دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

IMG 2122

1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

9k=

این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

9k=

(2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

Z

تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

Z

انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

Z

محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

Z

که در آن:

S = توان تابشی که به حسگر می‌رسد
k = ثابت تناسب برای حسگر
P = توان تابشی ساطع‌شده توسط آتش
e = پایه لگاریتم نپر (۲.۷۱۸۳)
ζ = ضریب تضعیف هوا
d = فاصله بین آتش و حسگر

2Q==

حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.
در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

نوشته‌های مشابه

  • معرفی سیستم‌های اطفاء حریق با گاز دی‌اکسید کربن

    1 محدودیت‌ها برای محفظه‌های معمولاً اشغال‌شده
    4.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی نباید در محفظه‌های معمولاً اشغال‌شده نصب شوند، مگر در مواردی که در بندهای 4.1.1.1، 4.1.1.2، 4.1.1.3، 4.1.1.4 یا 4.1.1.5 مجاز شمرده شده باشد.

    4.1.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از پایین‌ترین سطح اثرات منفی مشاهده‌شده (LOAEL) را ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.1.2 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده برای آتش‌سوزی‌های مربوط به تجهیزات الکتریکی فعال با ولتاژ بیشتر از 400 ولت و کابل‌های الکتریکی گروهی باشند، جایی که هیچ عامل گازی جایگزین به‌طور موفقیت‌آمیزی آزمایش نشده باشد.

    4.1.1.3 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که روش‌های طراحی یا سخت‌افزار یا هر دو برای درزگیری بازشوها یا تخلیه طولانی‌مدت برای دیگر عوامل گازی در دسترس نباشند.

    4.1.1.4 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های بارگیری کشتی‌های دریایی باشند.

    4.1.1.5 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده در اتاق‌های موتور کشتی‌های دریایی باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از LOAEL ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.2 سیستم‌های موجود. سیستم‌های دی‌اکسید کربن به‌صورت سیلابی موجود باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، مشروط بر اینکه به‌طور کامل با شیرهای قفل‌کننده سیستم، آلارم‌های پیش‌تخلیه پنوماتیک و تأخیرهای زمانی پنوماتیک مشخص‌شده در بند 4.5.6 مجهز شده باشند.

    4.2 استفاده و محدودیت‌های دی‌اکسید کربن
    4.2.1 سیستم‌های اطفاء حریق با دی‌اکسید کربن که از مناطق در برابر انفجار محافظت می‌کنند، باید از نازل‌های فلزی استفاده کنند و کل سیستم باید به‌طور کامل به زمین متصل شود.

    4.2.2 علاوه بر این، اشیاء در معرض تخلیه از نازل‌های دی‌اکسید کربن باید به‌طور کامل به زمین متصل شوند تا از تجمع بارهای الکترواستاتیکی احتمالی جلوگیری شود.

    4.3 ایمنی پرسنل
    4.3.1 خطرات برای پرسنل
    4.3.1.1 باید به احتمال حرکت و نشستن گاز دی‌اکسید کربن در مکان‌های مجاور خارج از فضای محافظت‌شده توجه شود. (به بند 4.3.1.3 مراجعه کنید.)

    4.3.1.2 همچنین باید به محل‌هایی توجه شود که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از یک دستگاه تخلیه ایمنی در یک مخزن ذخیره، مهاجرت یا جمع شود.

    4.3.1.3 در هر استفاده از گاز دی‌اکسید کربن، باید به احتمال گرفتار شدن پرسنل در جو یا ورود به جوی که به دلیل تخلیه دی‌اکسید کربن خطرناک شده است، توجه شود.

    4.3.1.3.1 تدابیری باید فراهم شود تا از تخلیه سریع پرسنل اطمینان حاصل شود، ورود به چنین جوهایی که در بند 4.3.1.3 توضیح داده شده است جلوگیری شود، و روش‌هایی برای نجات سریع پرسنل گرفتار شده فراهم گردد.

    4.3.1.3.2 باید آموزش‌های لازم به پرسنل ارائه شود.

    4.3.2 علائم
    4.3.2.1 علائم هشدار باید در مکان‌های قابل مشاهده در هر فضای محافظت‌شده، در هر ورودی به فضاهای محافظت‌شده، در فضاهای نزدیک به فضاهای محافظت‌شده که مشخص شده است گاز دی‌اکسید کربن ممکن است مهاجرت کرده و خطراتی برای پرسنل ایجاد کند، و در هر ورودی به اتاق‌های ذخیره‌سازی دی‌اکسید کربن و جایی که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از دستگاه ایمنی یک مخزن ذخیره جمع شود، نصب شوند.

    4.3.2.2 فرمت، رنگ، سبک حروف کلمات سیگنال، حروف‌نگاری پیام، اندازه حروف و مقررات ایمنی نمادها باید مطابق با استاندارد ANSI Z535.2 باشد.

    4.3.2.3 علائم ایمنی و کلمات پیام باید با استفاده از فرمت سه‌پنلی که در بندهای 4.3.2.3.1 تا 4.3.2.3.6.2 مشخص شده است، ارائه شوند.

    4.3.2.3.1 علائم نشان داده‌شده در شکل 4.3.2.3.1 باید در هر فضای محافظت‌شده استفاده شود.

    4.3.2.3.2 علائم نشان داده‌شده در شکل 4.3.2.3.2 باید در هر ورودی به فضای محافظت‌شده استفاده شود.

    4.3.2.3.3 علائم نشان داده‌شده در شکل 4.3.2.3.3 باید در هر ورودی به فضای محافظت‌شده برای سیستم‌هایی که با بوگیر سبز زمستانی تجهیز شده‌اند، استفاده شود.

    2Q==

    9k=

    ۴.۳.۲.۳.۴ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۴ باید در هر فضای مجاور که احتمال تجمع گاز دی‌اکسید کربن تا سطح خطرناک وجود دارد، نصب شود.

    ۴.۳.۲.۳.۵ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۵ باید در بیرون از هر ورودی اتاق ذخیره‌سازی دی‌اکسید کربن نصب شود.

    ۴.۳.۲.۳.۶ تابلوها برای عملکرد دستی:

    ۴.۳.۲.۳.۶.۱ تابلوهای هشدار باید در تمام مکان‌هایی که عملکرد دستی سیستم ممکن است انجام شود، نصب شوند.

    ۴.۳.۲.۳.۶.۲ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۶.۲ باید در کنار هر ایستگاه فعال‌سازی دستی نصب شود.

    Z

    2Q==

    2Q==

    ۴.۳.۲.۴ برای نصب‌هایی که دارای تابلوهای موجودی هستند که با الزامات بند ۴.۳.۲.۳ تفاوت دارند اما با الزامات بند ۴.۳.۲.۱مطابقت دارند، این تابلوهای موجود قابل‌قبول تلقی می‌شوند، مشروط بر اینکه مرکز دارای برنامه آموزشی تابلوها باشد که کلیه تابلوهای مرتبط با سیستم اطفاء را پوشش دهد و تمام افرادی که به فضای تحت حفاظت دسترسی دارند یا آموزش‌های لازم را دیده باشند یا همیشه با فرد آموزش‌دیده در آن فضا همراه باشند.
    در تأسیسات مشمول این بند، در نصب‌های جدید باید از همان نوع تابلوهایی استفاده شود که در تابلوهای موجود مرکز استفاده شده است. تمام تابلوها در یک مرکز باید سبک و قالب یکسانی داشته باشند.

    ۴.۳.۳ روش‌های تخلیه:

    ۴.۳.۳.۱ تمام افرادی که ممکن است در هر زمان وارد فضای تحت حفاظت با دی‌اکسید کربن شوند باید نسبت به خطرات موجود هشدار داده شوند و روش‌های ایمن تخلیه به آنان آموزش داده شود.

    ۴.۳.۳.۱.۱ باید تدابیری اتخاذ شود تا از ورود افراد فاقد تجهیزات ایمنی به فضاهایی که در اثر تخلیه دی‌اکسید کربن ناایمن شده‌اند، جلوگیری گردد، تا زمانی که فضا تهویه شود و آزمایش‌های مناسب ایمنی محیط را تأیید کرده باشند. افرادی که آموزش ندیده‌اند یا مجهز به دستگاه تنفسی مستقل (SCBA) نیستند، نباید در فضاهایی که غلظت گاز از ۴ درصد بیشتر است باقی بمانند.

    ۴.۳.۳.۲ هشداردهنده‌های صوتی و نوری باید طبق بند ۴.۵.۶فراهم شوند.

    ۴.۳.۳.۳* به تمام کارکنان اطلاع داده شود که تخلیه گاز دی‌اکسید کربن از سیستم‌های با فشار بالا یا پایین به‌صورت مستقیم روی فرد، می‌تواند باعث آسیب به چشم، گوش یا حتی زمین خوردن در اثر فشار شدید گاز شود.

    ۴.۳.۳.۴ در تمام سیستم‌ها به‌جز مواردی که محدودیت‌های ابعادی وجود دارد و مانع ورود افراد به فضای تحت حفاظت می‌شود، باید قفل ایمنی (lockout) فراهم شود.

    ۴.۳.۳.۴.۱ شیر قفل ایمنی باید روی تمام سیستم‌هایی که امکان مهاجرت دی‌اکسید کربن و ایجاد خطر برای افراد وجود دارد، نصب شود.

    ۴.۳.۳.۴.۲ در سیستم‌های فشار پایین، شیر قطع مخزن نباید به‌عنوان شیر قفل ایمنی در نظر گرفته شود، مگر طبق مجوز بند ۴.۳.۳.۴.۳.

    ۴.۳.۳.۴.۳ در مواردی که یک مخزن فشار پایین تنها یا چند سیستم را تغذیه می‌کند که خطرات مرتبط به هم را پوشش می‌دهند، و هیچ‌کدام از این خطرات در صورت خاموش بودن تجهیزات نیاز به حفاظت ندارند، می‌توان از شیر قطع مخزن به‌عنوان شیر قفل ایمنی برای کل سیستم استفاده کرد.

    ۴.۳.۳.۴.۴* کلید قطع سرویس نباید به‌جای شیر قفل ایمنی برای جلوگیری از تخلیه عامل مورد استفاده قرار گیرد. (به بند ۴.۵.۴.۱۲ مراجعه شود.)

    ۴.۳.۳.۴.۵ هنگام انجام تعمیرات یا آزمایش روی سیستم، باید سیستم قفل شود یا فضای حفاظت‌شده و فضاهای در معرض مهاجرت گاز تخلیه شوند.

    ۴.۳.۳.۴.۶ زمانی که قرار است در دوره قفل ایمنی حفاظت ادامه یابد، باید فرد یا افرادی به‌عنوان “نگهبان حریق” با تجهیزات اطفاء دستی یا نیمه‌ثابت مناسب یا ابزار لازم برای بازیابی حفاظت تعیین شوند.

    ۴.۳.۳.۴.۶.۱ نگهبان حریق باید به یک محل با پایش دائمی ارتباط داشته باشد.

    ۴.۳.۳.۴.۶.۲ مقامات مسئول تداوم حفاظت باید از قفل ایمنی و بازگردانی مجدد سیستم مطلع شوند.

    ۴.۳.۳.۵* هنگام حمل سیلندرهای سیستم، باید دستورالعمل‌های ایمنی رعایت شود.

    ۴.۳.۴ فاصله‌های الکتریکی:

    ۴.۳.۴.۱* تمام اجزای سیستم باید به‌گونه‌ای قرار گیرند که حداقل فاصله از اجزای برقدار مطابق با جدول ۴.۳.۴.۱ و شکل ۴.۳.۴.۱حفظ شود.

    ۴.۳.۴.۲* در ارتفاعات بیش از ۳۳۰۰ فوت (۱۰۰۰ متر)، فاصله از اجزای برقدار باید به میزان ۱ درصد برای هر ۳۳۰ فوت (۱۰۰متر) افزایش در ارتفاع، افزایش یابد.

    ۴.۳.۴.۳* برای هماهنگی فاصله موردنیاز با طراحی الکتریکی، باید سطح عایق‌کاری پایه طراحی (BIL) تجهیزات تحت حفاظت ملاک قرار گیرد، اگرچه در ولتاژهای نامی ۱۶۱ کیلوولت یا کمتر، این موضوع تأثیرگذار نیست.

    ۴.۳.۴.۴* فاصله انتخاب‌شده تا زمین باید بر اساس بیشترین مقدار بین پیک سوئیچینگ یا وظیفه BIL تعیین شود، نه صرفاً بر اساس ولتاژ نامی.

    ۴.۳.۴.۵ فاصله بین اجزای بدون عایق و برقدار سیستم الکتریکی و هر بخش از سیستم دی‌اکسید کربن نباید کمتر از حداقل فاصله‌ای باشد که برای ایزولاسیون سیستم الکتریکی در نظر گرفته شده است.

    Z

    Z

    4.3.4.6 زمانی که BIL طراحی در دسترس نباشد و زمانی که ولتاژ نامی برای معیار طراحی استفاده شود، بالاترین حداقل فاصله مشخص شده برای این گروه باید استفاده شود.

    4.3.5* مدت زمان حفاظت. برای سیستم‌های سیلاب کامل، غلظت مؤثر عامل اطفاء حریق باید به مدت زمانی حفظ شود که اقدامات اضطراری مؤثر توسط پرسنل آموزش دیده امکان‌پذیر باشد.

    4.3.6* آلارم‌های قابل مشاهده پیش از تخلیه باید مطابق با موارد زیر باشند: (1) آنها باید در تمام فضای محافظت‌شده قابل مشاهده باشند. (2) آنها باید از سیگنال آلارم حریق ساختمان و سایر سیگنال‌های آلارم متمایز باشند. (3) دستگاه‌های قابل مشاهده، به جز پوشش‌ها، نیازی به هم‌زمانی با یکدیگر یا با آلارم‌های حریق ساختمان ندارند.

    4.4 مشخصات، نقشه‌ها و تأییدیه‌ها.

    4.4.1 مشخصات. 4.4.1.1 مشخصات برای سیستم‌های اطفاء حریق دی‌اکسید کربن باید تحت نظارت شخصی با تجربه و صلاحیت کامل در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن و با مشاوره مقام مسئول تهیه شوند. 4.4.1.2 مشخصات باید شامل تمام موارد ضروری برای طراحی سیستم مانند تعیین مقام مسئول، انحرافات از استاندارد که توسط مقام مسئول مجاز است، و نوع و میزان آزمایش‌های تأییدیه‌ای که پس از نصب سیستم انجام خواهد شد، باشد. 4.4.1.3 آزمایش‌های سیستم حفاظت آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شوند.

    4.4.2 نقشه‌ها. 4.4.2.1 نقشه‌ها و محاسبات باید قبل از آغاز نصب به تأیید مقام مسئول ارسال شوند. 4.4.2.2 نقشه‌ها و محاسبات باید توسط افراد کاملاً واجد شرایط در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن تهیه شوند. 4.4.2.3 این نقشه‌ها باید به مقیاس مشخص یا با ابعاد دقیق ترسیم شوند. 4.4.2.4 نقشه‌ها باید به‌گونه‌ای تهیه شوند که به راحتی قابل تکثیر باشند. 4.4.2.5 این نقشه‌ها باید جزئیات کافی برای ارزیابی خطر یا خطرات و ارزیابی اثربخشی سیستم توسط مقام مسئول را فراهم کنند. 4.4.2.6 جزئیات نقشه‌ها باید شامل موارد زیر باشد: (1) مواد موجود در خطرات محافظت‌شده (2) محل خطرات (3) محصورسازی یا محدودیت و جداسازی خطرات (4) نواحی اطراف که می‌توانند بر خطرات محافظت‌شده تأثیر بگذارند

    4.4.2.7 جزئیات سیستم باید شامل موارد زیر باشد: (1) اطلاعات و محاسبات در مورد مقدار دی‌اکسید کربن (2) محل و نرخ جریان هر نازل، شامل شماره کد دهانه و قطر واقعی دهانه.

    (3) محل، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ
    (4) محل و اندازه تأسیسات ذخیره‌سازی دی‌اکسید کربن

    4.4.2.8 جزئیات روش کاهش اندازه لوله (کوپلینگ کاهنده یا بوشینگ) و جهت‌گیری سه‌راهی‌ها باید به‌وضوح مشخص شوند.
    4.4.2.9 اطلاعات مربوط به محل و عملکرد دستگاه‌های آشکارساز، دستگاه‌های عملیاتی، تجهیزات کمکی و مدارهای الکتریکی (در صورت استفاده) باید ارائه شوند.
    4.4.2.10 اطلاعاتی باید ارائه شود که دستگاه‌ها و تجهیزات مورد استفاده را شناسایی کند.
    4.4.2.11 هر ویژگی خاص باید به‌طور کافی توضیح داده شود.
    4.4.2.12 زمانی که شرایط در محل اجرای پروژه نیازمند تغییرات قابل توجه از نقشه‌های تأییدشده باشد، تغییرات باید برای تأیید به مقام مسئول ارائه شوند.
    4.4.2.13 اگر نصب نهایی با نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدیدی که نصب واقعی (as-built) را نشان می‌دهند باید تهیه شوند.
    4.4.2.13.1 نقشه‌های as-built باید ارتباط بین خاموش‌سازی تجهیزات موردنیاز و قطع سوخت با سیستم اطفاء حریق را نشان دهند.
    4.4.2.14 مالک سیستم باید دفترچه راهنمای دستورالعمل و نگهداری شامل توالی کامل عملکرد را نگهداری کرده و مجموعه کامل نقشه‌ها و محاسبات سیستم را در یک محفظه محافظت‌شده حفظ کند.

    4.4.3* تأیید نصب‌ها
    4.4.3.1* سیستم کامل‌شده باید توسط پرسنل واجد شرایط بازرسی، آزمایش و مستندسازی شده و به تأیید مقام مسئول برسد.
    4.4.3.1.1 آزمایش پذیرش مورد نیاز در بند 4.4.3.1 باید در قالب یک گزارش آزمایش مستندسازی شود.
    4.4.3.1.2 گزارش آزمایش پذیرش باید تا پایان عمر سیستم توسط مالک سیستم نگهداری شود.
    4.4.3.2* فقط تجهیزات و دستگاه‌های فهرست‌شده یا تأییدشده باید در سیستم استفاده شوند.
    4.4.3.3 برای اطمینان از نصب صحیح سیستم و عملکرد آن مطابق مشخصات، مراحل 4.4.3.3.1 تا 4.4.3.3.4.2 باید انجام شوند.

    4.4.3.3.1 بازرسی بصری. یک بازرسی بصری کامل از سیستم نصب‌شده و ناحیه دارای خطر باید انجام شود.
    4.4.3.3.1.1 لوله‌کشی، تجهیزات عملیاتی و نازل‌های تخلیه باید از نظر اندازه و محل مناسب بررسی شوند.
    4.4.3.3.1.2 محل آلارم‌ها و مکانیزم‌های دستی اضطراری باید تأیید شوند.
    4.4.3.3.1.3 پیکربندی ناحیه خطر باید با مشخصات اولیه خطر مقایسه شود.
    4.4.3.3.1.4 ناحیه خطر باید از نظر وجود بازشوهای غیرقابل بسته‌شدن و منابع نشت عامل اطفاء که ممکن است در مشخصات اولیه نادیده گرفته شده باشند، با دقت بررسی شود.

    4.4.3.3.2 برچسب‌گذاری.
    4.4.3.3.2.1 بررسی برچسب‌گذاری تجهیزات برای اطمینان از تطابق با نام‌گذاری و دستورالعمل‌های صحیح باید انجام شود.

    4.4.3.3.2.2 اطلاعات پلاک شناسایی روی مخازن ذخیره‌سازی باید با مشخصات تطبیق داده شود.
    4.4.3.3.3 آزمایش‌های عملکردی. آزمایش‌های عملکردی غیرمخرب بر روی تمام دستگاه‌های لازم برای عملکرد سیستم، از جمله دستگاه‌های کشف، فعال‌سازی و هشداردهنده، باید انجام شود.
    4.4.3.3.4* آزمایش تخلیه کامل.
    4.4.3.3.4.1 یک آزمایش تخلیه کامل باید بر روی هر سیستم نصب‌شده انجام شود.
    4.4.3.3.4.2 در مواردی که چند خطر از یک منبع مشترک محافظت می‌شوند، یک آزمایش تخلیه کامل برای هر خطر باید انجام شود.
    4.4.3.4 پیش از انجام آزمایش، رویه‌های ایمنی باید مرور شوند. (رجوع شود به بخش 4.4)

    4.4.4 آزمایش سیستم‌ها. سیستم‌ها باید طبق بندهای 4.4.4.1 تا 4.4.4.3 آزمایش شوند.
    4.4.4.1 کاربرد موضعی. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن به طور مؤثر خطر را برای مدت زمان مورد نیاز بر اساس مشخصات طراحی پوشش می‌دهد و تمام تجهیزات فشاری عملکرد صحیح دارند.
    4.4.4.2 سیلاب کامل. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن در ناحیه خطر تخلیه می‌شود، غلظت مورد نظر حاصل شده و به مدت زمان مشخص‌شده در طراحی حفظ می‌شود، و تمام تجهیزات فشاری به درستی عمل می‌کنند.
    4.4.4.3 شیلنگ‌های دستی.
    4.4.4.3.1 یک آزمایش تخلیه کامل بر روی سیستم‌های شیلنگ دستی باید انجام شود.
    4.4.4.3.2 ارائه شواهدی از جریان مایع از هر نازل با الگوی پوشش‌دهی مناسب الزامی است.

    4.5 کشف، فعال‌سازی و کنترل.
    4.5.1 طبقه‌بندی. سیستم‌ها باید بر اساس روش‌های فعال‌سازی شرح‌داده‌شده در بندهای 4.5.1.1 تا 4.5.1.3.2 به صورت خودکار یا دستی طبقه‌بندی شوند.
    4.5.1.1 عملکرد خودکار. عملکردی که به هیچ اقدام انسانی نیاز ندارد به عنوان عملکرد خودکار در نظر گرفته می‌شود.
    4.5.1.2 عملکرد عادی دستی.
    4.5.1.2.1 عملکرد سیستم که نیاز به اقدام انسانی دارد و محل دستگاه فعال‌کننده به گونه‌ای است که در همه زمان‌ها به راحتی در دسترس خطر قرار دارد، عملکرد عادی دستی تلقی می‌شود. (رجوع شود به 4.5.4.5)
    4.5.1.2.2 عملکرد یک کنترل باید تمام موارد لازم برای راه‌اندازی کامل سیستم را انجام دهد.
    4.5.1.3* عملکرد اضطراری دستی.
    4.5.1.3.1 عملکرد سیستم توسط انسان که دستگاه فعال‌کننده کاملاً مکانیکی بوده و در محل یا نزدیک دستگاه کنترل‌شونده قرار دارد، عملکرد اضطراری دستی تلقی می‌شود.

    4.5.1.3.2 استفاده از فشار سیستم برای تکمیل عملکرد دستگاه کاملاً مکانیکی مجاز است. (رجوع شود به 4.5.4.6)

    4.5.2* کشف خودکار و فعال‌سازی خودکار. کشف خودکار و فعال‌سازی خودکار باید استفاده شود، مگر در شرایط زیر:

    1. فعال‌سازی فقط دستی در صورتی که مورد تأیید مرجع ذی‌صلاح باشد و آزادسازی خودکار باعث افزایش خطر شود، مجاز است.
    2. کشف خودکار و فعال‌سازی خودکار برای سیستم‌های شیلنگ دستی و رایزر ثابت (standpipe) کاربرد ندارد.
    3. کشف خودکار و فعال‌سازی خودکار در سیستم‌های دریایی اعمال نمی‌شود، مگر طبق بند 9.3.3 مجاز باشد.

    4.5.2.1* کنترل‌های فعال‌سازی خودکار باید به گونه‌ای تنظیم شوند که نیازمند دریافت سیگنال مداوم هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه باشند و فعال‌سازی هرگونه تأخیر زمانی برقی پیش از تخلیه و هشدارهای برقی پیش از تخلیه را پیش از فعال‌سازی دستگاه‌های آزادسازی الزامی کنند.

    4.5.3* کشف خودکار. کشف خودکار باید با هر روش یا دستگاه فهرست‌شده یا مورد تأیید که توانایی کشف و اعلام گرما، شعله، دود، بخارات قابل اشتعال یا شرایط غیرعادی در ناحیه خطر مانند مشکلات فرآیندی که احتمال آتش‌سوزی دارد را داشته باشد، انجام گیرد.

    4.5.4 دستگاه‌های عملکردی. دستگاه‌های عملکردی باید شامل دستگاه‌ها یا شیرهای آزادسازی دی‌اکسید کربن، کنترل‌های تخلیه، و دستگاه‌های خاموشی تجهیزات باشند که برای عملکرد موفق سیستم لازم هستند.

    4.5.4.1 فهرست‌شده و مورد تأیید. 4.5.4.1.1 عملکرد باید از طریق روش‌های مکانیکی، برقی یا پنوماتیکی فهرست‌شده یا مورد تأیید انجام شود. 4.5.4.1.2 تجهیزات کنترلی باید به‌طور خاص برای تعداد و نوع دستگاه‌های فعال‌سازی به‌کاررفته فهرست‌شده یا مورد تأیید باشند، و سازگاری آن‌ها نیز باید فهرست‌شده یا مورد تأیید باشد.

    4.5.4.2 طراحی دستگاه. 4.5.4.2.1 تمامی دستگاه‌ها باید برای شرایط کاری مورد انتظار طراحی شده باشند و نباید به راحتی غیرفعال شوند یا مستعد عملکرد تصادفی باشند. 4.5.4.2.2 دستگاه‌ها باید به‌طور معمول برای عملکرد در بازه دمایی °F 20- تا °F 150 (°C 29- تا °C 66) طراحی شده باشند یا محدودیت دمایی آن‌ها به‌طور واضح روی آن‌ها درج شده باشد.

    4.5.4.3 تمامی دستگاه‌ها باید به گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌هایی که می‌توانند باعث از کار افتادن آن‌ها شوند، قرار نگیرند.

    4.5.4.4 دستگاه‌هایی که از اتصالات خاص تولیدکننده برای کنترل آزادسازی دی‌اکسید کربن استفاده می‌کنند باید دارای اتصالاتی باشند که مشخص یا به وضوح نشانه‌گذاری شده باشند، در مواردی که احتمال نصب نادرست وجود دارد.

    4.5.4.4.1 دستگاه‌های جدید معرفی‌شده پس از ۱ ژانویه ۲۰۰۸باید با این الزامات مطابقت داشته باشند.

    4.5.4.5* کنترل‌های دستی معمول برای فعال‌سازی باید در تمامی زمان‌ها از جمله هنگام آتش‌سوزی به راحتی در دسترس باشند.

    4.5.4.5.1 کنترل(های) دستی باید ظاهر مشخص و قابل تشخیص برای هدف مورد نظر داشته باشند.

    ۴.۵.۴.۵.۲ کنترل(های) دستی باید باعث عملکرد کامل سیستم به صورت عادی شود.

    ۴.۵.۴.۵.۳ عملکرد این کنترل دستی نباید باعث بازتنظیم تأخیر زمانی شود. (رجوع شود به ۴.۵.۶.۲.۲)

    ۴.۵.۴.۶* همه شیرهایی که کنترل آزادسازی و توزیع دی‌اکسید کربن را بر عهده دارند باید مجهز به کنترل دستی اضطراری باشند.

    ۴.۵.۴.۶.۱ کنترل دستی اضطراری برای سیلندرهای تحت فشار تبعی الزامی نیست.

    ۴.۵.۴.۶.۲ وسیله اضطراری باید به آسانی در دسترس بوده و در نزدیکی شیرهای مربوطه قرار داشته باشد.

    ۴.۵.۴.۶.۳ این دستگاه‌ها باید با یک پلاک هشدار مشخص نشانه‌گذاری شوند تا مفهوم بند ۴.۵.۴.۶.۲ را بیان کنند.

    ۴.۵.۴.۷* سیلندرها

    ۴.۵.۴.۷.۱ در مواردی که برای آزادسازی سیلندرهای تبعی از فشار گاز سیلندرهای پیلوت استفاده می‌شود که از طریق منیفولد تخلیه سیستم (یعنی با استفاده از فشار برگشتی به جای خط پیلوت جداگانه) تغذیه می‌شوند و تعداد کل سیلندرها کمتر از سه عدد است، باید حداقل یک سیلندر برای این عملیات اختصاص یابد.

    ۴.۵.۴.۷.۲ در مواردی که فشار گاز از سیلندرهای پیلوت از طریق منیفولد تخلیه سیستم برای آزادسازی سیلندرهای تبعی استفاده می‌شود و تعداد کل سیلندرها سه یا بیشتر است، باید حداقل یک سیلندر پیلوت بیشتر از حداقل مورد نیاز برای فعال‌سازی سیستم در نظر گرفته شود.

    ۴.۵.۴.۷.۳ در طول تست پذیرش تخلیه کامل، سیلندر پیلوت اضافی باید به‌گونه‌ای تنظیم شود که مانند یک سیلندر تبعی عمل کند.

    ۴.۵.۴.۷.۴* کنترل‌های فعال‌سازی خودکار باید به صورت زیر تنظیم شوند: ۱) نیاز به یک سیگنال پیوسته هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه داشته باشند.
    ۲) فعال‌سازی هرگونه تأخیر زمانی یا هشدارهای برقی پیش از تخلیه باید پیش از فعال‌سازی دستگاه‌های آزادسازی انجام شود.

    ۴.۵.۴.۸ کنترل‌های دستی

    ۴.۵.۴.۸.۱ کنترل‌های دستی نباید نیاز به نیروی کششی بیش از ۴۰ پوند (۱۷۸ نیوتن) یا حرکتی بیش از ۱۴ اینچ (۳۵۶ میلی‌متر) برای عملکرد داشته باشند.

    ۴.۵.۴.۸.۲ حداقل یک کنترل دستی برای فعال‌سازی باید در ارتفاعی حداکثر ۴ فوت (۱.۲ متر) از سطح زمین نصب شود.

    ۴.۵.۴.۹ در مواردی که ادامه عملکرد تجهیزات مرتبط با خطری که در حال اطفاء آن است می‌تواند به تداوم آتش‌سوزی کمک کند، منبع برق یا سوخت آن تجهیزات باید به صورت خودکار قطع شود.

    ۴.۵.۴.۹.۱ همه دستگاه‌های خاموش‌کننده باید به عنوان اجزای جدایی‌ناپذیر سیستم در نظر گرفته شده و همراه با عملکرد سیستم فعال شوند.

    ۴.۵.۴.۹.۲ الزامات بند ۴.۵.۴.۹ در مورد سیستم‌های روغن‌کاری مرتبط با تجهیزات دوار بزرگ که در آن‌ها سیستم تخلیه ممتد برای دوره کاهش سرعت یا خنک‌سازی طراحی شده باشد، اعمال نمی‌شود.

    ۴.۵.۴.۱۰ همه دستگاه‌های دستی باید به گونه‌ای شناسایی شوند که خطر مربوطه، عملکرد مورد انتظار و روش استفاده آن‌ها مشخص باشد.

    ۴.۵.۴.۱۱ استفاده از کلید قطع اضطراری (Abort switches) در سیستم‌های دی‌اکسید کربن مجاز نیست.

    ۴.۵.۴.۱۲ در سیستم‌هایی که به‌صورت الکتریکی عمل می‌کنند، باید یک کلید قطع سرویس تعبیه شود تا امکان آزمایش سیستم بدون فعال‌سازی سیستم اطفاء حریق فراهم شود. هنگام استفاده از این کلید، مدار آزادسازی سیستم اطفاء حریق قطع شده و سیگنال نظارتی در پنل آزادسازی سیستم اطفاء ایجاد می‌شود.

    ۴.۵.۴.۱۳ کلید فشار تخلیه

    ۴.۵.۴.۱۳.۱ یک کلید فشار تخلیه باید بین منبع دی‌اکسید کربن و شیر قفل‌کن نصب شود.

    ۴.۵.۴.۱۳.۲ در سیستم‌های دی‌اکسید کربن با فشار پایین، در صورتی که شیر قطع اصلی دستی و نظارت‌شده به عنوان شیر قفل‌کن در نظر گرفته شود (یعنی الزامات بندهای ۴.۳.۳.۴ تا ۴.۳.۳.۴.۵ را داشته باشد)، کلید فشار باید در پایین‌دست شیر خودکار (شیر انتخاب‌گر اصلی یا شیر انتخاب‌گر) که به اتاق سرور یا اتاق‌های سرور تغذیه می‌کند، نصب شود.

    ۴.۵.۴.۱۳.۳ کلید فشار تخلیه باید سیگنالی برای شروع هشدار به پنل آزادسازی ارسال کند تا دستگاه‌های هشدار برقی/الکترونیکی را فعال نماید.

    ۴.۵.۵ نظارت و شیرهای قفل‌کن

    ۴.۵.۵.۱ نظارت بر سیستم‌های خودکار و شیرهای قفل‌کن دستی باید فراهم باشد مگر اینکه توسط مرجع ذیصلاح به‌طور خاص مستثنا شود.

    ۴.۵.۵.۲* ارتباطات بین اجزای ضروری برای کنترل سیستم و ایمنی جانی باید تحت نظارت باشد.

    ۴.۵.۵.۳ ارتباطات لوله و لوله‌کشی که به‌طور معمول تحت فشار نیستند، ملزم به رعایت بند ۴.۵.۵.۲ نیستند.

    ۴.۵.۵.۴ در صورت وجود مدار باز، اتصال زمین ناخواسته یا از دست رفتن یکپارچگی در خطوط کنترل پنوماتیکی که موجب اختلال در عملکرد کامل سیستم می‌شود، باید سیگنال اشکال (trouble) ارسال گردد.

    ۴.۵.۵.۵ سیگنال‌های هشدار و اشکال باید از طریق یکی از روش‌های تعریف‌شده در استاندارد NFPA 72 ارسال شوند.

    ۴.۵.۵.۶ اتصالات سیلندرهای تبعی که با پنوماتیک فشار بالا کار می‌کنند و در مجاورت مستقیم با سیلندرهای پیلوت قرار دارند، الزامی به نظارت ندارند.

    ۴.۵.۵.۷ در مواردی که بای‌پس دستی وجود دارد و این بای‌پس می‌تواند در حالت باز باقی بماند، این بای‌پس‌ها باید تحت نظارت باشند.

    ۴.۵.۶* هشدارها. هشدارهای دیداری و شنیداری باید برای مقاصد زیر فراهم شوند:

    ۱) هشدار به افراد برای عدم ورود به فضایی که ممکن است به دلیل حضور غلظت بالای دی‌اکسید کربن، خطرناک باشد.
    ۲) فراهم‌کردن فرصت برای خروج افراد از فضاهایی که با تخلیه سیستم دی‌اکسید کربن ممکن است ناایمن شوند.

    ۴.۵.۶.۱ هشدارهای شنیداری و دیداری سیستم دی‌اکسید کربن باید از سایر هشدارها از جمله سیستم اعلام حریق ساختمان متمایز باشند.

    ۴.۵.۶.۲ هشدار پیش از تخلیه و تأخیر زمانی. یک هشدار پیش‌تخلیه پنوماتیکی، تأخیر زمانی پنوماتیکی و هشدار دیداری پیش‌تخلیه باید برای اتاق‌های سرور زیر فراهم شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تحت پوشش سیستم‌های غرقاب کامل هستند، به جز موارد بیان‌شده در بند ۴.۵.۶.۲.۳
    ۲) سیستم‌های اعمال موضعی که از خطراتی محافظت می‌کنند و تخلیه آن‌ها باعث قرار گرفتن افراد در معرض غلظت‌هایی از دی‌اکسید کربن بیش از ۷.۵ درصد حجمی در هوا به مدت بیش از ۵ دقیقه می‌شود

    ۴.۵.۶.۲.۱ هشدارهای پیش‌تخلیه، در صورت نیاز، باید در داخل فضای محافظت‌شده نصب شوند.

    ۴.۵.۶.۲.۲ تأخیر زمانی پیش‌تخلیه باید مدت زمانی کافی را برای هشدار پیش‌تخلیه فراهم کند تا امکان تخلیه افراد از دورترین نقاط فضا نسبت به خروجی‌ها فراهم باشد.

    ۴.۵.۶.۲.۳* حذف تأخیر زمانی برای فضاهای قابل اشغال مجاز است، در صورتی که فراهم کردن تأخیر زمانی باعث ایجاد خطر غیرقابل‌قبول برای افراد یا آسیب غیرقابل‌قبول به تجهیزات حیاتی شود.

    ۴.۵.۶.۲.۴ در مواردی که تأخیر زمانی حذف می‌شود، باید تدابیری اتخاذ گردد تا در زمانی که افراد در فضای محافظت‌شده حضور دارند، سیستم دی‌اکسید کربن در وضعیت قفل باشد و فعال نشود.

    ۴.۵.۶.۲.۵ آزمایش‌های خشک (Dry Runs) باید انجام شود تا حداقل زمان مورد نیاز برای تخلیه افراد از منطقه خطر به‌دست آید، با در نظر گرفتن زمان لازم برای تشخیص سیگنال هشدار.

    ۴.۵.۶.۲.۶ دستگاه‌های هشدار شنیداری باید یا سطح صدا مطابق با بندهای ۴.۵.۶.۲.۶.۱ و ۴.۵.۶.۲.۶.۲ داشته باشند یا ویژگی‌های صوتی مطابق با بند ۱۸.۴.۶ استاندارد NFPA 72 را دارا باشند.

    ۴.۵.۶.۲.۶.۱ هشدارهای پیش‌تخلیه شنیداری باید حداقل ۱۵دسی‌بل بالاتر از سطح نویز محیط یا ۵ دسی‌بل بالاتر از حداکثر سطح صدا، هرکدام که بیشتر است، باشند؛ این اندازه‌گیری باید در ارتفاع ۱.۵ متری از کف فضای قابل اشغال انجام شود.

    ۴.۵.۶.۲.۶.۲ دستگاه‌های هشدار شنیداری نباید صدایی بیش از ۱۲۰ دسی‌بل در حداقل فاصله شنوایی از دستگاه هشدار داشته باشند.

    ۴.۵.۶.۲.۶.۳ هشدار پیش‌تخلیه باید دارای حداقل قدرت صدای ۹۰ دسی‌بل در فاصله ۳ متری باشد.

    ۴.۵.۶.۳ هشدارهای دیداری و شنیداری باید در بیرون از هر ورودی به فضاهای زیر نصب شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که توسط سیستم غرقاب کامل دی‌اکسید کربن محافظت می‌شوند
    ۲) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تخلیه از سیستم موضعی ممکن است افراد را در معرض غلظت‌های خطرناک دی‌اکسید کربن قرار دهد
    ۳) فضاهای معمولاً اشغال‌شده یا قابل اشغال که دی‌اکسید کربن ممکن است به آن‌ها نشت کرده و برای افراد خطر ایجاد کند

    ۴.۵.۶.۳.۱ این هشدارها باید قبل از تخلیه یا همزمان با شروع تخلیه فعال شوند.

    ۴.۵.۶.۳.۲* این هشدارها باید پس از تخلیه عامل ادامه یابند تا یکی از شرایط زیر حاصل شود:

    ۱) اقدام مثبت دیگری برای جلوگیری از ورود افراد به فضایی که به دلیل تخلیه دی‌اکسید کربن ناایمن شده، انجام شود.
    ۲) فضا تهویه شده و ایمنی جو برای ورود افراد بدون تجهیزات حفاظتی تأیید گردد.

    ۴.۵.۶.۳.۳ پس از انجام اقدامات مندرج در بند ۴.۵.۶.۳.۲(۱)، قطع هشدار شنیداری در حالی که هشدار دیداری همچنان فعال باقی بماند، مجاز است.

    ۴.۵.۶.۳.۴ هشدارهای دیداری باید تا زمانی که تهویه فضا مطابق با بند ۴.۵.۶.۳.۲(۲) انجام نشده، فعال باقی بمانند.

    ۴.۵.۶.۴ باید یک هشدار یا نشانگر وجود داشته باشد که نشان دهد سیستم فعال شده و نیاز به شارژ مجدد دارد.

    ۴.۵.۶.۵* باید هشداری فراهم شود که فعال شدن سیستم‌های خودکار را اعلام کرده و نشان دهد که واکنش فوری کارکنان مورد نیاز است.

    ۴.۵.۶.۶ هشدارهای مربوط به خرابی تجهیزات یا دستگاه‌های تحت نظارت باید سریع و قطعی بوده و به‌طور واضح از هشدارهای مربوط به فعال شدن سیستم یا شرایط خطرناک متمایز باشند.

    ۴.۵.۷ منابع تغذیه

    ۴.۵.۷.۱ منبع اصلی انرژی برای عملکرد و کنترل سیستم باید ظرفیت لازم برای سرویس مورد نظر را داشته و قابل اطمینان باشد.

    ۴.۵.۷.۱.۱ در مواردی که از دست رفتن منبع اصلی انرژی باعث به خطر افتادن حفاظت از خطر یا ایمنی جان افراد (یا هر دو) می‌شود، یک منبع تغذیه ثانویه (اضطراری) مستقل باید در صورت قطع کامل یا افت ولتاژ (کمتر از ۸۵ درصد ولتاژ اسمی) منبع اصلی، انرژی مورد نیاز سیستم را تأمین کند.

    ۴.۵.۷.۱.۲ منبع تغذیه ثانویه (اضطراری) باید بتواند سیستم را تحت حداکثر بار معمولی به مدت ۲۴ ساعت فعال نگه دارد و سپس به مدت کامل دوره تخلیه طراحی‌شده به‌طور مداوم عمل کند.

    ۴.۵.۷.۱.۳ منبع تغذیه اضطراری باید به‌طور خودکار در مدت ۳۰ثانیه پس از از دست رفتن منبع تغذیه اصلی به سیستم متصل شده و آن را فعال کند.

    ۴.۵.۷.۲ تمامی تجهیزات الکتریکی باید قادر به کارکرد در بازه ۸۵ تا ۱۰۵ درصد ولتاژ نامی باشند.

    ۴.۶ تأمین دی‌اکسید کربن

    ۴.۶.۱* مقدار: مقدار تأمین اصلی دی‌اکسید کربن در سیستم باید حداقل به اندازه کافی برای بزرگ‌ترین خطر منفرد یا گروهی از خطرات که به‌صورت همزمان محافظت می‌شوند، باشد.

    ۴.۶.۱.۱ در صورتی که شیلنگ‌های دستی برای استفاده در یک خطر تحت حفاظت سیستم ثابت فراهم شده باشند، باید تأمین جداگانه‌ای برای آن‌ها وجود داشته باشد، مگر اینکه مقدار کافی از دی‌اکسید کربن موجود باشد تا اطمینان حاصل شود که حفاظت ثابت برای بزرگ‌ترین خطر مربوط به شیلنگ دستی به خطر نیفتد. (به بخش ۷.۴ و A.7.1.1 مراجعه شود.)

    ۴.۶.۱.۲ در صورتی که مرجع صلاحیت‌دار تشخیص دهد که حفاظت مداوم مورد نیاز است، مقدار ذخیره باید مضربی از مقادیر مورد نیاز در بندهای ۴.۶.۱ و ۴.۶.۱.۱ باشد، بسته به نظر مرجع مربوطه.

    ۴.۶.۱.۳ تأمین اصلی و ذخیره برای سیستم‌های ثابت باید به‌صورت دائم به لوله‌کشی متصل بوده و به‌گونه‌ای تنظیم شده باشد که تعویض آن‌ها به‌راحتی انجام شود، مگر آنکه مرجع صلاحیت‌دار اجازه ذخیره جداگانه بدون اتصال را صادر کند.

    ۴.۶.۲ تأمین مجدد: مدت زمان مورد نیاز برای تهیه دی‌اکسید کربن جهت شارژ مجدد سیستم‌ها به وضعیت عملیاتی، باید به عنوان یک عامل مهم در تعیین مقدار ذخیره در نظر گرفته شود.

    ۴.۶.۳* کیفیت: دی‌اکسید کربن باید دارای ویژگی‌های حداقلی زیر باشد:
    ۱) فاز بخار باید حداقل ۹۹.۵٪ دی‌اکسید کربن باشد، بدون هرگونه بوی نامطبوع یا طعم قابل تشخیص.
    ۲) میزان آب در فاز مایع باید مطابق با استاندارد CGA G-6.2 باشد.
    ۳) میزان روغن نباید بیشتر از ۱۰ پی‌پی‌ام (قسمت در میلیون) وزنی باشد.

    ۴.۶.۴ ظروف ذخیره‌سازی

    ۴.۶.۴.۱ ظروف ذخیره‌سازی و تجهیزات جانبی باید به‌گونه‌ای قرار داده و تنظیم شوند که بازرسی، نگهداری و شارژ مجدد به‌راحتی انجام شود.
    ۴.۶.۴.۲ اختلال در عملکرد حفاظت باید به حداقل برسد.
    ۴.۶.۴.۳ ظروف ذخیره‌سازی باید تا حد امکان به نزدیک‌ترین محل نسبت به خطرات تحت حفاظت نصب شوند، اما نباید در جایی قرار گیرند که در معرض آتش‌سوزی یا انفجار ناشی از همان خطر قرار بگیرند.
    ۴.۶.۴.۴ ظروف نباید در محل‌هایی قرار گیرند که در معرض شرایط آب و هوایی شدید، یا آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌ها باشند.
    ۴.۶.۴.۵ در صورت پیش‌بینی شرایط محیطی یا مکانیکی شدید، محافظ یا محفظه‌هایی باید برای محافظت فراهم شود.

    ۴.۶.۵ سیلندرهای پرفشار*

    مقدار دی‌اکسید کربن باید در سیلندرهای قابل شارژ نگهداری شود که برای نگهداری دی‌اکسید کربن به‌صورت مایع در دمای محیط طراحی شده‌اند.

    ۴.۶.۵.۱ ظروف مورد استفاده باید مطابق با الزامات وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا، یا مرجع معادل آن طراحی شده باشند.
    ۴.۶.۵.۲* سیلندرهای پرفشار استفاده شده در سیستم‌های اطفا حریق نباید بدون انجام تست هیدرواستاتیک و برچسب‌گذاری مجدد، در صورتی که بیش از ۵ سال از تاریخ آخرین تست گذشته باشد، مجدداً شارژ شوند.
    ۴.۶.۵.۲.۱ سیلندرهایی که به‌طور پیوسته در سرویس بوده‌اند بدون تخلیه، می‌توانند حداکثر تا ۱۲ سال پس از آخرین تست هیدرواستاتیک در سرویس باقی بمانند.
    ۴.۶.۵.۲.۲ در پایان ۱۲ سال، سیلندرهایی که بدون تخلیه در سرویس مانده‌اند، باید تخلیه شده، تست مجدد انجام شده و سپس دوباره وارد سرویس شوند.

    ۴.۶.۵.۳ دستگاه اطمینان فشار (Pressure Relief Device)
    ۴.۶.۵.۳.۱ هر سیلندر باید دارای یک دستگاه اطمینان فشار از نوع دیسک شکستنی (rupture disk) باشد.
    ۴.۶.۵.۳.۲ این دستگاه باید مطابق با الزامات بخش‌های ۴۹CFR 171 تا ۱۹۰ مقررات DOT، اندازه‌گذاری و نصب شود.

    ۴.۶.۵.۴ سیلندرهای منیفولد شده

    ۴.۶.۵.۴.۱ هنگامی که سیلندرها به صورت منیفولد نصب می‌شوند، باید در قفسه‌ای که مخصوص این کار طراحی شده نصب و نگهداری شوند و امکان سرویس‌دهی و وزن‌کشی جداگانه سیلندرها فراهم باشد.
    ۴.۶.۵.۴.۲ باید تمهیدات خودکاری در نظر گرفته شود که در صورت راه‌اندازی سیستم زمانی که یکی از سیلندرها برای نگهداری جدا شده است، از نشت دی‌اکسید کربن از منیفولد جلوگیری کند.

    ۴.۶.۵.۴.۳ در سیستم‌هایی با چند سیلندر، تمامی سیلندرهایی که به یک خروجی منیفولد مشترک برای توزیع عامل متصل هستند، باید قابل تعویض بوده و از یک سایز انتخاب‌شده و مشخص باشند.

    ۴.۶.۵.۵ دمای نگهداری محیطی

    ۴.۶.۵.۵. سیستم‌های محلی (local application) نباید در دمایی بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) یا پایین‌تر از ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) نگهداری شوند.
    ۴.۶.۵.۵.۱ در سیستم‌های غرقابی کلی (total flooding)، دمای نگهداری نباید از ۱۳۰ درجه فارنهایت (۵۴ درجه سانتی‌گراد) بیشتر و از ۰ درجه فارنهایت (۱۸- درجه سانتی‌گراد) کمتر باشد، مگر اینکه طراحی سیستم برای کار در دماهای خارج از این محدوده انجام شده باشد.
    ۴.۶.۵.۵.۲ استفاده از گرمایش یا سرمایش خارجی برای نگه‌داشتن دما در محدوده مشخص‌شده در ۴.۶.۵.۵.۱ مجاز است.
    ۴.۶.۵.۵.۳ در مواردی که از بارگذاری‌های خاص سیلندر برای جبران دماهای خارج از محدوده‌های اعلام‌شده در ۴.۶.۵.۵ و ۴.۶.۵.۵.۱ استفاده می‌شود، سیلندرها باید به‌صورت دائم و قابل‌اطمینان علامت‌گذاری شوند.

    ۴.۶.۶ ظروف ذخیره‌سازی کم‌فشار*

    ظروف ذخیره‌سازی کم‌فشار باید برای نگهداری دی‌اکسید کربن در فشار اسمی ۳۰۰ psi (2068 kPa)، معادل با دمای تقریبی ۰°F (۱۸-°C) طراحی شده باشند.

    ۴.۶.۶.۱ الزامات ظروف

    ۴.۶.۶.۱.۱ ظرف تحت فشار باید مطابق با مشخصات فعلی کدAPI-ASME برای مخازن بدون شعله مخصوص مایعات و گازهای نفتی ساخته، تست، تأیید، تجهیز و علامت‌گذاری شود. در مورد ظروف تأمین سیار، در صورت لزوم، الزامات 49CFR 171-190 وزارت حمل‌ونقل آمریکا (DOT) نیز باید رعایت شود.
    ۴.۶.۶.۱.۲ فشار طراحی ظرف باید حداقل ۳۲۵ psi (2241 kPa) باشد.

    ۴.۶.۶.۲ تجهیزات مورد نیاز اضافی*

    علاوه بر الزامات کدهای ASME و DOT، هر ظرف تحت فشار باید مجهز به موارد زیر باشد:

    گیج سطح مایع
    گیج فشار
    آلارم نظارتی فشار بالا/پایین که باید در فشار حداکثر ۹۰٪از حداکثر فشار کاری مجاز طراحی‌شده (MAWP) و حداقل ۲۵۰ psi (1724 kPa) فعال شود.

    ۴.۶.۶.۳ عایق و سیستم کنترل دما

    ظرف تحت فشار باید عایق‌بندی شده و در صورت لزوم مجهز به سیستم‌های سرمایشی یا گرمایشی کنترل‌شده خودکار(یا هر دو) باشد.

    ۴.۶.۶.۴ سیستم سرمایش

    سیستم سرمایش باید توانایی حفظ فشار ۳۰۰ psi (2068 kPa) در دمای بالاترین حد پیش‌بینی‌شده محیطی را داشته باشد.

    ۴.۶.۶.۵ سیستم گرمایش

    ۴.۶.۶.۵.۱ در صورت نیاز، سیستم گرمایش باید توانایی حفظ دمای ۰°F (۱۸-°C) در ظرف تحت فشار را در پایین‌ترین دمای محیطی مورد انتظار داشته باشد.
    ۴.۶.۶.۵.۲ سیستم گرمایش فقط در صورتی لازم است که داده‌های هواشناسی، احتمال وقوع دماهایی را نشان دهند که ممکن است محتویات مخزن را به دمایی برسانند که فشار به کمتر از ۲۵۰ psi (1724 kPa) کاهش یابد (تقریباً برابر با ۱۰-°F یا ۲۳-°C).

    ۴.۷* سیستم‌های توزیع
    ۴.۷.۱* لوله‌کشی باید از مواد فلزی غیرقابل احتراق باشد که ویژگی‌های فیزیکی و شیمیایی آن به‌گونه‌ای باشد که تغییرات آن تحت فشار با اطمینان قابل پیش‌بینی باشد.
    ۴.۷.۱.۱ در محل‌هایی که لوله‌کشی در معرض محیط‌های بسیار خورنده نصب می‌شود، باید از مواد یا پوشش‌های مقاوم به خوردگی ویژه استفاده گردد.
    ۴.۷.۱.۲ مواد مورد استفاده در لوله‌کشی و استانداردهای مربوط به آن‌ها باید مطابق با بندهای ۴.۷.۱.۲.۱ تا ۴.۷.۱.۲.۵ باشند.
    ۴.۷.۱.۲.۱ لوله‌های فولادی سیاه یا گالوانیزه باید از نوع بدون درز یا جوش الکتریکی طبق ASTM A53، گرید A یا B، یا طبقASTM A106، گرید A، B یا C باشند.
    ۴.۷.۱.۲.۱.۱ لوله‌های ASTM A120 و لوله‌های چدنی معمولی نباید استفاده شوند.
    ۴.۷.۱.۲.۱.۲ فولاد ضدزنگ برای اتصالات پیچی باید TP304 یاTP316 و برای اتصالات جوشی باید TP304، TP316، TP304L یا TP316L باشد.
    ۴.۷.۱.۲.۲ در سیستم‌هایی با منبع پرفشار، لوله‌هایی به قطر ¾ اینچ (۲۰ میلی‌متر) و کمتر مجاز به استفاده از Schedule 40 می‌باشند.
    ۴.۷.۱.۲.۲.۱ لوله‌هایی با قطر ۱ تا ۴ اینچ (۲۵ تا ۱۰۰ میلی‌متر) باید حداقل Schedule 80 باشند.
    ۴.۷.۱.۲.۲.۲ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز نیست.
    ۴.۷.۱.۲.۳ در سیستم‌هایی با منبع کم‌فشار، لوله‌ها باید حداقلSchedule 40 باشند.
    ۴.۷.۱.۲.۳.۱ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز است.
    ۴.۷.۱.۲.۴ در انتهای هر شاخه لوله‌کشی، باید یک تله‌گیرنده گرد و خاک که شامل یک سه‌راهی با یک نیپل درپوش‌دار به طول حداقل ۲ اینچ (۵۱ میلی‌متر) باشد نصب گردد.
    ۴.۷.۱.۲.۵ مقاطع لوله‌کشی که معمولاً در معرض اتمسفر قرار ندارند، نیاز به پوشش داخلی مقاوم به خوردگی ندارند.
    ۴.۷.۱.۳* اجزای انعطاف‌پذیر سیستم لوله‌کشی که به‌طور خاص در این استاندارد پوشش داده نشده‌اند، باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴,۴۷۴ kPa) برای سیستم‌های پرفشار یا ۱۸۰۰ psi (۱۲,۴۱۱ kPa) برای سیستم‌های کم‌فشار را داشته باشند.
    ۴.۷.۱.۴ اتصالات Class 150 و اتصالات چدنی نباید استفاده شوند.
    ۴.۷.۱.۵ اتصالات برای سیستم‌های پرفشار و کم‌فشار باید طبق بندهای ۴.۷.۱.۵.۱ و ۴.۷.۱.۵.۲ باشند.
    ۴.۷.۱.۵.۱ سیستم‌های پرفشار:
    ۴.۷.۱.۵.۱.۱ برای سایزهای اسمی تا ۲ اینچ، باید از اتصالات چکش‌خوار Class 300 و برای سایزهای بزرگ‌تر، از اتصالات فولادی فورج‌شده استفاده شود.
    ۴.۷.۱.۵.۱.۲ فلنج‌هایی که قبل از هر شیر قطع نصب می‌شوند، باید Class 600 باشند.
    ۴.۷.۱.۵.۱.۳ فلنج‌هایی که بعد از شیر قطع یا در سیستم‌هایی بدون شیر قطع نصب می‌شوند، مجاز به استفاده از Class 300 هستند.
    ۴.۷.۱.۵.۱.۴ یونیون‌های پیچی باید حداقل معادل اتصالات فولاد فورج‌شده Class 2000 باشند.

    ۴.۷.۱.۵.۱.۵ اتصالات فولاد ضدزنگ باید از نوع ۳۰۴ یا ۳۱۶، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۵.۲ سیستم‌های کم‌فشار:
    ۴.۷.۱.۵.۲.۱ اتصالات چکش‌خوار یا داکتیل آهنی کلاس ۳۰۰باید برای لوله‌هایی تا سایز اسمی ۳ اینچ (۸۰ میلی‌متر) و اتصالات فولادی فورج‌شده برای سایزهای بزرگ‌تر استفاده شوند.
    ۴.۷.۱.۵.۲.۲ اتصالات فلنجی باید از نوع کلاس ۳۰۰ باشند.
    ۴.۷.۱.۵.۲.۳ اتصالات فولاد ضدزنگ باید برای اتصالات پیچی از نوع ۳۰۴ یا ۳۱۶ و برای اتصالات جوشی از نوع ۳۰۴، ۳۱۶، ۳۰۴L یا ۳۱۶L، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، کلاس ۲۰۰۰، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳ میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۶ اتصالات لوله:
    ۴.۷.۱.۶.۱ اتصالات جوشی، پیچی یا فلنجی (چکش‌خوار یا داکتیل آهنی) مجاز به استفاده هستند.
    ۴.۷.۱.۶.۲ استفاده از کوپلینگ‌ها و اتصالات مکانیکی شیار‌دار مجاز است، مشروط بر اینکه مخصوص سرویس دی‌اکسیدکربن باشند.
    ۴.۷.۱.۶.۳ استفاده از بوشینگ‌های هم‌سطح مجاز نیست.
    ۴.۷.۱.۶.۴ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش یک سایز استفاده می‌شود، باید از بوشینگ فولادی کلاس ۳۰۰۰جهت حفظ استحکام کافی استفاده گردد.
    ۴.۷.۱.۶.۵ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش بیش از یک سایز استفاده می‌شود، باید مطابق بند ۴.۷.۱.۵ عمل شود.
    ۴.۷.۱.۶.۶ اتصالات فلر، نوع فشاری یا لحیم‌شده باید با لوله‌های سازگار استفاده شوند.
    ۴.۷.۱.۶.۷ در مواردی که از اتصالات لحیم‌شده استفاده می‌شود، آلیاژ لحیم باید نقطه ذوبی برابر یا بالاتر از ۱۰۰۰ درجه فارنهایت (۵۳۸ درجه سانتی‌گراد) داشته باشد.

    ۴.۷.۱.۷ منبع پرفشار:
    ۴.۷.۱.۷.۱* در سیستم‌هایی که از منبع پرفشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۷.۲ فشار داخلی برای این محاسبه باید ۲۸۰۰ psi (۱۹,۳۰۶ kPa) در نظر گرفته شود.

    ۴.۷.۱.۸ منبع کم‌فشار:
    ۴.۷.۱.۸.۱* در سیستم‌هایی که از منبع کم‌فشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۸.۲ فشار داخلی برای این محاسبه باید ۴۵۰ psi (۳۱۰۳kPa) در نظر گرفته شود.

    ۴.۷.۲ سیستم لوله‌کشی نباید در معرض آسیب قرار گیرد.
    ۴.۷.۲.۱ لوله‌ها باید قبل از مونتاژ، پخ‌زده و تمیز شوند و پس از مونتاژ، کل سیستم لوله‌کشی باید پیش از نصب نازل‌ها یا تجهیزات تخلیه، کاملاً پاک‌سازی گردد.
    ۴.۷.۲.۲ در سیستم‌هایی که آرایش شیرآلات باعث ایجاد بخش‌هایی از لوله‌کشی بسته می‌شود، این بخش‌ها باید به تجهیزات تخلیه فشار مجهز شوند یا شیرها باید به گونه‌ای طراحی شده باشند که از محبوس شدن دی‌اکسیدکربن مایع جلوگیری کنند.

    ۴.۷.۲.۲.۱ برای سیستم‌های پرفشار، تجهیزات تخلیه فشار باید در فشاری نه کمتر از ۲۴۰۰ psi (۱۶٬۵۴۷ kPa) و نه بیشتر از ۳۰۰۰ psi (۲۰٬۶۸۴ kPa) عمل کنند.

    ۴.۷.۲.۲.۲ برای سیستم‌های کم‌فشار، تجهیزات تخلیه فشار باید در فشاری حداکثر ۴۵۰ psi (۳۱۰۳ kPa) عمل کنند.

    ۴.۷.۲.۲.۳ در مواردی که از شیر سیلندر با عملکرد فشاری استفاده می‌شود، باید تمهیدی برای تخلیه نشتی گاز سیلندر از منیفولد در نظر گرفته شود، به‌گونه‌ای که همزمان از اتلاف گاز در هنگام عملکرد سیستم جلوگیری شود.

    ۴.۷.۲.۳ کلیه تجهیزات تخلیه فشار باید به‌گونه‌ای طراحی و نصب شوند که تخلیه دی‌اکسیدکربن از آن‌ها به پرسنل آسیب نرساند.

    ۴.۷.۳ شیرآلات:

    ۴.۷.۳.۱ کلیه شیرآلات باید برای کاربرد موردنظر، خصوصاً از نظر ظرفیت جریان و عملکرد، مناسب باشند.

    ۴.۷.۳.۲ کلیه شیرآلات فقط باید در دماها و شرایطی استفاده شوند که برای آن‌ها فهرست‌شده یا مورد تأیید قرار گرفته‌اند.

    ۴.۷.۳.۳ شیرهایی که در سیستم‌هایی با ذخیره‌سازی پرفشار و فشار دائمی استفاده می‌شوند، باید حداقل فشار ترکیدگی ۶۰۰۰psi (۴۱٬۳۶۹ kPa) را تحمل کنند، درحالی‌که شیرهایی که تحت فشار دائمی نیستند باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴٬۴۷۴ kPa) را داشته باشند.

    ۴.۷.۳.۴ شیرهایی که در سیستم‌هایی با ذخیره‌سازی کم‌فشار استفاده می‌شوند، باید بدون ایجاد تغییر شکل دائمی، آزمایش هیدرواستاتیکی تا ۱۸۰۰ psi (۱۲٬۴۱۱ kPa) را تحمل کنند.

    ۴.۷.۳.۵ برای شیرهای فلنجی، باید از کلاس و نوع فلنج متناسب با اتصال فلنجی شیر استفاده شود.

    ۴.۷.۳.۶ شیرها باید به‌گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب مکانیکی، شیمیایی یا سایر آسیب‌هایی که عملکرد آن‌ها را مختل می‌کند، قرار نگیرند.

    ۴.۷.۳.۷ شیرها باید برای طول معادل با لوله یا لوله‌کشی‌ای که قرار است در آن استفاده شوند، رتبه‌بندی شوند.

    ۴.۷.۳.۸ طول معادل شیر سیلندر باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۴.۷.۴* نازل‌های تخلیه: نازل‌های تخلیه باید برای کاربرد موردنظر طراحی شده و برای ویژگی‌های تخلیه، فهرست‌شده یا تأییدشده باشند.

    ۴.۷.۴.۱ نازل‌های تخلیه باید دارای استحکام کافی برای کار در فشار کاری مورد انتظار بوده، در برابر ضربات مکانیکی معمول مقاوم باشند و بتوانند دماهای مورد انتظار را بدون تغییر شکل تحمل کنند.

    ۴.۷.۴.۲ دهانه‌های تخلیه باید از فلز مقاوم در برابر خوردگی ساخته شوند.

    ۴.۷.۴.۳ نازل‌های تخلیه مورد استفاده در سیستم‌های کاربرد موضعی باید به‌گونه‌ای متصل و نگهداری شوند که به‌راحتی از تنظیم خارج نشوند.

    ۴.۷.۴.۴* نازل‌های تخلیه باید به‌طور دائم علامت‌گذاری شوند تا نازل را شناسایی کرده و قطر معادل دهانه تک‌سوراخی را بدون توجه به شکل و تعداد سوراخ‌ها نشان دهند.

    ۴.۷.۴.۴.۱ این قطر معادل باید به قطر دهانه نازل نوع تک‌سوراخ استاندارد با همان نرخ جریان اشاره داشته باشد.

    ۴.۷.۴.۴.۲ این علامت‌گذاری باید پس از نصب نیز به‌راحتی قابل مشاهده باشد.

    ۴.۷.۴.۴.۳* دهانه استاندارد باید دهانه‌ای با ورودی مخروطی و ضریب تخلیه‌ای نه کمتر از ۰.۹۸ باشد و دارای مشخصات جریان مطابق با جدول ۴.۷.۵.۲.۱ و جدول ۴.۷.۵.۳.۱ باشد.

    ۴.۷.۴.۴.۴ اندازه‌های دهانه‌ای غیر از آنچه در جدولA.4.7.4.4.3 نشان داده شده‌اند، مجاز به استفاده هستند و می‌توانند به‌صورت تجهیزاتی با دهانه اعشاری علامت‌گذاری شوند.

    ۴.۷.۴.۵ تجهیزات تخلیه:

    ۴.۷.۴.۵.۱ نازل‌های تخلیه باید در مواردی که احتمال انسداد توسط مواد خارجی وجود دارد، به دیسک‌های شکننده یا درپوش‌های قابل‌انفجار مجهز شوند.

    ۴.۷.۴.۵.۲ این تجهیزات باید در زمان عملکرد سیستم، دهانه‌ای بدون مانع را فراهم کنند.

    ۴.۷.۵ تعیین اندازه لوله و دهانه: اندازه لوله‌ها و مساحت دهانه‌ها باید بر اساس محاسباتی انتخاب شوند که نرخ جریان مورد نیاز در هر نازل را تأمین کند.

    ۴.۷.۵.۱* معادله زیر یا منحنی‌های حاصل از آن باید برای تعیین افت فشار در لوله‌کشی استفاده شود:

    8B1Wpg4ugRDmYAAAAASUVORK5CYII=

    که در آن:

    Q = نرخ جریان [پوند/دقیقه (کیلوگرم/دقیقه)]
    D = قطر داخلی واقعی لوله [اینچ (میلی‌متر)]
    L = طول معادل خط لوله [فوت (متر)]
    [۴.۷.۵.۱]
    Y و Z = ضرایبی وابسته به فشار ذخیره‌سازی و فشار خط لوله

    ۴.۷.۵.۲ در سامانه‌هایی با ذخیره‌سازی فشار پایین، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۳۰۰ psi (۲۰۶۸ kPa) در طول تخلیه انجام شود.
    ۴.۷.۵.۲.۱ نرخ تخلیه برای اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۲.۱ باشد.
    ۴.۷.۵.۲.۲ فشار طراحی اسپرینکلر نباید کمتر از ۱۵۰ psi (۱۰۳۴ kPa) باشد.

    ۴.۷.۵.۳ در سامانه‌هایی با ذخیره‌سازی فشار بالا، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۷۵۰ psi (۵۱۷۱ kPa) در طول تخلیه در دمای عادی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) انجام شود.
    ۴.۷.۵.۳.۱ نرخ تخلیه از طریق اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۳.۱ باشد.
    ۴.۷.۵.۳.۲ فشار طراحی اسپرینکلر در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) باید برابر یا بیشتر از ۳۰۰ psi (۲۰۶۸kPa) باشد.

    ۴.۷.۶* آویزها و تکیه‌گاه‌های لوله باید مطابق با استانداردهای شناخته‌شده صنعتی و دستورالعمل‌های سازنده طراحی و نصب شوند.
    ۴.۷.۶.۱ تمام آویزها و تکیه‌گاه‌های لوله باید مستقیماً به یک سازه سخت و ثابت متصل شوند.
    ۴.۷.۶.۲ تمام آویزها و اجزا باید از جنس فولاد باشند.
    ۴.۷.۶.۳ استفاده از آویزها/تکیه‌گاه‌های چدنی معمولی، بست‌های کانال یا بست‌های “C” مجاز نیست.
    ۴.۷.۶.۴ تمامی تکیه‌گاه‌های لوله باید به گونه‌ای طراحی و نصب شوند که از حرکت جانبی لوله در هنگام تخلیه سیستم جلوگیری کرده و همزمان امکان حرکت طولی برای جبران انبساط و انقباض ناشی از تغییرات دما را فراهم کنند.
    ۴.۷.۶.۴.۱ آویزهای صلب باید در هر نقطه‌ای که تغییر ارتفاع یا جهت وجود دارد، نصب شوند.
    ۴.۷.۶.۴.۲ اسپرینکلرها باید به نحوی پشتیبانی شوند که در هنگام تخلیه حرکت نکنند.
    ۴.۷.۶.۵ در مواردی که مهاربندی لرزه‌ای مورد نیاز باشد، این مهاربندی باید مطابق با کدهای محلی و الزامات مرجع ذی‌صلاح انجام شود.

    Z

    9k=

    ۴.۸* بازرسی، نگهداری و دستورالعمل
    ۴.۸.۱* بازرسی: حداقل هر ۳۰ روز یک‌بار باید بازرسی برای ارزیابی وضعیت عملکردی سیستم انجام شود.

    ۴.۸.۲ آزمون شیلنگ
    ۴.۸.۲.۱ تمام شیلنگ‌های سیستم، از جمله آنهایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید برای سامانه‌های فشار بالا در فشار ۲۵۰۰ psi (۱۷٬۲۳۹ kPa) و برای سامانه‌های فشار پایین در فشار ۹۰۰ psi (۶٬۲۰۵ kPa) آزمایش شوند.
    ۴.۸.۲.۲ شیلنگ باید به صورت زیر آزمایش شود:
    (۱) شیلنگ باید از هرگونه اتصال جدا شود.
    (۲) شیلنگ‌های مورد استفاده در خطوط دستی باید از نظر پیوستگی الکتریکی بین کوپلینگ‌ها بررسی شوند.
    (۳) مجموعه شیلنگ باید در محفظه محافظی قرار گیرد که امکان مشاهده مستقیم آزمون را فراهم کند.
    (۴) شیلنگ باید پیش از آزمایش به طور کامل از آب پر شود.
    (۵) فشار باید به گونه‌ای اعمال شود که ظرف یک دقیقه به فشار آزمایش برسد.
    (۶) فشار آزمایش باید به مدت یک دقیقه کامل حفظ شود.
    (۷) سپس باید هرگونه تغییر شکل یا نشتی مورد مشاهده قرار گیرد.
    (۸) در صورتی که فشار کاهش نیافته و کوپلینگ‌ها جابه‌جا نشده باشند، فشار آزاد می‌شود.
    (۹) در صورتی که هیچ‌گونه تغییر شکل دائمی رخ نداده باشد، مجموعه شیلنگ، آزمون هیدرواستاتیک را با موفقیت گذرانده تلقی می‌شود.
    (۱۰) شیلنگی که آزمون را با موفقیت پشت سر گذاشته، باید به طور کامل از داخل خشک شود.
    (۱۱) در صورت استفاده از گرما برای خشک‌کردن، دما نباید از ۱۵۰ درجه فارنهایت (۶۶ درجه سانتی‌گراد) تجاوز کند.
    (۱۲) شیلنگ‌هایی که در این آزمون مردود شوند، باید علامت‌گذاری، نابود و با شیلنگ‌های جدید جایگزین شوند.
    (۱۳) شیلنگ‌هایی که آزمون را با موفقیت پشت سر می‌گذارند، باید با تاریخ آزمون بر روی خود علامت‌گذاری شوند.

    ۴.۸.۲.۳ تمام شیلنگ‌های سیستم، از جمله آن‌هایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید هر پنج سال یک‌بار مطابق با بند ۴.۸.۲ مورد آزمون قرار گیرند.

    ۴.۸.۳* نگهداری
    ۴.۸.۳.۱ رویه‌های آزمون و نگهداری: یک رویه آزمون و نگهداری از طرف سازنده باید به مالک ارائه شود تا آزمون و نگهداری سیستم طبق آن انجام شود. این رویه باید شامل آزمون اولیه تجهیزات و نیز بازرسی‌های دوره‌ای و نگهداری سیستم باشد. فعال‌سازی، اختلال و بازیابی این سامانه اطفاء حریق باید بلافاصله به مرجع ذی‌صلاح گزارش شود.

    ۴.۸.۳.۲ موارد زیر باید حداقل سالی یک‌بار توسط افراد متخصص و با استفاده از مستندات موجود طبق بند ۴.۴.۲.۱۴تأیید شوند:
    (۱) بررسی و آزمون عملکرد سیستم دی‌اکسید کربن
    (۲) بررسی اینکه هیچ تغییری در اندازه، نوع یا پیکربندی خطر و سیستم ایجاد نشده باشد
    (۳) بررسی و آزمون عملکرد تمام تاخیرهای زمانی
    (۴) بررسی و آزمون عملکرد تمام هشدارهای صوتی
    (۵) بررسی و آزمون عملکرد تمام سیگنال‌های دیداری
    (۶) بررسی اینکه تمام تابلوهای هشدار مطابق با الزامات نصب شده‌اند

    (۷) بررسی شود که رویه‌های مندرج در بند ۴.۵.۶ مناسب بوده و تجهیزات اشاره‌شده در بند ۴.۵.۶ قابل بهره‌برداری باشند.
    (۸) هر آشکارساز باید طبق روش‌های مشخص‌شده در NFPA 72 بررسی و آزمایش شود.

    ۴.۸.۳.۲.۱ هدف از انجام عملیات نگهداری و آزمون، تنها اطمینان از عملکرد کامل سیستم نیست، بلکه باید نشان دهد که این وضعیت تا زمان بازرسی بعدی نیز به احتمال زیاد حفظ خواهد شد.

    ۴.۸.۳.۲.۲ آزمون‌های تخلیه باید در صورت لزوم و در مواقعی که نگهداری سیستم آن را ضروری نشان می‌دهد، انجام شوند.

    ۴.۸.۳.۲.۳ پیش از انجام آزمون‌ها، رویه‌های ایمنی باید مورد بازبینی قرار گیرند. (به بند ۴.۳ و پیوست A.4.3 مراجعه شود.)

    ۴.۸.۳.۳ گزارش نگهداری همراه با پیشنهادات لازم باید به مالک ارائه شود.

    ۴.۸.۳.۴ هرگونه نفوذ یا سوراخ‌کاری در محفظه‌ای که توسط سیستم غرقه‌سازی کلی دی‌اکسید کربن محافظت می‌شود، باید بلافاصله مهر و موم شود. روش مهر و موم باید مقاومت در برابر حریق اولیه محفظه را بازگرداند.

    ۴.۸.۳.۵ وزن سیلندرهای پرفشار
    ۴.۸.۳.۵.۱ حداقل هر شش ماه یک‌بار، تمامی سیلندرهای پرفشار باید وزن شوند و تاریخ آخرین آزمون هیدرواستاتیک یادداشت شود. (به بند ۴.۶.۵.۲ مراجعه شود.)
    ۴.۸.۳.۵.۲ اگر در هر زمان، کاهش بیش از ۱۰ درصد در میزان خالص محتویات یک سیلندر مشاهده شود، آن سیلندر باید دوباره پر یا تعویض گردد.

    ۴.۸.۳.۶ سطح مایع مخازن کم‌فشار
    ۴.۸.۳.۶.۱ سطح مایع در مخازن کم‌فشار باید حداقل به‌صورت هفتگی از طریق گیج‌های سطح مایع بررسی شود.
    ۴.۸.۳.۶.۲ اگر در هر زمان کاهش بیش از ۱۰ درصد در محتویات مشاهده شود، مخزن باید پر شود، مگر اینکه هنوز حداقل مقدار گاز موردنیاز فراهم باشد.

    ۴.۸.۴ آموزش
    افرادی که وظیفه بازرسی، آزمون، نگهداری یا بهره‌برداری از سیستم‌های اطفاء حریق دی‌اکسید کربن را بر عهده دارند، باید در عملکردهای مربوطه آموزش کامل دیده باشند.

  • طراحی سیستم های اسپرینکلر

    • ترجمه و تدوین : مرکز اطلاعات کامپیوتری شرکت اسپین الکتریک

      فصل 19 از NFPA-13

      فصل ۱۹: رویکردهای طراحی

      ۱۹.۱ کلیات:
      از فصل ۱۹ برای تعیین رویکردهای طراحی استفاده خواهد شد.

      ۱۹.۲ رویکردهای عمومی طراحی:
      الزامات بخش ۱۹.۲ برای تمامی سیستم‌های اسپرینکلر، مگر در مواردی که توسط بخشی خاص از فصل ۱۹ یا فصل ۲۰ اصلاح شده باشد، اعمال می‌گردد.

      ۱۹.۲.۱
      حفاظت از یک ساختمان یا بخشی از آن مجاز است که طبق هر یک از رویکردهای طراحی قابل‌اعمال، به صلاحدید طراح انجام گیرد.

      ۱۹.۲.۲ خطرات مجاور یا روش‌های طراحی:*
      برای ساختمان‌هایی که دارای دو یا چند خطر یا روش طراحی مجاور به یکدیگر هستند، موارد زیر اعمال می‌گردد:

      1. اگر نواحی مورد نظر به‌صورت فیزیکی توسط پرده دود، مانع یا دیواری جدا نشده باشند که بتواند از انتقال حرارت ناشی از آتش در یک ناحیه به نحوی جلوگیری کند که از فعال شدن اسپرینکلرها در ناحیه مجاور جلوگیری کند، الزامات مربوط به طراحی با شدت بیشتر باید به‌اندازه ۱۵ فوت (۴٫۶ متر) فراتر از مرز آن ناحیه گسترش یابد.
      2. الزامات بند (۱) زمانی اعمال نمی‌شود که نواحی با یکی از موارد زیر از هم جدا شده باشند:
      o پرده دود یا مانعی که در بالای راهرو قرار دارد، مشروط بر اینکه راهرو دارای حداقل ۲ فوت (۶۰۰ میلی‌متر) جداسازی افقی از خطر مجاور در هر طرف باشد.
      o دیواری که قادر به جلوگیری از انتقال حرارت از یک ناحیه به ناحیه مجاور و در نتیجه ممانعت از فعال شدن اسپرینکلرهای آن باشد.
      3. الزامات بند (۱) همچنین در مورد گسترش معیارهای طراحی با شدت بیشتر از یک سطح سقف بالاتر به زیر سقف پایین‌تر، زمانی که اختلاف ارتفاع بین دو سطح سقف حداقل ۲ فوت (۶۰۰ میلی‌متر) باشد و این تفاوت در بالای یک راهرو با حداقل ۲ فوت جداسازی افقی از خطر مجاور در هر طرف قرار گرفته باشد، اعمال نمی‌گردد.

      ۱۹.۲.۳
      برای سیستم‌هایی که به‌صورت هیدرولیکی محاسبه می‌شوند، کل نیازمندی‌های تأمین آب سیستم برای هر پایه طراحی باید مطابق با رویه‌های بخش ۲۷.۲، مگر در مواردی که در فصل ۱۹ یا ۲۰ اصلاح شده باشد، تعیین شود.

      ۱۹.۲.۴ تقاضای آب:

      ۱۹.۲.۴.۱*
      نیازمندی‌های تقاضای آب باید از طریق منابع زیر تعیین شود:

      1. رویکردهای کنترل آتش بر اساس خطر اشغال و طراحی‌های خاص در فصل ۱۹
      2. رویکردهای طراحی ذخیره‌سازی در فصل‌های ۲۰ تا ۲۵
      3. رویکردهای ویژه برای اشغال‌های خاص در فصل ۲۶

      ۱۹.۲.۴.۲*
      حداقل نیازمندی‌های تقاضای آب برای یک سیستم اسپرینکلر باید با افزودن میزان جریان مجاز شیلنگ آتش‌نشانی به تقاضای آب مورد نیاز اسپرینکلرها تعیین گردد.

      ۱۹.۲.۵ منابع تأمین آب:

      ۱۹.۲.۵.۱
      حداقل مقدار تأمین آب باید برای حداقل مدت زمان تعیین‌شده در فصل ۱۹ در دسترس باشد.

      ۱۹.۲.۵.۲*
      مخازن باید به گونه‌ای طراحی شوند که بتوانند تجهیزات تحت پوشش خود را تأمین کنند.

      ۱۹.۲.۵.۳*
      پمپ‌ها نیز باید به گونه‌ای طراحی شوند که بتوانند تجهیزات مرتبط خود را تأمین نمایند.

      19.2.6 جریان مجاز شیلنگ آتش‌نشانی (Hose Allowance)

      19.2.6.1 سیستم‌های دارای طبقه‌بندی خطر متعدد:
      برای سیستم‌هایی که شامل چند نوع طبقه‌بندی خطر هستند، جریان مجاز شیلنگ و مدت‌زمان تأمین آب باید مطابق یکی از روش‌های زیر تعیین شود:

      1. الزامات تأمین آب برای بالاترین طبقه‌بندی خطر در سیستم مورد استفاده قرار گیرد.
      2. الزامات تأمین آب برای هر طبقه‌بندی خطر به‌صورت جداگانه و بر اساس ناحیه طراحی مربوط به همان خطر در محاسبات استفاده شود.
      3. اگر طبقه‌بندی خطر بالاتر تنها در اتاق‌هایی مجزا با مساحت کمتر یا مساوی ۴۰۰ فوت مربع (۳۷ مترمربع) باشد و این اتاق‌ها مجاور هم نباشند، الزامات تأمین آب برای کاربری اصلی (principal occupancy) برای سایر بخش‌های سیستم کفایت می‌کند. (یادآوری: این بند دارای تفسیر فنی می‌باشد)

      19.2.6.2*
      مقدار جریان آب مجاز برای شیلنگ‌های خارجی باید به نیازمندی‌های اسپرینکلر در نقطه اتصال به شبکه آب شهری یا نزدیک‌ترین هیدرانت (شیر آتش‌نشانی خصوصی) افزوده شود، هرکدام که به رایزر سیستم نزدیک‌تر باشند.

      19.2.6.3
      در مواردی که استفاده از اتصالات داخلی شیلنگ پیش‌بینی یا الزامی باشد، موارد زیر اعمال می‌گردد:

      1. برای نصب یک اتصال شیلنگ، میزان ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) به تقاضای آب سیستم اسپرینکلر افزوده می‌شود.
      2. برای نصب چند اتصال شیلنگ، میزان ۱۰۰ گالن بر دقیقه (380 لیتر بر دقیقه) به تقاضای آب افزوده می‌شود.
      3. این مقدار باید به‌صورت افزایشی از ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) در نظر گرفته شود، به‌طوری‌که هر مرحله از دورترین نقطه اتصال شیلنگ محاسبه شده و در فشار موردنیاز سیستم در آن نقطه اضافه گردد.

      19.2.6.3.1
      در صورتی که سیستم به‌صورت ترکیبی از اسپرینکلر و رایزر آتش‌نشانی(کلاس I یا III) باشد و ساختمان به‌طور کامل طبق NFPA 13 اسپرینکلر شده باشد، هیچ نیازی به در نظر گرفتن تقاضای داخلی شیلنگ در خروجی‌های رایزر آتش‌نشانی نیست.

      19.2.6.4*
      زمانی‌که شیر شیلنگ برای استفاده واحد آتش‌نشانی به رایزر سیستم اسپرینکلر از نوع تر (wet pipe) متصل شده باشد، مطابق بند 16.15.2، موارد زیر اعمال می‌شود:

      1. نیازی نیست تقاضای اسپرینکلر به تقاضای رایزر آتش‌نشانی مطابقNFPA 14 افزوده شود.
      2. در صورتی که مجموع تقاضای اسپرینکلر و جریان مجاز شیلنگ طبق جدول 19.3.3.1.2 از الزامات NFPA 14 بیشتر باشد، مقدار بیشتر باید ملاک قرار گیرد.
      3. برای ساختمان‌هایی که تنها بخشی از آن‌ها اسپرینکلر شده، تقاضای اسپرینکلر (بدون احتساب جریان مجاز شیلنگ) طبق شکل 19.3.3.1.1 باید به الزامات مندرج در NFPA 14 اضافه گردد.

      19.2.7 فن‌ های حجیم با سرعت پایین (HVLS – High Volume Low Speed Fans)*

      نصب فن‌های HVLS در ساختمان‌هایی که مجهز به سیستم اسپرینکلر (از جمله اسپرینکلرهای پاسخ بسیار سریع برای فضاهای ذخیره‌سازی – ESFR) هستند، باید مطابق با موارد زیر انجام شود:

      1. قطر حداکثری فن نباید بیش از ۲۴ فوت (۷٫۳ متر) باشد.
      2. فن باید تقریباً در مرکز بین چهار اسپرینکلر مجاور قرار گیرد.
      3. فاصله عمودی بین فن HVLS و پخش‌کننده اسپرینکلر (deflector) باید حداقل ۳ فوت (۰٫۹ متر) باشد.

      19.2.7 – فن‌های HVLS

      بند (4):
      تمامی فن‌های HVLS باید به‌گونه‌ای در مدار سیستم قرار گیرند که به‌محض فعال شدن هشدار جریان آب (waterflow alarm) بلافاصله خاموش شوند.
      در مواردی که ساختمان به سیستم اعلام حریق مجهز باشد، این اینترلاک (مدار قطع خودکار) باید مطابق با الزامات استاندارد NFPA 72 اجرا گردد.

      19.3 رویکرد کنترل حریق بر اساس طبقه‌بندی خطر اشغال برای اسپرینکلرهای پاششی

      19.3.1 کلیات

      19.3.1.1*
      نیازمندی‌های تأمین آب برای این نوع سیستم‌ها باید از یکی از دو روش زیر تعیین شود:

      روش جدول لوله‌کشی (Pipe Schedule Method) طبق بند 19.3.2
      روش محاسبات هیدرولیکی (Hydraulic Calculation Method) طبق بند 19.3.3

      19.3.1.2 طبقه‌بندی نوع اشغال:

      19.3.1.2.1
      طبقه‌بندی نوع اشغال در این استاندارد، فقط مربوط به نصب اسپرینکلرها و تأمین آب آن‌ها است و کاربرد عمومی برای تعیین نوع خطرات ساختمانی ندارد.
      19.3.1.2.2
      طبقه‌بندی اشغال نباید به‌عنوان یک طبقه‌بندی کلی خطرات حریق در ساختمان استفاده شود.
      19.3.1.2.3
      کاربری‌ها یا بخش‌هایی از کاربری‌ها باید بر اساس موارد زیرطبقه‌بندی شوند:
      o مقدار و قابلیت اشتعال محتویات
      o نرخ آزادسازی حرارت مورد انتظار
      o کل پتانسیل آزادسازی انرژی
      o ارتفاع پشته‌سازی مواد
      o وجود مایعات قابل اشتعال یا احتراق
      این عوامل باید طبق تعاریف بندهای 4.3.2 تا 4.3.7 در نظر گرفته شوند.
      19.3.1.2.4 طبقه‌بندی‌ها به شرح زیر هستند:
      1. خطر سبک (Light Hazard)
      2. خطر معمولی – گروه ۱ و ۲ (Ordinary Hazard Group 1 and 2)
      3. خطر بالا – گروه ۱ و ۲ (Extra Hazard Group 1 and 2)
      4. خطرات خاص اشغالی (Special Occupancy Hazards)مراجعه شود به فصل ۲۶

      19.3.2 نیازمندی‌های تأمین آب — روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.1
      برای تعیین حداقل نیازمندی تأمین آب در کاربری‌های خطر سبک و خطر معمولی که سیستم آن‌ها طبق جداول اندازه‌گذاری لوله‌های مندرج در بخش 27.5 طراحی شده، باید از جدول 19.3.2.1 استفاده شود.

      19.3.2.2
      برای کاربری‌های خطر بالا (Extra Hazard)، الزامات فشار و جریان باید صرفاً بر اساس روش محاسبات هیدرولیکی بند 19.3.3 تعیین شود.

      19.3.2.3
      استفاده از روش جدول لوله‌کشی مجاز است فقط در موارد زیر:

      1. افزایش یا اصلاح در سیستم‌های موجودی که بر اساس جدول لوله‌کشی بخش 27.5 طراحی شده‌اند.
      2. افزایش یا اصلاح در سیستم‌های موجود با طبقه‌بندی خطر بالا که با جدول لوله‌کشی طراحی شده‌اند.
      3. سیستم‌های جدیدی با مساحت حداکثر ۵۰۰۰ فوت مربع (۴۶۵مترمربع)

      2Q==

      19.3.2 – نیازمندی‌های تأمین آب – روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.3 بند 4
      سیستم‌های جدیدی که مساحت آن‌ها بیش از ۵۰۰۰ فوت مربع (۴۶۵متر مربع) باشد، در صورتی می‌توانند از جدول 19.3.2.1 استفاده کنند که مقادیر جریان مورد نیاز در آن جدول در حداقل فشار باقیمانده‌ی ۵۰psi (معادل ۳.۴ بار) در بالاترین تراز اسپرینکلر فراهم باشند.

      19.3.2.4
      جهت تعیین حداقل نیازمندی‌های تأمین آب، از جدول 19.3.2.1 استفاده می‌شود.

      19.3.2.5
      مقادیر مدت زمان پایین‌تر در جدول 19.3.2.1 تنها در صورتی قابل قبول هستند که:

      تجهیزات هشدار جریان آب (waterflow alarm)
      و تجهیزات نظارتی (supervisory devices)
      به‌صورت برقی (electrically supervised) بوده
      و این نظارت توسط یک مرکز مورد تأیید و به‌طور دائمی تحت پایش انجام شود.

      19.3.2.6 – فشار باقیمانده (Residual Pressure):

      19.3.2.6.1
      فشار باقیمانده مندرج در جدول 19.3.2.1 باید در تراز بالاترین اسپرینکلر فراهم باشد.

      19.3.2.6.2 افت فشار ناشی از شیرهای برگشت‌ناپذیر (Backflow Prevention Valves):

      19.3.2.6.2.1
      چنانچه در سیستم‌های طراحی شده با جدول لوله‌کشی از شیر برگشت‌ناپذیر استفاده شود، افت فشار ناشی از این شیر باید در محاسبات فشار باقیمانده لحاظ گردد.
      19.3.2.6.2.2
      میزان افت فشار ایجادشده توسط این شیر (بر حسب psi یا bar)، باید به افت فشار ناشی از ارتفاع و فشار باقیمانده مورد نیاز در ردیف بالایی اسپرینکلرها اضافه گردد تا فشار کلی مورد نیاز در محل تأمین آب مشخص شود.

      19.3.2.7
      استفاده از مقادیر جریان پایین‌تر در جدول 19.3.2.1 تنها زمانی مجاز است که:

      ساختمان از مصالح غیرقابل احتراق (noncombustible) ساخته شده باشد
      یا
      نواحی بالقوه‌ی آتش‌سوزی، با توجه به اندازه‌ی ساختمان یا تقسیم‌بندی فضاها (compartmentation)، محدود شده باشند به‌گونه‌ای که هیچ ناحیه‌ی باز (open area) از مقادیر زیر تجاوز نکند:
      o ۳۰۰۰ فوت مربع (۲۸۰ متر مربع) برای کاربری با خطر سبک(Light Hazard)
      o ۴۰۰۰ فوت مربع (۳۷۰ متر مربع) برای کاربری با خطر معمولی (Ordinary Hazard)

      19.3.3 نیازمندی‌های تأمین آب – روش محاسبات هیدرولیکی(Hydraulic Calculation Methods)

      19.3.3.1 کلیات

      19.3.3.1.1
      نیازمندی تأمین آب اسپرینکلر باید تنها بر اساس یکی از روش‌های زیرو به صلاحدید طراح تعیین شود:

      1. منحنی چگالی/مساحت (Density/Area Curves) مطابق شکل 19.3.3.1.1 و روش بند 19.3.3.2
      2. اتاق دارای بیشترین بار آبی (Room Design Method) مطابق بند 19.3.3.3
      3. نواحی طراحی خاص (Special Design Areas) مطابق بند 19.3.3.4

      19.3.3.1.2
      حداقل تأمین آب باید برای مدت زمانی فراهم باشد که در جدول 19.3.3.1.2مشخص شده است.

      19.3.3.1.3
      مقادیر مدت زمان پایین‌تر در جدول مذکور فقط در صورت وجود نظارت برقی و پایش دائمی توسط یک مرکز مورد تأیید قابل قبول هستند.

      19.3.3.1.4 محدودیت‌ها در روش‌های چگالی/مساحت و طراحی اتاق:

      در صورتی که از روش چگالی/مساحت یا روش طراحی اتاق استفاده شود، الزامات زیر اعمال می‌گردد:

      (1)*
      برای کاربری‌های خطر سبک و معمولی، اگر ناحیه عملکرد اسپرینکلر کمتر از ۱۵۰۰ فوت مربع (۱۴۰ متر مربع) باشد، باید چگالی متناظر با ۱۵۰۰ فوت مربع استفاده شود.
      (2)
      برای کاربری‌های خطر بالا، اگر ناحیه عملکرد اسپرینکلر کمتر از ۲۵۰۰ فوت مربع (۲۳۰ متر مربع) باشد، باید چگالی متناظر با ۲۵۰۰ فوت مربع استفاده گردد.

      Z

      19.3.3.1.5 فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر
      19.3.3.1.5.1* هنگام استفاده از روش چگالی/مساحت یا طراحی اتاق، مگر اینکه الزامات بند 19.3.3.1.5.2 رعایت شده باشد، برای ساختمان‌هایی که دارای فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر هستند، همان‌طور که در بندهای 9.2.1 و 9.3.18 توصیف شده است، حداقل مساحت عملکرد اسپرینکلر برای آن بخش از ساختمان باید 3000 فوت مربع (280 متر مربع) باشد.
      (A) ناحیه طراحی 3000 فوت مربع (280 متر مربع) فقط باید به سیستم اسپرینکلر یا بخش‌هایی از سیستم اسپرینکلری که در مجاورت فضای پنهان قابل‌اشتعال واجد شرایط هستند، اعمال شود.
      (B) اصطلاح «مجاور» به هر سیستم اسپرینکلری که فضایی در بالا، پایین یا کنار فضای پنهان واجد شرایط را محافظت می‌کند اطلاق می‌شود، مگر در مواردی که مانعی با درجه مقاومت در برابر آتش معادل با مدت زمان تأمین آب، به‌طور کامل فضای پنهان را از ناحیه دارای اسپرینکلر جدا کرده باشد.

      19.3.3.1.5.2 فضاهای پنهان بدون اسپرینکلر زیر، نیاز به حداقل مساحت عملکرد اسپرینکلر برابر با 3000 فوت مربع (280 متر مربع) ندارند:
      (1) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با بار قابل‌اشتعال ناچیز که دسترسی به آن‌ها وجود ندارد. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (2) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با دسترسی محدود که اجازه اشغال یا ذخیره مواد قابل‌اشتعال را نمی‌دهند. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (3) فضاهای پنهان قابل‌اشتعال که به‌طور کامل با عایق غیرقابل‌اشتعال پر شده‌اند.
      (4)* در کاربری‌های خطر سبک یا معمول، جایی که سقف‌های غیرقابل‌اشتعال یا با قابلیت اشتعال محدود مستقیماً به پایین تیرهای چوبی توپر یا ساختارهای توپر با قابلیت اشتعال محدود یا غیرقابل‌اشتعال متصل شده‌اند، به‌گونه‌ای که فضاهای بسته بین تیرها ایجاد شود با حجم حداکثر 160 فوت مکعب (4.5 متر مکعب)، از جمله فضای زیر عایقی که مستقیماً روی تیرهای سقف یا درون آن‌ها قرار گرفته در یک فضای پنهان که در غیر این صورت دارای اسپرینکلر است.

      2Q==

      (5) فضاهای پنهان که در آن‌ها از مصالح سخت استفاده شده و سطوح در معرض دید با یکی از موارد زیر، در همان شکلی که در فضا نصب شده‌اند، مطابقت دارند:
      (a) مصالح سطحی دارای شاخص گسترش شعله برابر یا کمتر از 25 هستند و ثابت شده که این مصالح در آزمون مطابق با استاندارد ASTM E84 «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی» یا UL 723 «استاندارد آزمون ویژگی‌های احتراقی سطحی مصالح ساختمانی»، که به‌مدت 20 دقیقه اضافی در همان شکل نصب‌شده در فضا ادامه یافته، آتش را بیش از 10.5 فوت (3.2 متر) گسترش نمی‌دهند، یا
      (b) مصالح سطحی با الزامات ASTM E2768، «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی با مدت زمان طولانی (آزمون تونلی 30 دقیقه‌ای)» مطابقت دارند.

      (6) فضاهای پنهان که مصالح در معرض دید آن‌ها به‌طور کامل از چوب تیمارشده با مواد مقاوم در برابر حریق ساخته شده‌اند، مطابق تعریف NFPA 703.

      (7) فضاهای پنهان در بالای اتاق‌های کوچک مجزا که مساحت آن‌ها از 55 فوت مربع (5.1 متر مربع) بیشتر نیست.

      (8) مسیرهای عمودی عبور لوله (pipe chases) با مساحت کمتر از 10 فوت مربع (0.9 متر مربع)، به شرطی که در ساختمان‌های چندطبقه، این مسیرها در هر طبقه با استفاده از مصالح معادل ساختار کف، مسدودکننده حریق(firestopped) شده باشند و در صورتی که این مسیرهای لوله‌کشی فاقد منابع اشتعال باشند، لوله‌کشی از مصالح غیرقابل احتراق باشد و نفوذ لوله در هر طبقه به‌درستی آب‌بندی شده باشد.

      (9) ستون‌های خارجی با مساحت کمتر از 10 فوت مربع (0.9 متر مربع) که با تیرک‌ها یا تیرچه‌های چوبی شکل گرفته‌اند و سایبان‌های بیرونی را نگه می‌دارند، به شرطی که این سایبان‌ها به‌طور کامل با سیستم اسپرینکلر محافظت شده باشند.

      (10) فضاهای با خطر سبک یا معمولی که در آن‌ها سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود مستقیماً یا بر روی کانال‌های فلزی با عمق بیش از 1 اینچ (25 میلی‌متر) به پایین تیرچه‌های چوبی کامپوزیت متصل شده‌اند، به‌شرطی که کانال‌های تیرچه مجاور با مصالحی معادل تخته گچی ½ اینچ (13 میلی‌متر) به حجم‌هایی بیش از 160 فوت مکعب (4.5 متر مکعب) تقسیم‌بندی شده باشند و حداقل 3½ اینچ (90 میلی‌متر) عایق پتویی (batt insulation) در پایین کانال‌های تیرچه نصب شده باشد زمانی که سقف با استفاده از کانال‌های فلزی متصل شده باشد.

      (11) حفره‌ها درون فضاهای دیواری فاقد اسپرینکلر.

      19.3.3.2 روش چگالی/مساحت

      19.3.3.2.1 منبع آب
      19.3.3.2.1.1 الزامات منبع آب فقط برای اسپرینکلرها باید از نمودارهای چگالی/مساحت در شکل 19.3.3.1.1 یا از فصل 26 در مواردی که معیارهای چگالی/مساحت برای خطرات اشغال خاص مشخص شده‌اند، محاسبه شود.
      19.3.3.2.1.2 هنگام استفاده از شکل 19.3.3.1.1، محاسبات باید هر نقطه‌ای منفرد روی منحنی چگالی/مساحت مناسب را ارضا کند.
      19.3.3.2.1.3 هنگام استفاده از شکل 19.3.3.1.1، ضروری نیست که همه نقاط روی منحنی انتخاب‌شده ارضا شوند.

      19.3.3.2.2 اسپرینکلرها
      19.3.3.2.2.1 چگالی‌ها و مساحت‌های ارائه‌شده در شکل 19.3.3.1.1 فقط باید برای استفاده با اسپرینکلرهای اسپری باشد.
      19.3.3.2.2.2 استفاده از اسپرینکلرهای با واکنش سریع در اشغال‌های خطر زیاد یا دیگر اشغال‌هایی که دارای مقادیر قابل توجهی مایعات قابل اشتعال یا گردوغبارهای قابل احتراق هستند مجاز نیست.
      19.3.3.2.2.3 برای اسپرینکلرهای پوشش گسترده (extended coverage)، حداقل مساحت طراحی باید برابر با مساحت مربوط به خطر در شکل 19.3.3.1.1 یا مساحت محافظت‌شده توسط پنج اسپرینکلر، هرکدام که بیشتر است، باشد.
      19.3.3.2.2.4 اسپرینکلرهای پوشش گسترده باید دارای فهرست‌بندی و طراحی برای حداقل دبی مطابق با چگالی برای خطر مورد نظر طبق شکل 19.3.3.1.1 باشند.

      19.3.3.2.3 اسپرینکلرهای با واکنش سریع
      19.3.3.2.3.1 در مواردی که از اسپرینکلرهای با واکنش سریع فهرست‌شده، از جمله اسپرینکلرهای با پوشش گسترده و واکنش سریع، در سراسر یک سیستم یا بخشی از سیستمی که دارای مبنای طراحی هیدرولیکی یکسان است استفاده شود، مساحت عملکرد سیستم می‌تواند بدون تغییر در چگالی، کاهش یابد طبق آنچه در شکل 19.3.3.2.3.1 آمده است، به‌شرطی که همه شرایط زیر برآورده شوند:
      (1) سیستم لوله‌کشی مرطوب باشد
      (2) اشغال خطر سبک یا خطر معمولی باشد
      (3) ارتفاع سقف حداکثر 20 فوت (6.1 متر) باشد

      (4) هیچ فضای سقفیِ بدون محافظت مطابق با موارد مجاز در بندهای 10.2.9 و 11.2.8 نباید بیش از 32 فوت مربع (3.0 متر مربع) باشد.

      (5) هیچ ناحیه‌ای بدون محافظت در بالای سقف‌های ابری (cloud ceilings) مطابق با موارد مجاز در بند 9.2.7 نباید وجود داشته باشد.

      19.3.3.2.3.2 تعداد اسپرینکلرها در ناحیه طراحی نباید هرگز کمتر از پنج عدد باشد.

      19.3.3.2.3.3 در مواردی که از اسپرینکلرهای با واکنش سریع روی سقف یا بام شیب‌دار استفاده می‌شود، برای تعیین درصد کاهش ناحیه طراحی، حداکثر ارتفاع سقف یا بام باید لحاظ شود.

      19.3.3.2.4 سقف‌های شیب‌دار. در مواردی که از انواع زیر از اسپرینکلرها روی سقف‌های شیب‌دار با شیب بیش از 1 به 6 (افزایش 2 واحد در طول 12 واحد، معادل شیب 16.7 درصد) در کاربردهای غیر انباری استفاده می‌شود، ناحیه عملکرد سیستم باید بدون تغییر چگالی، 30 درصد افزایش یابد:

      (1) اسپرینکلرهای اسپری، شامل اسپرینکلرهای پوشش گسترده که طبق بند 11.2.1(4) فهرست شده‌اند، و اسپرینکلرهای با واکنش سریع
      (2) اسپرینکلرهای CMSA

      19.3.3.2.5 سیستم‌های خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف.* برای سیستم‌های لوله‌کشی خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف، ناحیه عملکرد اسپرینکلر باید بدون تغییر چگالی، 30 درصد افزایش یابد.

      19.3.3.2.6 اسپرینکلرهای دمای بالا. در مواردی که از اسپرینکلرهای دمای بالا برای اشغال‌های با خطر زیاد استفاده می‌شود، ناحیه عملکرد اسپرینکلر می‌تواند بدون تغییر چگالی، تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع).

      19.3.3.2.7 در مواردی که از اسپرینکلرهایی با ضریب دبی K-11.2 (160) یا بزرگ‌تر همراه با منحنی‌های طراحی مربوط به Extra Hazard Group 1 یا Extra Hazard Group 2 و مطابق با بند 19.3.3.1.1 استفاده می‌شود، ناحیه طراحی می‌تواند تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع)، بدون توجه به درجه حرارت اسپرینکلر.

      Z

      19.3.3.2.8* تعدیلات چندگانه
      19.3.3.2.8.1 هنگامی که تعدیلات چندگانه در ناحیه عملکرد باید مطابق با بندهای 19.3.3.2.3، 19.3.3.2.4، 19.3.3.2.5 یا 19.3.3.2.6 انجام گیرد، این تعدیلات باید به صورت مرکب بر پایه ناحیه عملکرد انتخاب‌شده اولیه از شکل 19.3.3.1.1 اعمال شوند.
      19.3.3.2.8.2 اگر ساختمان دارای فضاهای پنهان قابل احتراق و بدون اسپرینکلر باشد، قوانین بند 19.3.3.1.4 باید پس از انجام تمام اصلاحات دیگر اعمال شود.

      19.3.3.3 روش طراحی اتاق
      19.3.3.3.1* نیازمندی‌های تأمین آب برای تنها اسپرینکلرها باید بر پایه اتاقی که بیشترین تقاضا را ایجاد می‌کند، بنا شود.
      19.3.3.3.2 چگالی انتخاب‌شده باید از شکل 19.3.3.1.1 مطابق با طبقه‌بندی خطر اشغال و اندازه اتاق باشد.
      19.3.3.3.3 برای استفاده از روش طراحی اتاق، تمام اتاق‌ها باید دارای دیوارهایی با درجه مقاومت در برابر آتش برابر با مدت زمان تأمین آب ذکر شده در جدول 19.3.3.1.2 باشند.
      19.3.3.3.4 اگر اتاق کوچک‌تر از ناحیه مشخص‌شده در شکل 19.3.3.1.1 باشد، مفاد بندهای 19.3.3.1.4(1) و 19.3.3.1.4(2) باید اعمال شوند.
      19.3.3.3.5 حداقل حفاظت از بازشوها باید به صورت زیر باشد:
      (1) خطر سبک — درب‌های خودبسته‌شونده یا خودکار غیر مقاوم در برابر آتش.
      (2) خطر سبک بدون حفاظت از بازشو — در صورتی که بازشوها حفاظت نشده باشند، محاسبات باید شامل اسپرینکلرهای داخل اتاق به‌علاوه دو اسپرینکلر در فضای ارتباطی نزدیک‌ترین به هر بازشوی حفاظت‌نشده باشد، مگر اینکه فضای ارتباطی تنها دارای یک اسپرینکلر باشد که در این صورت محاسبات باید شامل عملکرد همان یک اسپرینکلر باشد. انتخاب اسپرینکلرهای اتاق و فضای ارتباطی که باید محاسبه شود، باید به گونه‌ای باشد که بیشترین تقاضای هیدرولیکی را تولید کند. برای اشغال‌های خطر سبک با بازشوهای بدون حفاظت در دیوارها، حداقل عمق پیشانی (lintel) برای بازشوها 8 اینچ (200 میلی‌متر) الزامی است و عرض بازشو نباید بیش از 8 فوت (2.4 متر) باشد. داشتن تنها یک بازشوی 36 اینچ (900 میلی‌متر) یا کمتر بدون پیشانی مجاز است، مشروط بر اینکه بازشوی دیگری به فضاهای مجاور وجود نداشته باشد.
      (3) خطر معمولی و خطر بالا — درب‌های خودبسته‌شونده یا خودکار با درجه مقاومت آتش مناسب برای محصورسازی.

      19.3.3.3.6 در صورتی که روش طراحی اتاق استفاده شود و ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای حفاظت‌شده طبق بند 19.3.3.3.5 محافظت می‌شود، حداکثر تعداد اسپرینکلرهایی که نیاز به محاسبه دارند پنج عدد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو خواهد بود.
      19.3.3.3.7 در صورتی که ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای بدون حفاظت در یک اشغال خطر سبک محافظت می‌شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای موجود در راهرو تا حداکثر پنج عدد باشد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو.

      19.3.3.4 نواحی طراحی ویژه
      19.3.3.4.1 در صورتی که ناحیه طراحی شامل یک شوت خدمات ساختمانی باشد که با رایزر جداگانه‌ای تغذیه می‌شود، حداکثر تعداد اسپرینکلرهایی که باید محاسبه شوند، سه عدد است، که هرکدام باید حداقل ۱۵ گالن در دقیقه (57 لیتر در دقیقه) تخلیه داشته باشند.
      19.3.3.4.2* در صورتی که ناحیه‌ای قرار است تنها توسط یک خط اسپرینکلر محافظت شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای روی خط تا حداکثر هفت عدد باشد.
      19.3.3.4.3 اسپرینکلرهای داخل کانال‌ها که در بخش‌های 8.9 و 9.3.9 توصیف شده‌اند، باید به‌گونه‌ای طراحی هیدرولیکی شوند که فشار تخلیه در هر اسپرینکلر حداقل ۷ psi (0.5 bar) باشد، در حالی که تمام اسپرینکلرهای داخل کانال در حال تخلیه هستند.
      19.3.3.4.4 برج‌های پله: برج‌های پله یا دیگر ساختارهایی با طبقات ناقص، اگر با رایزر مستقل لوله‌کشی شده باشند، از نظر اندازه لوله به‌عنوان یک ناحیه تلقی می‌شوند.

      19.4 رویکردهای طراحی ویژه
      19.4.1 اسپرینکلرهای مسکونی
      19.4.1.1* ناحیه طراحی باید شامل چهار اسپرینکلر مجاور باشد که بیشترین تقاضای هیدرولیکی را ایجاد می‌کنند.
      19.4.1.2* مگر اینکه الزامات بند 19.3.3.1.5.2 برای ساختمان‌هایی که دارای فضاهای پنهان قابل احتراق بدون اسپرینکلر هستند (طبق توصیف در بندهای 9.2.1 و 9.3.18) رعایت شده باشد، حداقل ناحیه طراحی عملکرد اسپرینکلر برای آن بخش از ساختمان باید شامل هشت اسپرینکلر باشد.
      19.4.1.2.1* ناحیه طراحی شامل هشت اسپرینکلر فقط باید برای بخش‌هایی از اسپرینکلرهای مسکونی اعمال شود که در مجاورت فضای پنهان قابل احتراق واجد شرایط قرار دارند.
      19.4.1.2.2 واژه «مجاور» شامل هر سیستم اسپرینکلری می‌شود که فضایی را در بالا، پایین، یا کنار فضای پنهان محافظت می‌کند، مگر آنکه مانعی با درجه مقاومت در برابر آتش معادل حداقل مدت زمان تأمین آب، فضای پنهان را به‌طور کامل از ناحیه دارای اسپرینکلر جدا کرده باشد.
      19.4.1.3 مگر اینکه الزامات بند 19.4.1.4 رعایت شده باشد، حداقل دبی مورد نیاز از هر اسپرینکلر در ناحیه طراحی باید بزرگ‌تر از مقادیر زیر باشد:
      (1) طبق حداقل نرخ جریان ذکر شده در لیستینگ اسپرینکلر
      (2) در اتاق‌ها یا فضاهایی بزرگ‌تر از 800 فوت مربع (74 متر مربع)، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی ناحیه طراحی، طبق مفاد بند 9.5.2.1
      (3) در اتاق‌ها یا فضاهایی با 800 فوت مربع (74 متر مربع) یا کمتر، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی سطح اتاق یا فضا با استفاده از مساحت اتاق تقسیم بر تعداد اسپرینکلرهای موجود در آن

      19.4.1.4 برای تغییرات یا افزودن به سیستم‌های موجود مجهز به اسپرینکلرهای مسکونی، معیارهای دبی لیست‌شده کمتر از 0.1 gpm/ft² (4.1 mm/min) مجاز است.
      19.4.1.4.1 در مواردی که اسپرینکلرهای مسکونی تولیدشده پیش از سال 2003 که دیگر توسط تولیدکننده عرضه نمی‌شوند تعویض می‌گردند، و این اسپرینکلرها با چگالی طراحی کمتر از 0.05 gpm/ft² (2.04 mm/min) نصب شده‌اند، استفاده از اسپرینکلر مسکونی با ضریب K معادل (±5 درصد) مجاز است، مشروط بر اینکه سطح پوشش فعلی لیست‌شده برای اسپرینکلر جایگزین تجاوز نکند.

      19.4.1.5 در نواحی مانند اتاق زیر شیروانی، زیرزمین‌ها، یا سایر انواع کاربری‌هایی که خارج از واحدهای مسکونی اما درون همان سازه قرار دارند، این نواحی باید به‌عنوان مبنای طراحی جداگانه طبق بخش 19.2 محافظت شوند.
      19.4.1.6 الزامات اختصاصی برای سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق الزامات کاربری خطر کم(light hazard) در جدول 19.3.3.1.2 باشد.

      19.4.2 حفاظت در برابر مواجهه   (Exposure Protection)

      19.4.2.1* لوله‌کشی باید طبق بخش 27.2 به‌صورت هیدرولیکی طراحی شود به‌نحوی که حداقل ۷ psi (0.5 bar) فشار در هر اسپرینکلر که به سمت ناحیه مواجهه (exposure) قرار گرفته، با فرض فعال بودن تمام این اسپرینکلرها، فراهم گردد.
      19.4.2.2 اگر منبع آب سایر سامانه‌های حفاظت در برابر آتش را نیز تغذیه می‌کند، باید توانایی تأمین هم‌زمان کل تقاضای این سامانه‌ها و همچنین تقاضای سامانه محافظت از مواجهه را داشته باشد.

      19.4.3 پرده‌های آبی (Water Curtains)

      19.4.3.1 اسپرینکلرهای موجود در یک پرده آبی، همان‌طور که در بندهای 9.3.5 یا 9.3.13.2 توصیف شده‌اند، باید به‌گونه‌ای طراحی شوند که حداقل تخلیه 3 گالن در دقیقه برای هر فوت طول (37 لیتر در دقیقه برای هر متر طول) از پرده آبی را فراهم کنند، به‌طوری که هیچ اسپرینکلری کمتر از 15 گالن در دقیقه (57 لیتر در دقیقه) تخلیه نداشته باشد.
      19.4.3.2 برای پرده‌های آبی با اسپرینکلر خودکار (automatic sprinklers)، تعداد اسپرینکلرهایی که در طراحی محاسبه می‌شوند باید برابر با تعداد اسپرینکلرهایی باشد که در طولی مطابق با طول موازی با خطوط انشعاب (branch lines) در ناحیه‌ای که در بند 27.2.4.2 مشخص شده است، قرار دارند.
      19.4.3.3 برای پرده آبی سیستم دلوژ (deluge system) که جهت محافظت از دهانه‌ی صحنه تئاتر (proscenium opening) طبق بند 9.3.13.2 استفاده می‌شود، پرده آبی باید به‌گونه‌ای طراحی شود که همه اسپرینکلرهای باز متصل به آن را تأمین کند.

      19.4.3.4 اسپرینکلرهای زیر سقف یا بام در فضاهای پنهان قابل احتراق با سازه‌های چوبی (Wood Joist یا Wood Truss) با فواصل کمتر از 3 فوت (0.9 متر) و شیب 4 در 12 یا بیشتر

      19.4.3.4.1 در صورتی که فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از 8 فوت (2.4 متر) در جهت عمود بر شیب نباشد، حداقل فشار تخلیه اسپرینکلر باید 7 psi (0.5 bar) باشد.

      19.4.3.4.2 چنانچه فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از ۸ فوت (۲.۴ متر) در جهت عمود بر شیب باشد، حداقل فشار تخلیه اسپرینکلر باید ۲۰ psi (1.4 bar) باشد.
      19.4.3.4.3 الزامات سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق با الزامات کاربری خطر کم (light hazard) در جدول 19.3.3.1.2 رعایت شود.

      19.4.3.5 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای پرده آبی و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب پرده آبی باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.

      19.4.4 شیشه محافظت‌شده با اسپرینکلر (Sprinkler-Protected Glazing)

      19.4.4 در مواردی که الزامات شیشه محافظت‌شده با اسپرینکلر باید با بند 9.3.15 مطابقت داشته باشند، مدت زمان تأمین آب برای ناحیه طراحی شامل اسپرینکلرهای پنجره نباید کمتر از درجه‌بندی مورد نیاز مجموعه (assembly) باشد.
      19.4.4.1 برای شیشه محافظت‌شده با اسپرینکلر، تعداد اسپرینکلرهایی که در طراحی هیدرولیکی لحاظ می‌شوند، باید معادل تعداد اسپرینکلرهایی باشند که در طولی برابر با طول موازی با خطوط انشعاب در ناحیه‌ای که توسط بند 27.2.4.2 مشخص شده، قرار دارند.
      19.4.4.2 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای شیشه محافظت‌شده و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب برای شیشه محافظت‌شده نیز باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.
      19.4.4.3 محاسبات طراحی هیدرولیکی باید شامل ناحیه‌ای از طراحی باشند که اسپرینکلرهای سقفی مجاور شیشه محافظت‌شده با اسپرینکلر را در بر گیرد.

      19.5 سامانه‌های دلوژ (Deluge Systems)

      اسپرینکلرهای باز و سامانه‌های دلوژ باید طبق استانداردهای مربوطه به‌صورت هیدرولیکی طراحی و محاسبه شوند.

  • راهنمای طراحی دتکتور دودی مکشی برای مهندسین

    قسمت نخست: مفاهیم و ساختارها

    ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

    سطوح حفاظت به شرح زیر خواهند بود:

    1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
      2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
      3. SFD (تشخیص حریق استاندارد Standard Fire Detection

    4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

    الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

    هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

    • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
    • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
    • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
      ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
      ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
      ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

    بخش ۲
    اصول تشخیص دود به روش مکشی (ASD)
    دینامیک جریان هوا

    یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

    • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
    • آشکارساز دود مکشی که شامل موارد زیر است:
      – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
      – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
      – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
    • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

    شبکه لوله‌کشی نمونه‌برداری
    شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

    روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

    • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

    WhatsApp Image 2025 09 29 at 11.40.01 PM

    • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

    WhatsApp Image 2025 09 29 at 11.40.01 PM1

    • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
    • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
    • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
    • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

    WhatsApp Image 2025 09 29 at 11.40.02 PM2

    WhatsApp Image 2025 09 29 at 11.40.02 PM1

  • الزامات استفاده از دتکتور گاز در معادن

    پیش‌زمینه دتکتور گاز
    مقررات ایمنی و سلامت کار (معدن‌ها و محل‌های نفت و گاز) ۲۰۲۲ شامل الزامات مربوط به کیفیت هوای تأمین‌شده درون معدن و حدود مجاز آلاینده‌ها در آن هوا است. برای رعایت این الزامات، بهره‌بردار معدن باید تجهیزات دتکتور گاز را در نقاط استراتژیک سراسر معدن فراهم کند. در انتخاب این تجهیزات، بهره‌بردار معدن باید از این موضوع اطمینان داشته باشد که دتکتور گاز انتخاب‌شده می‌تواند در شرایط محیطی متغیر داده‌های دقیقی ارائه دهد.

    مطابق با بندهای ۱۸۷(۱)(e) و (f) مقررات، طراحی تجهیزات زیر (که در این برگه اطلاعات به آن‌ها «دتکتور گاز» گفته می‌شود) در صورتی که در یک معدن زغال‌سنگ زیرزمینی استفاده شوند، باید به ثبت برسد:
    (e) تجهیزاتی دستی با نیروی برق که برای تعیین یا پایش حضور گاز به‌کار می‌روند.
    (f) نصب‌های ثابت با نیروی برق و نصب‌شده بر روی تجهیزات متحرک که برای تعیین یا پایش حضور گاز به‌کار می‌روند، اما شامل سیستم‌های لوله‌ای نیست که آنالایزر آن‌ها در سطح نصب شده باشد.

    اصطلاح «دتکتور گاز» به مجموعه کامل اجزایی اطلاق می‌شود که تجهیزات تشخیص گاز را تشکیل می‌دهند. اجزای یک دتکتور گاز شامل دتکتور گاز، محفظه محافظ، واسط‌های ارتباطی مانند کابل، فیبر نوری و ارتباطات رادیویی، و نیز واحدهای کنترل و فرستنده‌هایی هستند که امکان نمایش مقادیر گاز و نشان دادن خروجی را فراهم می‌کنند تا بهره‌بردار معدن بتواند سطح گاز را تعیین کند.

    هدف از ثبت طراحی این است که تأیید شود تجهیزات دتکتور گاز به‌گونه‌ای طراحی شده‌اند که حداقل نتایج عملکردی مورد نظر را برآورده کنند. طراحی تحت شرایط آزمون تعیین‌شده توسط یک مرکز آزمون مستقل مورد آزمایش قرار می‌گیرد و نتایج مستند می‌شوند.

    طراحی و نتایج آزمون توسط فردی که در طراحی تجهیزات مشارکت نداشته و خود در زمینه طراحی تجهیزات دتکتور گاز دارای صلاحیت است، به‌صورت همتا‌خوانی بازبینی می‌شود. تأییدکننده طراحی باید با طراح درباره اینکه طراحی و عملکرد دتکتور گاز تمام الزامات رسمی‌شده را برآورده می‌کند، از جمله هرگونه ادعای معادل‌بودن برای پیشبرد ثبت، توافق داشته باشد. هرگونه اختلاف نظر درباره طراحی و عملکرد ادعاشده باید به طراح ارجاع داده شود تا حل‌وفصل شود.

    اسناد زیر اطلاعات بیشتری درباره فرآیند ثبت طراحی ارائه می‌دهند:
    • راهنما: ثبت تجهیزات و اقلام برای معدن‌ها و محل‌های نفت و گاز
    • مقاله موضع‌گیری – تناسب، فرم، عملکرد
    • اطلاعیه عمومی – معیارهای صلاحیت برای تأییدکنندگان طراحی
    • سیاست: ثبت طراحی‌ها

    دستور طراحی دتکتور گاز
    نهاد نظارتی یک دستور طراحی منتشر کرده است که برای دریافت ثبت طراحی دتکتور گاز، باید از آن تبعیت شود. این دستور حداقل الزامات عملکردی را که طراحی دتکتور گاز باید برآورده کند، مشخص می‌کند.

    همچنین، این دستور طراحی شایستگی‌های مورد نیاز برای یک مرکز آزمون را نیز تعیین می‌کند.

    طراحی دتکتورهای گاز
    استانداردهای مربوط به طراحی دتکتور گاز در دستور طراحی مشخص شده‌اند. این دستور اجازه می‌دهد از استانداردهای جایگزین نیز در طراحی دتکتورهای گاز استفاده شود، اما طراح باید استانداردهای فنی منتشرشده یا اصول مهندسی مورد استفاده برای شناسایی کنترل‌هایی که سطح ایمنی معادل را فراهم می‌کنند، مستند کند.

    این معادل‌سازی فقط به طراحی دتکتور گاز مربوط می‌شود و شامل نتایج عملکردی که دتکتور باید در حین آزمون نشان دهد، نمی‌شود.

    عملکرد دتکتورهای گاز
    دستور طراحی الزام می‌کند که دتکتور گاز تحت شرایط مشخص توسط یک مرکز آزمون مناسب مورد آزمایش قرار گیرد. مرکز آزمون عملکرد دتکتور گاز را تحت شرایط محیطی مختلف، از جمله تغییرات دما، رطوبت، فشار هوا، سرعت جریان هوا، قرارگیری مداوم در معرض سطح بالای گاز، و تأثیر گازهای دیگر بر دتکتور، ارزیابی خواهد کرد. تمام این عوامل در محیط معدن زیرزمینی اهمیت دارند.

    آزمون‌های آزمایشگاهی همچنین مقدار پایه‌ای برای زمان‌های پاسخ‌گویی (t(50) و t(90)) دتکتور گاز در مواجهه با افزایش و کاهش سطح گاز را تعیین می‌کنند. این آزمون‌ها همچنین مشخص می‌کنند که عملکرد دتکتور گاز، از جمله نمایشگرها و سیگنال‌های خروجی، چگونه تحت تأثیر عواملی همچون موارد زیر قرار می‌گیرد:
    • مدت‌زمان مورد نیاز پس از برق‌دار شدن تا آغاز تشخیص دقیق گاز
    • انتشار امواج الکترومغناطیسی از تجهیزات برقی نزدیک به دتکتور و سایر اجزای دتکتور مانند کابل‌ها

    دستور طراحی الزام می‌کند که دتکتورهای گاز مطابق با معیارهای مشخص‌شده برای گازهای قابل اشتعال، گازهای سمی و اکسیژن (در صورت لزوم) مورد آزمون قرار گیرند. این موضوع تضمین می‌کند که عملکرد دتکتور، شامل زمان پاسخ و تأثیر شرایط محیطی و سایر عوامل مانند برق‌دار شدن و انتشار امواج الکترومغناطیسی، به‌صورت یکنواخت ارزیابی شود.

    نمایشگرها، سیگنال‌ها و نشانگرهای خروجی دتکتور گاز
    دستور طراحی الزام می‌کند که دتکتورهای گاز به‌گونه‌ای طراحی شوند که دارای دتکتورهای داخلی، دتکتورهای از راه دور، یا ترکیبی از این دو باشند. دتکتورهایی که با این الزامات مطابقت دارند، نمایشگر وضعیت، عملکرد هشدار، کنتاکت‌های خروجی و/یا سیگنال‌های هشدار خروجی ارائه می‌دهند که تصمیم‌گیری در مورد مدیریت هوای تهویه، محیط و عملکرد تجهیزات را امکان‌پذیر می‌سازند.

    دتکتورهای گاز همچنین باید به‌گونه‌ای طراحی شوند که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی فراهم کنند که بتوان از آن برای نمایش مقدار گاز در یک نمایشگر دور از دتکتور یا واحد کنترل، به‌عنوان ورودی برای سیستم هشدار یا قطع‌کننده جداگانه، یا به‌عنوان ورودی برای سیستم‌های برداشت و کنترل داده‌های معدن جهت نمایش و بررسی روند سطح گاز استفاده کرد.

    دتکتورهای گاز ممکن است به‌گونه‌ای طراحی شوند که انتقال سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را در داخل واحد کنترل دتکتور گاز انجام دهند یا آن را به‌صورت یک واحد فرستنده جداگانه حفظ کنند.

    سیگنال‌های استاندارد پذیرفته‌شده در صنعت
    سیگنال‌های استاندارد پذیرفته‌شده در صنعت، سیگنال‌هایی هستند که کاربر نهایی می‌تواند بدون استفاده از قطعات خاص انحصاری برای رمزگشایی و بازفرمت‌کردن داده، آن‌ها را تفسیر کند.

    بند ۳.۲.۱۱ از استاندارد AS/NZS 60079.29.1 یک سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را چیزی مانند حلقه جریان ۴ تا ۲۰ میلی‌آمپر تعریف می‌کند.
    بند ۱.۳.۸.۱۰ از استاندارد AS/NZS 4641:2018 نیز سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را به‌صورت مثال‌هایی مانند حلقه جریان ۴–۲۰ میلی‌آمپر یا سیگنال ۳–۱۵ psi بیان می‌کند.

    سیگنال‌های آنالوگ دتکتور گاز
    سیگنال آنالوگ، مانند حلقه جریان ۴–۲۰ میلی‌آمپر، یک سیگنال الکتریکی است که می‌توان آن را با تجهیزات تست الکتریکی اندازه‌گیری و نمایش داد. این سیگنال ممکن است به‌عنوان ورودی برای واحدهای کنترل دتکتور گاز مجزا یا سایر سیستم‌های کنترل و پایش، با استفاده از اجزای جانبی مانند واحد نمایشگر یا واحد هشدار و قطع‌کننده به‌کار رود. همچنین این سیگنال می‌تواند ورودی‌ای برای یک کنترل‌کننده قابل برنامه‌ریزی باشد تا عملکرد هشدار و قطع را آغاز کند یا داده را به سیستم‌های برداشت داده معدن منتقل نماید.

    سیگنال‌های آنالوگ محدود به حلقه جریان ۴–۲۰ میلی‌آمپر نیستند.

    سیگنال‌های دیجیتال دتکتور گاز
    یک دتکتور گاز ممکن است سیگنال خروجی دیجیتال ارائه دهد، به‌جای سیگنال آنالوگ. برای اینکه سیگنال دیجیتال قابل استفاده توسط بهره‌بردار معدن باشد، ساختار سیگنال دیجیتال باید شناخته‌شده باشد. بدون داشتن پروتکل جریان داده دیجیتال، امکان تفسیر محتوای سیگنال ارسالی از سوی دتکتور، از جمله مقدار گاز شناسایی‌شده، وجود ندارد. معمولاً یک مبدل پروتکل برای رمزگشایی سیگنال و امکان استفاده از داده دتکتور گاز توسط بهره‌بردار معدن مورد نیاز است. این اجزای جانبی بخشی از تجهیزات ثبت‌شده طراحی‌شده تلقی می‌شوند.

    آزمایش دتکتور گاز
    برای دستیابی به ثبت طراحی، باید گزارشی از آزمون ارائه شود که تأیید کند دتکتور گاز، شامل دتکتور و تمام اجزای لازم برای اینکه بهره‌بردار معدن بتواند محتوای گاز در جو معدن را تعیین کند، الزامات عملکردی مشخص‌شده در استانداردهای مربوطه را برآورده می‌سازد. اجزای اضافی شامل ماژول‌های نمایشگر، ماژول‌های فرستنده، ترکیب نمایشگر و فرستنده، یا رله‌های هشدار و قطع هستند. در صورتی که دتکتور به‌صورت از راه دور باشد، آزمون شامل کابل‌های ارتباطی‌ای خواهد بود که طراح آن‌ها را مناسب تشخیص داده است.

    چنانچه یک دتکتور گاز شامل عملکرد یک فرستنده دتکتور گاز باشد و فرستنده دتکتور گاز سیگنال داده دیجیتال ارائه دهد، تمام ماژول‌های اختصاصی لازم برای اینکه بهره‌بردار معدن بتواند از سیگنال دیجیتال استفاده کند، باید همراه با دتکتور توسط مرکز آزمون مورد آزمایش قرار گیرند. این ماژول‌های اضافی به‌عنوان بخشی از طراحی ثبت‌شده دتکتور گاز محسوب می‌شوند.

    این آزمون برای تأیید این موضوع لازم است که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی، به‌طور دقیق سطح گازی را که دتکتور در معرض آن قرار گرفته، تحت شرایط متغیر نشان دهد.

    پروتکل هرگونه درایور نرم‌افزاری که توسط مرکز آزمون در زمان آزمون دتکتور گاز استفاده می‌شود، باید مستند شده و به‌عنوان بخشی از مستندات ثبت طراحی درج شود. این امر توسعه درایورهای نرم‌افزاری سازگار با رابط‌های ارتباطی موجود در آن معدن را ممکن می‌سازد.

  • اصول دتکتورهای شعله

    دتکتورهای شعله دستگاه‌هایی هستند که وجود شعله را تشخیص می‌دهند و در سیستم‌های ایمنی برای جلوگیری از آتش‌سوزی و انفجار استفاده می‌شوند. این دتکتورها با تشخیص سریع وجود شعله، امکان فعال‌سازی هشدار و سیستم‌های اطفاء حریق را فراهم می‌کنند.

    دتکتورهای شعله از روش‌های مختلفی برای تشخیص شعله استفاده می‌کنند، از جمله تشخیص امواج نوری در طیف‌های مختلف، مانند نور مرئی، مادون قرمز و فرابنفش. هر کدام از این روش‌ها مزایا و محدودیت‌های خاص خود را دارند.

    دتکتورهای شعله معمولاً در محیط‌هایی که احتمال وجود آتش‌سوزی ناگهانی وجود دارد به کار می‌روند، مانند صنایع نفت و گاز، پالایشگاه‌ها، نیروگاه‌ها و سایر محیط‌های صنعتی حساس.

     

    انواع دتکتورهای شعله

    ۱. دتکتور شعله فرابنفش (UV)
    این دتکتورها تابش فرابنفش ناشی از شعله را تشخیص می‌دهند. شعله‌ها معمولاً در محدوده فرابنفش طیف الکترومغناطیسی تابش می‌کنند که برای چشم انسان قابل دیدن نیست. دتکتورهای UV سریع‌ترین نوع دتکتور شعله هستند و پاسخ آنها معمولاً در کسری از ثانیه اتفاق می‌افتد.
    معایب آنها حساسیت به جرقه‌های الکتریکی، رعد و برق و سایر منابع فرابنفش محیطی است که ممکن است باعث هشدار اشتباه شود.

    ۲. دتکتور شعله مادون قرمز (IR)
    دتکتورهای IR تشخیص‌دهنده تابش مادون قرمز ناشی از شعله هستند. این نوع دتکتورها در برابر جرقه‌های الکتریکی حساسیت کمتری نسبت به دتکتورهای UV دارند. دتکتورهای IR می‌توانند در محیط‌های با نور فرابنفش زیاد عملکرد بهتری داشته باشند.

    ۳. دتکتور شعله UV/IR (ترکیبی)
    این دتکتورها از ترکیب دو فناوری UV و IR برای کاهش هشدارهای اشتباه استفاده می‌کنند. برای تأیید وجود شعله، دتکتور باید هر دو سیگنال فرابنفش و مادون قرمز را به صورت همزمان دریافت کند. این ترکیب باعث افزایش دقت و کاهش هشدارهای نادرست می‌شود.

    ۴. دتکتور شعله هیدروکربنی
    این نوع دتکتورها طول موج‌های خاصی را که مربوط به شعله‌های هیدروکربنی است تشخیص می‌دهند و معمولاً در کاربردهای نفت و گاز استفاده می‌شوند.

    کاربردها و مزایای دتکتورهای شعله

    دتکتورهای شعله معمولاً در صنایع نفت، گاز، پتروشیمی، نیروگاه‌ها و هر جایی که خطر آتش‌سوزی وجود دارد استفاده می‌شوند. این دتکتورها سرعت پاسخ بسیار بالایی دارند و می‌توانند آتش‌سوزی را در مراحل اولیه شناسایی کنند تا اقدام سریع برای جلوگیری از گسترش حادثه انجام شود.

    مزایای دتکتورهای شعله عبارتند از:

    • پاسخ سریع و دقیق به حضور شعله
    • حساسیت بالا به انواع مختلف شعله‌ها (هیدروکربنی، گازی و غیره)
    • توانایی عملکرد در محیط‌های چالش‌برانگیز مانند دما و رطوبت بالا
    • کاهش هشدارهای اشتباه با استفاده از فناوری‌های ترکیبی (UV/IR)

    نکات مهم در نصب و نگهداری دتکتورهای شعله

    • دتکتورها باید در نقاطی نصب شوند که میدان دید مستقیم به محل‌های احتمالی شعله داشته باشند.
    • وجود موانع مانند دیوار یا تجهیزات ممکن است تابش شعله را مسدود کند و عملکرد دتکتور را کاهش دهد.
    • باید دقت شود که منابع نور شدید محیطی مانند چراغ‌های فلورسنت یا نور خورشید مستقیم باعث هشدار اشتباه نشوند.
    • نگهداری منظم و کالیبراسیون دوره‌ای برای حفظ عملکرد بهینه دتکتورها ضروری است.

    انواع دتکتورهای شعله

    1. دتکتورهای ماوراء بنفش (UV)
      این دتکتورها پرتوهای UV ساطع شده از شعله را شناسایی می‌کنند. پاسخ‌دهی سریع دارند اما ممکن است به منابع دیگر UV مانند رعد و برق یا جرقه‌ها حساس باشند و باعث هشدار اشتباه شوند.
    2. دتکتورهای مادون قرمز (IR)
      دتکتورهای IR تابش مادون قرمز شعله را تشخیص می‌دهند. این نوع دتکتورها نسبت به دتکتورهای UV کمتر به منابع مزاحم حساس هستند ولی ممکن است به بخار آب یا دود حساسیت نشان دهند.
    3. دتکتورهای ترکیبی UV/IR
      این دتکتورها از هر دو نوع UV و IR برای تشخیص شعله استفاده می‌کنند و با ترکیب سیگنال‌ها، دقت شناسایی را بالا برده و هشدارهای اشتباه را کاهش می‌دهند.

    WhatsApp Image 2025 09 25 at 2.23.45 AM

    عملکرد دتکتورهای شعله

    وقتی شعله‌ای در میدان دید دتکتور ظاهر می‌شود، دتکتور تشعشعات UV و/یا IR ناشی از آن را دریافت می‌کند. این تشعشعات توسط المان‌های حساس دتکتور تبدیل به سیگنال‌های الکتریکی می‌شوند که توسط مدارهای داخلی پردازش شده و در صورت تأیید وجود شعله، هشدار صادر می‌شود.

    WhatsApp Image 2025 09 25 at 2.23.45 AM1

    محدودیت‌ها و ملاحظات دتکتورهای شعله

    • دتکتورهای شعله نمی‌توانند شعله‌هایی را که توسط مانع پوشانده شده‌اند شناسایی کنند.
    • دتکتورهای UV ممکن است تحت تأثیر منابع UV دیگر قرار گیرند.
    • دتکتورهای IR ممکن است توسط شرایط جوی مثل مه یا دود شدید تحت تأثیر قرار گیرند.
    • دتکتورهای ترکیبی گرچه دقت بالاتری دارند، اما هزینه بالاتری نیز دارند.

    WhatsApp Image 2025 09 25 at 2.23.46 AM

    نکات پایانی

    برای انتخاب دتکتور مناسب باید محیط کاری، نوع سوخت، شرایط جوی و خطرات احتمالی را در نظر گرفت. همچنین نصب و نگهداری صحیح دتکتورها، نقش مهمی در افزایش کارایی و کاهش هشدارهای کاذب ایفا می‌کند.

     

     

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.