد. این حدود به عنوان حد پایین انفجار (LEL) و حد بالای انفجار (UEL) شناخته می‌شوند. این‌ها همچنین به عنوان حد پایین اشتعال‌پذیری (LFL) و حد بالای اشتعال‌پذیری (UFL) نیز شناخته می‌شوند.

    برای حفظ احتراق، محیط باید ترکیب مناسبی از سوخت و اکسیژن (هوا) داشته باشد. LEL حداقل مقدار گاز مورد نیاز برای احتراق و UEL حداکثر مقدار آن را نشان می‌دهد. مقادیر دقیق LEL برای گازهای مختلف متفاوت است و به صورت درصد حجمی در هوا اندازه‌گیری می‌شوند. مقادیر LEL و UEL گازها در سند NFPA 325 درج شده‌اند.

    LEL معمولاً بین ۱.۴٪ تا ۵٪ حجمی است. با افزایش دما، انرژی کمتری برای ایجاد احتراق مورد نیاز است و درصد گاز لازم برای رسیدن به ۱۰۰٪ LEL کاهش یافته و در نتیجه خطر افزایش می‌یابد. محیطی با سطح اکسیژن بالاتر باعث افزایش UEL گاز، همچنین نرخ و شدت گسترش شعله می‌شود. از آنجا که مخلوطی از چندین گاز شرایط را پیچیده می‌کند، LEL دقیق آن‌ها باید از طریق آزمایش مشخص شود.

    بیشتر ابزارهای اندازه‌گیری گازهای قابل احتراق در محدوده LEL کار می‌کنند و قرائت گاز را به صورت درصدی از LEL نمایش می‌دهند. برای مثال: عدد ۵۰٪ LEL به این معناست که مخلوط گاز نمونه‌برداری‌شده شامل نیمی از مقدار گاز مورد نیاز برای حمایت از احتراق است.

    هر غلظتی از گاز یا بخار که بین این دو حد قرار گیرد، در محدوده قابل اشتعال (انفجاری) قرار دارد. مواد مختلف دارای پهنای متفاوتی از محدوده اشتعال‌پذیری هستند — برخی بسیار گسترده و برخی دیگر باریک‌تر هستند. موادی که محدوده اشتعال‌پذیری وسیع‌تری دارند، معمولاً خطرناک‌تر محسوب می‌شوند، زیرا سطوح بیشتری از غلظت آن‌ها می‌تواند دچار اشتعال شود.

    فضاهایی که در آن‌ها سطح غلظت گاز پایین‌تر از LEL است (سوخت کافی برای اشتعال وجود ندارد)، «لاغر» (lean) و غیرقابل اشتعال نامیده می‌شوند؛ و فضاهایی که سطح گاز بالاتر از UEL است (اکسیژن کافی برای اشتعال وجود ندارد)، «غلیظ» (rich) و غیرقابل اشتعال تلقی می‌شوند.

    فضاهای سمی

    پایش گازهای سمی
    گاز سمی به گازی گفته می‌شود که توانایی آسیب رساندن به بافت‌های زنده، اختلال در سیستم عصبی مرکزی، ایجاد بیماری‌های شدید یا—در موارد حاد—مرگ را دارد، زمانی که از طریق بلع، تنفس یا جذب از راه پوست یا چشم وارد بدن شود. میزان لازم برای ایجاد این اثرات به‌طور گسترده‌ای با توجه به ماهیت ماده و مدت زمان تماس متفاوت است. «سمیت حاد» به تماس کوتاه‌مدت مانند یک مواجهه‌ی لحظه‌ای اشاره دارد. «سمیت مزمن» به تماس بلندمدت مانند مواجهه‌های مکرر یا طولانی اشاره دارد.

    پایش گازهای سمی اهمیت دارد زیرا برخی از این مواد قابل مشاهده یا بوییدن نیستند و اثرات فوری ندارند. بنابراین شناسایی خطر گاز از طریق حواس فرد معمولاً خیلی دیر و پس از رسیدن غلظت به سطح زیان‌آور انجام می‌شود.

    اثرهای سمی گازها از بی‌ضرر تا بسیار سمی متغیر است. برخی در مواجهه‌های کوتاه و در سطح پایین نیز تهدیدکننده‌ی زندگی هستند، در حالی که برخی دیگر تنها در مواجهه‌های مکرر و با غلظت بالا خطرناک‌اند. میزان خطری که یک ماده برای یک کارگر ایجاد می‌کند، به عوامل مختلفی بستگی دارد که شامل سطح غلظت گاز و مدت زمان تماس است.

    حدود تماس مجاز
    کنفرانس آمریکایی متخصصان بهداشت صنعتی دولتی (ACGIH) فهرستی سالانه و بازبینی‌شده از حدود مجاز تماس با ترکیبات صنعتی رایج منتشر می‌کند که با عنوان «مقادیر حد آستانه (TLV) و شاخص‌های تماس زیستی (BEI) بر اساس مستندات حدود آستانه مواد شیمیایی و عوامل فیزیکی» شناخته می‌شود. (برای سفارش نسخه‌ای از آن به www.acgih.org مراجعه کنید).
    ACGIH مفهوم مقدار حد آستانه (TLV) را تعریف کرده است؛ TLV به غلظت مجاز یک ماده آلاینده در هوا گفته می‌شود که تصور می‌شود تقریباً همه کارگران بتوانند به‌طور مکرر و روزانه در طول عمر کاری خود در معرض آن قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. این مقادیر بر اساس ترکیبی از تجربه صنعتی و مطالعات انسانی و حیوانی تعیین شده‌اند.

    میانگین‌های وزنی زمانی (TWA)
    مقادیر TLV معمولاً به‌صورت میانگین وزنی ۸ ساعته در نظر گرفته می‌شوند. جنبه میانگین‌گیری به این معناست که مواجهه‌هایی بالاتر از حد مجاز قابل‌قبول است، به شرطی که با دوره‌هایی از تماس کمتر از حد مجاز جبران شوند.

    محدودیت‌های تماس کوتاه‌مدت (STEL)
    محدودیت‌های تماس کوتاه‌مدت غلظت‌هایی هستند که بالاتر از میانگین ۸ ساعته‌اند و کارگران می‌توانند برای مدت زمان کوتاه در معرض آن‌ها قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. (اگر غلظت به اندازه کافی بالا باشد، حتی یک بار تماس نیز می‌تواند اثرات مضر بر سلامت داشته باشد.)
    STEL برای موقعیت‌هایی به‌کار می‌رود که در آن کارگر در معرض غلظت بالای گاز قرار دارد اما فقط برای مدت کوتاهی. این محدودیت‌ها به‌صورت میانگین وزنی ۱۵ دقیقه‌ای تعریف می‌شوند که نباید حتی در صورتی که میانگین ۸ ساعته کمتر از مقدار TLV باشد، از آن فراتر رود.

    غلظت‌های سقفی (Ceiling Concentrations)
    برای برخی از گازهای سمی، حتی یک تماس که از TLV فراتر رود می‌تواند برای سلامت کارگر خطرناک باشد. در این موارد، از غلظت‌های سقفی استفاده می‌شود تا سطوحی را مشخص کند که هرگز نباید از آن‌ها عبور شود.

    حدود مجاز تماس (PELs)
    حدود مجاز تماس (Permissible Exposure Limits) توسط اداره ایمنی و بهداشت شغلی ایالات متحده (OSHA) تدوین و اجرا می‌شوند. بخش ۱۹۱۰.۱۰۰۰ از بخش ۲۹ کد مقررات فدرال (CFR) این استانداردها را شامل می‌شود که مشابه مقادیر TLV سازمان ACGIH هستند، با این تفاوت که PEL به‌صورت قانونی الزام‌آور است نه صرفاً توصیه‌شده. با این حال، دقیق‌ترین مقادیر PEL معمولاً در برگه‌های اطلاعات ایمنی مواد (MSDS) درج شده‌اند.

    شرایط فوری خطرناک برای زندگی و سلامت (IDLH)
    مؤسسه ملی ایمنی و بهداشت شغلی (NIOSH) شرایط تماس IDLH را به‌عنوان شرایطی تعریف می‌کند که در آن، قرار گرفتن در معرض آلاینده‌های هوابرد می‌تواند منجر به مرگ، اثرات مضر فوری یا تأخیری دائمی بر سلامت شود یا مانع از فرار فرد از آن محیط گردد.
    از آنجا که مقادیر IDLH برای تضمین توانایی کارگر در فرار از محیط خطرناک در صورت از کار افتادن تجهیزات حفاظت تنفسی تعیین شده‌اند، این مقادیر عمدتاً برای تعیین نوع مناسب وسایل حفاظت تنفسی مطابق با استانداردهای OSHA به‌کار می‌روند.

    کاهش یا افزایش سطح اکسیژن

    کمبود اکسیژن (Oxygen Deficiency)
    هوای طبیعی محیط دارای غلظت ۲۰.۸ درصد حجمی اکسیژن است. زمانی که سطح اکسیژن به کمتر از ۱۹.۵ درصد از کل ترکیب هوا کاهش یابد، آن فضا «کم‌اکسیژن» در نظر گرفته می‌شود. در چنین محیط‌هایی، اکسیژن لازم برای ادامه‌ی حیات ممکن است با گازهای دیگری مانند دی‌اکسید کربن جایگزین شود. این امر منجر به ایجاد فضایی می‌شود که در صورت تنفس، می‌تواند خطرناک یا کشنده باشد.

    کمبود اکسیژن همچنین ممکن است بر اثر زنگ‌زدگی، خوردگی، تخمیر یا سایر اشکال اکسایش که اکسیژن مصرف می‌کنند، ایجاد شود. در فرآیند تجزیه مواد، اکسیژن از جو برای تأمین واکنش اکسایش مصرف می‌شود.

    تأثیرات کمبود اکسیژن ممکن است تدریجی یا ناگهانی باشد، که این موضوع به غلظت کلی اکسیژن و همچنین سطوح دیگر گازهای موجود در فضا بستگی دارد. به‌طور کلی، کاهش سطح اکسیژن محیط باعث بروز علائم فیزیولوژیکی زیر می‌شود:

    درصد اکسیژن اثرات فیزیولوژیکی
    ۱۹.۵ تا ۱۶ بدون اثر قابل مشاهده
    ۱۶ تا ۱۲ افزایش سرعت تنفس، افزایش ضربان قلب، اختلال در تمرکز، تفکر و هماهنگی حرکتی
    ۱۴ تا ۱۰ قضاوت نادرست، ضعف در هماهنگی عضلانی، خستگی سریع در اثر فعالیت، تنفس متناوب
    ۱۰ تا ۶ تهوع و استفراغ، ناتوانی در انجام حرکات شدید یا از دست دادن توان حرکتی، بیهوشی و در ادامه مرگ
    کمتر از ۶ دشواری در تنفس، حرکات تشنجی، مرگ

    غنی شدن اکسیژن (Oxygen Enrichment)
    زمانی که غلظت اکسیژن در فضا به بالاتر از ۲۰.۸ درصد حجمی افزایش یابد، آن محیط «غنی از اکسیژن» محسوب می‌شود و مستعد ناپایداری خواهد بود. در نتیجه افزایش سطح اکسیژن، احتمال و شدت آتش‌سوزی ناگهانی یا انفجار به‌شدت افزایش می‌یابد.

     

    فناوری‌های آشکارسازی گاز

    امروزه انواع مختلفی از فناوری‌های آشکارسازی گاز مورد استفاده قرار می‌گیرند. از جمله رایج‌ترین آن‌ها می‌توان به موارد زیر اشاره کرد:

    • کاتالیستی مهره‌ای (Catalytic Bead)
      • نیمه‌رسانای اکسید فلز (که با عنوان «حالت جامد» نیز شناخته می‌شود)
      • مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
      • مادون قرمز باز با مسیر بلند (Open (Long Path) Infrared)
      • مادون قرمز فوتواکوستیک (Photoacoustic Infrared)
      • الکتروشیمیایی برای آشکارسازی گازهای سمی
      • الکتروشیمیایی برای آشکارسازی اکسیژن
      • رسانایی گرمایی (Thermal Conductivity)
      • یونیزاسیون نوری (Photoionization)
      • مادون قرمز غیرپراکندگی (NDIR)

    جدول‌ها و نمودارهای صفحات بعدی عملکرد هر یک از این فناوری‌ها را به‌صورت خلاصه نمایش می‌دهند.

    فناوری: کاتالیستی مهره‌ای (Catalytic Bead)

    WhatsApp Image 2025 09 25 at 2.26.03 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    اصل عملکرد:
    از یک مهره کاتالیستی برای اکسید کردن گاز قابل احتراق استفاده می‌کند؛ پل ویتستون تغییر مقاومت ایجاد شده را به سیگنال الکتریکی دتکتور تبدیل می‌کند.

    توضیح دقیق:
    یک سیم پیچ با پوشش ماده‌ای شیشه‌ای یا سرامیکی که روی آن کاتالیزور قرار دارد، به صورت الکتریکی تا دمایی گرم می‌شود که بتواند گاز تحت پایش را بسوزاند (اکسید کند). این فرآیند گرما تولید کرده و دمای سیم را افزایش می‌دهد. با افزایش دمای سیم، مقاومت الکتریکی آن نیز افزایش می‌یابد. این مقاومت توسط مدار پل ویتستون اندازه‌گیری شده و این اندازه‌گیری به سیگنال الکتریکی تبدیل می‌شود که توسط دتکتور گاز استفاده می‌شود. سنسور دوم به نام جبران‌کننده برای جبران تغییرات دما، فشار و رطوبت به کار می‌رود.

    محدوده اندازه‌گیری:
    درصدی از حد پایین انفجار (% LEL)

    مزایا:
    طول عمر بالا، حساسیت کمتر به تغییرات دما، رطوبت، تراکم و فشار؛ دقت بالا؛ پاسخ سریع؛ توانایی پایش گستره وسیعی از گازها و بخارهای قابل احتراق در هوا.

    معایب:
    مستعد مسمومیت سنسور؛ نیاز به هوا یا اکسیژن؛ طول عمر کاهش‌یافته در مواجهه‌های مکرر یا مداوم با غلظت‌های بالای LEL.

    فناوری: نیمه‌رسانای اکسید فلز (Metal Oxide Semiconductor)

    WhatsApp Image 2025 09 25 at 2.26.09 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق؛ گازهای سمی

    اصل عملکرد:
    این دتکتور از اکسید فلزی ساخته شده است که در واکنش به حضور گاز، مقاومت آن تغییر می‌کند؛ این تغییر مقاومت اندازه‌گیری شده و به مقدار غلظت گاز تبدیل می‌شود.

    توضیح دقیق:
    یک ماده نیمه‌رسانا (اکسید فلز) روی یک بستر عایق بین دو الکترود قرار می‌گیرد.
    بستر تا دمایی گرم می‌شود که حضور گاز می‌تواند باعث تغییر برگشت‌پذیر در رسانایی ماده نیمه‌رسانا شود. وقتی گازی وجود ندارد، اکسیژن به صورت یون روی سطح جذب شده و سنسور نیمه‌رسانا می‌شود؛ وقتی مولکول‌های گاز مورد نظر حضور دارند، جایگزین یون‌های اکسیژن شده و مقاومت بین الکترودها کاهش می‌یابد. این تغییر به‌صورت الکتریکی اندازه‌گیری شده و متناسب با غلظت گاز است.

    محدوده اندازه‌گیری:
    قسمت در میلیون (PPM)

    مزایا:
    حساسیت بالا (قادر به تشخیص غلظت‌های پایین)؛ دامنه دمای عملکرد وسیع؛ عمر طولانی.

    معایب:
    غیر اختصاصی (حساسیت متقاطع به ترکیبات دیگر)؛ خروجی غیرخطی؛ حساس به تغییرات رطوبت؛ مستعد مسمومیت.

     

     

    فناوری: مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
    (همچنین با نام مادون قرمز غیرپخشی یا NDIR شناخته می‌شود)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

     

    اصل عملکرد:
    این فناوری از قابلیت جذب پرتو مادون قرمز توسط گازها استفاده می‌کند. دو نمونه گاز شامل گاز مورد نظر و یک گاز مرجع بی‌اثر در معرض تابش مادون قرمز قرار می‌گیرند. میزان عبور نور از هر نمونه اندازه‌گیری شده و با هم مقایسه می‌شود تا غلظت گاز هدف تعیین گردد.

     

    توضیح دقیق:
    از یک منبع مادون قرمز با مدولاسیون الکتریکی و دو آشکارساز استفاده می‌شود که انرژی مادون قرمز را به سیگنال‌های الکتریکی تبدیل می‌کنند. هر آشکارساز به دامنه خاصی از طول موج مادون قرمز حساس است.
    پرتو ساطع‌شده از منبع از طریق یک پنجره وارد حجم باز محفظه می‌شود. ممکن است از یک آینه در انتهای مسیر برای بازتاب انرژی و هدایت آن به سمت آشکارسازها استفاده شود.

    وجود گاز قابل احتراق باعث کاهش شدت پرتو دریافتی توسط آشکارساز تحلیلی می‌شود، اما شدت پرتو دریافت‌شده توسط آشکارساز مرجع تغییر نمی‌کند.
    میکروپروسسور نسبت این دو سیگنال را بررسی کرده و آن را به درصد حد پایین انفجار (%LEL) تبدیل می‌کند.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار (%LEL)

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)
    نسبت به دتکتورهای مسیر باز، اندازه‌گیری دقیق در محل نقطه‌ای

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست.

     

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    WhatsApp Image 2025 09 25 at 2.26.09 AM1

    اصل عملکرد:
    عملکرد مشابه دتکتورهای مادون قرمز نقطه‌ای دارد، با این تفاوت که منبع مادون قرمز از آشکارساز جدا شده است.

     

    توضیح دقیق:
    دتکتورهای مسیر باز مادون قرمز، مفهوم تشخیص نقطه‌ای را به مسیرهایی با طول تا ۱۰۰ متر گسترش می‌دهند. مانند نمونه‌های نقطه‌ای، این دتکتورها از دو پرتو استفاده می‌کنند:

    • پرتو “نمونه” در طول موجی از مادون قرمز قرار دارد که توسط هیدروکربن‌ها جذب می‌شود.
    • پرتو “مرجع” در طول موجی خارج از محدوده جذب گاز قرار دارد.

    نسبت بین این دو پرتو به‌طور پیوسته مقایسه می‌شود:
    در حالت بدون گاز، نسبت سیگنال‌ها ثابت باقی می‌ماند.
    وقتی ابر گاز از مسیر عبور می‌کند، پرتو نمونه به نسبت غلظت گاز جذب یا تضعیف می‌شود، اما پرتو مرجع بدون تغییر باقی می‌ماند.
    سیستم، حاصل‌ضرب غلظت متوسط گاز در عرض ابر گاز را محاسبه کرده و مقدار را به‌صورت درصد حد پایین انفجار بر متر (%LEL/m) نمایش می‌دهد.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار بر متر (%LEL/m)

     

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست
    برخلاف فناوری نقطه‌ای، محل نشت گاز را به‌طور دقیق مشخص نمی‌کند
    نیاز به مسیر باز و بدون مانع بین منبع و آشکارساز دارد

    WhatsApp Image 2025 09 25 at 2.26.10 AM2

    WhatsApp Image 2025 09 25 at 2.26.10 AM1

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال (Combustible gases)

     

    اصل عملکرد:
    مشابه دتکتورهای مادون قرمز نقطه‌ای (Point IR) عمل می‌کند، با این تفاوت که منبع تابش مادون قرمز و آشکارساز از یکدیگر جدا هستند.

     

    توضیح تفصیلی:
    دتکتورهای مسیر باز مادون قرمز، روش تشخیص نقطه‌ای را به مسیری با طول حداکثر ۱۰۰ متر گسترش می‌دهند. مانند فناوری نقطه‌ای، این سیستم از دو پرتو استفاده می‌کند:

    • پرتو نمونه (Sample Beam): در طول موج مادون قرمز قرار دارد که توسط گازهای هیدروکربنی جذب می‌شود.
    • پرتو مرجع (Reference Beam): خارج از محدوده جذب گاز قرار دارد و تحت تأثیر حضور گاز نیست.

    نسبت شدت این دو پرتو به‌صورت پیوسته مقایسه می‌شود:
    اگر گازی وجود نداشته باشد، نسبت دو سیگنال ثابت می‌ماند.
    وقتی ابری از گاز از مسیر عبور می‌کند، شدت پرتو نمونه کاهش می‌یابد، ولی پرتو مرجع ثابت باقی می‌ماند.
    سیستم با مقایسه این نسبت، مقدار حاصل‌ضرب میانگین غلظت گاز و عرض ابر گاز را محاسبه می‌کند.

    واحد اندازه‌گیری: درصد حد انفجار پایین در واحد متر (%LEL/m)

     

    مزایا:

    • دقت و گزینش‌پذیری بالا
    • دامنه وسیع اندازه‌گیری
    • نیاز به نگهداری بسیار کم
    • مقاوم در برابر مسمومیت شیمیایی
    • نیاز نداشتن به هوا یا اکسیژن محیط
    • پایداری بسیار خوب در کالیبراسیون (عدم نیاز به کالیبراسیون منظم)
    • طراحی Fail-to-safe (ایمن در صورت بروز خطا)

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

    WhatsApp Image 2025 09 25 at 2.26.11 AM 1

    WhatsApp Image 2025 09 25 at 2.26.11 AM1

    • نسبت به فناوری نقطه‌ای، توانایی تعیین دقیق محل نشت گاز را ندارد
    • نیاز به مسیر مستقیم و بدون مانع بین منبع و آشکارساز دارد

     

     

    فناوری: مادون قرمز فوتواکوستیک (Photoacoustic Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی (Combustible gases; Toxic gases)

     

    اصل عملکرد:
    از توانایی جذب پرتو مادون قرمز توسط گاز و تغییرات فشار ناشی از آن استفاده می‌شود.

     

    توضیح تفصیلی:
    نمونه گاز در معرض نور مادون قرمز قرار می‌گیرد. زمانی که مولکول‌های گاز نور را جذب می‌کنند، ضربان یا پالس فشاری تولید می‌شود.
    مقدار این پالس فشاری مستقیماً نشان‌دهنده غلظت گاز موجود است.
    این تغییرات فشار توسط میکروفون یا سنسور حساس به فشار تشخیص داده می‌شود و به سیگنال الکتریکی تبدیل می‌گردد.

    واحدهای اندازه‌گیری:

    • درصد حد انفجار پایین (%LEL)
    • درصد حجمی (% by volume)
    • قسمت در میلیون (PPM)
    • قسمت در میلیارد (PPB)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • استفاده آسان
    • مقاوم در برابر مسمومیت سنسور
    • پایداری بلندمدت

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

     

    فناوری: الکتروشیمیایی برای گازهای سمی (Electrochemical Toxic Gases)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (Toxic gases)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت گاز است.

     

    توضیح تفصیلی:
    سنسور شامل یک محفظه با ژل یا الکترولیت و دو الکترود فعال است:

    • الکترود اندازه‌گیری (آند)
    • الکترود متقابل (کاتد)
      یک الکترود سوم (مرجع) ولتاژ ثابت بین آند و کاتد را حفظ می‌کند.

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.

    در آند واکنش اکسیداسیون و در کاتد واکنش کاهش رخ می‌دهد.
    در نتیجه، یون‌های مثبت به سمت کاتد و یون‌های منفی به سمت آند حرکت می‌کنند.
    این جریان الکتریکی متناسب با غلظت گاز سمی تولید می‌شود.

    واحد اندازه‌گیری:
    قسمت در میلیون (PPM) برای گازهای سمی

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان

     

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش طول عمر در محیط‌های بسیار خشک یا بسیار گرم

     

     

     

     

    دتکتور گاز الکتروشیمیائی گازهای سمی

    Electrochemical Toxic Sensor

     

     

    فناوری: الکتروشیمیایی برای سنجش اکسیژن (Electrochemical Oxygen)

     

    نوع گاز قابل تشخیص:
    کمبود یا غنی‌شدگی اکسیژن (O₂)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت اکسیژن است.

     

    توضیح تفصیلی:
    سنسور شامل محفظه‌ای حاوی ژل یا الکترولیت و دو الکترود است:

    • الکترود اندازه‌گیری (آند)
    • الکترود مرجع/متقابل (معمولاً از جنس سرب)

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.
    واکنش اکسیداسیون در آند و واکنش کاهش در کاتد رخ می‌دهد.
    جریان یونی ایجادشده، متناسب با غلظت اکسیژن، یک جریان الکتریکی تولید می‌کند که توسط دستگاه اندازه‌گیری می‌شود.

    واحد اندازه‌گیری:
    درصد حجمی اکسیژن (% Volume)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان
    • مقاوم در برابر سمّی شدن سنسور

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش عمر در محیط‌های بسیار خشک یا بسیار گرم، یا در شرایط اکسیژن غنی‌شده

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM

     

     

    دتکتور گاز الکتروشیمیائی گاز اکسیژن

    Typical Electrochemical Oxygen Sensor

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM1

     

    دتکتور گاز  رسانایی حرارتی معمولی

    Typical Thermal Conductivity Sensor

     

    فناوری: رسانش گرمایی (Thermal Conductivity)

    WhatsApp Image 2025 09 25 at 2.26.13 AM

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی

     

    اصل عملکرد:
    سنجش توانایی گاز برای انتقال حرارت با مقایسه آن با یک گاز مرجع (معمولاً هوا)

    توضیح تفصیلی:
    در این روش از دو سنسور استفاده می‌شود:

    • سنسور آشکارساز (Detecting Sensor)
    • سنسور جبران‌کننده (Compensating Sensor)

    هر دو سنسور در یک پل ویتستون (Wheatstone Bridge) قرار دارند.
    سنسور آشکارساز در معرض گاز موردنظر قرار دارد، در حالی که سنسور جبران‌کننده در محفظه‌ای با هوای تمیز مهر و موم شده است.
    وقتی گاز وارد سنسور آشکارساز می‌شود، باعث خنک شدن آن می‌گردد که این امر مقاومت الکتریکی را تغییر می‌دهد.
    این تغییر مقاومت متناسب با غلظت گاز است.
    سنسور جبران‌کننده تضمین می‌کند که تغییر دما ناشی از خود گاز است نه دمای محیط یا عوامل دیگر.

    واحد اندازه‌گیری:
    PPM تا ۱۰۰٪ حجمی

     

    مزایا:

    • دامنه وسیع اندازه‌گیری

     

    معایب:

    • غیر اختصاصی (به سایر ترکیبات نیز واکنش نشان می‌دهد)
    • برای گازهایی با رسانش گرمایی نزدیک به یک (مانند هوا، NH₃، CO، NO، O₂، N₂) مناسب نیست
    • اندازه‌گیری گازهایی با رسانش گرمایی کمتر از یک دشوارتر است
    • خروجی سیگنال همیشه خطی نیست

     

    فناوری: یونیزاسیون نوری (Photoionization – PID)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (ترکیبات آلی)

     

    اصل عملکرد:
    مبنای آشکارسازی بر اساس یونیزه کردن گاز با استفاده از پرتو فرابنفش (UV)

     

    توضیح تفصیلی:
    دتکتور یونیزاسیون نوری (PID) از یک لامپ فرابنفش برای یونیزه کردن ترکیب موردنظر استفاده می‌کند.
    مولکول‌های گاز تحت تابش فرابنفش یونیزه شده و یون‌ها تولید می‌شوند.
    این یون‌ها روی یک الکترود جمع‌آوری می‌گردند و جریان الکتریکی ایجاد می‌کنند.
    مقدار این جریان متناسب با غلظت گاز است و به‌صورت عددی در واحد PPM یا مقادیر زیر PPM (sub-ppm) روی نمایشگر دستگاه نشان داده می‌شود.

     

    واحد اندازه‌گیری:
    PPM و زیر PPM

     

    مزایا:

    • سرعت پاسخ‌دهی بسیار بالا
    • توانایی تشخیص در سطوح بسیار پایین
    • قابلیت تشخیص طیف گسترده‌ای از ترکیبات

     

    معایب:

    • هزینه بالا
    • نیاز به نگهداری بیشتر
    • نیاز به کالیبراسیون مکرر
    • غیر اختصاصی بودن (عدم تمایز دقیق بین ترکیبات مشابه)
    • حساسیت به رطوبت

     

    دتکتور گاز فوتویونیزاسیون

    Photoionization Sensor Design

    WhatsApp Image 2025 09 25 at 2.26.13 AM1

    روش‌های نمونه‌برداری گاز

    سه روش اصلی برای نمونه‌برداری از گاز وجود دارد:

    ۱. نمونه‌برداری به روش انتشار (Diffusion Sampling)
    ۲. نمونه‌برداری با پمپ (Pumped Sampling)
    ۳. نمونه‌برداری با مکش (Aspirated Sampling)

     

    نمونه‌برداری به روش انتشار (Diffusion Sampling)

    در این روش، انتقال گاز به سمت حسگر از طریق حرکت طبیعی مولکول‌ها از ناحیه‌ای با غلظت بالا به ناحیه‌ای با غلظت پایین صورت می‌گیرد.
    واژه «انتشار» به فرایندی اشاره دارد که در آن مولکول‌ها یا ذرات دیگر به دلیل حرکت حرارتی تصادفی خود با یکدیگر مخلوط می‌شوند.
    شرایط محیطی مانند دما، جریان‌های هوا و سایر عوامل محیطی بر میزان و سرعت انتشار تأثیر می‌گذارند.

     

    مزایا:

    • نصب دتکتور دقیقاً در نقطه موردنظر برای نمونه‌گیری انجام می‌شود.
    • پاسخ‌دهی سریع به دلیل عدم نیاز به انتقال نمونه
    • عدم نیاز به پمپ یا فیلتر و در نتیجه نگهداری ساده‌تر

     

    نمونه‌برداری با پمپ (Pumped Sampling)

    در این روش، یک پمپ برای مکش نمونه گاز از یک مکان دوردست به داخل یا از میان حسگر به‌کار گرفته می‌شود.
    با استفاده از نمونه‌برداری پمپی، امکان جمع‌آوری نمونه‌ها به‌صورت همزمان از دو یا چند محل مختلف وجود دارد.

     

    مزایا:

    • قابلیت نمونه‌گیری از فواصل دور
    • امکان پایش هم‌زمان چند نقطه
    • مناسب برای کاربردهایی که در آن حسگر نمی‌تواند مستقیماً در محل نمونه‌برداری نصب شود

     

    توجه:

    • این روش نیاز به تجهیزات مکانیکی (پمپ) دارد که ممکن است نیازمند نگهداری منظم باشند.
    • ممکن است به زمان انتقال نمونه نیاز داشته باشد که باعث تاخیر در پاسخ‌دهی شود.

     

    شرایط مناسب برای نمونه‌برداری پمپی (Pumped Sampling):

    مواردی که این روش توصیه می‌شود:

    • نقطه نمونه‌برداری بسیار گرم یا بسیار سرد است.
    • دسترسی به محل نمونه‌برداری دشوار است.
    • بخارهای سنگین وجود دارد که به‌خوبی با نیروهای طبیعی پخش نمی‌شوند.
    • در برخی کاربردها، استفاده از پمپ می‌تواند سیستم را از کلاس ضدانفجار (XP) به کلاس کاربرد عمومی (GP) تبدیل کند.
      (در این حالت، ممکن است نیاز به نصب مهارکننده شعله (Flashback Arrestor) بین ورودی نمونه و حسگر باشد.)
    • مناسب برای فضاهای بسته و محدود (Confined Spaces)

     

    نمونه‌برداری آسپیره (Aspirated Sampling)

    در این روش، نمونه گاز با استفاده از مکش غیرفعال یا جریان طبیعی به داخل یا از میان حسگر کشیده می‌شود.

     

    مزایای نمونه‌برداری آسپیره نسبت به پمپی:

    • هزینه پایین‌تر
    • نگهداری کمتر به‌دلیل نبود قطعات متحرک
      (در مقایسه با پمپ که نیاز به تعمیرات دوره‌ای دارد)

     

  • اصول دتکتورهای شعله

    دتکتورهای شعله دستگاه‌هایی هستند که وجود شعله را تشخیص می‌دهند و در سیستم‌های ایمنی برای جلوگیری از آتش‌سوزی و انفجار استفاده می‌شوند. این دتکتورها با تشخیص سریع وجود شعله، امکان فعال‌سازی هشدار و سیستم‌های اطفاء حریق را فراهم می‌کنند.

    دتکتورهای شعله از روش‌های مختلفی برای تشخیص شعله استفاده می‌کنند، از جمله تشخیص امواج نوری در طیف‌های مختلف، مانند نور مرئی، مادون قرمز و فرابنفش. هر کدام از این روش‌ها مزایا و محدودیت‌های خاص خود را دارند.

    دتکتورهای شعله معمولاً در محیط‌هایی که احتمال وجود آتش‌سوزی ناگهانی وجود دارد به کار می‌روند، مانند صنایع نفت و گاز، پالایشگاه‌ها، نیروگاه‌ها و سایر محیط‌های صنعتی حساس.

     

    انواع دتکتورهای شعله

    ۱. دتکتور شعله فرابنفش (UV)
    این دتکتورها تابش فرابنفش ناشی از شعله را تشخیص می‌دهند. شعله‌ها معمولاً در محدوده فرابنفش طیف الکترومغناطیسی تابش می‌کنند که برای چشم انسان قابل دیدن نیست. دتکتورهای UV سریع‌ترین نوع دتکتور شعله هستند و پاسخ آنها معمولاً در کسری از ثانیه اتفاق می‌افتد.
    معایب آنها حساسیت به جرقه‌های الکتریکی، رعد و برق و سایر منابع فرابنفش محیطی است که ممکن است باعث هشدار اشتباه شود.

    ۲. دتکتور شعله مادون قرمز (IR)
    دتکتورهای IR تشخیص‌دهنده تابش مادون قرمز ناشی از شعله هستند. این نوع دتکتورها در برابر جرقه‌های الکتریکی حساسیت کمتری نسبت به دتکتورهای UV دارند. دتکتورهای IR می‌توانند در محیط‌های با نور فرابنفش زیاد عملکرد بهتری داشته باشند.

    ۳. دتکتور شعله UV/IR (ترکیبی)
    این دتکتورها از ترکیب دو فناوری UV و IR برای کاهش هشدارهای اشتباه استفاده می‌کنند. برای تأیید وجود شعله، دتکتور باید هر دو سیگنال فرابنفش و مادون قرمز را به صورت همزمان دریافت کند. این ترکیب باعث افزایش دقت و کاهش هشدارهای نادرست می‌شود.

    ۴. دتکتور شعله هیدروکربنی
    این نوع دتکتورها طول موج‌های خاصی را که مربوط به شعله‌های هیدروکربنی است تشخیص می‌دهند و معمولاً در کاربردهای نفت و گاز استفاده می‌شوند.

    کاربردها و مزایای دتکتورهای شعله

    دتکتورهای شعله معمولاً در صنایع نفت، گاز، پتروشیمی، نیروگاه‌ها و هر جایی که خطر آتش‌سوزی وجود دارد استفاده می‌شوند. این دتکتورها سرعت پاسخ بسیار بالایی دارند و می‌توانند آتش‌سوزی را در مراحل اولیه شناسایی کنند تا اقدام سریع برای جلوگیری از گسترش حادثه انجام شود.

    مزایای دتکتورهای شعله عبارتند از:

    • پاسخ سریع و دقیق به حضور شعله
    • حساسیت بالا به انواع مختلف شعله‌ها (هیدروکربنی، گازی و غیره)
    • توانایی عملکرد در محیط‌های چالش‌برانگیز مانند دما و رطوبت بالا
    • کاهش هشدارهای اشتباه با استفاده از فناوری‌های ترکیبی (UV/IR)

    نکات مهم در نصب و نگهداری دتکتورهای شعله

    • دتکتورها باید در نقاطی نصب شوند که میدان دید مستقیم به محل‌های احتمالی شعله داشته باشند.
    • وجود موانع مانند دیوار یا تجهیزات ممکن است تابش شعله را مسدود کند و عملکرد دتکتور را کاهش دهد.
    • باید دقت شود که منابع نور شدید محیطی مانند چراغ‌های فلورسنت یا نور خورشید مستقیم باعث هشدار اشتباه نشوند.
    • نگهداری منظم و کالیبراسیون دوره‌ای برای حفظ عملکرد بهینه دتکتورها ضروری است.

    انواع دتکتورهای شعله

    1. دتکتورهای ماوراء بنفش (UV)
      این دتکتورها پرتوهای UV ساطع شده از شعله را شناسایی می‌کنند. پاسخ‌دهی سریع دارند اما ممکن است به منابع دیگر UV مانند رعد و برق یا جرقه‌ها حساس باشند و باعث هشدار اشتباه شوند.
    2. دتکتورهای مادون قرمز (IR)
      دتکتورهای IR تابش مادون قرمز شعله را تشخیص می‌دهند. این نوع دتکتورها نسبت به دتکتورهای UV کمتر به منابع مزاحم حساس هستند ولی ممکن است به بخار آب یا دود حساسیت نشان دهند.
    3. دتکتورهای ترکیبی UV/IR
      این دتکتورها از هر دو نوع UV و IR برای تشخیص شعله استفاده می‌کنند و با ترکیب سیگنال‌ها، دقت شناسایی را بالا برده و هشدارهای اشتباه را کاهش می‌دهند.

    WhatsApp Image 2025 09 25 at 2.23.45 AM

    عملکرد دتکتورهای شعله

    وقتی شعله‌ای در میدان دید دتکتور ظاهر می‌شود، دتکتور تشعشعات UV و/یا IR ناشی از آن را دریافت می‌کند. این تشعشعات توسط المان‌های حساس دتکتور تبدیل به سیگنال‌های الکتریکی می‌شوند که توسط مدارهای داخلی پردازش شده و در صورت تأیید وجود شعله، هشدار صادر می‌شود.

    WhatsApp Image 2025 09 25 at 2.23.45 AM1

    محدودیت‌ها و ملاحظات دتکتورهای شعله

    • دتکتورهای شعله نمی‌توانند شعله‌هایی را که توسط مانع پوشانده شده‌اند شناسایی کنند.
    • دتکتورهای UV ممکن است تحت تأثیر منابع UV دیگر قرار گیرند.
    • دتکتورهای IR ممکن است توسط شرایط جوی مثل مه یا دود شدید تحت تأثیر قرار گیرند.
    • دتکتورهای ترکیبی گرچه دقت بالاتری دارند، اما هزینه بالاتری نیز دارند.

    WhatsApp Image 2025 09 25 at 2.23.46 AM

    نکات پایانی

    برای انتخاب دتکتور مناسب باید محیط کاری، نوع سوخت، شرایط جوی و خطرات احتمالی را در نظر گرفت. همچنین نصب و نگهداری صحیح دتکتورها، نقش مهمی در افزایش کارایی و کاهش هشدارهای کاذب ایفا می‌کند.

     

     

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM

     

  • انتخاب دتکتورهای گاز

    ۸-۱. انتخاب دتکتور گاز

    تشخیص گاز می‌تواند بر اساس چند اصل مختلف انجام شود. انتخاب اصل تشخیص صحیح برای نوع گاز هدف، محیط و هدف مورد نظر ضروری است.

     

    ۱. چه گازی باید اندازه‌گیری شود؟

    گاز قابل اشتعال (برای جلوگیری از انفجار)

    پنج روش تشخیص اصلی به شرح زیر استفاده می‌شوند: روش احتراق کاتالیستی، روش سرامیک کاتالیستی جدید، روش نیمه‌رسانا، روش مادون قرمز غیرپاشنده و روش تداخلسنج.

    دتکتورهای احتراق کاتالیستی معمولاً در محدوده %LEL استفاده می‌شوند. دتکتورهای سرامیک کاتالیستی جدید معمولاً برای تشخیص در محدوده ۱۰۰۰۰ تا چند هزار ppm استفاده می‌شوند. دتکتورهای نیمه‌رسانا برای اندازه‌گیری در محدوده چند هزار تا چند ده ppm استفاده می‌شوند.

    دتکتورهای گاز قابل اشتعال مادون قرمز غیرپاشنده و تداخلسنج معمولاً گاز را در غلظت‌های %LEL و %vol اندازه‌گیری می‌کنند. دتکتورهای مادون قرمز غیرپاشنده و تداخلسنج، دتکتورهای فیزیکی هستند که واکنش شیمیایی ندارند. آن‌ها امکان تشخیص گاز را حتی در حضور موادی (مانند هالیدها، سولفیدها و سیلیکون) که دتکتورهای احتراق کاتالیستی و نیمه‌رسانا را مسموم می‌کنند، فراهم می‌سازند.

     

    گاز سمی (برای جلوگیری از مسمومیت)

    گازهای سمی معمولاً به دتکتورهای با حساسیت بالا نیاز دارند که قادر به تشخیص غلظت‌های در محدوده چند صد ppm تا چند ppb باشند.

    روش‌های تشخیص شامل روش نیمه‌رسانا، روش الکترولیز پتانسیواستاتیک، روش تشخیص ذرات پیرولیز، روش نوار شیمیایی و روش PID است. اصل تشخیص معمولاً بر اساس محدوده‌ای انتخاب می‌شود که امکان تشخیص در نقاط تنظیم هشدار یا مقادیر حد آستانه را فراهم کند.

    دتکتورهای نیمه‌رسانا گاز را در غلظت‌های حدود چند ده ppm تا چند هزار ppm تشخیص می‌دهند. دتکتورهای الکترولیز پتانسیواستاتیک گاز را در غلظت‌های حدود چند ده ppm تا چند ده ppb تشخیص می‌دهند. دتکتورهای تشخیص ذرات پیرولیز بر اساس اصل حسگری طراحی شده‌اند که به‌طور خاص برای تشخیص ترکیبات فلزی آلی در گازهای مواد نیمه‌رسانا مانند TEOS استفاده می‌شود.

    (تترااتوکسی سیلان). دتکتورهای گاز با نوار شیمیایی مزیت تشخیص گاز در غلظت‌های فوق‌العاده پایین در حد چند ppb را ارائه می‌دهند. این دتکتورها حداقل تأثیرپذیری را از گازهای مزاحم دارند و بنابراین برای استفاده در محیط‌هایی که سایر انواع دتکتورها دچار اختلال می‌شوند، ایده‌آل هستند.

     

    اکسیژن (برای جلوگیری از کم‌اکسیژنی و اکسیژن اضافی)

    دو اصل برای تشخیص اکسیژن استفاده می‌شود: روش سلول گالوانیکی غشایی و روش الکترولیز پتانسیواستاتیک. دتکتورهای سلول گالوانیکی غشایی پرکاربردترین نوع هستند که به دلیل پایداری بلندمدت و مقاومت در برابر تداخل مورد استفاده قرار می‌گیرند. با این حال، این دتکتورها به دلیل استفاده از سرب (Pb) احتمالاً در آینده تحت مقررات RoHS قرار خواهند گرفت. (در حال حاضر معاف هستند.) مجموعه‌ای از دتکتورهای الکترولیز پتانسیواستاتیک بدون سرب با توجه به روندهای قانونی در حال ظهور هستند.

     

    ۲. نوع ثابت یا قابل حمل؟

    اگر دتکتورها توسط کارگران حمل یا پوشیده می‌شوند، دتکتورهای گاز قابل حمل را انتخاب کنید. برای نظارت بر نشت گاز در یک مکان ثابت، دتکتورهای گاز ثابت را انتخاب نمایید.

     

    ۳. نوع انتشار یا مکشی؟

    دتکتورهای گاز عموماً بر اساس روش تشخیص به دو نوع تقسیم می‌شوند: نوع انتشار و نوع مکشی. دتکتورهای گاز نوع مکشی دارای یک پمپ داخلی هستند که گاز را از نقاط احتمالی نشت (مثلاً روی خطوط یا داخل محفظه‌ها) به سمت دتکتور می‌کشند. دتکتورهای گاز نوع انتشار، دتکتورهای غیرفعالی هستند که گازهای شناور در محیط را هنگام رسیدن به دتکتور تشخیص می‌دهند.

     

    ۴. تشخیص چندگانه یا تک‌گاز؟

    علاوه بر دتکتورهای گاز قابل حمل که یک جزء گازی را تشخیص می‌دهند، دتکتورهایی وجود دارند که می‌توانند چندین گاز را به طور همزمان تشخیص دهند. ترکیب پایه‌ای گازها در دتکتورهای چندگانه معمولاً شامل چهار جزء است: گاز قابل اشتعال، گاز سمی (H2S یا CO) و اکسیژن. بسته به محصول خاص، دتکتورهای

  • سیستم‌های اطفاء حریق دی‌اکسید کربن با کاربرد موضعی NFPA12-ANNEX F- Local Application Carbon Dioxide Systems

    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاع‌رسانی ارائه شده است.

    F.1 یک سیستم اطفاء حریق دی‌اکسید کربن با کاربرد موضعی طراحی شده است تا دی‌اکسید کربن را مستقیماً به آتش‌سوزی‌ای که می‌تواند در یک ناحیه یا فضایی بدون محصورسازی واقعی رخ دهد، اعمال کند. چنین سیستم‌هایی باید به گونه‌ای طراحی شوند که دی‌اکسید کربن را در حین عملکرد سیستم به نحوی به خطر مورد اطفاء برسانند که تمام سطوح سوختنی یا شعله‌ور را پوشش داده یا احاطه کند.

    نرخ جریان و مدت زمان کاربرد مورد نیاز بستگی به نوع ماده قابل احتراق درگیر، ماهیت خطر (اینکه آیا سطح مایع مانند مخزن غوطه‌وری یا مخزن کوئنچ است یا یک قطعه ماشین‌آلات پیچیده مانند دستگاه چاپ) و محل و فاصله اسپرینکلرهای دی‌اکسید کربن نسبت به خطر دارد.

    عوامل مهمی که در طراحی یک سیستم کاربرد موضعی باید در نظر گرفته شود عبارتند از: نرخ جریان، محدودیت‌های ارتفاع و مساحت اسپرینکلرهای استفاده‌شده، میزان دی‌اکسید کربن مورد نیاز، و سیستم لوله‌کشی. مراحل زیر برای طراحی یک سیستم لازم است:

    (۱) تعیین مساحت خطر مورد اطفاء. در تعیین این مساحت، مهم است که نقشه دقیق خطر را با نشان دادن تمام ابعاد و محدودیت‌ها جهت جانمایی اسپرینکلرها ترسیم کنید. حدود خطر باید با دقت تعریف شوند تا تمام مواد قابل احتراق که می‌توانند در خطر گنجانده شوند را شامل شود، و احتمال وجود کالا یا سایر موانع در یا نزدیک خطر باید به دقت بررسی شود.

    (۲) برای اسپرینکلرهای نوع سقفی، با توجه به محدودیت‌های ارتفاع خطر مورد اطفاء، اسپرینکلرها را به گونه‌ای جانمایی کنید که خطر را تحت پوشش قرار دهند، با استفاده از اسپرینکلرهای مختلف در محدوده‌های ارتفاع و مساحت مجاز که در لیست‌ها یا تأییدیه‌های این اسپرینکلرها بیان شده است. حدود پوشش مساحت یک اسپرینکلر برای یک ارتفاع خاص از اطلاعات لیست شده تعیین می‌شود که در قالبی مشابه شکل F.1(a) ارائه شده است. در نظر داشته باشید که تمام پوشش‌های اسپرینکلر بر اساس مربع‌های تقریبی ترسیم می‌شوند. این مرحله برای اسپرینکلرهای کنار مخزن یا خطی حذف می‌شود.

    (۳) بر اساس ارتفاع هر اسپرینکلر از سطح خطر، نرخ جریان بهینه‌ای که هر اسپرینکلر باید برای اطفاء خطر داشته باشد را تعیین کنید. این مقدار از یک نمودار مانند شکل F.1(b) که در لیست‌های جداگانه یا تأییدیه‌های اسپرینکلرها ارائه شده است، به دست می‌آید. برای اسپرینکلرهای کنار مخزن یا خطی، بر اساس شکل خطر، اسپرینکلرها را در محدوده‌های فاصله‌ای مجاز طبق تأییدیه یا لیست جانمایی کنید. بر اساس فاصله یا مساحت پوشش، نرخ جریان مناسب را از نمودارهای تأیید شده‌ای مانند شکل F.1(c) و F.1(d) انتخاب کنید. این مرحله برای اسپرینکلرهای نوع سقفی حذف می‌شود.

    (۴) مدت زمان تخلیه برای خطر را تعیین کنید. این زمان همیشه حداقل ۳۰ ثانیه خواهد بود، اما می‌تواند طولانی‌تر باشد، بسته به عواملی مانند ماهیت ماده در خطر و احتمال نیاز برخی نقاط داغ به زمان خنک‌کنندگی بیشتر.

    (۵) نرخ جریان تک‌تک اسپرینکلرها را جمع کنید تا نرخ جریان کل به دست آید و این مقدار را در مدت زمان تخلیه ضرب کنید تا مقدار کل دی‌اکسید کربن مورد نیاز برای اطفاء خطر محاسبه شود. سپس این عدد را در ۱.۴ (برای سیستم‌های پرفشار) ضرب کنید تا ظرفیت کل سیلندرهای ذخیره‌سازی به دست آید.

    (۶) محل استقرار مخزن یا سیلندرهای ذخیره‌سازی را تعیین کرده و لوله‌کشی اتصال‌دهنده اسپرینکلرها به مخازن ذخیره را طراحی کنید.

    (۷) از سیلندرهای ذخیره شروع کرده و افت فشار را در طول لوله‌کشی سیستم تا هر اسپرینکلر محاسبه کنید تا فشار نهایی در هر اسپرینکلر به دست آید (به بخش C.1 مراجعه شود). مطمئن شوید که طول معادل لوله برای اتصالات و اجزای سیستم را در محاسبات لحاظ کرده‌اید. طول‌های معادل اجزای سیستم در لیست‌ها یا تأییدیه‌های جداگانه این اجزا موجود است. شرایط ذخیره‌سازی را برای سیستم‌های پرفشار برابر با ۷۵۰ psi (۵۱۷۱kPa) و برای سیستم‌های کم‌فشار برابر با ۳۰۰ psi (۲۰۶۸ kPa) در نظر بگیرید. در طراحی اولیه، باید اندازه‌های لوله‌ها را در نقاط مختلف سیستم فرض کنید. پس از انجام محاسبات برای تعیین فشار اسپرینکلرها، ممکن است لازم باشد اندازه لوله‌ها را برای دستیابی به فشارهای بالاتر یا پایین‌تر تغییر دهید تا نرخ جریان مناسب حاصل شود.

    (۸) بر اساس فشار اسپرینکلرها از مرحله (۷) و نرخ جریان جداگانه هر اسپرینکلر از مرحله (۳)، یک اوریفیس معادل را انتخاب کنید که بیشترین تطابق را با مساحت مورد نیاز برای تولید نرخ جریان طراحی شده داشته باشد، با استفاده از جدول‌های 4.7.5.2.1، 4.7.5.3.1، و A4.7.4.4.3.

    2Q==

    IMG 1522 1 IMG 1523 IMG 1524

  • طراحی سیستم اطفاء حریق گازپایه برای اتاق سرور

    ۶.۱ مشخصات، نقشه‌ها و تأییدیه‌ها

    ۶.۱.۱ مشخصات

    ۶.۱.۱.۱ مشخصات سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی، باید تحت نظارت فردی تهیه شود که دارای تجربه کامل و صلاحیت لازم در طراحی این‌گونه سیستم‌ها بوده و با مشورت مرجع ذی‌صلاح انجام گیرد.

    ۶.۱.۱.۲ مشخصات باید شامل تمام موارد مربوط و لازم برای طراحی صحیح سیستم باشد، از جمله تعیین مرجع ذی‌صلاح، تفاوت‌های مجاز نسبت به استاندارد به‌تأیید مرجع ذی‌صلاح، معیارهای طراحی، توالی عملکرد سیستم، نوع و گستره آزمون‌های تأییدی که پس از نصب سیستم باید انجام شود، و الزامات آموزش مالک.

    ۶.۱.۲ نقشه‌های اجرایی

    ۶.۱.۲.۱ نقشه‌های اجرایی و محاسبات باید پیش از شروع نصب یا بازسازی سیستم برای تأیید به مرجع ذی‌صلاح ارائه شوند.

    ۶.۱.۲.۲ نقشه‌های اجرایی و محاسبات باید فقط توسط افرادی تهیه شوند که دارای تجربه کامل و صلاحیت لازم در طراحی سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی هستند.

    ۶.۱.۲.۳ هرگونه انحراف از نقشه‌های اجرایی نیاز به کسب اجازه از مرجع ذی‌صلاح دارد.

    ۶.۱.۲.۴ نقشه‌های اجرایی باید با مقیاس مشخص رسم شوند.

    ۶.۱.۲.۵ نقشه‌های اجرایی باید موارد زیر را که مرتبط با طراحی سیستم هستند نشان دهند:
    (۱) نام مالک و ساکن

    طراحی سیستم ۲۰۰۱-۱۹

    (۲) مکان، شامل آدرس خیابانی
    (۳) نقطه قطب‌نما و نمادهای توضیحی
    (۴) مکان و ساختار دیوارها و تقسیمات حفاظتی
    (۵) مکان دیوارهای آتش‌بر
    (۶) برش مقطع enclosure، به صورت دیاگرام کامل یا شماتیک، شامل مکان و ساختار مجموعه‌های کف-سقف ساختمان در بالا و پایین، کف‌های با دسترسی بلند، و سقف‌های معلق
    (۷) نوع عامل مورد استفاده
    (۸) غلظت عامل در کمترین و بالاترین دمایی که enclosure محافظت می‌شود
    (۹) شرح اشغال‌ها و خطراتی که محافظت می‌شوند، مشخص کردن اینکه آیاenclosure معمولاً اشغال شده است یا خیر
    (۱۰) برای enclosure محافظت شده با سیستم اطفاء حریق با گاز پاک، تخمین فشار مثبت حداکثر و فشار منفی حداکثر، نسبت به فشار محیطی، که انتظار می‌رود پس از تخلیه عامل توسعه یابد
    (۱۱) شرح مواجهات اطراف enclosure
    (۱۲) شرح ظروف ذخیره‌سازی عامل مورد استفاده، شامل حجم داخلی، فشار ذخیره‌سازی، و ظرفیت اسمی بیان شده بر اساس واحدهای جرم یا حجم عامل در شرایط استاندارد دما و فشار
    (۱۳) شرح نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، و مساحت معادل روزنه
    (۱۴) شرح لوله‌ها و اتصالات مورد استفاده، شامل مشخصات مواد، درجه، و رتبه فشار
    (۱۵) شرح سیم یا کابل مورد استفاده، شامل طبقه‌بندی، اندازه [آمریکاییAWG]، شیلدینگ، تعداد رشته‌ها در هادی، ماده هادی، و برنامه کدگذاری رنگ؛ الزامات جداسازی هادی‌های مختلف سیستم؛ و روش مورد نیاز برای ایجاد اتصال‌های سیم
    (۱۶) شرح روش نصب دتکتورها
    (۱۷) برنامه تجهیزات یا فهرست مواد برای هر دستگاه یا وسیله نشان‌دهنده نام دستگاه، سازنده، مدل یا شماره قطعه، تعداد و شرح
    (۱۸) نمای نقشه‌ای از منطقه محافظت‌شده نشان‌دهنده تقسیماتenclosure (تمام و جزئی ارتفاع)، سیستم توزیع عامل، شامل ظروف ذخیره‌سازی عامل، لوله‌ها و نازل‌ها؛ نوع آویز لوله‌ها و نگهدارنده‌های لوله‌های سخت؛ سیستم‌های شناسایی، هشدار و کنترل، شامل تمام دستگاه‌ها و شماتیک اتصالات سیمی بین آن‌ها؛ مکان‌های دستگاه‌های پایان خط؛ مکان دستگاه‌های کنترل‌شده مانند دمپرها و پرده‌ها؛ و مکان علائم آموزشی
    (۱۹) نمای ایزومتریک از سیستم توزیع عامل نشان‌دهنده طول و قطر هر بخش لوله؛ شماره‌های مرجع گره‌ها مربوط به محاسبات جریان؛ اتصالات، شامل کاهنده‌ها، تغییرات، و جهت‌گیری تکیه‌گاه‌ها؛ و نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، نرخ جریان، و مساحت معادل روزنه
    (۲۰) نقشه مقیاس‌دار از طرح گرافیکی پنل اعلان در صورتی که از سوی مرجع ذی‌صلاح درخواست شده باشد
    (۲۱) جزئیات هر پیکربندی منحصر به فرد از نگهدارنده لوله‌های سخت، نشان‌دهنده روش اتصال به لوله و ساختار ساختمان
    (۲۲) جزئیات روش اتصال ظروف، نشان‌دهنده روش اتصال به ظرف و ساختار ساختمان
    (۲۳) شرح کامل گام به گام توالی عملیات سیستم، شامل عملکرد سوئیچ‌های هشدار و نگهداری، تایمرهای تأخیر، و خاموشی اضطراری برق
    (۲۴) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به پنل کنترل سیستم و پنل گرافیکی اعلان
    (۲۵) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به رله‌های خارجی یا اضافی
    (۲۶) محاسبات کامل برای تعیین حجم enclosure، مقدار عامل پاک، و اندازه باتری‌های پشتیبان؛ روش استفاده‌شده برای تعیین تعداد و مکان دستگاه‌های شناسایی صوتی و بصری؛ و تعداد و مکان دتکتورها
    (۲۷) جزئیات ویژگی‌های خاص
    (۲۸) منطقه شیر فشار اطمینان یا مساحت معادل نشت برای enclosure محافظت‌شده جهت جلوگیری از توسعه اختلاف فشار در مرزهای enclosure که بیش از حد مجاز فشار enclosure مشخص‌شده در هنگام تخلیه سیستم باشد

    ۶.۱.۲.۶ جزئیات سیستم باید شامل اطلاعات و محاسبات در مورد مقدار عامل؛ فشار ذخیره‌سازی ظرف؛ حجم داخلی ظرف؛ مکان، نوع، و نرخ جریان هر نازل، شامل مساحت معادل روزنه؛ مکان، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ‌ها؛ و مکان و اندازه تأسیسات ذخیره‌سازی باشد.
    ۶.۱.۲.۶.۱ کاهش اندازه لوله و جهت‌گیری تکیه‌گاه‌ها باید مشخص شود.
    ۶.۱.۲.۶.۲ اطلاعات مربوط به مکان و عملکرد دستگاه‌های شناسایی، دستگاه‌های عملیاتی، تجهیزات کمکی، و مدارهای الکتریکی، در صورت استفاده، باید ارائه شود.
    ۶.۱.۲.۶.۳ دستگاه‌ها و وسایل استفاده‌شده باید شناسایی شوند.
    ۶.۱.۲.۶.۴ هر ویژگی خاص باید توضیح داده شود.
    ۶.۱.۲.۶.۵ سیستم‌های پیش‌مهندسی شده نیازی به مشخص کردن حجم داخلی ظرف، نرخ‌های جریان نازل، طول معادل لوله‌ها، اتصالات و شیلنگ‌ها، یا محاسبات جریان ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده می‌شوند.
    ۶.۱.۲.۶.۶ برای سیستم‌های پیش‌مهندسی شده، اطلاعات مورد نیاز توسط دفترچه طراحی سیستم فهرست‌شده باید برای تأیید سیستم بر اساس محدودیت‌های فهرست‌شده به مرجع ذی‌صلاح ارائه شود.
    ۶.۱.۲.۷ یک دفترچه راهنمای “طبق ساخت” و نگهداری که شامل توالی کامل عملیات و مجموعه کاملی از نقشه‌ها و محاسبات باشد باید در سایت نگهداری شود.
    ۶.۱.۲.۸ محاسبات جریان
    ۶.۱.۲.۸.۱ محاسبات جریان همراه با نقشه‌های اجرایی باید برای تأیید به مرجع ذی‌صلاح ارائه شوند.
    ۶.۱.۲.۸.۲ نسخه برنامه محاسبات جریان باید در چاپ خروجی محاسبات کامپیوتری مشخص شود.
    ۶.۱.۲.۸.۳ زمانی که شرایط میدانی نیاز به تغییرات مادی از نقشه‌های تأیید شده داشته باشد، تغییر باید برای تأیید ارائه شود.
    ۶.۱.۲.۸.۴ زمانی که تغییرات مادی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اصلاح‌شده “طبق ساخت” باید ارائه شوند.

    ۶.۱.۳ تأیید نقشه‌ها

    ۶.۱.۳.۱ نقشه‌ها و محاسبات باید قبل از نصب تأیید شوند.

    ۶.۱.۳.۲ در صورتی که شرایط میدانی نیاز به هرگونه تغییر اساسی از نقشه‌های تأیید شده داشته باشد، تغییر باید قبل از اجرایی شدن برای تأیید ارسال شود.
    ۶.۱.۳.۳ زمانی که چنین تغییرات اساسی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اجرایی باید به‌روزرسانی شوند تا سیستم نصب‌شده را به‌طور دقیق نشان دهند.

    ۶.۲ محاسبات جریان سیستم
    ۶.۲.۱ محاسبات جریان سیستم باید با استفاده از روش محاسباتی فهرست‌شده یا تأیید شده توسط مرجع ذی‌صلاح انجام شود.
    ۶.۲.۱.۱ طراحی سیستم باید در محدوده محدودیت‌های فهرست‌شده سازنده باشد.
    ۶.۲.۱.۲ طراحی‌هایی که شامل سیستم‌های پیش‌مهندسی شده هستند، نیازی به ارائه محاسبات جریان مطابق با بند ۶.۱.۲.۸ ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده شوند.

    ۶.۲.۲ شیرها و اتصالات باید برای طول معادل بر اساس اندازه لوله یا لوله‌کشی که با آن‌ها استفاده خواهند شد، ارزیابی شوند.
    ۶.۲.۲.۱ طول معادل شیر ظرف باید فهرست شده باشد.
    ۶.۲.۲.۲ طول معادل شیر ظرف باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۶.۲.۳ طول‌های لوله‌کشی و جهت‌گیری اتصالات و نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده سازنده باشد.

    ۶.۲.۴ اگر نصب نهایی از نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدید که نصب “طبق ساخت” را نشان دهند باید تهیه شوند