الزامات نصب برای اسپرینکلرهای پاششی با پوشش گسترده از نوع رو به بالا، آویخته و دیواری

IMG 2012

11.1 کلیات. اسپرینکلرهای آویخته، رو به بالا، و دیواری با پوشش گسترده باید مطابق با موارد ذکرشده در این فصل انتخاب و نصب شوند و باید در موقعیت و فواصل تعیین‌شده در بخش 9.5 قرار گیرند.
11.2 اسپرینکلرهای پاششی رو به بالا و آویخته با پوشش گسترده
11.2.1 اسپرینکلرهای با پوشش گسترده. اسپرینکلرهای با پوشش گسترده باید فقط در شرایط زیر نصب شوند:
(1) در سازه‌های بدون مانع که شامل سقف‌های صاف و هموار با شیبی که از نسبت 1 به 6 تجاوز نکند (افزایش ۲واحد در طول ۱۲ واحد، یا شیب سقف ۱۶٫۷ درصد)
(2) در سازه‌های بدون مانع یا سازه‌های مانع‌دار غیرقابل‌اشتعال، در صورتی‌که به‌طور خاص برای چنین کاربردی فهرست شده باشند
(3) در میان خرپاها یا تیرچه‌هایی که اعضای شبکه‌ای آن‌ها دارای بیشینه بُعد ۱ اینچ (۲۵ میلی‌متر) باشند یا جایی که فاصله خرپاها از مرکز به مرکز بیش از ۷٫۵فوت (۲٫۳ متر) باشد و شیب سقف از نسبت 1 به 6 تجاوز نکند (افزایش ۲ واحد در طول ۱۲ واحد، یا شیب سقف ۱۶٫۷ درصد)
(4) اسپرینکلرهای رو به بالا و آویخته با پوشش گسترده که زیر سقف‌های صاف و هموار با شیبی که از نسبت 1 به 3 تجاوز نکند (افزایش ۴ واحد در طول ۱۲ واحد، یا شیب سقف ۳۳٫۳ درصد) نصب شده‌اند، در صورتی‌که به‌طور خاص برای چنین کاربردی فهرست شده باشند
(5) اسپرینکلرهای دیواری با پوشش گسترده که مطابق با بند 11.3.5.2.1 در شیب‌هایی بیش از شیب سقف ۲ در ۱۲ نصب شده باشند
(6) در هر دهانه از سازه مانع‌دار که دارای اعضای سازه‌ای جامدی است که پایین‌تر از دفلکتور اسپرینکلر امتداد دارند
(7) اسپرینکلرهای با پوشش گسترده که برای حفاظت از ناحیه زیر یک یا چند درب بالارونده نصب شده‌اند.

11.2.2 نواحی پوشش به ازای هر اسپرینکلر (اسپرینکلرهای پاششی رو به بالا و آویخته با پوشش گسترده)
11.2.2.1* تعیین ناحیه پوشش حفاظتی
11.2.2.1.1 ناحیه پوشش حفاظتی (As) برای اسپرینکلرهای با پوشش گسترده نباید کمتر از مقدار تعیین‌شده در فهرست باشد.
11.2.2.1.2 ابعاد درج‌شده در فهرست باید نواحی پوشش مربع‌شکل با اعداد زوج باشند، مطابق جدول 11.2.2.1.2.
11.2.2.1.3 تعیین ناحیه پوشش حفاظتی و فاصله‌گذاری اسپرینکلرها برای اسپرینکلرهایی که برای خطر زیاد با پوشش گسترده یا ذخیره‌سازی انباشته‌شده در ارتفاع بالا فهرست شده‌اند، می‌تواند طبق الزامات بندهای 9.5.2 و 9.5.3 انجام شود و نباید از فاصله حداکثر ۱۴ فوت (۴٫۳متر) و سطح حداکثر ۱۹۶ فوت مربع (۱۸ متر مربع) به ازای هر اسپرینکلر یا فاصله حداکثر ۱۵ فوت (۴٫۶ متر) و سطح حداکثر ۱۴۴ فوت مربع (۱۳ متر مربع) به ازای هر اسپرینکلر تجاوز کند.
11.2.2.2 حداکثر ناحیه پوشش حفاظتی
11.2.2.2.1* حداکثر ناحیه مجاز پوشش برای یک اسپرینکلر (As) باید مطابق با مقدار ذکرشده در جدول 11.2.2.1.2 باشد.
11.2.2.2.2 در هر صورت، حداکثر ناحیه پوشش اسپرینکلر نباید از ۴۰۰ فوت مربع (۳۷ متر مربع) تجاوز کند.
11.2.3 فاصله‌گذاری اسپرینکلر (اسپرینکلرهای پاششی رو به بالا و آویخته با پوشش گسترده)
11.2.3.1 حداکثر فاصله بین اسپرینکلرها
11.2.3.1.1 حداکثر فاصله مجاز بین اسپرینکلرها باید بر اساس فاصله بین محورهای اسپرینکلرها در یک شاخه لوله یا بین شاخه‌های مجاور باشد.
11.2.3.1.2 حداکثر فاصله باید در امتداد شیب سقف اندازه‌گیری شود.
11.2.3.1.3 حداکثر فاصله مجاز بین اسپرینکلرها باید مطابق با جدول 11.2.2.1.2 باشد.

9k=

11.2.3.2 حداکثر فاصله از دیوارها
11.2.3.2.1 فاصله اسپرینکلرها از دیوارها نباید از نصف فاصله مجاز بین اسپرینکلرها، همان‌طور که در جدول 11.2.2.1.2 آمده است، بیشتر باشد.
11.2.3.2.2 فاصله از دیوار تا اسپرینکلر باید به‌صورت عمود بر دیوار اندازه‌گیری شود.
11.2.3.2.3 در مواردی که دیوارها زاویه‌دار یا نامنظم هستند، بیشینه فاصله افقی بین اسپرینکلر و هر نقطه از سطح کف که توسط آن اسپرینکلر محافظت می‌شود، نباید از ۰٫۷۵ برابر فاصله مجاز بین اسپرینکلرها بیشتر باشد.

11.2.3.3 حداقل فاصله از دیوارها
اسپرینکلرها باید حداقل ۴ اینچ (۱۰۰ میلی‌متر) از دیوار فاصله داشته باشند، مگر اینکه برای فاصله کمتر از ۴اینچ (۱۰۰ میلی‌متر) در فهرست آمده باشند.

11.2.3.4 حداقل فاصله بین اسپرینکلرها
11.2.3.4.1 مگر در شرایطی که الزامات بند 11.2.3.4.2 رعایت شده باشد، اسپرینکلرها نباید با فاصله‌ای کمتر از ۸ فوت (۲٫۴ متر) از یکدیگر نصب شوند.
11.2.3.4.2 در صورتی که شرایط زیر برقرار باشد، می‌توان اسپرینکلرها را با فاصله کمتر از ۸ فوت (۲٫۴متر) از یکدیگر نصب کرد:
(1) موانعی (بفل) به‌گونه‌ای قرار گیرند که از عناصر فعال‌کننده محافظت کنند.
(2) موانع باید از مواد جامد و سخت ساخته شده باشند و پیش از فعال‌سازی و هنگام عملکرد اسپرینکلر در جای خود باقی بمانند.
(3) موانع باید حداقل ۸ اینچ (۲۰۰ میلی‌متر) طول و ۶اینچ (۱۵۰ میلی‌متر) ارتفاع داشته باشند.
(4) بالای موانع باید بین ۲ تا ۳ اینچ (۵۰ تا ۷۵ میلی‌متر) بالاتر از دفلکتورهای اسپرینکلرهای رو به بالا باشد.
(5) پایین موانع باید تا سطحی پایین بیاید که حداقل هم‌سطح با دفلکتور اسپرینکلرهای آویخته باشد.

11.2.4 موقعیت دفلکتور (اسپرینکلرهای پاششی رو به بالا و آویخته با پوشش گسترده)
11.2.4.1 فاصله از سقف
11.2.4.1.1 در سازه‌های بدون مانع
11.2.4.1.1.1 در سازه‌های بدون مانع، فاصله بین دفلکتور اسپرینکلر و سقف باید در تمام ناحیه پوشش اسپرینکلر، حداقل ۱ اینچ (۲۵ میلی‌متر) و حداکثر ۱۲اینچ (۳۰۰ میلی‌متر) باشد.
11.2.4.1.1.2 الزامات بند 11.2.4.1.1.1 در مورد اسپرینکلرهای نوع سقفی (پنهان، فرو رفته، و هم‌سطح) که عنصر فعال‌کننده آن‌ها در بالای سقف قرار دارد و دفلکتور آن‌ها نزدیک‌تر به سقف نصب می‌شود، در صورتی که مطابق با فهرست نصب شوند، اعمال نمی‌گردد.
11.2.4.1.1.3 الزامات بند 11.2.4.1.1.1 در مواردی که اسپرینکلرها برای استفاده در دیگر ویژگی‌های سقف یا برای فواصل متفاوت فهرست شده‌اند، و مطابق با فهرست خود نصب شوند، اعمال نمی‌شود.
11.2.4.1.1.4 الزامات بند 11.2.4.1.1.1 برای کاربری‌های با خطر کم و معمولی که دارای سقف‌های غیرقابل‌اشتعال یا با قابلیت اشتعال محدود هستند، اعمال نمی‌شود.
(الف)* در مواردی که تغییر ارتفاع عمودی سقف در ناحیه پوشش یک اسپرینکلر باعث ایجاد فاصله‌ای بیش از ۳۶اینچ (۹۰۰ میلی‌متر) بین سقف بالایی و دفلکتور اسپرینکلر شود، یک صفحه عمودی که از محل تغییر ارتفاع سقف به پایین کشیده می‌شود، به‌منظور فاصله‌گذاری اسپرینکلرها، معادل دیوار در نظر گرفته می‌شود.

(B)* در مواردی که فاصله بین سقف بالایی و دفلکتور اسپرینکلر کمتر یا مساوی ۳۶ اینچ (۹۰۰ میلی‌متر) باشد، چنانچه قواعد مربوط به موانع رعایت شده باشند، اسپرینکلرها می‌توانند به‌گونه‌ای فاصله‌گذاری شوند که گویی سقف صاف است.

11.2.4.1.2 سازه‌های دارای مانع
در سازه‌های دارای مانع، دفلکتور اسپرینکلر باید مطابق یکی از روش‌های زیر نصب شود:
(1) نصب دفلکتورها در داخل صفحات افقی به فاصله ۱تا ۶ اینچ (۲۵ تا ۱۵۰ میلی‌متر) زیر اعضای سازه‌ای غیرقابل اشتعال و حداکثر فاصله ۲۲ اینچ (۵۵۰ میلی‌متر) زیر دک سقف یا بام.
(2) نصب دفلکتورها در ارتفاعی برابر یا بالاتر از پایین‌ترین نقطه عضو سازه‌ای غیرقابل اشتعال تا حداکثر فاصله ۲۲ اینچ (۵۵۰ میلی‌متر) زیر دک سقف یا بام غیرقابل اشتعال، در صورتی که اسپرینکلر مطابق با بند 11.2.5.1.2 نصب شده باشد.
(3) نصب اسپرینکلر در هر دهانه (بِی) از سازه دارای مانع (قابل اشتعال یا غیرقابل اشتعال) با دفلکتورهایی که حداقل ۱ اینچ (۲۵ میلی‌متر) و حداکثر ۱۲ اینچ (۳۰۰میلی‌متر) زیر سقف قرار دارند.
(4) نصب طبق فهرست اسپرینکلر، در مواردی که اسپرینکلر برای استفاده در دیگر ویژگی‌های سقف یا فواصل متفاوت فهرست شده است.

11.2.4.1.3* سقف‌ها و بام‌های شیب‌دار
اسپرینکلرهایی که در زیر یا نزدیکی نوک سقف یا بام نصب می‌شوند باید به‌گونه‌ای نصب شوند که دفلکتور آن‌ها بیش از ۳ فوت (۹۰۰ میلی‌متر) از نوک سقف به‌صورت عمودی پایین‌تر قرار نگرفته باشد، مطابق با شکل‌های 10.2.6.1.3.1(a) و 10.2.6.1.3.1(b).

11.2.4.2 جهت‌گیری دفلکتور
دفلکتورهای اسپرینکلر باید به‌صورت موازی با سقف یا بام تنظیم شوند.

11.2.4.2.1 سقف‌ها و بام‌هایی که شیب آن‌ها بیش از ۲در ۱۲ (۱۶٫۷ درصد) نباشد، در کاربرد بند 11.2.4.2 به‌عنوان افقی در نظر گرفته می‌شوند و در این حالت اسپرینکلرها می‌توانند به‌صورت افقی نصب شوند.

11.2.5 موانع در برابر پاشش اسپرینکلر (اسپرینکلرهای پاششی رو به بالا و آویخته با پوشش گسترده)
11.2.5.1 هدف عملکردی
11.2.5.1.1 اسپرینکلرها باید به‌گونه‌ای نصب شوند که موانع پاشش، همان‌طور که در بندهای 11.2.5.2 و 11.2.5.3 تعریف شده‌اند، به حداقل برسد؛ یا اسپرینکلرهای اضافی نصب شوند تا پوشش کافی برای خطر فراهم شود.
11.2.5.1.2* اسپرینکلرها باید مطابق یکی از روش‌های زیر چیدمان شوند:
(1) اسپرینکلرها باید مطابق با بند 9.5.5.2، جدول 11.2.5.1.2، و شکل 11.2.5.1.2(a) باشند.
(2) در صورتی که موانع از عرض ۴ فوت (۱٫۲ متر) بیشتر نباشند، می‌توان اسپرینکلرها را در دو طرف مانع نصب کرد، به شرطی که فاصله از محور مرکزی مانع تا هر اسپرینکلر از نصف فاصله مجاز بین اسپرینکلرها بیشتر نباشد.
(3) موانعی که در مجاورت دیوار قرار دارند و عرض آن‌ها بیش از ۳۰ اینچ (۷۵۰ میلی‌متر) نیست، می‌توانند طبق شکل 11.2.5.1.2(b) محافظت شوند.
(4) موانعی که در مجاورت دیوار قرار دارند و عرض آن‌ها بیش از ۲۴ اینچ (۶۰۰ میلی‌متر) نیست، می‌توانند طبق شکل 11.2.5.1.2(c) محافظت شوند. فاصله حداکثر بین اسپرینکلر و دیوار باید از اسپرینکلر تا دیوار پشتی مانع اندازه‌گیری شود، نه تا سطح جلویی مانع.

11.2.5.2 موانع در توسعه الگوی پاشش اسپرینکلر

11.2.5.2.1 کلیات
11.2.5.2.1.1 موانع پیوسته یا ناپیوسته‌ای که در فاصله کمتر یا مساوی ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دفلکتور اسپرینکلر قرار دارند و مانع از توسعه کامل الگوی پاشش می‌شوند، باید مطابق با الزامات بخش 11.2.5.2 باشند.

11.2.5.2.1.2 صرف‌نظر از قواعد این بخش، موانع پیوسته و جامد باید با الزامات مرتبط بند 11.2.5.1.2 مطابقت داشته باشند.

11.2.5.2.1.3* مگر اینکه الزامات بندهای 11.2.5.2.1.4 تا 11.2.5.2.1.8 رعایت شده باشد، اسپرینکلرها باید به فاصله‌ای حداقل معادل چهار برابر بزرگ‌ترین بُعد مانع (مانند اجزای شبکه خرپایی، لوله، ستون، و تجهیزات) از مانع نصب شوند، مطابق با شکل‌های 11.2.5.2.1.3(a) و 11.2.5.2.1.3(b).

2Q==

9k=

Z

9k=

Z

Z

11.2.5.2.1.5 نصب اسپرینکلرها در میانه فاصله بین موانع مجاز است، مشروط بر آن‌که مانع از تیرچه‌های چوبی با فاصله ۲۰ اینچ (۵۰۰ میلی‌متر) یا بیشتر باشد، به شرطی که ابعاد اعضای بالایی و پایینی تیرچه چوبی از ۴ اینچ (۱۰۰ میلی‌متر) (اسمی) بیشتر نباشد و اعضای میانی از ۱ اینچ (۲۵ میلی‌متر) بیشتر نباشند.

11.2.5.2.1.6 نصب اسپرینکلرها بر روی خط مرکزی یک خرپا یا تیرچه یا مستقیماً بالای یک تیر مجاز است، مشروط بر آن‌که عرض عضو خرپا یا تیر از ۸ اینچ (۲۰۰میلی‌متر) بیشتر نباشد و منحرف‌کننده اسپرینکلر حداقل ۶ اینچ (۱۵۰ میلی‌متر) بالاتر از عضو سازه قرار داشته باشد و اسپرینکلر از اعضای میانی خرپا به اندازه‌ای حداقل چهار برابر بیشینه عرض عضو میانی فاصله داشته باشد.

11.2.5.2.1.7 الزامات بند 11.2.5.2.1.3 شامل لوله‌کشی سامانه اسپرینکلر با قطر کمتر از ۳ اینچ (۸۰ میلی‌متر) نمی‌شود.

11.2.5.2.1.8 الزامات بند 11.2.5.2.1.3 شامل اسپرینکلرهایی که طبق بند 11.2.5.1.2 نسبت به موانع نصب شده‌اند، نمی‌شود.

11.2.5.2.1.9 نصب اسپرینکلر بدون در نظر گرفتن پره‌های پنکه سقفی با قطر کمتر از ۶۰ اینچ (۱٫۵ متر) مجاز است، مشروط بر آن‌که نمای پلان پنکه حداقل ۵۰درصد باز باشد.

11.2.5.2.2 فاصله اسپرینکلرها از موانع عمودی آویزان یا نصب‌شده بر کف مانند پرده‌های حریم خصوصی، جداکننده‌های ایستاده، تقسیم‌کننده‌های اتاق و موانع مشابه در تصرفات خطر کم باید مطابق جدول 11.2.5.2.2 و شکل 11.2.5.2.2 باشد.

11.2.5.2.2.1 در تصرفات خطر کم، پرده‌های حریم خصوصی مطابق شکل 11.2.5.2.2 مانع تلقی نمی‌شوند، مشروط بر آن‌که تمام شرایط زیر رعایت شوند:

1. پرده‌ها توسط توری پارچه‌ای به ریل سقفی متصل باشند.
2. درصد باز بودن توری برابر یا بیش از ۷۰ درصد باشد.
3. توری حداقل ۲۲ اینچ (۵۵۰ میلی‌متر) از سقف به پایین کشیده شده باشد.

11.2.5.3 موانعی که از رسیدن پاشش اسپرینکلر به خطر جلوگیری می‌کنند.

11.2.5.3.1 موانع پیوسته یا ناپیوسته که جریان آب را در صفحه افقی بیش از ۱۸ اینچ (۴۵۰ میلی‌متر) پایین‌تر از منحرف‌کننده اسپرینکلر مختل می‌کنند و باعث محدود شدن توزیع آب در ناحیه خطر می‌شوند، باید مطابق بند 11.2.5.3 اجرا شوند.

11.2.5.3.2 نصب اسپرینکلر در زیر موانع ثابت با عرض بیش از ۴ فوت (۱٫۲ متر) الزامی است.

11.2.5.3.3 نصب اسپرینکلر در زیر موانعی که ثابت نیستند، مانند میزهای کنفرانس، الزامی نیست.

11.2.5.3.4 اسپرینکلرهایی که در زیر صفحات مشبک باز نصب می‌شوند باید از نوع قفسه‌ای/سطح میانی باشند یا در برابر پاشش از اسپرینکلرهای بالا محافظت شده باشند.

11.2.5.3.5 اسپرینکلرهایی که در زیر کانال‌های گرد نصب می‌شوند باید از نوع قفسه‌ای/سطح میانی باشند یا در برابر پاشش از اسپرینکلرهای بالا محافظت شده باشند.

11.2.6 فاصله آزاد تا انبار

11.2.6.1 فاصله بین منحرف‌کننده و بالای انبار باید ۱۸اینچ (۴۵۰ میلی‌متر) یا بیشتر باشد.

11.2.6.2 در صورتی که استانداردهای دیگر حداقل فاصله بیشتری را مشخص کرده باشند، آن‌ها باید رعایت شوند.

9k=

2Q==

11.2.7 فاصله از ذخیره‌سازی (اسپرینکلرهای پوشش گسترده قائم و آویخته)

11.2.7.1* فاصله بین دفلکتور و بالای ذخیره‌سازی باید ۱۸ اینچ (۴۶۰ میلی‌متر) یا بیشتر باشد.
11.2.7.2 بُعد ۱۸ اینچ (۴۶۰ میلی‌متر) نباید ارتفاع قفسه‌گذاری روی دیوار یا قفسه‌گذاری چسبیده به دیوار را محدود کند، طبق بخش 11.2.7.
11.2.7.2.1 در مواردی که قفسه‌گذاری روی دیوار نصب شده و مستقیماً زیر اسپرینکلرها قرار ندارد، قفسه‌ها، شامل اقلام ذخیره‌شده روی آن‌ها، می‌توانند بالاتر از سطحی که در فاصله ۱۸ اینچ (۴۶۰ میلی‌متر) پایین‌تر از دفلکتور اسپرینکلرهای سقفی قرار دارد، امتداد یابند.
11.2.7.2.2 قفسه‌گذاری و هرگونه ذخیره‌سازی روی آن، که مستقیماً زیر اسپرینکلرها قرار دارد، نباید بالاتر از سطحی که در فاصله ۱۸ اینچ (۴۶۰ میلی‌متر) پایین‌تر از دفلکتور اسپرینکلرهای سقفی قرار دارد، امتداد یابد.

11.2.8 فضاهای فرو رفته سقفی (اسپرینکلرهای پوشش گسترده قائم و آویخته)

11.2.8.1 به جز در موارد مجاز در 11.2.8.2 و 11.2.8.3، در تمام فضاهای فرورفته سقفی باید اسپرینکلر نصب شود.
11.2.8.2 نصب اسپرینکلر در فضاهای فرورفته سقفی الزامی نیست، در صورتی که تمام شرایط زیر برقرار باشد:
(1) حجم کل فضای سقفی بدون حفاظت از ۱۰۰۰ فوت مکعب (۲۸ متر مکعب) بیشتر نباشد.
(2) عمق فضای سقفی بدون حفاظت از ۳۶ اینچ (۹۰۰میلی‌متر) بیشتر نباشد.
(3) کل کف زیر فضای سقفی بدون حفاظت توسط اسپرینکلرها در تراز سقف پایین‌تر حفاظت شده باشد.
(4)* مجموع اندازه تمام فضاهای سقفی بدون حفاظت در یک محفظه که در فاصله ۱۰ فوت (۳ متر) از یکدیگر قرار دارند، از ۱۰۰۰ فوت مکعب (۲۸ متر مکعب) بیشتر نباشد.
(5) فضای سقفی بدون حفاظت دارای پوشش‌های نسوز یا با قابلیت احتراق محدود باشد.
(6) در کل محفظه از اسپرینکلرهای با پاسخ سریع استفاده شده باشد.
11.2.8.3 نصب اسپرینکلر در نورگیرها و فضاهای مشابه طبق بخش 9.3.16 الزامی نیست.

11.3* اسپرینکلرهای دیواری با پوشش گسترده

11.3.1 کلیات. تمام الزامات بخش 9.5 برای اسپرینکلرهای دیواری با پوشش گسترده اعمال می‌شود، مگر آنکه در بخش 11.3 تغییر داده شده باشد.
11.3.2 اسپرینکلرهای دیواری با پوشش گسترده فقط در شرایط زیر نصب می‌شوند:
(1) تصرفات با خطر کم با سقف‌های صاف افقی یا شیب‌دار
(2) تصرفات با خطر عادی با سقف‌های صاف، فقط در صورتی که مخصوصاً برای این کاربرد فهرست شده باشند
(3) در ساختارهای بدون مانع با سقف‌های صاف و شیب‌دار با شیب حداکثر ۱ به ۶ (یعنی شیب ۱۶.۷٪)
(4) در ساختارهای بدون مانع یا مانع‌دار غیرقابل احتراق، فقط در صورتی که مخصوصاً برای این کاربرد فهرست شده باشند
(5) درون خرپاها یا تیرهای شبکه‌ای که اعضای شبکه‌ای آن‌ها حداکثر بعدی برابر با ۱ اینچ (۲۵ میلی‌متر) دارند، یا جایی که فاصله خرپاها از مرکز به مرکز بیش از ۷.۵فوت (۲.۳ متر) است و شیب سقف از ۱ به ۶ بیشتر نیست
(6) اسپرینکلرهای دیواری با پوشش گسترده نصب‌شده طبق بند 11.3.6.2.2 در سقف‌هایی با شیب بیش از ۲ در ۱۲
(7) در هر دهانه از ساختار مانع‌دار که اعضای سازه‌ای آن پایین‌تر از دفلکتور اسپرینکلر امتداد دارند
(8) اسپرینکلرهای پوشش گسترده نصب‌شده برای محافظت از مناطق زیر درب‌های سقفی تکی

11.3.3 نواحی حفاظت‌شده برای هر اسپرینکلر (اسپرینکلرهای دیواری با پوشش گسترده)

11.3.3.1* تعیین ناحیه حفاظت‌شده تحت پوشش
11.3.3.1.1 ناحیه تحت پوشش هر اسپرینکلر (As) برای اسپرینکلرهای دیواری با پوشش گسترده نباید کمتر از مقدار مشخص‌شده در فهرست باشد.
11.3.3.1.2 ابعاد فهرست‌شده باید به مضرب‌های ۲ فوت (۶۰۰ میلی‌متر) تا حداکثر ۲۸ فوت (۸.۵ متر) باشد.

9k=

11.3.3.2 حداکثر ناحیه حفاظت‌شده تحت پوشش
11.3.3.2.1 حداکثر ناحیه مجاز تحت پوشش برای هر اسپرینکلر (As) باید مطابق مقدار ذکرشده در جدول 11.3.3.2.1 باشد.
11.3.3.2.2 در هر صورت، حداکثر ناحیه تحت پوشش یک اسپرینکلر نباید از ۴۰۰ فوت مربع (۳۷ متر مربع) بیشتر باشد.

11.3.4 فاصله‌گذاری اسپرینکلر (اسپرینکلرهای دیواری با پوشش گسترده)

11.3.4.1 حداکثر فاصله بین اسپرینکلرها
11.3.4.1.1 حداکثر فاصله مجاز بین اسپرینکلرها باید بر اساس فاصله خط مرکزی بین اسپرینکلرها روی شاخه لوله در امتداد دیوار باشد.
11.3.4.1.2 هنگامی‌که اسپرینکلرها در امتداد یک دیوار اتاق یا دهانه نصب می‌شوند، باید مطابق با مقررات حداکثر فاصله در جدول 11.3.3.2.1 فاصله‌گذاری شوند.
11.3.4.1.3 اسپرینکلرهای دیواری نباید پشت‌به‌پشت بدون جداکننده‌ای پیوسته مانند پیش‌آمدگی، سقف کاذب یا مانع نصب شوند.
11.3.4.1.4 نصب اسپرینکلرهای دیواری روی دیوارهای مقابل یا مجاور مجاز است، مشروط بر اینکه هیچ اسپرینکلری در ناحیه حفاظت‌شده حداکثری اسپرینکلر دیگر قرار نگیرد.

11.3.4.2 حداکثر فاصله از دیوارها
فاصله بین اسپرینکلرها و دیوارهای انتهایی نباید از نصف فاصله مجاز بین اسپرینکلرها، طبق جدول 11.3.3.2.1، بیشتر باشد.

11.3.4.3 حداقل فاصله از دیوارها
11.3.4.3.1 اسپرینکلرها باید حداقل ۴ اینچ (۱۰۰میلی‌متر) از دیوار انتهایی فاصله داشته باشند.
11.3.4.3.2 فاصله از دیوار تا اسپرینکلر باید عمود بر دیوار اندازه‌گیری شود.

11.3.4.4 حداقل فاصله بین اسپرینکلرها
اسپرینکلرها نباید در ناحیه حفاظت‌شده اسپرینکلر دیگر قرار بگیرند، مگر در صورتی که توسط بند 11.3.5.1.4.1 الزامی شده باشد یا به‌وسیله موانعی از هم جدا شده باشند که دارای شرایط زیر باشند:
(1) موانع باید طوری قرار گیرند که اجزای فعال‌کننده را محافظت کنند.
(2) موانع باید از مواد جامد و سخت باشند که قبل و هنگام عملکرد اسپرینکلر در جای خود باقی بمانند.
(3) موانع باید حداقل ۸ اینچ (۲۰۰ میلی‌متر) طول و ۶اینچ (۱۵۰ میلی‌متر) ارتفاع داشته باشند.
(4) بالای مانع باید بین ۲ تا ۳ اینچ (۵۰ تا ۷۵ میلی‌متر) بالاتر از دفلکتور باشد.
(5) پایین مانع باید تا سطحی پایین‌تر یا هم‌سطح با دفلکتور امتداد داشته باشد.

11.3.5 موقعیت دفلکتور نسبت به سقف‌ها و دیوارها (اسپرینکلرهای دیواری با پوشش گسترده)

11.3.5.1 فاصله از زیر سقف‌ها و از دیوارهایی که اسپرینکلر روی آن‌ها نصب شده است
11.3.5.1.1 سقف‌ها
11.3.5.1.1.1 مگر آنکه الزامات بند 11.3.5.1.1.2 رعایت شود، دفلکتور اسپرینکلرهای دیواری باید در فاصله‌ای نه بیشتر از ۶ اینچ (۱۵۰ میلی‌متر) و نه کمتر از ۴ اینچ (۱۰۰ میلی‌متر) از سقف‌ها قرار گیرد.
11.3.5.1.1.2 اسپرینکلرهای دیواری افقی مجازند در ناحیه‌ای بین ۶ تا ۱۲ اینچ (۱۵۰ تا ۳۰۰ میلی‌متر) یا ۱۲تا ۱۸ اینچ (۳۰۰ تا ۴۵۰ میلی‌متر) زیر سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود قرار گیرند، در صورتی که برای چنین کاربردی لیست شده باشند.

11.3.5.1.2 دیوارها
11.3.5.1.2.1* دفلکتور اسپرینکلرهای دیواری باید در فاصله‌ای نه بیشتر از ۶ اینچ (۱۵۰ میلی‌متر) و نه کمتر از ۴ اینچ (۱۰۰ میلی‌متر) از دیواری که روی آن نصب شده‌اند قرار گیرد.
11.3.5.1.2.2 اسپرینکلرهای دیواری افقی مجازند به‌گونه‌ای نصب شوند که دفلکتور آن‌ها در فاصله‌ای کمتر از ۴ اینچ (۱۰۰ میلی‌متر) از دیواری که روی آن نصب شده‌اند قرار گیرد.

11.3.5.1.3 پیش‌آمدگی‌ها و سقف‌های کاذب
11.3.5.1.3.1* در صورتی که سقف کاذب مورد استفاده برای نصب اسپرینکلرهای دیواری دارای عرض یا پیش‌آمدگی از دیوار کمتر یا مساوی ۸ اینچ (۲۰۰میلی‌متر) باشد، نیازی به نصب اسپرینکلر اضافی در زیر آن نیست.
11.3.5.1.3.2* نصب یک اسپرینکلر دیواری در زیر سقف کاذب مجاز است، مشروط بر اینکه هم فاصله حداقل بین دفلکتور اسپرینکلر تا پایین سقف کاذب و هم فاصله حداکثر از دفلکتور اسپرینکلر تا سقف بلندتر رعایت شود.

11.3.5.1.4* پیش‌آمدگی‌ها و کابینت‌ها در مناطق/اشغال‌های مسکونی
در صورتی که از پیش‌آمدگی‌ها برای نصب اسپرینکلرهای دیواری استفاده شود، اسپرینکلرها و پیش‌آمدگی‌ها باید مطابق با یکی از بندهای 11.3.5.1.4.1، 11.3.5.1.4.2 یا 11.3.5.1.4.3 نصب شوند.

11.3.5.1.4.1 در صورتی که عرض یا پیش‌آمدگی سقف کاذب بیش از ۸ اینچ (۲۰۰ میلی‌متر) باشد، اسپرینکلرهای آویز باید در زیر سقف کاذب نصب شوند.
11.3.5.1.4.2 اسپرینکلرهای دیواری مجازند در سطح پیش‌آمدگی که مستقیماً بالای کابینت‌ها قرار دارد نصب شوند، بدون نیاز به اسپرینکلر اضافی در زیر پیش‌آمدگی یا کابینت‌ها، مشروط بر اینکه پیش‌آمدگی به‌صورت افقی بیش از ۱۲ اینچ (۳۰۰ میلی‌متر) از دیوار فاصله نداشته باشد.
11.3.5.1.4.3 در صورتی که اسپرینکلرهای دیواری بیش از ۳ فوت (۹۰۰ میلی‌متر) بالاتر از بالای کابینت‌ها قرار داشته باشند، مجاز است روی دیوار بالای کابینت‌ها نصب شوند، مشروط بر اینکه فاصله کابینت‌ها از دیوار بیشتر از ۱۲ اینچ (۳۰۰ میلی‌متر) نباشد.

11.3.5.2 جهت‌گیری دفلکتور
11.3.5.2.1 اسپرینکلرهای دیواری که زیر سقف شیب‌دار با شیب بیش از ۲ در ۱۲ نصب می‌شوند، باید در بالاترین نقطه شیب قرار گرفته و به گونه‌ای تنظیم شوند که به سمت پایین در امتداد شیب تخلیه کنند.
11.3.5.2.2 اسپرینکلرهای دیواری که به طور خاص برای پیکربندی‌های دیگر سقف لیست شده‌اند، مجازند مطابق با الزامات لیست نصب شوند.

11.3.6 موانع در برابر تخلیه اسپرینکلر (اسپرینکلرهای دیواری با پوشش گسترده)
11.3.6.1 هدف عملکردی
11.3.6.1.1 اسپرینکلرها باید به گونه‌ای قرار گیرند که موانع در مسیر تخلیه، طبق تعریف در بندهای 9.5.5.2 و 9.5.5.3، به حداقل برسند، یا اسپرینکلرهای اضافی برای تضمین پوشش کافی خطر نصب شوند.
11.3.6.1.2 اسپرینکلرهای دیواری نباید در فاصله کمتر از ۸ فوت (۲.۴ متر) از چراغ‌ها یا موانع مشابه نصب شوند، مگر اینکه الزامات بندهای 11.3.6.1.2.1 یا 11.3.6.1.2.2 رعایت شده باشد.
11.3.6.1.2.1 برای موانعی مانند چراغ‌ها، در صورتی که بزرگ‌ترین بُعد مانع کمتر از ۲ فوت (۰.۶ متر) باشد، اسپرینکلرهای دیواری مجازند در فاصله‌ای حداقل معادل چهار برابر بزرگ‌ترین بُعد مانع نصب شوند.
11.3.6.1.2.2 برای موانعی که حداقل ۴ اینچ (۱۰۰میلی‌متر) بالاتر از سطح دفلکتور اسپرینکلر قرار دارند، اسپرینکلر مجاز است در فاصله‌ای کمتر از ۸ فوت (۲.۴متر) از مانع قرار گیرد.
11.3.6.1.3 فاصله بین چراغ‌ها یا موانع مشابه که ۸ فوت (۲.۴ متر) یا بیشتر از اسپرینکلر فاصله دارند، باید مطابق با جدول 11.3.6.1.3 و شکل 11.3.6.1.3 باشد.
11.3.6.1.4 موانع پیوسته‌ای که از همان دیواری بیرون زده‌اند که اسپرینکلر دیواری روی آن نصب شده، باید مطابق با یکی از چیدمان‌های زیر باشند:
(1) اسپرینکلرها باید مطابق با جدول 11.3.6.1.4 و شکل 11.3.6.1.4(a) نصب شوند.

2Q==

11.3.6.2.1.3* مگر در صورتی که الزامات 11.3.6.2.1.4 و 11.3.6.2.1.5 رعایت شده باشند، اسپرینکلرها باید در فاصله‌ای حداقل برابر با چهار برابر بزرگ‌ترین بُعد مانع (مانند شبکه‌های خرپایی و اعضای آن، لوله، ستون و تجهیزات) از موانع قرار گیرند، مطابق با شکل‌های 11.3.6.2.1.3(a) و 11.3.6.2.1.3(b).
(A) حداکثر فاصله آزاد مورد نیاز از موانع در جهت افقی (مانند تجهیزات روشنایی و اعضای افقی خرپا) برابر با ۳۶ اینچ (۹۰۰ میلی‌متر) خواهد بود.
(B) این فاصله آزاد حداکثر به موانع در جهت عمودی (مانند ستون‌ها) اعمال نمی‌شود.

11.3.6.2.1.4 الزامات بندهای 11.3.6.2.1.3 و 11.3.6.2.1.4 در صورتی اعمال نمی‌شوند که اسپرینکلرها نسبت به موانع طبق 11.3.6.1.2 و 11.3.6.1.3 قرار گرفته باشند.

11.3.6.2.1.5 الزامات 11.3.6.2.1.3 برای لوله‌کشی سیستم اسپرینکلر با قطر کمتر از ۳ اینچ (۸۰ میلی‌متر) اعمال نمی‌شود.

11.3.6.2.1.6* نصب اسپرینکلر بدون توجه به پره‌های پنکه سقفی با قطر کمتر از ۶۰ اینچ (۱.۵ متر) مجاز است، مشروط بر اینکه نمای پلان پنکه حداقل ۵۰ درصد باز باشد.

11.3.6.2.2 موانع عمودی معلق یا نصب‌شده بر کف.
فاصله بین اسپرینکلرها و پرده‌های حریم خصوصی، جداکننده‌های ایستاده، تقسیم‌کننده‌های اتاق و موانع مشابه در اشغال‌های با خطر کم باید مطابق با جدول 11.3.6.2.2 و شکل 11.3.6.2.2 باشد.

Z

Z

Z

Z

11.3.6.2.2.1* در تصرفات با خطر پایین، پرده‌های حریم خصوصی همان‌طور که در شکل 11.3.6.2.2 نشان داده شده‌اند، زمانی مانع محسوب نمی‌شوند که تمام شرایط زیر رعایت شود:
(1) پرده‌ها با مش پارچه‌ای بر روی ریل سقفی پشتیبانی شوند.
(2) بازشوهای مش برابر یا بیشتر از ۷۰ درصد باشند.
(3) مش حداقل ۲۲ اینچ (۵۵۰ میلی‌متر) از سقف به سمت پایین امتداد داشته باشد.

بیشتر بخوانید: رفع خطای سیستم اعلام حریق

11.3.6.3* موانعی که مانع رسیدن پاشش آب اسپرینکلر به خطر می‌شوند:
11.3.6.3.1 موانع پیوسته یا ناپیوسته که پاشش آب را در یک صفحه افقی بیش از ۱۸ اینچ (۴۵۰ میلی‌متر) زیر دیفلوکتور اسپرینکلر قطع کنند و مانع از رسیدن پاشش به خطر محافظت‌شده شوند، باید با این بخش مطابقت داشته باشند.
11.3.6.3.2* اسپرینکلر باید زیر موانع ثابت با عرض بیش از ۴ فوت (۱٫۲ متر) نصب شود.
11.3.6.3.3 نصب اسپرینکلر زیر موانعی که ثابت نیستند، مانند میزهای کنفرانس، الزامی نیست.

11.3.7 فاصله تا ذخیره‌سازی (اسپرینکلر دیواری با پوشش گسترده):
فاصله بین دیفلوکتور و بالای ذخیره‌سازی باید برابر یا بیشتر از ۱۸ اینچ (۴۵۰ میلی‌متر) باشد.

Z

9k=

نوشته‌های مشابه

  • نحوه اتصال بیم دتکتور به سیستم اعلام حریق آدرس پذیر

     

    انواع بیم دتکتور از نظر نوع اتصال

    1. ساده (Conventional Beam Detector):
      • فقط دو خروجی رله دارد (Alarm / Fault)
      • آدرس‌پذیر نیست و نیاز به واسط دارد
    2. آدرس‌پذیر (Addressable Beam Detector):
      • مستقیماً قابل اتصال به لوپ آدرس‌پذیر است
      • آدرس مختص به خود دارد

     

     اتصال بیم دتکتور متعارف به سیستم آدرس‌پذیر توسط ماژول ورودی

    با استفاده از یک ماژول آدرس پذیر که با پنل مرکزی آدرس پذیر دارای پروتکل ارتباطی یکسان می باشد ( هر دو یک برند باشند ) میتوان یک بیم دتکتور متعارف را به پنل آدرس پذیر متصل نمود.

    ماژول های ورودی یا ماژول مانیتور ها دو دسته هستند. دسته اول ماژول های ورودی آدرس پذیر 4 سیمه هستند که تامین برق آنها توسط تابلوی اعلام حریق آدرس پذیر تامین می شود. ماژول های ورودی آدرس پذیر 4 سیمه، همانطور که از اسم آن پیداست از 4 سیم استفاده میکنند که دو سیم آن برق 24 ولت و دو سیم دیگر جهت اتصال به لوپ یا حلقه یا مدار سیستم اعلام حریق آدرس پذیر است.

    نوع دوم ماژول های ورودی آدرس پذیر 2 سیمه هستند و برق آنها توسط برق لوپ، پنل اعلام حریق آدرس پذیر تامین میشود. این ماژول ها بخاطر صرفه جویی در هزینه کابل کشی بسیار به صرفه تر هستند و همچنین نصب آنها راحت تر است.

    حالت 1: تشخیص ورودی معمولاً باز:

    WhatsApp Image 2025 09 29 at 11.39.02 PM


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 3 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد، ماژول می‌تواند سه حالت را در ترمینال‌های ورودی تشخیص دهد: عادی، مدار باز و هشدار (اتصال کوتاه)

    حالت 2: تشخیص ورودی معمولاً بسته:

    WhatsApp Image 2025 09 29 at 11.39.02 PM1


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 4 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد..

     

    نحوه اتصال بیم دتکتور متعارف به تابلوی اعلام حریق آدرس پذیر توسط ماژول ورودی 2 سیمه

    WhatsApp Image 2025 09 29 at 11.39.03 PM

    در شکل بالا از یک ماژول ورودی آدرس پذیر 2 سیمه جهت اتصال بیم دتکتور متعارف به پنل کنترل اعلام حریق آدرس پذیر استفاده شده است. تنها تفاوت ماژول های ورودی 2 سیمه و 4 سیمه فقط در نحوه تغذیه ماژول می باشد. در سیستم 4 سیمه ، احتیاج به 2 سیم اضافه جهت اتصال به ترمینال 24 ولت کمکی تابلوی اعلام حریق آدرس پذیر می باشد ولی در سیستم 2 سیمه ،به علت مصرف الکتریکی کم، برق خود را از طریق برق لوپ یا حلقه تابلوی اعلام حریق آدرس پذیر تامین می کند.

     

    نکات مهم:

    • حتماً باید بین منبع تغذیه و بیم دتکتور، ایزولاسیون مناسب رعایت شود.
    • بهتر است از ماژول‌هایی استفاده شود که قابلیت نظارت بر مدار باز یا اتصال کوتاه را دارند.

     

    1. استفاده از بیم دتکتور آدرس‌پذیر اختصاصی

    در این روش، از بیم دتکتورهای تولید شده توسط برند سازنده‌ی سیستم اعلام حریق استفاده می‌شود که مستقیماً قابل اتصال به لوپ هستند و بدون نیاز به ماژول واسط، قادر به اتصال به پنل آدرس‌پذیر هستند.

    در این مورد کافی است تا بیم دتکتور در حال نصب را نیز همانند بقیه آیتم های اعلام حریق در حال نصب،( مانند دتکتور ها و شستی ها و آژیرها) آدرس دهی شود . آدرس دهی معمولا از توسط پروگرامر دستی یا بصورت اتوماتیک از طریق پنل انجام می پذیرد.

    کافیست بیم دتکتور را آدرس دهی کرده و به عنوان آدرس یک ورودی، به پنل اعلام حریق معرفی کنیم. در سیستم های اعلام حریق آدرس پذیر قابلیت تنظیم ورودی ها و خروجی ها بصورت علت و معلول نیز وجود دارد و میتوان توسط پنل کنترل سیستم اعلام حریق آدرس پذیر طوری برنامه نویسی کرد که با شروع عمل بیم دتکتور، عملیات های مربوطه مثل بستن پرده های دودبند یا باز کردن درب های اضطراری یا حتی عملیات خودکار اطفاء آتش بصورت خودکار شروع به کار کند.

     

     

    مزایا:

    • کاهش خطاهای اتصال
    • یکپارچگی بیشتر با پنل اعلام حریق
    • نمایش دقیق وضعیت آلارم و خطا در مانیتور پنل

    معایب:

    • قیمت بالاتر
    • وابستگی به برند خاص
    • محدودیت در تأمین یا تعمیر در پروژه‌های بلندمدت

    WhatsApp Image 2025 09 29 at 11.39.03 PM1

  • بررسی انواع دتکتورهای گاز

    1. گاز چیست؟

    2-1. ترکیب هوا

    هوا تقریباً از 78٪ نیتروژن، 21٪ اکسیژن و 1٪ گازهای دیگر (مانند آرگون و دی‌اکسید کربن) تشکیل شده است. نیتروژن، که بزرگ‌ترین جزء هواست، پایه‌ی پروتئین‌های ساخته‌شده از اسیدهای آمینه را تشکیل می‌دهد و در بسیاری از موجودات زنده یافت می‌شود. نیتروژن برای تقریباً تمام حیات روی این سیاره ضروری است. با این حال، نیتروژن مستقیماً از هوا به بدن جذب نمی‌شود. نیتروژنی که ما استنشاق می‌کنیم، صرفاً هنگام بازدم خارج می‌شود. اکسیژن، که برای حیات ضروری است و مستقیماً به بدن ما جذب می‌شود، 21٪ از هوا را تشکیل می‌دهد. دی‌اکسید کربن، که برای فتوسنتز گیاهان حیاتی است، کمتر از 1٪ است. جانوران اکسیژن جذب می‌کنند و دی‌اکسید کربن دفع می‌کنند و گیاهان دی‌اکسید کربن جذب می‌کنند و اکسیژن دفع می‌کنند، که این امر تعادل ثابتی در ترکیب کلی هوا و فرآیندهای حیاتی روی این سیاره حفظ می‌کند.

    2-2. خطرات گاز

    به طور کلی، خطرات گاز به سه دسته زیر تقسیم می‌شوند:

     

    گازهای قابل اشتعال

    گازهایی که در صورت ترکیب با هوا، محدوده انفجاری (محدوده اشتعال) دارند.

    بر اساس سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی (GHS*)، این مواد در حالت گازی در فشار استاندارد اتمسفر (101.3 کیلوپاسکال) و دمای 20 درجه سانتی‌گراد تعریف می‌شوند.

    * GHS: سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی

     

    گازهای سمی

    گازهایی که عملکرد بیولوژیکی انسان را مختل می‌کنند.

    گازهای سمی بر اساس مقادیر آستانه‌ای تنظیم می‌شوند که برای محافظت از اثرات مضر سلامتی کارگرانی که در محل کار روزانه 8 ساعت و هفته‌ای 40 ساعت در معرض این مواد قرار می‌گیرند، تعیین شده‌اند.

     

    کمبود اکسیژن

    بدن انسان می‌تواند در غلظت اکسیژن جو حدود 21% به طور طبیعی عمل کند.

    اگر اکسیژن مصرف شود و غلظت آن کاهش یابد (مثلاً در اثر اکسیداسیون فلزات یا فعالیت میکروارگانیسم‌ها) یا اگر اکسیژن توسط گازهای دیگر (مانند N₂ و Ar) جایگزین شود، اثرات آن بر بدن انسان زمانی آشکار می‌شود که غلظت اکسیژن به زیر حدود 18% برسد. در غلظت‌های 6% تا 8% خطر مرگ وجود دارد.

    1. خطرات گازهای قابل اشتعال

    3-1. سه عنصر لازم برای احتراق

     

    احتراق به طور کلی به واکنش اکسیداسیونی گفته می‌شود (که در آن مواد با اکسیژن ترکیب می‌شوند) که همراه با تولید گرما و نور است.

    ماده سوختنی

    گاز حامی احتراق

    منبع اشتعال

    در صورت نبود هر یک از این عناصر، احتراق امکان‌پذیر نیست. برای جلوگیری از احتراق گاز، ضروری است که غلظت گاز را زیر حدی که بتواند مشتعل شود تنظیم و حفظ کرد (با فرض وجود گاز حامی احتراق و منبع اشتعال).

    WhatsApp Image 2025 09 26 at 9.39.48 AM

    3-2. محدوده انفجاری

    اگر یک گاز قابل اشتعال یا بخار ناشی از یک مایع قابل اشتعال با هوا یا اکسیژن مخلوط شود، در صورت وجود منبع احتراق و قرار گرفتن غلظت در محدوده خاصی، منفجر خواهد شد. این محدوده غلظت، محدوده انفجاری نامیده می‌شود. حد پایینی غلظت، حد انفجاری پایین (LEL) و حد بالایی غلظت، حد انفجاری بالا (UEL) نام دارد.

    WhatsApp Image 2025 09 26 at 9.39.48 AM1

    مثال: هیدروژن

    حد انفجاری پایین مقداری است که به صورت تجربی تعیین می‌شود، اما نتایج به‌دست‌آمده ممکن است بسته به شرایط و روش‌های آزمایش متفاوت باشد. بنابراین احتیاط لازم است و مقادیر ذکرشده ممکن است بسته به منبع مرجع متغیر باشند.

     

    رایج است که آشکارسازهای گاز، غلظت گاز را بر اساس حد انفجاری پایین پایش می‌کنند. دلیل این امر آن است که حتی اگر غلظت گاز از حد انفجاری بالا بیشتر باشد، در صورت نشت گاز به اتمسفر، گاز بلافاصله رقیق شده و پخش می‌شود و غلظت آن به محدوده انفجاری می‌رسد. واحد %LEL معمولاً برای بیان غلظت نسبت به حد انفجاری پایین استفاده می‌شود (100%LEL).

     

    3-3. بخار قابل اشتعال

    اگرچه هر دو در حالت گازی هستند، اما گاز و بخار به طور کلی به دو چیز متفاوت اشاره دارند. بخار به ماده‌ای گفته می‌شود که در دمای معمولی به حالت مایع (یا جامد) وجود دارد، اما تحت شرایط خاصی از فاز مایع به فاز گازی تبخیر می‌شود. ویژگی‌های فیزیکی زیر، که بر اساس تغییرات دما تعیین می‌شوند، مشخص می‌کنند که آیا بخار قابل اشتعال می‌تواند به یک خطر تبدیل شود یا خیر.

     

    1. فشار بخار اشباع

    این فشار به فشاری اشاره دارد که در آن یک ماده در دمای خاصی از مایع به گاز تبخیر می‌شود. فشار بخار معمولاً با افزایش دما بالا می‌رود. دمایی که در آن فشار برابر با فشار اتمسفر (101.3 کیلوپاسکال ≈ 760 میلی‌متر جیوه) می‌شود، نقطه جوش نامیده می‌شود. غلظت (غلظت حجمی) گازی که در دمای خاصی تبخیر می‌شود را می‌توان با محاسبه درصد فشار بخار نسبت به فشار اتمسفر تعیین کرد.

    WhatsApp Image 2025 09 26 at 9.39.49 AM

    شکل بالا، منحنی‌های فشار بخار اشباع برای اتانول و آب را نشان می‌دهد. از آنجا که نقطه جوش آب ۱۰۰ درجه سانتی‌گراد است، مشاهده می‌شود که منحنی فشار بخار در فشار ۱۰۱.۳ کیلوپاسکال، دمای ۱۰۰ درجه سانتی‌گراد را نشان می‌دهد. به عبارت دیگر، غلظت بخار آب اشباع در این نقطه ۱۰۰ درصد حجمی است.

     

    از طرف دیگر، اتانول مایعی فرّارتر از آب است (یعنی فشار بخار بالاتری دارد)، همانطور که هر کسی که قبل از تزریق در بیمارستان با اتانول ضدعفونی شده باشد، به راحتی درک می‌کند. در عمل، نقطه جوش اتانول ۷۸ درجه سانتی‌گراد است. این داده نیز نشان می‌دهد که اتانول فرّارتر از آب است.

     

    می‌توانیم غلظت گاز اتانول را در دمای خاصی بر اساس فشار بخار آن دما محاسبه کنیم. به عنوان مثال، از منحنی فشار بخار اشباع می‌توان دریافت که فشار بخار اتانول در ۲۰ درجه سانتی‌گراد تقریباً ۵.۸ کیلوپاسکال است. این مقدار را می‌توان در معادله زیر قرار داد تا غلظت گاز محاسبه شود:

     

    =غلظت گاز (درصد حجمی) = (فشار بخار در دمای مشخص) ÷ (فشار اتمسفر) × ۱۰۰

    = ۵.۸ (kPa) ÷ ۱۰۱.۳ (kPa) × ۱۰۰

    = ۵.۷ درصد حجمی

     

    این محاسبه ارزش به خاطر سپردن دارد. حتی اگر منحنی فشار بخار مانند شکل بالا در دسترس نباشد، معمولاً برگه اطلاعات ایمنی (SDS) ارائه‌شده توسط تولیدکننده مواد شیمیایی، داده‌های فشار بخار را برای دماهای معمولی (۲۰ تا ۳۰ درجه سانتی‌گراد) شامل می‌شود که می‌توان از آنها برای محاسبه غلظت گاز استفاده کرد.

     

    ۲. نقطه اشتعال (Flash Point)

    نقطه اشتعال به کمترین دمایی اشاره دارد که در آن، غلظت بخار یک ماده در هوا به حدی می‌رسد که در صورت وجود منبع احتراق، قابلیت اشتعال پیدا می‌کند. این دما را می‌توان به عنوان دمایی تفسیر کرد که در آن، غلظت بخار قابل اشتعال به حد انفجاری پایین (LEL) می‌رسد. اگر نقطه اشتعال مایعی که بخار قابل اشتعال تولید می‌کند، پایین‌تر از دمای محیطی باشد که مایع در آن استفاده می‌شود، به دلیل خطر بالای آتش‌سوزی و انفجار، احتیاط زیادی در ارزیابی خطر اشتعال لازم است.

     

    ۳. نقطه خودسوزی (Ignition Point)

    این دما به کمترین دمایی اشاره دارد که یک ماده قابل اشتعال در هوا، به دلیل افزایش دمای خود ماده (و نه تماس موضعی با یک جسم داغ مانند جرقه الکتریکی، شعله یا سیم فلزی گداخته) به صورت خودبه‌خود مشتعل می‌شود. تولیدکنندگان تجهیزات الکتریکی ضد انفجار باید دستگاه‌ها را به گونه‌ای طراحی و تولید کنند که دمای سطحی تجهیزات که احتمال تماس با گاز یا بخار قابل اشتعال را دارد، از نقطه خودسوزی گاز یا بخار مربوطه تجاوز نکند.

    ۴-۱. خطرات گازهای سمی

    گازهای مورد استفاده یا تولیدشده به عنوان گازهای فرآیندی در صنایع مختلف، شامل گازهای سمی هستند که حتی در غلظت‌های بسیار کم می‌توانند آسیب‌های جدی به سلامت انسان وارد کنند یا حتی منجر به مرگ شوند.

     

    برخی گازها مانند **سولفید هیدروژن (H₂S)** و **آمونیاک (NH₃)** بوی مشخصی دارند که انسان می‌تواند حضور آن‌ها را تشخیص دهد. با این حال، حس بویایی انسان قادر نیست تعیین کند که آیا غلظت این گازها به سطوح خطرناک رسیده است یا خیر (به عنوان مثال، حد آستانه مجاز مواجهه شغلی برای H₂S موسوم به **TLV-TWA: 1 ppm** طبق استاندارد ACGIH 2018).

     

    **۱ ppm** معادل غلظتی است که با اضافه کردن تنها **یک قطره (۱ میلی‌لیتر = ۱ گرم یا ۱ سی‌سی)** از یک مایع سمی به یک مخزن بزرگ **۱۰۰۰ لیتری (۱ تن یا ۱ مترمکعب)** آب و مخلوط کردن کامل آن به دست می‌آید. فرض کنید این یک قطره (۱ ppm) سس سویا باشد. نه تنها تشخیص آن پس از مخلوط شدن به صورت بصری غیرممکن است، بلکه حتی با چشیدن نیز قابل تشخیص نخواهد بود. هرچند گازها با مایعات متفاوت هستند، بسیاری از گازهای سمی هم **بی‌رنگ** و هم **بی‌بو** هستند.

     

    یک نمونه از چنین گاز سمی، **مونوکسید کربن (CO)** است که گازی بالقوه کشنده بوده و می‌تواند در اثر احتراق ناقص بخاری‌های گازی در منازل تولید شود. این گاز گاهی اوقات به عنوان **قاتل خاموش** شناخته می‌شود، زیرا می‌تواند بدون آنکه تشخیص داده شود، باعث مسمومیت یا مرگ شود.

    ### **۵-۱. خطرات کمبود اکسیژن**

     

    اکسیژن ماده‌ای ضروری برای حفظ عملکرد بیولوژیکی انسان است. **کمبود اکسیژن (هیپوکسی)** تأثیرات جدی بر بدن، به‌ویژه مغز، می‌گذارد و وضعیتی بسیار خطرناک با نرخ مرگ‌ومیر بالا در محیط‌های کاری محسوب می‌شود.

    WhatsApp Image 2025 09 26 at 9.39.53 AM

    بررسی حوادث صنعتی مرتبط با کمبود اکسیژن در ژاپن نشان می‌دهد که بیشتر این موارد در بخش‌های **تولیدی و ساختمانی** رخ داده و سالانه منجر به تلفات متعددی می‌شود.

     

    **طبق آیین‌نامه پیشگیری از کمبود اکسیژن در قانون ایمنی و بهداشت صنعتی ژاپن:**

    – **شرایط کمبود اکسیژن** زمانی است که غلظت اکسیژن در هوا کمتر از ۱۸٪ باشد.

    – از دتکتورهای گاز برای اطمینان از حفظ غلظت اکسیژن بالاتر از ۱۸٪ استفاده می‌شود.

     

    ### **علائم کمبود اکسیژن:**

    – **۱۸٪ – ۱۶٪ اکسیژن:** افزایش تنفس، ضربان قلب سریع‌تر، اختلال در قضاوت و هماهنگی حرکتی.

    – **۱۶٪ – ۱۲٪ اکسیژن:** تنفس سنگین، گیجی، سردرد، خواب‌آلودگی، کاهش قدرت تفکر و حرکت.

    – **۱۲٪ – ۱۰٪ اکسیژن:** حالت تهوع، استفراغ، بیهوشی جزئی، کبودی لب‌ها و پوست.

    – **زیر ۱۰٪ اکسیژن:** بیهوشی، تشنج، آسیب مغزی، ایست تنفسی و مرگ در مدت‌زمان کوتاه.

     

    **هشدار:** در محیط‌های بسته یا فضاهای محدود (مانند مخازن، تونل‌ها، چاه‌ها) احتمال کاهش اکسیژن به‌دلیل واکنش‌های شیمیایی، جابجایی با گازهای دیگر یا مصرف اکسیژن وجود دارد. نظارت مستمر با دستگاه‌های سنجش اکسیژن و استفاده از تجهیزات تنفسی مناسب الزامی است.**

    البته، در ادامه ترجمه‌ی دقیق و روان متن موردنظر بدون هیچگونه افزودنی ارائه شده است:

     

    5-2. سه علت اصلی کمبود اکسیژن

    1. مصرف اکسیژن موجود در هوا
      علل اصلی مصرف اکسیژن:
      اکسیداسیون آهن و فلزات دیگر (ماسه آهن، لوله‌های فلزی، مخازن فلزی)،
      اکسیداسیون رنگ، مصرف زیستی اکسیژن (تنفس انسان‌ها و میکروارگانیسم‌ها)
    2. تخلیه یا ورود هوای کم‌اکسیژن
      هوای کم‌اکسیژن که به دلایل مختلفی ایجاد می‌شود، در صورتی که به‌دلیل شرایط کاری، روش‌های ساخت‌وساز یا شرایط آب‌وهوایی، تخلیه یا وارد مکان‌هایی با کمبود اکسیژن شود، می‌تواند موجب بی‌اکسیژنی گردد.
    3. تولید متان یا ورود گاز بی‌اثر
      کمبود اکسیژن می‌تواند ناشی از انتشار متان (که در طبیعت وجود دارد) یا نشت گازهای بی‌اثر (مانند نیتروژن، دی‌اکسید کربن، آرگون) از مخازن یا لوله‌ها در صنایع تولیدی باشد.

     

    5-3. اکسیژن بیش‌ازحد
    اگرچه اکسیژن برای عملکرد زیستی انسان ضروری است، اما قرارگیری مداوم در معرض غلظت‌ها یا فشارهای جزئی بالای اکسیژن می‌تواند منجر به مسمومیت با اکسیژن شود.
    مسمومیت با اکسیژن باعث تشنج عمومی و از دست دادن هوشیاری می‌شود و در بدترین حالت، منجر به مرگ می‌گردد.
    در محیط‌هایی که امکان بروز اکسیژن بیش‌ازحد وجود دارد، باید غلظت گازها نه‌فقط برای کمبود اکسیژن (کمتر از ۱۸٪)، بلکه برای جلوگیری از غلظت‌های بیش‌ازحد نیز پایش شود.

    البته، در ادامه ترجمه‌ی دقیق و روان متن خواسته‌شده بدون هیچ‌گونه افزودنی آورده شده است:

     

    مناطق معمولی که نیاز به تشخیص گاز دارند
    6-1. بازار دستگاه‌های گازسنج
    بازار دستگاه‌های گازسنج شامل تمامی بازارهایی است که در آن‌ها از گاز استفاده می‌شود.

    1. آزمایشگاه‌ها، دانشگاه‌ها، بیمارستان‌ها
      مراکز تحقیقاتی که از طیف گسترده‌ای از گازها، از جمله گازهای قابل اشتعال و سمی استفاده می‌کنند، تدابیری برای ایمنی کارکنان تحقیقاتی اتخاذ می‌کنند؛ مانند تشخیص سریع نشت گاز از طریق پایش محیط با استفاده از گازسنج‌های ثابت شرکت Riken Keiki.
      علاوه بر گازسنج‌ها، سیستم‌های تحلیلی که قادر به انجام هم‌زمان تحلیل پراش اشعه ایکس (XRD) و فلورسانس اشعه ایکس (XRF) در محل هستند نیز برای کاربردهایی مانند تحقیقات روی آثار فرهنگی غیرقابل‌انتقال مورد استفاده قرار می‌گیرند.
    2. صنعت الکترونیک
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD از گازهایی موسوم به گازهای مواد ویژه (گازهای بسیار سمی و قابل اشتعال) مانند سیلان، آرسین و فسفین استفاده می‌کنند.
      در مورد این گازها، نشت در غلظت‌های بسیار پایین (چند ppm تا چند ده ppm) نیز غیرقابل‌قبول است.
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD ممکن است صدها تا هزاران دستگاه گازسنج Riken Keiki برای محافظت از کارکنان در برابر نشت گاز نصب کرده باشند.
      این دستگاه‌ها مجهز به حسگرهای روش الکترولیز پتانسیواستاتیکی هستند که قادر به تشخیص نشت گاز در حد چند ppm می‌باشند.

     

    1. صنعت فولاد
      گازهایی که به‌عنوان محصولات جانبی در فرآیندهای تولید فولاد (گاز کک، گاز کوره بلند، گاز مبدل) تولید می‌شوند، دارای مقادیر زیادی هیدروژن و مونوکسید کربن هستند.
      این گازها به‌عنوان سوخت برای تولید برق در کارخانه‌های فولاد مجدداً مورد استفاده قرار می‌گیرند.
      گازسنج‌های قابل‌حمل Riken Keiki کارکنان داخل کارخانه‌های فولاد را در برابر خطرات انفجار و مسمومیت محافظت می‌کنند.

     

    1. صنعت پالایش نفت و پتروشیمی
      صنعت پالایش نفت و پتروشیمی در فرآیندهای تولید خود با طیف گسترده‌ای از گازهای قابل اشتعال و سمی سروکار دارد.
      گازسنج‌های ثابت و قابل‌حمل Riken Keiki در کاربردهایی مانند تشخیص نشت گازهای سمی و قابل اشتعال از تجهیزات و لوله‌ها، مدیریت فرآیند و اندازه‌گیری محیط کار مورد استفاده قرار می‌گیرند.
      پایشگرهای ثابت گازهای سمی برای مدیریت گازهای سمی در مرزهای کارخانه نیز به‌طور فزاینده‌ای مورد استفاده قرار می‌گیرند
    2. مناطق آتشفشانی و چشمه‌های آب گرم
      گازهای آتشفشانی در نزدیکی دهانه‌های آتشفشان و در مناطقی که چشمه‌های آب گرم تخلیه می‌شوند، تولید می‌گردند.
      این گازهای آتشفشانی حاوی گازهای سمی مانند دی‌اکسید گوگرد و سولفید هیدروژن هستند که در صورت استنشاق برای انسان مضرند.
      غلظت این گازها به‌طور مداوم به‌دلیل فعالیت‌های آتشفشانی و عوامل دیگر تغییر می‌کند.
      دستگاه‌های گازسنج تخصصی برای پایش شبانه‌روزی غلظت دی‌اکسید گوگرد و سولفید هیدروژن به کار می‌روند تا از کارکنان و گردشگران محافظت شود.

     

    1. صنعت مواد غذایی
      در صنعت مواد غذایی، نیتروژن و دی‌اکسید کربن در فرآیند بسته‌بندی برای جلوگیری از اکسید شدن غذا مورد استفاده قرار می‌گیرند.
      از آنجا که این گازها خفه‌کننده هستند، گازسنج‌های اکسیژن تخصصی در کارخانه‌های مواد غذایی نصب می‌شوند تا از کارکنان در برابر بی‌اکسیژنی محافظت کنند.

     

    1. صنعت ساخت‌وساز
      کار در حفاری‌های زیرزمینی برای ساخت تونل‌ها و همچنین کار درون منهول‌ها می‌تواند کارکنان را در معرض تولید سولفید هیدروژن و شرایط کمبود اکسیژن قرار دهد؛ این وضعیت ناشی از باکتری‌های مصرف‌کننده اکسیژن موجود در لایه‌های زیرزمینی است.
      گازسنج‌های قابل‌حمل اکسیژن و سولفید هیدروژن از کارکنان در برابر خطرات ناشی از کمبود اکسیژن و مسمومیت با سولفید هیدروژن محافظت می‌کنند.
    2. آتش‌نشانی و امداد و نجات
      صحنه‌های آتش‌سوزی و حوادث، کارکنان را در معرض خطرات مختلفی قرار می‌دهند؛ از جمله انفجار ناشی از گازهای قابل اشتعال، کمبود اکسیژن، مسمومیت با مونوکسید کربن در اثر احتراق ناقص، و گازهای سمی مانند سولفید هیدروژن.
      گازسنج‌های شخصی چهارگازه برای پایش هم‌زمان چهار گاز مختلف استفاده می‌شوند. این دستگاه‌ها برای موقعیت‌هایی که نوع دقیق گازهای خطرناک ناشناخته است، بسیار مناسب هستند.

     

    1. حمل‌ونقل دریایی و کشتی‌سازی
      کشتی‌هایی که مقادیر زیادی نفت خام، LNG یا LPG حمل می‌کنند، با خطر نشت گازهای قابل اشتعال از مخازن بار مواجه هستند.
      گازسنج‌های ثابت تخصصی برای پایش نشت گاز در این کشتی‌ها به‌کار می‌روند. این دستگاه‌ها امکان شناسایی سریع نشت‌ها را فراهم کرده و از وقوع انفجار و آلودگی دریایی جلوگیری می‌کنند.
      همچنین، گازسنج‌های قابل‌حمل توسط کارکنان در حین انجام عملیات ساخت‌وساز پوشیده می‌شوند تا آن‌ها را در برابر کمبود خطرناک اکسیژن و مسمومیت با گازهای سمی محافظت کنند.

     

    1. هوافضا
      سوخت موشک‌ها حاوی هیدروژن (گاز قابل اشتعال و بسیار انفجاری) و هیدرازین (گاز سمی برای انسان) است.
      پایش این گازها برای ایمنی کاملاً ضروری است.
      گازسنج‌های ضدانفجار در مکان‌هایی که خطر انفجار بالا وجود دارد، مانند مناطقی که سوخت موشک با آن‌ها سروکار دارد، برای اطمینان از ایمنی استفاده می‌شوند.

    فناوری‌های تشخیص گاز
    7-1. فناوری‌های حسگر گاز
    برای مواجهه با محیط‌ها و انواع گازهای متنوع در طیف گسترده‌ای از صنایع، فناوری‌های مختلف حسگر گاز توسعه یافته‌اند.
    در این بخش، ۱۳ نوع از رایج‌ترین فناوری‌هایی که معمولاً در صنعت استفاده می‌شوند معرفی می‌گردند:

    1. روش احتراق کاتالیستی
    2. روش جدید کاتالیستی سرامیکی
    3. روش نیمه‌رسانا
    4. روش نیمه‌رسانای سیم داغ
    5. روش رسانش گرمایی
    6. روش الکترولیز پتانسیواستاتیکی
    7. روش الکترود با غشای جداکننده
    8. روش سلول گالوانیکی با غشای نفوذپذیر
    9. روش مادون قرمز غیرپراکنشی (NDIR)
    10. روش تداخل‌سنجی
    11. روش نوار شیمیایی
    12. آشکارساز یونش نوری (PID)
    13. روش آشکارسازی ذرات ناشی از پیرولیز

    7-2. روش احتراق کاتالیستی

    1. توضیح مختصر

    این حسگر بر پایه گرمای تولیدشده از سوزاندن گاز قابل اشتعال روی کاتالیست اکسیداسیون، گاز را شناسایی می‌کند. این حسگر رایج‌ترین حسگر گاز است که به‌طور خاص برای گازهای قابل اشتعال طراحی شده است.

    WhatsApp Image 2025 09 26 at 9.39.54 AM

    1. ساختار و اصول عملکرد

    [ساختار]
    این حسگر از یک المان آشکارساز و یک المان جبرانی تشکیل شده است.
    المان آشکارساز شامل سیم پیچ فلز گران‌بها (مانند پلاتین) و کاتالیست اکسیدکننده – ماده‌ای فعال در برابر گاز قابل اشتعال – است که همراه با یک پایه آلومینا روی سیم پخته (سینتر) شده‌اند. این المان در واکنش با هر گاز قابل شناسایی می‌سوزد.
    المان جبرانی شامل سیم پیچ فلز گران‌بها و شیشه – ماده‌ای غیرفعال در برابر گاز قابل اشتعال – است که همراه با پایه آلومینا روی سیم پخته شده‌اند. این المان اثرات محیط را تصحیح می‌کند.

    [اصول عملکرد]
    سیم پیچ فلز گران‌بها، المان آشکارساز را تا دمای ۳۰۰ تا ۴۵۰ درجه سانتی‌گراد گرم می‌کند. سپس گاز قابل اشتعال روی سطح المان آشکارساز می‌سوزد و دمای آن افزایش می‌یابد.
    با تغییر دما، مقاومت سیم پیچ فلز گران‌بها – که بخشی از المان است – تغییر می‌کند. این تغییر مقاومت تقریباً متناسب با غلظت گاز است.
    مدار پل نشان‌داده‌شده در شکل سمت راست به حسگر اجازه می‌دهد تغییر مقاومت را به ولتاژ تبدیل کرده و از آن برای تعیین غلظت گاز استفاده کند.

    حسگر ثابت –
    دسته: حالت جامد
    گاز قابل شناسایی: گازهای قابل اشتعال

     

     

    ویژگی‌ها

    O ویژگی‌های خروجی:
    سیم پیچ فلز گران‌بها که منبع حرارت است، ضریب مقاومت وابسته به دما را به‌صورت خطی تغییر می‌دهد.
    در محدوده غلظت کمتر از حد انفجار (LEL)، واکنش احتراقی متناسب با غلظت گاز است.
    در این محدوده، خروجی حسگر به‌آرامی متناسب با تغییرات غلظت گاز تغییر می‌کند.

    WhatsApp Image 2025 09 26 at 9.39.54 AM1

    پاسخ‌دهی:
    گرمای احتراق تولیدشده روی سطح المان آشکارساز به سیم پیچ فلز گران‌بها منتقل شده و مقاومت مدار پل را تغییر می‌دهد و سپس به سیگنال تبدیل می‌گردد.

    WhatsApp Image 2025 09 26 at 9.39.55 AM

    با نرخ واکنش بالا، این حسگر در پاسخ‌دهی، دقت و قابلیت تکرار عملکرد بسیار خوبی دارد.

    O ویژگی‌های دما و رطوبت:
    مواد به‌کاررفته در اجزای حسگر دارای مقاومت الکتریکی بالا هستند و کمتر تحت تأثیر دما و رطوبت محیط استفاده قرار می‌گیرند، بنابراین قرائت‌ها تقریباً ثابت باقی می‌مانند.

    WhatsApp Image 2025 09 26 at 9.39.55 AM1

    توسعه کاتالیست:
    المان آشکارساز از کاتالیستی استفاده می‌کند که واکنش احتراقی را تسهیل می‌کند.
    این کاتالیست به‌طور اختصاصی برای حسگرهای گاز توسعه یافته و با بهره‌گیری از دانش فنی خاص طراحی شده است، که پایداری بلندمدت را فراهم می‌کند.

     

    ۷–۴. تشخیص گاز با دتکتورهای گاز نیمه‌رسانا

    حسگر ثابت

    **۱. شرح مختصر دتکتورهای گاز نیمه‌رسانا

    این حسگر از یک نیمه‌رسانای اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. حسگر این تغییر مقاومت را به‌عنوان غلظت گاز تشخیص می‌دهد. این یک حسگر همه‌کاره است که انواع گازها از گازهای سمی تا گازهای قابل اشتعال را شناسایی می‌کند. 

     

    **۲. ساختار و اصول کار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی         تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا        در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند

    **[ساختار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی (SnO₂) تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا (Au) در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند. 

    WhatsApp Image 2025 09 26 at 9.39.55 AM2

     

    **[اصول کار دتکتورهای گاز نیمه‌رسانا

    سیم گرم‌کن، سطح نیمه‌رسانای اکسید فلزی را تا ۴۰۰–۳۵۰°C گرم می‌کند. با جذب اکسیژن هوا روی این سطح به‌صورت O و O₂، نیمه‌رسانا مقاومت ثابتی حفظ می‌کند. سپس، گاز متان یا مشابه آن با سطح تماس یافته و جذب شیمیایی می‌شود. این گاز توسط یون‌های O اکسید شده و تجزیه می‌شود. واکنش روی سطح حسگر به‌صورت زیر است: 

     

    CH₄ + ۴O⁻ → CO₂ + ۲H₂O + ۸e⁻ 

    WhatsApp Image 2025 09 26 at 9.39.56 AM

    به‌طور خلاصه، گاز متان روی سطح حسگر جذب شده و اکسیژن جذب‌شده را جدا می‌کند. این امر الکترون‌های آزاد درون حسگر را افزایش داده و مقاومت را کاهش می‌دهد. حسگر با اندازه‌گیری تغییر مقاومت، غلظت گاز را تعیین می‌کند. 

     

    **۳. ویژگی‌های دتکتورهای گاز نیمه‌رسانا 

    **ویژگی‌های خروجی دتکتورهای گاز نیمه‌رسانا

    حسگر تغییرات مقاومت نیمه‌رسانا را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (در سطح ppm) که توسط حسگرهای سرامیکی جدید قابل تشخیص نیستند را نیز شناسایی می‌کند. این حسگر برای غلظت‌های کم بسیار حساس بوده و سطح خروجی بالایی دارد. 

    WhatsApp Image 2025 09 26 at 9.39.56 AM1

    **تشخیص گازهای سمی در دتکتورهای گاز نیمه‌رسانا

    از آنجا که در اصل، مقاومت با تغییر تعداد الکترون‌ها و تحرک آن‌ها تغییر می‌کند، این حسگر طیف وسیعی از گازها از جمله گازهای سمی که گرمای احتراق کمتری تولید می‌کنند را تشخیص می‌دهد. 

     

    **ویژگی‌های پیری دتکتورهای گاز نیمه‌رسانا

    حسگر در بلندمدت پایداری خود را حفظ کرده و عمر طولانی دارد. در مقایسه با حسگرهای مبتنی بر احتراق کاتالیستی، این نوع حسگر مقاومت بالایی در برابر سمیت و شرایط سخت جوی دارد. 

     

    **انتخاب‌پذیری گاز در دتکتورهای گاز نیمه‌رسانا

    با افزودن ناخالصی به ماده نیمه‌رسانا، اثر تداخل تغییر می‌کند. این ویژگی به حسگر اجازه می‌دهد تا برخی گازها را به‌صورت انتخابی تشخیص دهد.

     

     

     

    ۷-۵.تشخیص گاز از طریق روش نیمه‌هادی نوع سیم داغ

     

    سنسور ثابت

    سنسور قابل حمل نیمه‌هادی نوع سیم داغ

     

    ۱. شرح مختصر از دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    این سنسور از یک نیمه‌هادی اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. سنسور این تغییر مقاومت را به عنوان غلظت گاز تشخیص می‌دهد. این یک سنسور گاز با حساسیت بالا برای غلظت‌های کم است.

     

    ۲. ساختار و اصول  دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    [ساختار]

    سنسور از یک المان تشخیصی تشکیل شده است که شامل یک سیم پیچ از جنس فلز گران‌بها (مثلاً پلاتین) و یک نیمه‌هادی اکسید فلزی پخته شده روی سیم پیچ است، و یک المان جبرانی که ماده‌ای غیرفعال در برابر گازهای قابل تشخیص روی آن پخته شده است.

    WhatsApp Image 2025 09 26 at 9.39.57 AM

    [اصول  عملکرد دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM1

    مقاومت (R) المان تشخیصی، ترکیبی از مقاومت (RS) نیمه‌هادی و مقاومت (RH) سیم پیچ فلز گران‌بها است. المان تشخیصی توسط سیم پیچ فلز گران‌بها تا ۳۰۰°C تا ۴۰۰°C گرم می‌شود و مقاومت ثابتی را حفظ می‌کند. سپس، گاز متان یا مشابه با المان تشخیصی تماس پیدا می‌کند و اکسیژن جذب شده روی سطح نیمه‌هادی اکسید فلزی را جدا می‌کند. این امر تعداد الکترون‌های آزاد در داخل نیمه‌هادی را افزایش داده و مقاومت نیمه‌هادی را کاهش می‌دهد. در نتیجه مقاومت کل المان تشخیصی کاهش می‌یابد. با تشخیص تغییر مقاومت توسط مدار پل، سنسور غلظت گاز را تعیین می‌کند.

     

    رده جامد

    گاز قابل تشخیص

     

    ۳. ویژگی‌های دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    ویژگی‌های خروجی  دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM2

    سنسور تغییرات مقاومت نیمه‌هادی را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (سطح ppm) که توسط سنسورهای سرامیکی جدید قابل تشخیص نیستند را نیز تشخیص می‌دهد.

     

     

     

    کوچک‌سازی و صرفه‌جویی در انرژی  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سیم پیچ فلز گران‌بها برای گرم‌کن را می‌توان کوچک‌تر کرد تا سنسوری کوچکتر با مصرف انرژی کمتر فراهم شود.

     

    ویژگی‌های پیری  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سنسور در بلندمدت پایداری خود را حفظ می‌کند و عمر طولانی دارد. در مقایسه با سنسورهای مبتنی بر احتراق کاتالیستی، این نوع سنسور مقاومت بالایی در برابر سمیت و جو شدید دارد.

     

    انتخاب‌پذیری گاز  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    با افزودن یک ناخالصی به نیمه‌هادی اکسید فلزی، اثر تداخل تغییر می‌کند. این ویژگی به سنسور اجازه می‌دهد تا برخی گازها را به صورت انتخابی تشخیص دهد.

     

     

    دتکتور گاز رسانائی گرمائی

    1. توضیح مختصر دتکتور گاز رسانائی گرمائی

     

    این دتکتور با تشخیص تفاوت در رسانایی گرمایی، غلظت گاز را تعیین می‌کند. این یک دتکتور اثبات‌شده برای گازهای قابل اشتعال است که به‌طور مؤثر گازهای با غلظت بالا را تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM

    [ساختار  دتکتور گاز رسانائی گرمائی

    این دتکتور از یک المان تشخیص و یک المان جبران تشکیل شده است. المان‌های تشخیص و جبران در دو نوع موجود هستند: یکی شامل یک سیم‌پیچ پلاتین و مخلوطی از شیشه (یک ماده غیرفعال در برابر گاز قابل اشتعال) و یک پایه آلومینا است که روی سیم‌پیچ پخته شده است، و دیگری شامل یک سیم‌پیچ و یک فلز غیرفعال یا مشابه است که روی سیم‌پیچ پوشش داده شده است. المان تشخیص به گونه‌ای طراحی شده است که گازهای قابل تشخیص با آن تماس پیدا کنند. المان جبران محصور شده است تا هیچ گاز قابل تشخیصی با آن تماس نداشته باشد.

     

    [اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM1

    سیم‌پیچ پلاتین، المان تشخیص را تا 200 تا 500 درجه سانتی‌گراد گرم می‌کند. سپس، یک گاز قابل تشخیص با المان تشخیص تماس پیدا می‌کند و به دلیل رسانایی گرمایی خاص گاز، شرایط اتلاف گرما را تغییر می‌دهد و دمای المان تشخیص را افزایش می‌دهد. با این تغییر دما، مقاومت سیم‌پیچ پلاتین، که بخشی از المان است، تغییر می‌کند. تغییر مقاومت تقریباً متناسب با غلظت گاز است.

     

    با تشخیص تغییر مقاومت توسط مدار پل، دتکتور غلظت گاز را تعیین می‌کند.

     

    1. ویژگی‌های دتکتور گاز رسانائی گرمائی

     

    ویژگی‌های خروجی  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور تغییرات مقاومت سیم‌پیچ پلاتین را تشخیص می‌دهد، خروجی تا رسیدن به صد درصد حجمی تقریباً متناسب با غلظت است. این دتکتور برای تشخیص گازهای با غلظت بالا مناسب است.

    WhatsApp Image 2025 09 26 at 9.39.59 AM

    تشخیص در شرایط بی‌اکسیژن  دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.59 AM1

    از آنجا که دتکتور تغییرات رسانایی گرمایی را تشخیص می‌دهد، می‌تواند گازها را حتی در جو بی‌اکسیژن نیز تشخیص دهد. اما گازهایی با تفاوت کوچک در رسانایی گرمایی با گاز مرجع را تشخیص نمی‌دهد.

     

    دتکتور به‌صورت فیزیکی تغییرات رسانایی گرمایی گاز را تشخیص می‌دهد و شامل واکنش شیمیایی مانند واکنش احتراق نیست. این بدان معناست که با تخریب یا مسمومیت کاتالیزور ارتباطی ندارد و پایداری بلندمدت را فراهم می‌کند.

     

    تشخیص گازهای غیرقابل اشتعال  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور از رسانایی گرمایی خاص گاز استفاده می‌کند، حتی گازهای غیرقابل اشتعال با تفاوت زیاد در رسانایی گرمایی، مانند آرگون، نیتروژن و دی‌اکسید کربن با غلظت بالا را نیز تشخیص می‌دهد.

     

     

     

     

     

    ۷-۷. روش الکترولیز پتانسیواستاتیک

     

     

    ۱. شرح مختصر دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.39.59 AM2

    این دتکتور گاز قابل تشخیص را با استفاده از یک الکترود در پتانسیل ثابت الکترولیز می‌کند تا جریان ایجاد شود و سپس با اندازه‌گیری جریان، غلظت گاز را تعیین می‌نماید. این دتکتور گاز برای تشخیص گازهای سمی بسیار مناسب است. می‌توان پتانسیل خاصی را برای تشخیص گاز خاصی تنظیم کرد.

     

    ۲. ساختار و اصول  دتکتور گاز الکترولیز پتانسیواستاتیک

    [ساختار دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک الکترود (الکترود عمل) همراه با یک غشاء نفوذپذیر گاز و کاتالیزور (مثل طلا یا پلاتین)، الکترود مرجع و الکترود مقابل تشکیل شده که درون محفظه‌ای پلاستیکی پر از محلول الکترولیت قرار گرفته‌اند.

     

    [اصول عملکرد دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک مدار پتانسیواستاتیک برای ثابت نگه داشتن پتانسیل بین الکترود عمل و الکترود مرجع استفاده می‌کند. الکترود عمل گاز قابل تشخیص را مستقیماً الکترولیز می‌کند. اگر گاز قابل تشخیص H2S باشد، واکنش‌های زیر رخ می‌دهد:

    الکترود عمل: H2S + 4H2O → H2SO4 + 8H+ + 8e

    الکترود مقابل: 2O2 + 8H+ + 8e → 4H2O

    جریان تولیدشده متناسب با غلظت گاز است. با اندازه‌گیری جریان بین الکترود عمل و الکترود مقابل، دتکتور غلظت گاز را تعیین می‌کند.

     

    ۳. ویژگی‌های دتکتور گاز الکترولیز پتانسیواستاتیک

    ویژگی‌های خروجی دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون تغییر خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

     

    واکنش‌دهی  دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM1

    منحنی پاسخ همانطور که در شکل سمت راست نشان داده شده است. دتکتور با استفاده از واکنش کاتالیزوری گاز را به جریان تبدیل می‌کند. از آنجا که H2S کاتالیزور الکترود را تغییر نمی‌دهد، دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

    ویژگی‌های پیری  دتکتور گاز الکترولیز پتانسیواستاتیک

    تقریباً تا دو سال، حساسیت دتکتور در سطح حدود ۸۰٪ حساسیت اولیه باقی می‌ماند. از آنجا که رطوبت تأثیر جزئی بر حساسیت دارد، ممکن است خوانش بسته به فصل تغییر کند.

     

    ویژگی‌های دمای دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.01 AM

    با خوانش تقریباً پایدار در دماهای بالا، حساسیت دتکتور با کاهش دما ممکن است کاهش یابد. حتی در ۰°C، حساسیت دتکتور کمتر از ۸۰٪ نخواهد شد. با انجام تصحیح دما، نوسانات خوانش به حداقل می‌رسد.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    ۷-۸. روش تشخیص گاز با دتکتور گاز با الکترود با غشای جداکننده

    ۱. شرح مختصر  دتکتور گاز با الکترود با غشای جداکننده

    بر اساس اصول دتکتور پایه‌گذاری شده بر الکترولیز پتانسیواستاتیک، این دتکتور با یک فیلم نفوذپذیر گاز (غشای جداکننده) و یک الکترود عمل کاملاً جدا از هم ساختار یافته است. این یک دتکتور گاز سمی با انتخاب‌پذیری عالی است.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    . ساختار و اصول  دتکتور گاز با الکترود با غشای جداکننده

    [ساختار دتکتور گاز با الکترود با غشای جداکننده

    دتکتور با یک الکترود عمل – یک الکترود فلزی با یک فیلم نفوذپذیر گاز که روی آن قرار گرفته – همراه با الکترودهای مرجع و مقابل ساختار یافته است. این الکترودها در یک محفظه پلاستیکی پر از محلول الکترولیت قرار دارند. بین الکترود عمل و فیلم، یک لایه بسیار نازک از محلول الکترولیت وجود دارد.

     

    [اصول دتکتور گاز با الکترود با غشای جداکننده

    یک گاز قابل تشخیص از طریق فیلم نفوذپذیر گاز عبور کرده و با یون‌های موجود در محلول الکترولیت واکنش می‌دهد که هالوژن تولید می‌کند. اگر گاز قابل تشخیص Cl باشد، واکنش زیر رخ می‌دهد:

    Cl2 + 2I- → 2Cl- + I2

    I2 تولید شده توسط این واکنش در الکترود عمل کاهش می‌یابد، باعث می‌شود جریانی از مدار عبور کند. از آنجا که این جریان متناسب با غلظت گاز است، دتکتور مقدار جریان را برای تعیین غلظت گاز اندازه می‌گیرد. گاز قابل تشخیص قبل از واکنش با الکترود عمل با محلول الکترولیت واکنش می‌دهد و بنابراین هیچ تداخلی با گازهایی که با محلول الکترولیت واکنش نمی‌دهند رخ نمی‌دهد. این ویژگی به دتکتور انتخاب‌پذیری عالی می‌بخشد.

     

     

    ۳. ویژگی‌ها ی دتکتور گاز با الکترود با غشای جداکننده

    ویژگی‌های خروجی  دتکتور گاز با الکترود با غشای جداکننده

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون هیچ تغییری خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM

    پاسخ‌دهی  دتکتور گاز با الکترود با غشای جداکننده

    دتکتور به سرعت پاسخ می‌دهد. از آنجا که الکترودها یا محلول الکترولیت به ندرت توسط گاز کلر خورده می‌شوند، دتکتور از دقت و تکرارپذیری عالی برخوردار است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM1

    ویژگی‌های پیری  دتکتور گاز با الکترود با غشای جداکننده

    عملکرد دتکتور با گذشت زمان کاهش نمی‌یابد و تقریباً هیچ تغییری در خروجی مشاهده نمی‌شود. با این حال، اگر فیلم نفوذپذیر گاز به دلیل چسبیدن ذرات خارجی، نفوذپذیری گاز را از دست بدهد، این ممکن است منجر به کاهش خروجی شود.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با الکترود با غشای جداکننده

    WhatsApp Image 2025 09 26 at 9.40.02 AM2

    دماهای بالا تقریباً هیچ تأثیری بر خروجی ندارند در حالی که دماهای پایین احتمالاً خروجی را کاهش می‌دهند. حتی در دمای ۰ درجه سانتی‌گراد، دتکتور حساسیت خود را در سطحی نه کمتر از ۸۰٪ حفظ می‌کند. با انجام تصحیحات دما، نوسانات قرائت به حداقل می‌رسد. خروجی تحت تأثیر رطوبت قرار نمی‌گیرد.

     

    ۷-۹. روش تشخیص گاز با دتکتور گاز با سلول گالوانیک غشایی

     

    ۱. شرح مختصر  دتکتور گاز با سلول گالوانیک غشایی

     

     

    این دتکتور ساده و سنتی بر اساس اصول سلول‌ها عمل می‌کند. این دتکتور بدون نیاز به منبع تغذیه خارجی، پایداری بلندمدت دارد.

     

    ۲. ساختار و اصول  دتکتور گاز با سلول گالوانیک غشایی

     

     

    [ساختار دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.03 AM

    دتکتور از یک کاتد (فلز گران‌بها) و آند (سرب) قرارگرفته در یک محلول الکترولیتی تشکیل شده است. یک غشای جداساز به سطح خارجی کاتد چسبیده است. با اتصال کاتد و آند از طریق یک مقاومت ثابت، مقدار ولتاژ خروجی تولید می‌شود.

     

    [اصول دتکتور گاز با سلول گالوانیک غشایی

     

     

    اکسیژن از غشای جداساز عبور کرده و در کاتد کاهش می‌یابد. همزمان در آند، سرب در محلول الکترولیتی حل می‌شود (اکسید می‌شود). واکنش‌های زیر در الکترودها رخ می‌دهد:

    کاتد: O2 + 2H2O + 4e → 4OH

    آند: 2Pb → 2Pb2+ + 4e

     

    جریان ناشی از واکنش کاهش، توسط مقاومت به ولتاژ تبدیل شده و از ترمینال خروجی خارج می‌شود. خروجی دتکتور متناسب با غلظت اکسیژن (فشار جزئی) است.

     

    ۳. ویژگی‌های دتکتور گاز با سلول گالوانیک غشایی

     

     

    ویژگی‌های خروجی  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.04 AM

    غلظت اکسیژن با مقدار جریان متناسب است. دتکتور مقدار جریان را به ولتاژ تبدیل کرده و سپس آن را خروجی می‌دهد. بنابراین، خروجی دتکتور در محدوده ۰ تا ۱۰۰٪ با غلظت اکسیژن متناسب است.

     

    سرعت پاسخ  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM

    با سرعت پاسخ بالا، این دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

     

     

    ویژگی‌های پیری

    با عمر طولانی، این دتکتور می‌تواند به مدت دو تا سه سال مورد استفاده قرار گیرد.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM1

    دتکتور از یک ترمیستور داخلی برای جبران دمایی استفاده می‌کند، بنابراین خوانش تقریباً به دما وابسته نیست.

    ۷-۱۰.تشخیص گاز به  روش مادون قرمز غیرپاشنده

    ۱. شرح مختصر  دتکتور مادون قرمز غیرپاشنده

    بر اساس این واقعیت که بسیاری از گازها اشعه مادون قرمز را جذب می‌کنند، این دتکتور نور مادون قرمز را به سلول اندازه‌گیری اعمال می‌کند تا تغییرات نور مادون قرمز ناشی از جذب گاز قابل تشخیص را شناسایی کند. این روش تمام نور مادون قرمز در محدوده طول‌موج خاصی را بدون تفکیک (پاشش) نور مادون قرمز بر اساس طول‌موج، به‌صورت یکپارچه تشخیص می‌دهد. WhatsApp Image 2025 09 26 at 9.40.06 AM

    . ساختار و اصول  دتکتور مادون قرمز غیرپاشنده

    [ساختار دتکتور مادون قرمز غیرپاشنده

    این دتکتور از یک منبع نور مادون قرمز و یک سنسور مادون قرمز تشکیل شده است که بین آن‌ها یک سلول اندازه‌گیری و یک فیلتر نوری قرار گرفته است. منبع نور مادون قرمز، نور را ساطع می‌کند که از طریق سلول اندازه‌گیری و فیلتر نوری عبور کرده و توسط سنسور مادون قرمز تشخیص داده می‌شود. فیلتر نوری به طول‌موج‌های مادون قرمز که توسط گاز قابل تشخیص جذب می‌شوند، اجازه عبور انتخابی می‌دهد.

     

    [اصول عملکرد دتکتور مادون قرمز غیرپاشنده

    یک گاز قابل تشخیص وارد سلول اندازه‌گیری شده و نور مادون قرمز را جذب می‌کند. این امر باعث کاهش مقدار نور مادون قرمز تشخیص‌داده شده توسط سنسور مادون قرمز می‌شود. برخی از گازهای قابل تشخیص با غلظت‌های شناخته شده وارد می‌شوند تا رابطه (منحنی کالیبراسیون) بین کاهش مقدار نور مادون قرمز و غلظت هر گاز قابل تشخیص تعیین شود. هنگامی که یک گاز قابل تشخیص با غلظت ناشناخته وارد می‌شود، دتکتور از منحنی کالیبراسیون بر اساس کاهش اندازه‌گیری‌شده مقدار نور مادون قرمز برای تعیین غلظت گاز استفاده می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.06 AM1

    . ویژگی‌های دتکتور مادون قرمز غیرپاشنده

    ویژگی‌های خروجی  دتکتور مادون قرمز غیرپاشنده

    WhatsApp Image 2025 09 26 at 9.40.06 AM3

    غلظت گاز و خروجی دتکتور رابطه متناسب ندارند، بلکه رابطه آن‌ها مطابق منحنی نشان‌داده شده در شکل پائین است. (i-C4H10: ایزوبوتان)

     

    ویژگی‌های پاسخ‌دهی  دتکتور مادون قرمز غیرپاشنده

    هنگامی که گاز با دبی ثابت به دتکتور گاز تغذیه می‌شود، دتکتور پاسخ‌های قابل تکرار و دقیقی ارائه می‌دهد. WhatsApp Image 2025 09 26 at 9.40.07 AM2

    ویژگی‌های پیری  در دتکتور مادون قرمز غیرپاشنده

    در محیطی با تغییرات دمایی کم، دتکتور پایدار باقی می‌ماند و بدون کاهش دقت خوانش در طول زمان عمل می‌کند. بسته به محیط، ممکن است دتکتور با گذشت زمان به‌طور قابل توجهی تخریب شود. در این صورت، می‌توان با انجام کالیبراسیون گاز هر شش ماه یکبار، تخریب را به حداقل رساند.

     

    ویژگی‌های دما و رطوبت  در دتکتور مادون قرمز غیرپاشنده

    با انجام تصحیحات دمایی، می‌توان وابستگی خوانش‌ها به دما را در محدوده دمایی مشخص‌شده به حداقل رساند.

    WhatsApp Image 2025 09 26 at 9.40.07 AM3

    در صورت عدم تشکیل میعان (%LEL) در داخل سلول گاز، دتکتور تقریباً تحت تأثیر رطوبت قرار نمی‌گیرد.

    . روش تشخیص گاز با تداخل سنجی

    ۱. شرح کلی  دتکتور گاز تداخل سنجی

    این دتکتور گاز، که یکی از قدیمیترین حسگرهای گاز ماست، تغییرات در ضریب شکست گاز را تشخیص میدهد. با دقت بالا، پایداری بلندمدت را حفظ میکند. در گذشته، داخل معادن زغالسنگ برای اندازهگیری غلظت متان استفاده میشد و در سالهای اخیر، بهطور گسترده برای اندازهگیری غلظت حلالها یا مقادیر حرارتی گازهای سوختی مانند گاز طبیعی کاربرد دارد.

    ۲. ساختار و اصول  دتکتور گاز تداخل سنجی

    [ساختار دتکتور گاز تداخل سنجی

    WhatsApp Image 2025 09 26 at 9.40.08 AM

    منبع نور، نور را ساطع میکند که توسط آینه تخت موازی به دو پرتو نور (A و B) تقسیم و توسط منشور بازتاب میشود. پرتو A یک سفر رفت و برگشت در محفظه گاز D، که گاز قابل تشخیص جریان دارد، انجام میدهد و پرتو B یک سفر رفت و برگشت در محفظه گاز E، که گاز مرجع جریان دارد، انجام میدهد. دو پرتو نور A و B در نقطه C آینه تخت موازی به هم میرسند و یک الگوی تداخلی روی سنسور تصویر از طریق آینه و لنز تشکیل میدهند.

     

    [اصول عملکرد دتکتور گاز تداخل سنجی

    یک الگوی تداخلی به نسبت تفاوت در ضریب شکست بین گاز قابل تشخیص و گاز مرجع حرکت میکند. حسگر مبتنی بر تداخلسنج نوری، مسافت حرکت الگوی تداخلی را اندازهگیری میکند تا ضریب شکست گاز قابل تشخیص را تعیین و آن را به غلظت گاز یا مقدار حرارتی تبدیل کند.

     

    ۳. ویژگی های دتکتور گاز تداخل سنجی

    مسافت حرکت الگوی تداخلی AB که توسط این حسگر اندازهگیری میشود، با معادله زیر نشان داده میشود:

    ویژگیهای خروجی  دتکتور گاز تداخل سنجی

    الگوی تداخلی

    از آنجا که تغییر در ضریب شکست متناسب با تغییر در غلظت گاز است، حسگر خطیبودن بسیار بالایی ارائه میدهد.

     

    پاسخدهی  دتکتور گاز تداخل سنجی

    حسگر اندازهگیری را با تکمیل جایگزینی در محفظه گاز با حجم ۰.۵ تا ۵ میلیلیتر به پایان میرساند. برخی مدلها اندازهگیری را در ۵ تا ۱۰ ثانیه با پاسخ ۹۰٪ تکمیل میکنند.

     

    ویژگیهای پیری  دتکتور گاز تداخل سنجی

    بارزترین ویژگی این حسگر این است که حساسیت آن کاهش نمییابد. حساسیت حسگر فقط به طول محفظه گاز L و طول موج منبع نور λ بستگی دارد. از آنجا که هر دو این پارامترها ثابت هستند، حسگر حساسیت پایدار بلندمدت ارائه میدهد. حتی اگر عنصر نوری کثیف شود، تأثیری بر مسافت حرکت الگوی تداخلی ندارد؛ بنابراین، حسگر تا زمانی که بتواند الگو را تشخیص دهد، حساسیت آن کاهش نمییابد.

     

    ویژگیهای فشار و دما در دتکتور گاز تداخل سنجی

    اگرچه ضریب شکست گاز بسته به دما T و فشار P تغییر میکند، حسگر دما و فشار را اندازهگیری میکند تا آنها را تصحیح کند و بنابراین تحت تأثیر آنها قرار نمیگیرد.

     

     

     

     

     

     

    7-12.تشخیص گاز به روش نوار شیمیایی

    1. شرح کلی دتکتور گاز با نوار شیمیائی

    این حسگر از نوار سلولزی آغشته به ماده رنگزا استفاده می‌کند. با عبور یا نفوذ گاز قابل تشخیص به داخل این نوار، واکنشی شیمیایی رخ داده و رنگ نوار تغییر می‌کند. حسگر با اندازه‌گیری نور بازتاب‌شده از رنگ ایجادشده بر اثر واکنش بین ماده رنگزا و گاز، غلظت بسیار کم گازهای سمی را به صورت کمی تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز با نوار شیمیائی

    [ساختار دتکتور گاز با نوار شیمیائی

    حسگر دارای محفظه‌ای است که گاز قابل تشخیص وارد آن می‌شود. این محفظه یک ظرف ضد نور است که داخل آن منبع نور و بخش گیرنده نور برای تشخیص رنگ نوار قرار گرفته‌اند. حسگر شامل این محفظه گاز و اجزای دیگری مانند مکانیسم قرقره برای جمع‌آوری نوار پس از هر اندازه‌گیری است.

    WhatsApp Image 2025 09 26 at 9.40.08 AM1

    [اصول دتکتور گاز با نوار شیمیائی

    وقتی گاز قابل تشخیص با نوار آغشته به ماده رنگزا تماس پیدا می‌کند، واکنش شیمیایی رخ داده و نوار رنگ می‌گیرد. به عنوان مثال، اگر فسفین (PH3) با نوار تماس پیدا کند، کلوئید نقره طبق فرمول زیر تولید می‌شود و یک لکه رنگی روی نوار سفید ظاهر می‌شود:

    PH3 + AgCIO → Ag + H3PO4 + 1/2 Cl2

     

    حسگر نور را به نقطه رنگی‌شده نوار تابانده و تغییر شدت نور بازتاب‌شده قبل و بعد از ورود گاز را اندازه‌گیری می‌کند؛ بنابراین غلظت گاز را به دقت محاسبه می‌کند.

     

    1. ویژگی‌ها ی دتکتور گاز با نوار شیمیائی

    ویژگی‌های خروجی دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.08 AM2

    وقتی گاز قابل تشخیص وارد بخش تشخیص می‌شود، نوار شروع به رنگ‌گرفتن می‌کند و خروجی به تدریج افزایش می‌یابد. از آنجا که حسگر تغییرات رنگ را اندازه‌گیری می‌کند، خروجی به صورت منحنی نمایش داده می‌شود.

     

     

    ویژگی‌های دما و رطوبت در دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.09 AM

    برای فسفین (PH3)، حسگرهای نوار‌ای وابسته به دما نیستند. همچنین بدون وابستگی زیاد به رطوبت، این حسگر در محدوده دمایی و رطوبتی عملیاتی، قرائت دقیقی ارائه می‌دهد.

     

    ویژگی‌های پیری در دتکتور گاز با نوار شیمیائی

    آزمایش‌های مداوم روی حسگر نشان می‌دهد که بدون کاهش حساسیت به گاز، اندازه‌گیری پایدار انجام می‌دهد.

     

    ویژگی‌های دتکتور گاز با نوار شیمیائی

    – حساسیت بسیار بالا با انتخاب‌پذیری عالی

    – استفاده از نوار کاست که تعویض آن آسان است

    – تغذیه نوار برای هر اندازه‌گیری، که هیچ هیسترزیسی ایجاد نمی‌کند

    – رنگ‌گرفتن نوار بر اثر گاز قابل تشخیص تجمع می‌یابد، که امکان تشخیص غلظت‌های بسیار کم گاز را فراهم می‌کند.

     

     

     

     

     

     

     

     

    7-13. دتکتور یونیزاسیون نوری

    1. شرح کلی دتکتور یونیزاسیون نوری

    این حسگر گاز با اعمال نور فرابنفش به گاز قابل تشخیص، باعث یونیزه شدن آن می‌شود. این عمل جریان یونی ایجاد می‌کند. حسگر این جریان را اندازه‌گیری کرده و غلظت گاز را تعیین می‌نماید. این حسگر محدوده وسیعی از گازها را بدون توجه به آلی یا معدنی بودن آنها تشخیص می‌دهد. معمولاً برای اندازه‌گیری غلظت ترکیبات آلی فرار (VOCs) در محدوده ppb تا ppm استفاده می‌شود.

     

    1. ساختار و اصول دتکتور یونیزاسیون نوری

    [ساختار دتکتور یونیزاسیون نوری

    حسگر از یک محفظه یونیزاسیون برای ورود گاز قابل تشخیص، یک لامپ فرابنفش برای تابش نور و الکترودهای مثبت و منفی برای تشخیص جریان یونی تشکیل شده است.

     

    [اصول عملکرد دتکتور یونیزاسیون نوری

    گاز قابل تشخیص وارد محفظه یونیزاسیون شده و در معرض نور فرابنفش از منبع نور (لامپ فرابنفش) قرار می‌گیرد. این عمل باعث آزاد شدن الکترون‌ها و تولید کاتیون می‌شود. کاتیون‌ها و الکترون‌های تولید شده توسط الکترودهای مثبت و منفی جذب شده و جریان الکتریکی ایجاد می‌کنند. از آنجا که این جریان متناسب با غلظت گاز است، حسگر با اندازه‌گیری مقدار جریان، غلظت گاز قابل تشخیص را تعیین می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.09 AM1

    برای یونیزه کردن یک گاز، نیاز به اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص آن گاز است. انرژی فوتون با واحد الکترون ولت (eV) بیان می‌شود. این حسگر از لامپ‌هایی با انرژی فوتونی 10.6 eV و 11.7 eV استفاده می‌کند. هرچه انرژی فوتون بیشتر باشد، مقدار بیشتری از گاز قابل تشخیص یونیزه می‌شود.

     

    1. ویژگی‌های دتکتور یونیزاسیون نوری

    ویژگی‌های خروجی دتکتور یونیزاسیون نوری

    WhatsApp Image 2025 09 26 at 9.40.10 AM

    برای گازهایی با غلظت پایین (چند صد ppm)، خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد.

    برای گازهایی با غلظت پایین خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد

    لامپ فرابنفش:

    انرژی فوتونی (eV) لامپ فرابنفش توسط ترکیب گاز موجود در لامپ و جنس پنجره لامپ تعیین می‌شود.

     

     

    انرژی یونیزاسیون مواد معمول:

    با اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص هر گاز، حسگر گاز را یونیزه کرده و غلظت آن را تعیین می‌کند. این حسگر معمولاً از لامپ‌های 10.6 eV یا 11.7 eV استفاده می‌کند.

     

    جدول انرژی فوتونی:

    گاز داخل لامپ | جنس پنجره | انرژی فوتونی (eV)

    زنون | یاقوت کبود | 8.4

    کریپتون | فلورید منیزیم | 10.6

    آرگون | فلورید لیتیم | 11.7

     

     

    WhatsApp Image 2025 09 26 at 9.40.10 AM1

     

    7-14. روش تشخیص گاز با ذرات پیرولیز شده

    1. شرح کلی دتکتور گاز با ذرات پیرولیز شده

    این حسگر گاز، گاز قابل تشخیص را حرارت داده تا اکسید تولید کند و سپس ذرات اکسید را با استفاده از یک حسگر ذره سنجی می‌کند. این حسگر پایداری بلندمدت داشته و مقاومت عالی در برابر تداخل و پاسخگویی سریع دارد. حسگر ذره بر اساس اصول مشابه حسگرهای دود یونیزاسیونی که از پرتوها استفاده می‌کنند، کار می‌کند.

     

    1. ساختار و اصول دتکتور گاز با ذرات پیرولیز شده

    [ساختار دتکتور گاز با ذرات پیرولیز شده

    این حسگر معمولاً ترکیبی از یک تجزیه‌گر حرارتی و حسگر ذره است. در مرکز تجزیه‌گر حرارتی یک لوله کوارتزی پیچیده شده با عنصر گرمایشی قرار دارد.

    حسگر ذره شامل یک محفظه اندازه‌گیری (که به طور مداوم با استفاده از پرتوهای آلفا جریان یون تولید می‌کند) و یک محفظه جبران است. گاز قابل تشخیص فقط وارد محفظه اندازه‌گیری می‌شود، در حالی که محفظه جبران به اتمسفر باز است.

     

    [اصول دتکتور گاز با ذرات پیرولیز شده

    بسیاری از گازهای آلی فلزی مانند TEOS در اثر حرارت، اکسید ذره‌ای تولید می‌کنند. گاز قابل تشخیص از طریق تجزیه‌گر حرارتی اکسید شده و وارد حسگر ذره می‌شود.

    در محفظه اندازه‌گیری حسگر ذره، از یک منبع پرتو آلفا برای یونیزه کردن هوا استفاده می‌شود که باعث جریان یونی می‌شود. ذرات وارد محفظه اندازه‌گیری شده و یون‌ها را جذب می‌کنند؛ این امر جریان یونی را کاهش داده و در نتیجه خروجی حسگر کم می‌شود. بر اساس میزان کاهش خروجی، غلظت گاز تعیین می‌شود. محفظه جبران، نوسانات خروجی حسگر ناشی از دما، رطوبت و/یا فشار را جبران می‌کند.

     

     

    1. ویژگی‌های دتکتور گاز با ذرات پیرولیز شده

    ویژگی‌های خروجی دتکتور گاز با ذرات پیرولیز شده

    خروجی حسگر به غلظت ذرات تولید شده از طریق تجزیه حرارتی بستگی دارد. حسگر از یک منحنی کالیبراسیون استفاده می‌کند تا غلظت گاز نسبت به قرائت خطی باشد.

     

    پاسخگویی دتکتور گاز با ذرات پیرولیز شده

    از آنجا که گاز وارد شده به بخش تشخیص بلافاصله در تجزیه‌گر حرارتی اکسید می‌شود، حسگر از سرعت پاسخ بالا و تکرارپذیری عالی برخوردار است.

     

    ویژگی‌های پیری در دتکتور گاز با ذرات پیرولیز شده

    حسگر از Am-241 به عنوان منبع پرتو استفاده می‌کند که نیمه عمر بسیار طولانی (حدود 400 سال) دارد و در نتیجه عملکرد حسگر به مرور زمان به سختی کاهش می‌یابد.

     

    ویژگی‌های دمایی در دتکتور گاز با ذرات پیرولیز شده

    حسگر از محفظه جبران برای جبران اثرات دما استفاده می‌کند و بنابراین ویژگی‌های دمایی عالی از خود نشان می‌دهد.

     

  • سیستم اطفاء حریق ثابت با گاز دی اکسیدکربن از نوع غرقابی کامل و فاقد منبع دی‌اکسید کربن

    8.1 اطلاعات کلی
    8.1.1* شرح: سیستم لوله‌ ای قائم یک سیستم اطفاء حریق ثابت از نوع غرقابی کامل، اعمال موضعی یا شلنگ دستی است که فاقد منبع دی‌اکسید کربن به‌صورت دائمی متصل می‌باشد.
    8.1.2* موارد استفاده: نصب سیستم‌های لوله‌ای قائم تنها با تأیید مرجع ذی‌صلاح مجاز است.
    8.1.3 الزامات عمومی: سیستم‌های لوله‌ای قائم و تأمین سیار باید مطابق الزامات فصل‌های ۴ تا ۷ و همچنین موارد مندرج در بخش‌های 8.2 تا 8.5 نصب و نگهداری شوند.
    8.1.3.1 لوله‌کشی باید مطابق با الزامات مربوط به سامانه‌ای باشد که از منبع دائمی متصل استفاده می‌کند.
    8.1.3.2 طول‌های قابل توجه لوله‌کشی در تأمین سیار باید در طراحی مدنظر قرار گیرند.

    8.2 مشخصات خطر
    استفاده از سیستم‌های لوله‌ ای قائم و تأمین سیار در محافظت از خطراتی که در فصل‌های ۴ تا ۷ توصیف شده‌اند مجاز است، مشروط بر اینکه تأخیر در رسیدن به تخلیه مؤثر دی‌اکسید کربن در زمان انتقال تأمین سیار به محل و اتصال آن به سیستم، تأثیر منفی در خاموش‌سازی نداشته باشد.

    8.3 الزامات لوله قائم
    8.3.1 لوله‌کشی تأمین در سیستم‌های لوله‌ای قائم باید مجهز به اتصالات سریع تعویض بوده و در محل قابل دسترس و به‌وضوح علامت‌گذاری‌شده‌ای برای اتصال به تأمین سیار خاتمه یابد.
    8.3.2 این محل باید با میزان دی‌اکسید کربن مورد نیاز و مدت زمان لازم برای تخلیه مشخص شده باشد.

    8.4 الزامات تأمین سیار
    8.4.1* ظرفیت: تأمین سیار باید دارای ظرفیتی مطابق با الزامات فصل‌های ۴ تا ۷ باشد.
    8.4.2 اتصال
    8.4.2.1 تأمین سیار باید به نحوی تجهیز شده باشد که بتواند دی‌اکسید کربن را به سیستم لوله‌ای قائم منتقل کند.
    8.4.2.2 اتصالات سریع تعویض باید فراهم شوند تا این اتصالات با بیشترین سرعت ممکن برقرار گردند.

    8.4.3 قابلیت جابجایی
    8.4.3.1 مخزن یا مخازن ذخیره‌سازی دی‌اکسید کربن باید بر روی یک وسیله نقلیه قابل حرکت نصب شده باشند که بتوان آن را با دست، با وسیله نقلیه موتوری جداگانه یا با نیروی محرکه خود به محل آتش‌سوزی رساند.
    8.4.3.2 وسیله جابجایی تأمین سیار باید قابل‌اطمینان بوده و قادر باشد با حداقل تأخیر به محل حریق برسد.

    8.4.4 محل استقرار
    تأمین سیار باید نزدیک به خطراتی که برای حفاظت از آن‌ها در نظر گرفته شده، نگهداری شود تا اطفاء حریق در کوتاه‌ترین زمان ممکن پس از بروز حریق آغاز گردد.

    8.4.5 تجهیزات جانبی
    تأمین سیار برای سیستم‌های لوله‌ای قائم می‌تواند به شلنگ‌های دستی به عنوان تجهیزات جانبی برای حفاظت از خطرات پراکنده کوچک یا به‌عنوان مکمل سیستم‌های لوله‌ای قائم یا دیگر سامانه‌های ثابت مجهز باشد.

    8.5* آموزش
    آموزش افراد مسئول این تجهیزات در استفاده و نگهداری از سیستم‌های لوله‌ای قائم و تأمین سیار امری حیاتی است

  • مزایای دتکتورهای دودی مکشی یا اسپیراتینگ ها بر اساس اصول عملکرد

    تشخیص فعال

    دتکتور دودی مکشی یک سامانه تشخیص فعال به‌شمار می‌آید، زیرا به‌طور پیوسته هوا را از ناحیه حفاظت‌شده مکش کرده و به داخل محفظه حسگر هدایت می‌کند. این فرآیند دائمی است و تنها در صورت خاموش شدن دتکتور متوقف می‌شود.

    این ویژگی فعال، امکان تشخیص بسیار سریع دود را فراهم می‌سازد و به همین دلیل، دتکتورهای دودی مکشی معمولاً در دسته سامانه‌های تشخیص آتش زودهنگام قرار می‌گیرند. محفظه‌های حسگر بسیار حساس نیز به شناسایی دود در مراحل اولیه آتش‌سوزی، پیش از آسیب به تجهیزات یا ناحیه حفاظت‌شده، کمک شایانی می‌کنند.

    اثر افزایشی
    سیستم دتکتور دودی مکشی با استفاده از «اثر افزایشی» که ویژگی مشترک این نوع سیستم‌هاست، رقیق‌شدن دود را جبران می‌کند. اثر افزایشی یکی از مزایای مهم فناوری دتکتور دودی مکشی است که منجر به سیستمی با حساسیت بسیار بالا می‌شود، حتی زمانی که چندین منفذ نمونه‌گیری در سیستم وجود دارد.

    در فرآیند تشخیص، هوا از طریق تمام منافذ نمونه‌گیری موجود در شبکه لوله‌کشی به داخل کشیده می‌شود، که باعث می‌شود هر منفذ در تشکیل نمونه کلی هوا درون محفظه حسگر نقش داشته باشد. همان‌طور که پیش‌تر توضیح داده شد، این حجم کلی هوا درون محفظه حسگر دتکتور است: هرچه تعداد منافذ نمونه‌گیری بیشتر باشد، حجم هوای بیشتری وجود خواهد داشت. اگر چندین منفذ نمونه‌گیری هوای آلوده به دود را مکش کنند، ذرات دود هنگام انتقال به محفظه حسگر با هم ترکیب می‌شوند. نسبت هوای تمیز به هوای آلوده به دود کاهش می‌یابد. این همان اثر افزایشی است که باعث می‌شود کل سیستم تشخیص، حساس‌تر از یک سیستم سنتی دتکتور دودی نقطه‌ای باشد.

    با فرض اینکه حساسیت سطح ۱ حریق در دتکتور دودی مکشی برابر با ۰٫۲۵ درصد کاهش دید در هر فوت (0.25%/ft.) تنظیم شده باشد و این سیستم اتاقی با مساحت ۱۲۱۹٫۲ متر مربع (۴۰۰۰ فوت مربع) را محافظت کند و منافذ نمونه‌گیری با فاصله ۶ متر برای هر منفذ (۲۰ فوت برای هر منفذ) طراحی شده باشند (یعنی هر منفذ ۳۶ متر مربع یا ۴۰۰ فوت مربع را پوشش دهد)، سیستم تشخیص نهایی شامل ۱۰ منفذ نمونه‌گیری خواهد بود. عدد ۰٫۲۵٪/ft.، حساسیت محفظه حسگر دتکتور است.

    برای محاسبه حساسیت واقعی هر منفذ نمونه‌گیری، نرخ کاهش دید تنظیم‌شده دتکتور را در تعداد کل منافذ نمونه‌گیری در شبکه لوله‌کشی ضرب می‌کنیم.

    برای مثال، اگر حساسیت دتکتور در سطح ۱ حریق روی ۰٫۲۵٪/ft. تنظیم شده باشد و ۱۰ منفذ در شبکه لوله‌کشی وجود داشته باشد، حساسیت هر منفذ نمونه‌گیری برابر با ۲٫۵٪/ft. خواهد بود (۰٫۲۵٪/ft. ضربدر ۱۰ = ۲٫۵٪/ft.). این حساسیت مشابه نرخ کاهش دید یک دتکتور دودی نقطه‌ای سنتی است. این مقدار، حساسیت مؤثر دتکتور را در حالتی نشان می‌دهد که دود تنها وارد یک منفذ نمونه‌گیری شود (مطابق شکل ۸ در پایین).

    مزیت سیستم دتکتور دودی مکشی در ماهیت فعال آن برای مکش هم‌زمان هوا از تمامی منافذ نمونه‌گیری است؛ هوا درون لوله ترکیب شده و برای نمونه‌برداری به سمت دتکتور منتقل می‌شود. زمانی‌که هوا از تمام ۱۰ منفذ نمونه‌گیری کشیده می‌شود، غلظت ذرات دود افزایش می‌یابد و غلظت هوای تمیز کاهش پیدا می‌کند. با ترکیب شدن ذرات دود، حساسیت کلی سیستم تشخیص افزایش پیدا می‌کند.

    برای توضیح بیشتر اثر افزایشی، همان اتاق ۱۲۱۹٫۲ متر مربعی (۴۰۰۰ فوت مربع) با شبکه لوله‌کشی دارای ۱۰ منفذ نمونه‌گیری را در نظر بگیرید که در آن ذرات دود وارد دو منفذ نمونه‌گیری می‌شوند (مطابق شکل ۸ در پایین). برای تعیین حساسیت جدید هر منفذ، نرخ کاهش دید سطح ۱ حریق (۰٫۲۵٪/ft.) را در تعداد کل منافذ نمونه‌گیری (۱۰) ضرب کرده و سپس بر تعداد منافذی که دود را تشخیص می‌دهند (۲) تقسیم می‌کنیم. در نتیجه، حساسیت مؤثر هر منفذ برابر با ۱٫۲۵٪/ft. خواهد بود، که این یعنی سیستم دتکتور دودی مکشی دو برابر حساس‌تر از یک دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. است.

    اگر دود وارد سه منفذ نمونه‌گیری شود، حساسیت مؤثر برابر با ۰٫۸۳٪/ft. خواهد بود، و به همین ترتیب.
    حساسیت دتکتور

    WhatsApp Image 2025 10 01 at 2.29.13 PM WhatsApp Image 2025 10 01 at 2.29.13 PM1

    برای توضیح بیشتر اثر افزایشی، این مثال را می‌توان گسترش داد به حالتی که دود وارد تمامی ۱۰ منفذ نمونه‌گیری شود. هر منفذ نمونه‌گیری حساسیتی برابر با ۰٫۲۵٪/ft. خواهد داشت، که باعث می‌شود سیستم دتکتور دودی مکشی ۱۰ برابر حساس‌تر از دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. باشد (مطابق شکل ۱۰ در صفحه قبل).

    آستانه‌های حساسیت پایین
    یکی دیگر از مزایای مهم دتکتور دودی مکشی، الکترونیک پیشرفته‌ای است که توانایی تشخیص ذرات دود در نرخ‌های بسیار پایین‌ کاهش دید و در سطوح حساسیت متعدد را فراهم می‌کند. این آستانه‌های تشخیص قابل برنامه‌ریزی هستند و به کاربران نهایی این امکان را می‌دهند که سیستمی با حساسیت بسیار بالا برای محیط‌ها و کاربری‌هایی که نیازمند تشخیص بسیار زودهنگام دود برای ایمنی جانی و تداوم فعالیت هستند، یا سیستمی با حساسیت پایین‌تر برای محیط‌هایی با اهمیت کمتر طراحی کنند. آستانه‌های معمول در سیستم‌های دتکتور دودی مکشی طبق لیست استاندارد UL دارای محدوده حساسیت بین ۰٫۰۰۰۴۶٪/ft. (برای مکان‌هایی که تشخیص زودهنگام دود حیاتی است) تا ۶٫۲۵٪/ft. (برای محیط‌هایی با اهمیت کمتر) هستند. سیستمی با دتکتور دودی مکشی که برای تشخیص دود با پایین‌ترین نرخ کاهش دید لیست‌شده در UL یعنی ۰٫۰۰۰۴۶٪/ft. برنامه‌ریزی شده باشد، بیش از ۱۰۰۰ برابر حساس‌تر از دتکتورهای دودی نقطه‌ای سنتی خواهد بود.

  • نقص سیستم حفاظت در برابر آتش با عامل گازی

    12.1 * کلیات

    12.1.1 این فصل حداقل الزامات برای برنامه نقص سیستم حفاظت در برابر آتش را ارائه می‌دهد.
    12.1.2 اقداماتی باید در هنگام بروز نقص در سیستم انجام شود تا اطمینان حاصل گردد که خطرات افزایش یافته به حداقل رسیده و مدت زمان نقص محدود باشد.

    12.2 هماهنگ‌کننده نقص

    12.2.1 مالک ملک یا نماینده منصوب باید یک هماهنگ‌کننده نقص را برای رعایت الزامات این فصل منصوب کند.
    12.2.2 در غیاب یک فرد خاص منصوب، مالک ملک یا نماینده منصوب به‌عنوان هماهنگ‌کننده نقص در نظر گرفته می‌شود.
    12.2.3 اگر قرارداد اجاره، توافق‌نامه استفاده کتبی، یا قرارداد مدیریت به‌طور خاص اختیار بازرسی، آزمایش و نگهداری سیستم‌های حفاظت در برابر آتش را به مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده اعطا کند، مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده باید یک نفر را به‌عنوان هماهنگ‌کننده نقص منصوب کند.

    12.3 سیستم برچسب نقص

    12.3.1 یک برچسب باید برای نشان دادن اینکه سیستم یا بخشی از آن از سرویس خارج شده است، استفاده شود.
    12.3.2 یک برچسب باید در جزء سیستم عامل تمیز که باعث نقص شده، واحد کنترل آزادسازی سیستم، واحد کنترل آژیر آتش‌سوزی ساختمان در صورت لزوم و سایر مکان‌های مورد نیاز توسط مقام ذی‌صلاح نصب شود تا نشان دهد کدام سیستم یا بخشی از آن از سرویس خارج شده است.

    12.4 برنامه‌های نقص پیش‌بینی‌شده

    12.4.1 تمام نقص‌های پیش‌بینی‌شده باید توسط هماهنگ‌کننده نقص مجاز شوند.
    12.4.2 نیاز به حفاظت موقتی در برابر آتش، خاتمه تمامی عملیات خطرناک و فراوانی بازرسی‌ها در نواحی درگیر باید مشخص شود.
    12.4.3 قبل از اعطای مجوز، هماهنگ‌کننده نقص مسئول است تا اطمینان حاصل کند که مراحل زیر انجام شده است:
    1. میزان و مدت زمان مورد انتظار نقص تعیین شده است.
    2. نواحی یا ساختمان‌های درگیر بازرسی شده و خطرات افزایش یافته مشخص شده‌اند.
    3. پیشنهاداتی برای کاهش خطرات افزایش یافته به مدیریت یا مالک ملک یا نماینده منصوب ارسال شده است.
    4. اگر سیستم حفاظت در برابر آتش با عامل تمیز به‌عنوان حفاظت اولیه عمل می‌کند و بیش از 10 ساعت در یک دوره 24 ساعته از سرویس خارج است، ترتیباتی برای یکی از موارد زیر انجام می‌شود:
    (a) تخلیه ساختمان یا بخش از ساختمان که تحت تأثیر سیستم خارج از سرویس قرار گرفته است.
    (b) * یک نگهبانی آتش‌نشانی تأیید شده.
    (c) * برقراری و اجرای یک برنامه تأیید شده برای حذف منابع بالقوه احتراق و محدود کردن میزان سوخت در دسترس برای آتش.
    (5) اطلاع‌رسانی به اداره آتش‌نشانی.
    (6) اطلاع‌رسانی به شرکت بیمه، شرکت آژیر، مالک ملک یا نماینده منصوب، و دیگر مقامات ذی‌صلاح.
    (7) اطلاع‌رسانی به سرپرستان در نواحی تحت تأثیر.
    (8) اجرای یک سیستم برچسب نقص. (به بخش 12.3 مراجعه کنید.)
    (9) جمع‌آوری تمام ابزارها و مواد ضروری در محل نقص.

    12.5 نقص‌های اضطراری

    12.5.1 نقص‌های اضطراری شامل، اما نه محدود به، قطع تأمین عامل تمیز، شکستگی یا آسیب لوله‌ها، خرابی تجهیزات، و از دست رفتن یکپارچگی محفظه، و شامل نقص‌هایی است که در حین بازرسی، آزمایش یا نگهداری شناسایی می‌شود.
    12.5.2 در صورت وقوع نقص اضطراری، هماهنگ‌کننده باید مراحل مشخص شده در 12.4.2 و 12.4.3 را اجرا کند.
    12.5.3 هنگامی که یک یا چند نقص در حین بازرسی، آزمایش و نگهداری شناسایی می‌شود، مالک یا نماینده مجاز مالک باید به صورت کتبی اطلاع‌رسانی شود.

    12.6 بازگرداندن سیستم‌ها به سرویس

    هنگامی که تمام تجهیزات معیوب به حالت عادی باز می‌گردد، هماهنگ‌کننده نقص باید تأیید کند که مراحل زیر اجرا شده است:
    1. هر بازرسی و آزمایش ضروری انجام شده تا اطمینان حاصل شود که سیستم‌های تحت تأثیر عملیاتی هستند.
    2. به سرپرستان اطلاع داده شده که حفاظت دوباره برقرار شده است.
    3. به اداره آتش‌نشانی اطلاع داده شده که حفاظت دوباره برقرار شده است.
    4. به مالک ملک یا نماینده منصوب، شرکت بیمه، شرکت آژیر در صورت لزوم، و دیگر مقامات ذی‌صلاح اطلاع داده شده که حفاظت دوباره برقرار شده است.
    5. تمام برچسب‌های نقص برداشته شده‌اند.

  • دستورالعمل NFPA در مورد بیم دتکتور استاندارد

    یکی از معتبرترین و جامع‌ترین مراجع جهانی در زمینه ایمنی و حفاظت از حریق است. این استاندارد مجموعه‌ای از دستورالعمل‌ها و الزامات را برای طراحی، نصب، اجرا، و نگهداری سیستم‌های اعلام و اطفای حریقدر ایالات متحده آمریکا را تعیین می‌کند. در این میان، NFPA 72 به‌عنوان استاندارد سیستم‌های اعلام حریق و ارتباطات اضطراری، الزامات مربوط به بیم دتکتورها را نیز پوشش می‌دهد. این مقاله به بررسی تخصصی بیم دتکتورها و الزامات آن‌ها بر اساس NFPA 72 می‌پردازد.

    تعریف و عملکرد بیم دتکتورها

    بیم دتکتورها (Beam Smoke Detectors) تجهیزاتی هستند که از یک پرتو نوری برای تشخیص کاهش شفافیت هوا ناشی از وجود دود استفاده می‌کنند. این دتکتورها در فضاهای بزرگ و مرتفع که استفاده از دتکتورهای نقطه‌ای دشوار است، کاربرد دارند. به‌طور کلی، بیم دتکتورها به دو دسته اصلی تقسیم می‌شوند:

    1. بیم دتکتور فرستنده-گیرنده جدا

    (Projected Beam Smoke Detector)

    9k=

    شامل یک فرستنده و یک گیرنده مجزا است که در دو نقطه متفاوت نصب می‌شوند. پرتو نوری از فرستنده به گیرنده ارسال شده و در صورت کاهش شدت نور دریافتی، هشدار فعال می‌شود.

    2Q==

    2. بیم دتکتور انعکاسی

    (Reflective Beam Smoke Detector)

    9k=

    فرستنده و گیرنده در یک واحد قرار دارند و پرتو نوری پس از برخورد به یک بازتابنده، مجدداً به گیرنده بازمی‌گردد. در این نوع نیز کاهش شدت نور نشان‌دهنده وجود دود است.

    2Q==

    الزامات بیم دتکتورها در استاندارد NFPA 72

    استاندارد NFPA 72 الزامات دقیق و مشخصی را برای بیم دتکتورها ارائه می‌دهد که شامل موارد زیر است:

    1. معیارهای عملکردی

    بیم دتکتورها باید قابلیت تشخیص تغییرات شفافیت هوا را با دقت بالا داشته باشند.
    محدوده تشخیص باید متناسب با محیط مورد نظر باشد. معمولاً برد تشخیص این تجهیزات بین 10 تا 100 متر است.
    قابلیت تنظیم حساسیت بر اساس شرایط محیطی باید وجود داشته باشد.

    2. ملاحظات محیطی و محدودیت‌ها

    عملکرد بیم دتکتور نباید تحت تأثیر نور مستقیم خورشید، گرد و غبار یا سایر عوامل محیطی قرار گیرد.
    در شرایطی که دود به‌صورت لایه‌ای در سقف تجمع پیدا نمی‌کند، استفاده از بیم دتکتورها توصیه نمی‌شود.
    نباید در محیط‌هایی که دارای لرزش زیاد یا تغییرات ساختاری هستند، بدون اقدامات تثبیت‌کننده نصب شوند.

    3. الزامات نصب

    بیم دتکتورها باید در فضاهای مرتفع و بزرگ مانند انبارها، سوله‌ها، سالن‌های تولید، فرودگاه‌ها و سالن‌های نمایشگاهی نصب شوند.
    فاصله بین فرستنده و گیرنده یا بازتابنده باید به‌گونه‌ای باشد که کل فضای مورد نظر را پوشش دهد.
    ارتفاع نصب معمولاً در محدوده 4 تا 25 متر توصیه می‌شود.
    در فضاهایی که جریان هوا شدید است، ممکن است دقت عملکرد بیم دتکتورها کاهش یابد و نیاز به تنظیمات خاص داشته باشند.

    4. الزامات نگهداری و تست دوره‌ای

    بیم دتکتورها باید به‌صورت دوره‌ای مورد آزمایش قرار گیرند تا عملکرد صحیح آن‌ها تضمین شود.
    فرستنده و گیرنده باید به‌طور منظم تمیز شوند تا از انباشت گرد و غبار جلوگیری شود.
    بررسی وضعیت هم‌ترازی بیم دتکتورها و تنظیم مجدد در صورت نیاز ضروری است.
    سیستم باید دارای امکان انجام تست خودکار یا تست دستی توسط اپراتور باشد.

    روش‌های تست و تأییدیه بر اساس NFPA

    NFPA 72 روش‌های تست بیم دتکتورها را برای اطمینان از عملکرد صحیح آن‌ها مشخص می‌کند. برخی از این آزمایش‌ها شامل:

    تست حساسیت: بررسی میزان کاهش نور لازم برای فعال شدن هشدار.
    تست‌های محیطی: شامل عملکرد در شرایط مختلف دمایی، رطوبتی و نور محیطی.
    تست تأخیر زمانی: بررسی مدت‌زمان لازم برای فعال‌سازی هشدار جهت کاهش هشدارهای کاذب.
    تست کارایی در شرایط گرد و غبار و آلودگی محیطی: بررسی میزان تحمل بیم دتکتور در برابر ذرات معلق.

    مقاومت در برابر عوامل تداخلی

    NFPA مشخص می‌کند که بیم دتکتورها باید در برابر موارد زیر مقاوم باشند:

    تداخل نوری: از جمله نور خورشید، نورهای مصنوعی و انعکاس‌های ناخواسته.
    گرد و غبار و آلاینده‌های محیطی: که ممکن است منجر به کاهش دقت تشخیص شود.
    ارتعاشات و جابه‌جایی‌های سازه‌ای: که می‌تواند باعث عدم هم‌ترازی فرستنده و گیرنده شود.

    نتیجه‌گیری

    استاندارد NFPA 72 مجموعه‌ای از الزامات فنی و عملکردی برای بیم دتکتورها ارائه می‌دهد که رعایت آن‌ها منجر به افزایش ایمنی و کاهش هشدارهای کاذب می‌شود. انتخاب مناسب، نصب اصولی و نگهداری منظم این تجهیزات مطابق با استانداردNFPA نقش مهمی در بهبود عملکرد سیستم‌های اعلام حریق دارد. رعایت دستورالعمل‌های ارائه‌شده در این استاندارد باعث افزایش دقت تشخیص حریق و کاهش نرخ هشدارهای کاذب شده و درنهایت منجر به ارتقای ایمنی ساختمان‌ها و اماکن صنعتی، تجاری و عمومی می‌شود.