سیستم اطفاء حریق ثابت با گاز دی اکسیدکربن از نوع غرقابی کامل و فاقد منبع دی‌اکسید کربن

IMG 1516

8.1 اطلاعات کلی
8.1.1* شرح: سیستم لوله‌ ای قائم یک سیستم اطفاء حریق ثابت از نوع غرقابی کامل، اعمال موضعی یا شلنگ دستی است که فاقد منبع دی‌اکسید کربن به‌صورت دائمی متصل می‌باشد.
8.1.2* موارد استفاده: نصب سیستم‌های لوله‌ای قائم تنها با تأیید مرجع ذی‌صلاح مجاز است.
8.1.3 الزامات عمومی: سیستم‌های لوله‌ای قائم و تأمین سیار باید مطابق الزامات فصل‌های ۴ تا ۷ و همچنین موارد مندرج در بخش‌های 8.2 تا 8.5 نصب و نگهداری شوند.
8.1.3.1 لوله‌کشی باید مطابق با الزامات مربوط به سامانه‌ای باشد که از منبع دائمی متصل استفاده می‌کند.
8.1.3.2 طول‌های قابل توجه لوله‌کشی در تأمین سیار باید در طراحی مدنظر قرار گیرند.

8.2 مشخصات خطر
استفاده از سیستم‌های لوله‌ ای قائم و تأمین سیار در محافظت از خطراتی که در فصل‌های ۴ تا ۷ توصیف شده‌اند مجاز است، مشروط بر اینکه تأخیر در رسیدن به تخلیه مؤثر دی‌اکسید کربن در زمان انتقال تأمین سیار به محل و اتصال آن به سیستم، تأثیر منفی در خاموش‌سازی نداشته باشد.

8.3 الزامات لوله قائم
8.3.1 لوله‌کشی تأمین در سیستم‌های لوله‌ای قائم باید مجهز به اتصالات سریع تعویض بوده و در محل قابل دسترس و به‌وضوح علامت‌گذاری‌شده‌ای برای اتصال به تأمین سیار خاتمه یابد.
8.3.2 این محل باید با میزان دی‌اکسید کربن مورد نیاز و مدت زمان لازم برای تخلیه مشخص شده باشد.

8.4 الزامات تأمین سیار
8.4.1* ظرفیت: تأمین سیار باید دارای ظرفیتی مطابق با الزامات فصل‌های ۴ تا ۷ باشد.
8.4.2 اتصال
8.4.2.1 تأمین سیار باید به نحوی تجهیز شده باشد که بتواند دی‌اکسید کربن را به سیستم لوله‌ای قائم منتقل کند.
8.4.2.2 اتصالات سریع تعویض باید فراهم شوند تا این اتصالات با بیشترین سرعت ممکن برقرار گردند.

8.4.3 قابلیت جابجایی
8.4.3.1 مخزن یا مخازن ذخیره‌سازی دی‌اکسید کربن باید بر روی یک وسیله نقلیه قابل حرکت نصب شده باشند که بتوان آن را با دست، با وسیله نقلیه موتوری جداگانه یا با نیروی محرکه خود به محل آتش‌سوزی رساند.
8.4.3.2 وسیله جابجایی تأمین سیار باید قابل‌اطمینان بوده و قادر باشد با حداقل تأخیر به محل حریق برسد.

8.4.4 محل استقرار
تأمین سیار باید نزدیک به خطراتی که برای حفاظت از آن‌ها در نظر گرفته شده، نگهداری شود تا اطفاء حریق در کوتاه‌ترین زمان ممکن پس از بروز حریق آغاز گردد.

8.4.5 تجهیزات جانبی
تأمین سیار برای سیستم‌های لوله‌ای قائم می‌تواند به شلنگ‌های دستی به عنوان تجهیزات جانبی برای حفاظت از خطرات پراکنده کوچک یا به‌عنوان مکمل سیستم‌های لوله‌ای قائم یا دیگر سامانه‌های ثابت مجهز باشد.

8.5* آموزش
آموزش افراد مسئول این تجهیزات در استفاده و نگهداری از سیستم‌های لوله‌ای قائم و تأمین سیار امری حیاتی است

نوشته‌های مشابه

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • طراحی سیستم اطفاء حریق با گاز دی اکسیدکربن


    اثرات بازشوها بر طراحی و عملکرد سیستم اطفاء حریق با گاز دی اکسیدکربن

    NFPA12 ANNEX-E

    ضمیمه E – آتش‌سوزی‌های سطحی
    این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

    E.1 الزامات ارائه‌شده در بخش 5.3 عوامل مختلفی را که می‌توانند بر عملکرد سامانه دی‌اکسید کربن تأثیر بگذارند، در نظر گرفته‌اند. پرسش در مورد محدودیت بازشوهایی که قابل‌بسته شدن نیستند، اغلب مطرح می‌شود و پاسخ دقیق به آن دشوار است.
    از آنجا که آتش‌سوزی‌های سطحی معمولاً از نوعی هستند که می‌توان آن‌ها را با روش‌های اطفاء موضعی خاموش کرد، انتخاب بین روش غرقاب کامل و روش کاربرد موضعی را می‌توان بر اساس مقدار دی‌اکسید کربن مورد نیاز انجام داد.

    این انتخاب در مثال‌های زیر برای فضای محصور نمایش‌داده‌شده در شکلE.1(a) نشان داده شده است.

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۱۷ پوند بر دقیقه بر فوت مربع برای غلظت ۳۴ درصد در ارتفاع ۷ فوت خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):

    17 X 5= 85 lb

    مجموع دی‌اکسید کربن مورد نیاز:

    111 + 85= 196 lb

    9k=

    عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
    شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۸۵کیلوگرم بر دقیقه بر متر مربع برای غلظت ۳۴ درصد در ارتفاع ۲.۱ متر خواهد بود.
    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۰.۵ = ۴۲.۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۴۲.۵ = ۹۱.۱ کیلوگرم

    9k=

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۱۷ × ۱۰ = ۱۷۰ پوند
    مجموع دی‌اکسید کربن مورد نیاز:
    ۱۱۱ + ۱۷۰ = ۲۸۱ پوند
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۰.۲۵ پوند بر دقیقه بر فوت مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲۰ فوت مربع
    مساحت کل دیوارها: (۱۰ + ۱۰ + ۲۰ + ۲۰) × ۱۰ = ۶۰۰ فوت مربع
    نرخ تخلیه:
    (۲۰ ÷ ۶۰۰) × (۱۰.۲۵) + ۰.۲۵ = ۰.۲۷ پوند بر دقیقه بر فوت مکعب
    نرخ کل تخلیه:
    ۰.۲۷ × ۲۰۰۰ = ۵۴۰ پوند بر دقیقه
    مقدار دی‌اکسید کربن:
    ۵۴۰ ÷ ۲ = ۲۷۰ پوند

    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲۰ فوت مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    2Q==

    دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
    ۸۵ × ۱.۰ = ۸۵ کیلوگرم
    مجموع دی‌اکسید کربن مورد نیاز:
    ۴۸.۶ + ۸۵ = ۱۳۳.۶ کیلوگرم
    از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۴ کیلوگرم بر دقیقه بر متر مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
    مساحت کل بازشدگی‌ها: ۲.۰ متر مربع
    مساحت کل دیوارها: (۳ + ۳ + ۶ + ۶) × ۳ = ۵۴ متر مربع
    نرخ تخلیه:
    (۲ ÷ ۵۴) × (۱۶۴) + ۴ = ۴.۴ کیلوگرم بر دقیقه بر متر مکعب
    نرخ کل تخلیه:
    ۴.۴ × ۵۴ = ۲۳۷.۶ کیلوگرم بر دقیقه بر متر مکعب
    مقدار دی‌اکسید کربن:
    ۲۳۷.۶ ÷ ۲ = ۱۱۸.۸ کیلوگرم
    کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
    در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
    زمانی که بازشدگی‌ها به ۲.۰ متر مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

    9k=

    p

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • طراحی سیستم اطفاء حریق گازپایه برای اتاق سرور

    ۶.۱ مشخصات، نقشه‌ها و تأییدیه‌ها

    ۶.۱.۱ مشخصات

    ۶.۱.۱.۱ مشخصات سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی، باید تحت نظارت فردی تهیه شود که دارای تجربه کامل و صلاحیت لازم در طراحی این‌گونه سیستم‌ها بوده و با مشورت مرجع ذی‌صلاح انجام گیرد.

    ۶.۱.۱.۲ مشخصات باید شامل تمام موارد مربوط و لازم برای طراحی صحیح سیستم باشد، از جمله تعیین مرجع ذی‌صلاح، تفاوت‌های مجاز نسبت به استاندارد به‌تأیید مرجع ذی‌صلاح، معیارهای طراحی، توالی عملکرد سیستم، نوع و گستره آزمون‌های تأییدی که پس از نصب سیستم باید انجام شود، و الزامات آموزش مالک.

    ۶.۱.۲ نقشه‌های اجرایی

    ۶.۱.۲.۱ نقشه‌های اجرایی و محاسبات باید پیش از شروع نصب یا بازسازی سیستم برای تأیید به مرجع ذی‌صلاح ارائه شوند.

    ۶.۱.۲.۲ نقشه‌های اجرایی و محاسبات باید فقط توسط افرادی تهیه شوند که دارای تجربه کامل و صلاحیت لازم در طراحی سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی هستند.

    ۶.۱.۲.۳ هرگونه انحراف از نقشه‌های اجرایی نیاز به کسب اجازه از مرجع ذی‌صلاح دارد.

    ۶.۱.۲.۴ نقشه‌های اجرایی باید با مقیاس مشخص رسم شوند.

    ۶.۱.۲.۵ نقشه‌های اجرایی باید موارد زیر را که مرتبط با طراحی سیستم هستند نشان دهند:
    (۱) نام مالک و ساکن

    طراحی سیستم ۲۰۰۱-۱۹

    (۲) مکان، شامل آدرس خیابانی
    (۳) نقطه قطب‌نما و نمادهای توضیحی
    (۴) مکان و ساختار دیوارها و تقسیمات حفاظتی
    (۵) مکان دیوارهای آتش‌بر
    (۶) برش مقطع enclosure، به صورت دیاگرام کامل یا شماتیک، شامل مکان و ساختار مجموعه‌های کف-سقف ساختمان در بالا و پایین، کف‌های با دسترسی بلند، و سقف‌های معلق
    (۷) نوع عامل مورد استفاده
    (۸) غلظت عامل در کمترین و بالاترین دمایی که enclosure محافظت می‌شود
    (۹) شرح اشغال‌ها و خطراتی که محافظت می‌شوند، مشخص کردن اینکه آیاenclosure معمولاً اشغال شده است یا خیر
    (۱۰) برای enclosure محافظت شده با سیستم اطفاء حریق با گاز پاک، تخمین فشار مثبت حداکثر و فشار منفی حداکثر، نسبت به فشار محیطی، که انتظار می‌رود پس از تخلیه عامل توسعه یابد
    (۱۱) شرح مواجهات اطراف enclosure
    (۱۲) شرح ظروف ذخیره‌سازی عامل مورد استفاده، شامل حجم داخلی، فشار ذخیره‌سازی، و ظرفیت اسمی بیان شده بر اساس واحدهای جرم یا حجم عامل در شرایط استاندارد دما و فشار
    (۱۳) شرح نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، و مساحت معادل روزنه
    (۱۴) شرح لوله‌ها و اتصالات مورد استفاده، شامل مشخصات مواد، درجه، و رتبه فشار
    (۱۵) شرح سیم یا کابل مورد استفاده، شامل طبقه‌بندی، اندازه [آمریکاییAWG]، شیلدینگ، تعداد رشته‌ها در هادی، ماده هادی، و برنامه کدگذاری رنگ؛ الزامات جداسازی هادی‌های مختلف سیستم؛ و روش مورد نیاز برای ایجاد اتصال‌های سیم
    (۱۶) شرح روش نصب دتکتورها
    (۱۷) برنامه تجهیزات یا فهرست مواد برای هر دستگاه یا وسیله نشان‌دهنده نام دستگاه، سازنده، مدل یا شماره قطعه، تعداد و شرح
    (۱۸) نمای نقشه‌ای از منطقه محافظت‌شده نشان‌دهنده تقسیماتenclosure (تمام و جزئی ارتفاع)، سیستم توزیع عامل، شامل ظروف ذخیره‌سازی عامل، لوله‌ها و نازل‌ها؛ نوع آویز لوله‌ها و نگهدارنده‌های لوله‌های سخت؛ سیستم‌های شناسایی، هشدار و کنترل، شامل تمام دستگاه‌ها و شماتیک اتصالات سیمی بین آن‌ها؛ مکان‌های دستگاه‌های پایان خط؛ مکان دستگاه‌های کنترل‌شده مانند دمپرها و پرده‌ها؛ و مکان علائم آموزشی
    (۱۹) نمای ایزومتریک از سیستم توزیع عامل نشان‌دهنده طول و قطر هر بخش لوله؛ شماره‌های مرجع گره‌ها مربوط به محاسبات جریان؛ اتصالات، شامل کاهنده‌ها، تغییرات، و جهت‌گیری تکیه‌گاه‌ها؛ و نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، نرخ جریان، و مساحت معادل روزنه
    (۲۰) نقشه مقیاس‌دار از طرح گرافیکی پنل اعلان در صورتی که از سوی مرجع ذی‌صلاح درخواست شده باشد
    (۲۱) جزئیات هر پیکربندی منحصر به فرد از نگهدارنده لوله‌های سخت، نشان‌دهنده روش اتصال به لوله و ساختار ساختمان
    (۲۲) جزئیات روش اتصال ظروف، نشان‌دهنده روش اتصال به ظرف و ساختار ساختمان
    (۲۳) شرح کامل گام به گام توالی عملیات سیستم، شامل عملکرد سوئیچ‌های هشدار و نگهداری، تایمرهای تأخیر، و خاموشی اضطراری برق
    (۲۴) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به پنل کنترل سیستم و پنل گرافیکی اعلان
    (۲۵) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به رله‌های خارجی یا اضافی
    (۲۶) محاسبات کامل برای تعیین حجم enclosure، مقدار عامل پاک، و اندازه باتری‌های پشتیبان؛ روش استفاده‌شده برای تعیین تعداد و مکان دستگاه‌های شناسایی صوتی و بصری؛ و تعداد و مکان دتکتورها
    (۲۷) جزئیات ویژگی‌های خاص
    (۲۸) منطقه شیر فشار اطمینان یا مساحت معادل نشت برای enclosure محافظت‌شده جهت جلوگیری از توسعه اختلاف فشار در مرزهای enclosure که بیش از حد مجاز فشار enclosure مشخص‌شده در هنگام تخلیه سیستم باشد

    ۶.۱.۲.۶ جزئیات سیستم باید شامل اطلاعات و محاسبات در مورد مقدار عامل؛ فشار ذخیره‌سازی ظرف؛ حجم داخلی ظرف؛ مکان، نوع، و نرخ جریان هر نازل، شامل مساحت معادل روزنه؛ مکان، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ‌ها؛ و مکان و اندازه تأسیسات ذخیره‌سازی باشد.
    ۶.۱.۲.۶.۱ کاهش اندازه لوله و جهت‌گیری تکیه‌گاه‌ها باید مشخص شود.
    ۶.۱.۲.۶.۲ اطلاعات مربوط به مکان و عملکرد دستگاه‌های شناسایی، دستگاه‌های عملیاتی، تجهیزات کمکی، و مدارهای الکتریکی، در صورت استفاده، باید ارائه شود.
    ۶.۱.۲.۶.۳ دستگاه‌ها و وسایل استفاده‌شده باید شناسایی شوند.
    ۶.۱.۲.۶.۴ هر ویژگی خاص باید توضیح داده شود.
    ۶.۱.۲.۶.۵ سیستم‌های پیش‌مهندسی شده نیازی به مشخص کردن حجم داخلی ظرف، نرخ‌های جریان نازل، طول معادل لوله‌ها، اتصالات و شیلنگ‌ها، یا محاسبات جریان ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده می‌شوند.
    ۶.۱.۲.۶.۶ برای سیستم‌های پیش‌مهندسی شده، اطلاعات مورد نیاز توسط دفترچه طراحی سیستم فهرست‌شده باید برای تأیید سیستم بر اساس محدودیت‌های فهرست‌شده به مرجع ذی‌صلاح ارائه شود.
    ۶.۱.۲.۷ یک دفترچه راهنمای “طبق ساخت” و نگهداری که شامل توالی کامل عملیات و مجموعه کاملی از نقشه‌ها و محاسبات باشد باید در سایت نگهداری شود.
    ۶.۱.۲.۸ محاسبات جریان
    ۶.۱.۲.۸.۱ محاسبات جریان همراه با نقشه‌های اجرایی باید برای تأیید به مرجع ذی‌صلاح ارائه شوند.
    ۶.۱.۲.۸.۲ نسخه برنامه محاسبات جریان باید در چاپ خروجی محاسبات کامپیوتری مشخص شود.
    ۶.۱.۲.۸.۳ زمانی که شرایط میدانی نیاز به تغییرات مادی از نقشه‌های تأیید شده داشته باشد، تغییر باید برای تأیید ارائه شود.
    ۶.۱.۲.۸.۴ زمانی که تغییرات مادی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اصلاح‌شده “طبق ساخت” باید ارائه شوند.

    ۶.۱.۳ تأیید نقشه‌ها

    ۶.۱.۳.۱ نقشه‌ها و محاسبات باید قبل از نصب تأیید شوند.

    ۶.۱.۳.۲ در صورتی که شرایط میدانی نیاز به هرگونه تغییر اساسی از نقشه‌های تأیید شده داشته باشد، تغییر باید قبل از اجرایی شدن برای تأیید ارسال شود.
    ۶.۱.۳.۳ زمانی که چنین تغییرات اساسی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اجرایی باید به‌روزرسانی شوند تا سیستم نصب‌شده را به‌طور دقیق نشان دهند.

    ۶.۲ محاسبات جریان سیستم
    ۶.۲.۱ محاسبات جریان سیستم باید با استفاده از روش محاسباتی فهرست‌شده یا تأیید شده توسط مرجع ذی‌صلاح انجام شود.
    ۶.۲.۱.۱ طراحی سیستم باید در محدوده محدودیت‌های فهرست‌شده سازنده باشد.
    ۶.۲.۱.۲ طراحی‌هایی که شامل سیستم‌های پیش‌مهندسی شده هستند، نیازی به ارائه محاسبات جریان مطابق با بند ۶.۱.۲.۸ ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده شوند.

    ۶.۲.۲ شیرها و اتصالات باید برای طول معادل بر اساس اندازه لوله یا لوله‌کشی که با آن‌ها استفاده خواهند شد، ارزیابی شوند.
    ۶.۲.۲.۱ طول معادل شیر ظرف باید فهرست شده باشد.
    ۶.۲.۲.۲ طول معادل شیر ظرف باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۶.۲.۳ طول‌های لوله‌کشی و جهت‌گیری اتصالات و نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده سازنده باشد.

    ۶.۲.۴ اگر نصب نهایی از نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدید که نصب “طبق ساخت” را نشان دهند باید تهیه شوند

  • دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

    1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

    9k=

    این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

    یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

    9k=

    (2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

    A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

    Z

    تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

    Z

    انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

    بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

    تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

    Z

    محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

    A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

    A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

    Z

    که در آن:

    S = توان تابشی که به حسگر می‌رسد
    k = ثابت تناسب برای حسگر
    P = توان تابشی ساطع‌شده توسط آتش
    e = پایه لگاریتم نپر (۲.۷۱۸۳)
    ζ = ضریب تضعیف هوا
    d = فاصله بین آتش و حسگر

    2Q==

    حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
    این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.
    در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

  • دتکتور حرارتی خطی دو کاناله چیست؟

    ویژگی‌های دتکتور حرارتی خطی فیبر نوری
    ● اندازه‌گیری خطی دما برای تشخیص سریع حریق و تعیین دقیق محل منبع آتش
    ● دو کانال اندازه‌گیری نوری مستقل
    ● حداکثر طول کابل دتکتور بدون نیاز به نگهداری = ۲۰ کیلومتر (۲ × ۱۰ کیلومتر)WhatsApp Image 2025 09 18 at 2.26.41 AM

    پردازش سیگنال با فناوری OFDR (بازتاب‌سنجی ناحیه فرکانس نوری)
    ● ۱۰۰۰ ناحیه قابل برنامه‌ریزی
    ● معیارهای هشدار قابل انتخاب
    ● دقت مکانی بالا تا ۰٫۲۵ متر
    ● ارائه اطلاعات در مورد جهت گسترش آتش
    ● امکان استفاده از سیستم دتکتور افزونه
    ● مناسب برای سرعت باد تا ۱۰ متر بر ثانیه
    ● کلاس لیزر 1M طبق استاندارد DIN EN 60825-1:2014

    اصل اندازه‌گیری
    سیستم FibroLaser بر اساس عبور یک پرتو لیزر از طریق کابل فیبر نوری عمل می‌کند. کابل فیبر نوری در هر نقطه، بخشی کوچک از تابش لیزر را به سمت منبع بازمی‌تاباند. بازتاب اندازه‌گیری‌شده توسط کنترلر ثبت می‌شود.
    دو کابل دتکتور مستقل می‌توانند به یک دتکتور حرارتی خطی دو کاناله متصل شوند. تابش نوری LED لیزری با طول‌موج نزدیک به مادون‌قرمز که منتشر می‌شود، توسط کابل فیبر نوری به شکل‌های مختلفی پراکنده می‌شود:

    WhatsApp Image 2025 09 18 at 2.26.41 AM1

    پراکندگی ریلی (Rayleigh)
    ● پراکندگی استوکس (Stokes)
    ● پراکندگی آنتی‌استوکس (Anti-Stokes)

    نور پراکنده‌شده ریلی دارای همان طول‌موج پرتوی لیزر است، پراکندگی استوکس دارای طول‌موج کمی بالاتر، و آنتی‌استوکس دارای طول‌موجی کمی پایین‌تر است. دو نوع پراکندگی استوکس معمولاً به‌عنوان پراکندگی رامان نیز شناخته می‌شوند. درحالی‌که پراکندگی استوکس وابستگی زیادی به دما ندارد، پراکندگی آنتی‌استوکس تحت تأثیر انرژی حرارتی دمای محلی کابل فیبر نوری قرار دارد؛ شدت آن با افزایش دما افزایش می‌یابد. دمای کابل فیبر نوری با استفاده از نسبت شدت بین پراکندگی استوکس و آنتی‌استوکس محاسبه می‌شود.

    کنترلر
    فرستنده
    – شامل لیزر و مدار کنترل آن است.

    • گیرنده
      – شامل کل سیستم نوری است.
      – کوپل کردن نور لیزر تولیدشده در فرستنده به کابل دتکتور
      – تبدیل نور بازتاب‌شده از فیبر نوری به سیگنال الکتریکی و پردازش آن
    • واحد دیجیتال
      – این ماژول کنترل کامل دستگاه و فرایند اندازه‌گیری را بر عهده دارد.
      – محاسبه پروفایل دما در طول کابل دتکتور بر اساس داده‌های اندازه‌گیری دریافت‌شده
      – مدیریت ۴ ورودی داخلی (قابل افزایش تا ۴۰ ورودی) برای ریست کردن، ارسال آلارم‌های خارجی یا پایش عملکرد
      – کنترل ۱۲ خروجی (قابل افزایش تا ۱۰۶ خروجی) برای انتقال آلارم‌ها و خطاها به تابلوی کنترل اعلام حریق
      – رابط USB یا اترنت برای راه‌اندازی اولیه استفاده می‌شود. در صورت نیاز، رایانه‌ای می‌تواند به این رابط متصل شود تا نواحی و/یا پروفایل دما را نمایش دهد (نرم‌افزار تصویری FibroManager).
      – پشتیبانی از پروتکل‌های کنترلر نسل قبلی (OTS-100, OTS-X)
    • منبع تغذیه
      – تأمین ولتاژ موردنیاز تمام اجزای کنترلر
      – قابل انتخاب به‌صورت ۲۴ ولت DC (پیش‌فرض) یا ۱۱۵/۲۳۰ ولت AC (اختیاری)

    کاربرد
    دتکتورهای حرارتی خطی عمدتاً در کاربردهایی مانند تونل‌های جاده‌ای و تونل‌های ریلی مورد استفاده قرار می‌گیرند. سیستم FibroLaser همچنین برای پایش موارد زیر مناسب است:
    ● نوار نقاله‌ها
    ● سیستم‌های حمل‌ونقل معادن زیرزمینی
    ● پارکینگ‌های طبقاتی
    ● تأسیسات تولید صنعتی
    ● سالن‌های تئاتر و اپرا
    ● سینی کابل و کانال‌های کابل
    ● پله‌برقی‌ها در متروها و مراکز خرید
    ● مناطق مستعد انفجار در پالایشگاه‌ها (نسخه ضدانفجار)
    ● نیروگاه‌ها برای پایش مناطق آلوده به مواد رادیواکتیو (انبار موقت، حوضچه پمپ)