دتکتور گاز نیمه‌هادی چیست؟

IMG 2251

دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

2Q==

ساختار دتکتور گاز نیمه‌هادی

یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

الف) ماده حسگر (Sensing Material)

معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

9k=

این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

ب) المنت گرمایشی (Heating Element)

برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

ج) الکترودهای اندازه‌گیری (Electrodes)

تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

2Q==

د) مدار پردازش سیگنال

سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

2. عملکرد دتکتور گاز نیمه‌هادی

9k=

مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

مرحله ۲: تغییر در هدایت الکتریکی

این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

9k=

مرحله ۳: اندازه‌گیری و پردازش سیگنال

مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

2Q==

3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

مزایا:

حساسیت بالا نسبت به بسیاری از گازها
پاسخ سریع به تغییرات غلظت گاز
طول عمر زیاد (۵ تا ۱۰ سال)
قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

معایب:

وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

5. کاربردهای دتکتور گاز نیمه‌هادی

سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

نتیجه‌گیری

دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

نوشته‌های مشابه

  • دفترچه مهندسان برای بیم دتکتور دودی اعلام حریق

    بخش ۱ – اصول عملکرد
    بیم دتکتور دودی اعلام حریق با پرتو بازتابی شامل یک واحد فرستنده/گیرنده است که یک پرتو را به سمت ناحیه تحت حفاظت ارسال، پایش و دریافت می‌کند.WhatsApp Image 2025 09 16 at 1.20.16 AM

    بیم دتکتور بر اساس اصل تضعیف نور کار می‌کند. عنصر حساس به نور در شرایط عادی، نوری که توسط واحد فرستنده/گیرنده تولید می‌شود را دریافت می‌کند. واحد فرستنده/گیرنده بر اساس درصدی از تضعیف کل نور، روی یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول پرتو و فاصله بین واحد فرستنده/گیرنده و رفلکتور تعیین می‌گردد. برای بیم دتکتورهای دارای تأییدیه UL، تنظیم حساسیت باید با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق» مطابقت داشته باشد.
    بیم دتکتورهای دودی اعلام حریق بر اساس اصل تضعیف عمل می‌کنند. هنگامی که میدان دود تشکیل می‌شود، بیم دتکتور تضعیف تجمعی — درصد مسدود شدن نور ناشی از ترکیب غلظت دود و فاصله خطی میدان دود در طول پرتو — را تشخیص می‌دهد. آستانه معمولاً توسط سازنده و بر اساس شرایط نصب تعیین می‌شود.
    انتخاب حساسیت مناسب، احتمال آلارم‌های مزاحم ناشی از انسداد پرتو به‌وسیله یک جسم جامد که به‌طور ناخواسته در مسیر قرار گرفته را به حداقل می‌رساند. از آنجا که انسداد ناگهانی و کامل پرتو نوری مشخصه معمول دود نیست، بیم دتکتور این حالت را به‌عنوان وضعیت خطا تشخیص می‌دهد نه آلارم.
    همچنین تغییرات بسیار کوچک و آهسته در کیفیت منبع نور مشخصه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گرد و غبار و آلودگی بر روی مجموعه اپتیکی واحد فرستنده/گیرنده یا سطح بازتابی رخ دهد.

    WhatsApp Image 2025 09 16 at 1.20.17 AM

    وقتی بیم دتکتور برای اولین بار روشن و برنامه راه‌اندازی آن اجرا می‌شود، سطح سیگنال نوری آن لحظه را به‌عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، کنترل خودکار بهره (AGC) این تغییر را جبران می‌کند. با این حال، سرعت جبران محدود است تا اطمینان حاصل شود که بیم دتکتور همچنان به آتش‌سوزی‌های تدریجی یا دودکردن حساس می‌ماند. هنگامی که AGC دیگر قادر به جبران کاهش سیگنال نباشد، مثلاً به علت تجمع بیش از حد گرد و غبار، بیم دتکتور وضعیت خطا را اعلام می‌کند.

    WhatsApp Image 2025 09 16 at 1.20.17 AM1

    لوازم جانبی
    لوازم جانبی بیم دتکتور دودی اعلام حریق با پرتو بازتابی ممکن است شامل تابلوی اعلام از راه دور و ایستگاه‌های تست از راه دور باشد که امکان تست دوره‌ای الکترونیکی و/یا حساسیت بیم دتکتور را فراهم می‌کنند. سیستم‌های هوشمند اعلام حریق می‌توانند یک آدرس اختصاصی به بیم دتکتور بدهند تا مکان دقیق آتش بهتر مشخص شود.

    WhatsApp Image 2025 09 16 at 1.20.18 AM

    سایر لوازم جانبی قابل استفاده شامل کیت نصب سطحی، کیت نصب چندحالته، و کیت برد بلند هستند. کیت نصب سطحی برای زمانی است که سیم‌کشی به‌صورت روکار انجام شود. کیت نصب چندحالته امکان نصب بیم دتکتور و رفلکتور را بر روی دیوار یا سقف فراهم می‌کند و برای نصب این کیت بر روی بیم دتکتور باید از کیت نصب سطحی نیز استفاده شود. کیت برد بلند امکان نصب بیم دتکتور را در فاصله‌های بیشتر از رفلکتور، معمولاً بین ۷۰ تا ۱۰۰ متر (۲۳۰ تا ۳۲۸ فوت) فراهم می‌کند.
    هیترها باعث می‌شوند سطح اپتیکی بیم دتکتور و رفلکتور دمایی کمی بالاتر از دمای هوای اطراف داشته باشد، که به کاهش میعان در محیط‌هایی با تغییرات دمایی کمک می‌کند.

    بخش ۲ – مقایسه بیم دتکتور دودی اعلام حریق با دتکتورهای نقطه‌ای دود
    بیم دتکتورها تحت استاندارد UL و NFPA 72، 2013، بخش A.17.7.3.7 قرار دارند. لازم است طراحان این الزامات را به‌طور کامل در انتخاب و کاربرد بیم دتکتورها برای سیستم‌های اعلام حریق در نظر بگیرند.

    پوشش‌دهی
    بیم دتکتورهای دودی اعلام حریق می‌توانند سطحی را پوشش دهند که نیازمند بیش از یک دوجین دتکتور نقطه‌ای باشد. تعداد کمتر دستگاه به معنی هزینه نصب و نگهداری کمتر است.
    این دتکتورها معمولاً حداکثر برد ۱۰۰ متر (۳۳۰ فوت) و حداکثر فاصله بین دو دتکتور ۱۸ متر (۶۰ فوت) دارند، که پوشش تئوریک ۱۸۳۹ مترمربع (۱۹,۸۰۰ فوت مربع) ایجاد می‌کند. توصیه‌های سازنده و عواملی مانند شکل اتاق ممکن است این مقدار را در عمل کاهش دهند.
    دتکتورهای نقطه‌ای دود حداکثر پوشش ۸۳ مترمربع (۹۰۰ فوت مربع) دارند. حداکثر فاصله بین دو دتکتور ۱۲.۵ متر (۴۱ فوت) است، زمانی که عرض ناحیه تحت حفاظت بیش از ۳ متر (۱۰ فوت) نباشد، مانند یک راهرو.

    ارتفاع سقف
    اگرچه زمان پاسخ دتکتور نقطه‌ای دود معمولاً با افزایش فاصله آن از آتش/کف افزایش می‌یابد، این موضوع لزوماً در مورد بیم دتکتورهای دودی اعلام حریق صدق نمی‌کند، زیرا این دتکتورها برای سقف‌های بلند ایده‌آل هستند. با این حال، برخی سازندگان ممکن است با افزایش ارتفاع سقف، به دتکتورهای اضافی نیاز داشته باشند، که این امر به دلیل رفتار مورد انتظار ستون دود است.

    آتش‌سوزی‌ها معمولاً در نزدیکی یا در سطح کف آغاز می‌شوند. هنگامی که این اتفاق می‌افتد، دود به سمت بالا یا نزدیک سقف حرکت می‌کند. به طور معمول، ستون دود در مسیر حرکت از نقطه شروع خود، شروع به گسترش کرده و به شکل یک مخروط وارونه در می‌آید.

    WhatsApp Image 2025 09 16 at 1.20.18 AM1

    تراکم میدان دود می‌تواند تحت تأثیر سرعت رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند تراکم یکنواخت‌تری ایجاد کنند نسبت به آتش‌های کندسوز، که در آن ممکن است در بخش‌های بالایی میدان دود رقیق‌سازی رخ دهد. در برخی کاربردها، به ویژه جایی که سقف‌های بلند وجود دارد، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های کند یا دودزا واکنش‌پذیرتر از دتکتورهای نقطه‌ای باشند، زیرا آنها کل میدان دود را در طول پرتو بررسی می‌کنند. دتکتورهای نقطه‌ای تنها دود را در «نقطه» خاص خود نمونه‌برداری می‌کنند. دودی که وارد محفظه می‌شود ممکن است آن‌قدر رقیق باشد که به سطح لازم برای فعال کردن آلارم نرسد.

    WhatsApp Image 2025 09 16 at 1.20.19 AM

    یکی از محدودیت‌های بیم دتکتور دودی اعلام حریق این است که به عنوان دستگاه‌های خط دید، در معرض تداخل هر جسم یا شخصی هستند که وارد مسیر پرتو شود. بنابراین، استفاده از آنها در بیشتر مناطق اشغال‌شده با ارتفاع سقف معمولی عملی نیست.

    با این حال، بیم دتکتور دودی اعلام حریق اغلب انتخاب اصلی در مکان‌هایی با سقف بلند، مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، آشیانه‌های هواپیما و تالارهای کلیسا، همچنین کارخانه‌ها و انبارها هستند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و حتی مشکلات بیشتری را برای نگهداری صحیح آنها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این مناطق ممکن است مشکلات را کاهش دهد، زیرا به دستگاه‌های کمتری نیاز است و این دستگاه‌ها می‌توانند روی دیوارها که دسترسی به آنها آسان‌تر از سقف‌هاست، نصب شوند.

    کاربردها برای مناطق با سقف بلند در NFPA 92، راهنمای سیستم‌های کنترل دود توصیف شده‌اند. برای اطلاعات بیشتر به پیوست B این راهنما مراجعه کنید.
    بیم دتکتور: ۱۹٬۸۰۰ فوت مربع (۳۳۰ فوت × ۶۰ فوت)
    حداکثر پوشش تئوریک

    سرعت بالای جریان هوا
    مناطق با جریان هوای بالا مشکل ویژه‌ای برای دتکتورهای نقطه‌ای ایجاد می‌کنند، زیرا انتشار دود که در شرایط عادی رخ می‌دهد ممکن است اتفاق نیفتد. از آنجا که سرعت بالای هوا ممکن است دود را از محفظه تشخیص خارج کند، باید عملکرد دتکتور نقطه‌ای زمانی که سرعت هوا بیش از ۱٬۵۰۰ فوت در دقیقه یا زمانی که نرخ تعویض هوا در منطقه محافظت‌شده بیش از ۷٫۵ بار در ساعت است، به دقت بررسی شود. محدوده تشخیص بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (حداکثر محدوده پرتو معمولاً ۳۳۰ فوت است)، در مقایسه با ابعاد یک یا دو اینچی محفظه تشخیص دتکتور نقطه‌ای. بنابراین، احتمال اینکه دود از محدوده تشخیص بیم دتکتور دودی اعلام حریق خارج شود کمتر است. از آنجا که جریان هوای بالا تأثیر زیادی بر بیم دتکتور ندارد، معمولاً نیاز نیست که برای این نوع محیط‌ها فهرست‌شده باشند.

    لایه‌بندی (Stratification)

    WhatsApp Image 2025 09 16 at 1.20.19 AM1

    لایه‌بندی زمانی رخ می‌دهد که دود حاصل از مواد دودزا یا در حال سوختن گرم شده و از هوای خنک‌تر اطراف خود کمتر متراکم شود. دود بالا می‌رود تا زمانی که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد (به NFPA 2013، A.17.7.1.10 مراجعه کنید). بنابراین، لایه‌بندی ممکن است در مکان‌هایی رخ دهد که دمای هوا در سطح سقف بالا باشد، به ویژه جایی که تهویه وجود ندارد.

    روی سقف‌های صاف، بیم دتکتور دودی اعلام حریق عموماً باید در محدوده فاصله مشخص‌شده نصب شوند. در برخی موارد، محل و حساسیت دتکتورها باید نتیجه یک ارزیابی مهندسی باشد که شامل موارد زیر است:

    • ویژگی‌های سازه‌ای
    • اندازه و شکل اتاق‌ها و دهانه‌ها
    • نوع استفاده و اشغال فضا
    • ارتفاع سقف
    • شکل سقف
    • سطح و موانع
    • تهویه
    • شرایط محیطی
    • ویژگی‌های سوختن مواد قابل احتراق موجود
    • چیدمان محتویات منطقه تحت حفاظت

    نتایج ارزیابی مهندسی ممکن است نیاز به نصب در فاصله بیشتری از سقف و در ارتفاع‌های متفاوت برای مقابله با اثرات لایه‌بندی یا موانع دیگر داشته باشد.

    پیش‌لایه‌بندی / نرخ آزادسازی حرارت
    پیش‌لایه‌بندی باید در نظر گرفته شود، زیرا این یک عامل غالب در آتریوم‌هایی با سقف شیشه‌ای است. در دوره‌های آفتابی، گرما می‌تواند در بالای آتریوم تجمع پیدا کند و پیش از آغاز آتش‌سوزی یک لایه لایه‌بندی‌شده در سطح سقف ایجاد کند. عمق این لایه هوای گرم بسته به دمای بیرون و شدت تابش خورشید بر سقف تغییر می‌کند. گرمای ناشی از آتش می‌تواند به این لایه هوای گرم اضافه شده و عمق آن را افزایش دهد (به شکل‌های ۵ تا ۷ مراجعه کنید).

    نرخ آزادسازی حرارت یک آتش تعیین می‌کند که دود تا چه ارتفاعی در آتریوم بالا می‌رود. نرخ آزادسازی حرارت بسته به ماده در حال سوختن، جرم آن و متغیرهای دیگر متفاوت است.

    هنگام تعیین ارتفاع نصب بیم دتکتور دودی اعلام حریق، باید سناریوهای مختلف آتش در نظر گرفته شوند. سناریوهای آتش باید نه تنها بر اساس اشیای معمول موجود در محل، بلکه بر اساس خطرات موقت مانند وسایل مورد استفاده در بازسازی یا در طول دوره جابه‌جایی مستأجران نیز باشند.

    کاربردهای ویژه
    یکی از مهم‌ترین محدودیت‌های دتکتورهای دودی نقطه‌ای، ناتوانی آنها در کارکرد در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. هرچند بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد، اما در بسیاری موارد یک جایگزین مناسب به شمار می‌رود، زیرا محدوده دمای کاری آنها ممکن است بسیار وسیع‌تر از دتکتورهای دودی نقطه‌ای باشد. کاربردهای احتمالی بیم دتکتور شامل فریزرها، انبارهای نگهداری مواد سرد، انبارهای حمل‌ونقل، پارکینگ‌های سرپوشیده، سالن‌های کنسرت و اصطبل‌ها می‌شود.

    WhatsApp Image 2025 09 16 at 1.31.00 AM

    با این حال، بیم دتکتور نباید در محیط‌هایی نصب شود که فاقد کنترل دما هستند و احتمال تشکیل میعان یا یخ‌زدگی وجود دارد. اگر در این مکان‌ها رطوبت بالا و تغییرات سریع دما پیش‌بینی شود، احتمال تشکیل میعان وجود دارد و این شرایط برای کاربرد بیم دتکتور مناسب نیست. همچنین، بیم دتکتور نباید در محل‌هایی نصب شود که واحد فرستنده-گیرنده، رفلکتور یا مسیر نوری بین آنها ممکن است در معرض شرایط جوی بیرونی مانند باران، برف، تگرگ یا مه قرار گیرد. این شرایط عملکرد صحیح دتکتور را مختل می‌کند.

     

    بخش ۳ – ملاحظات طراحی
    عوامل زیادی بر عملکرد دتکتورهای دودی تأثیر می‌گذارند. نوع و مقدار مواد قابل احتراق، سرعت رشد آتش، فاصله دتکتور از آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق دارای تأییدیه UL تحت استاندارد UL 268 (دتکتورهای دود برای سیستم‌های اعلان حریق حفاظتی) هستند و باید طبق NFPA 72 (کد ملی اعلان حریق) و دستورالعمل سازنده نصب و نگهداری شوند.

    حساسیت
    هر سازنده مشخص می‌کند که حساسیت دتکتور باید با توجه به طول پرتو مورد استفاده در یک کاربرد خاص تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول پرتو مجاز طبق دستورالعمل سازنده نصب شود، که این مقادیر توسط فهرست UL محدود شده‌اند.

    محل و فاصله‌گذاری
    پارامترهای محل نصب و فاصله‌گذاری توسط سازندگان توصیه می‌شود. به‌عنوان مثال، در سقف‌های صاف، فاصله افقی بین پرتوهای پیش‌بینی‌شده نباید بیش از ۶۰ فوت (۱۸٫۳ متر) باشد و فاصله بین پرتو و دیوار کناری (دیوار موازی مسیر پرتو) می‌تواند حداکثر نصف این مقدار باشد. هرچند این مثال حداکثر فاصله ۶۰ فوت را مجاز می‌داند، برخی سازندگان ممکن است محدودیت بیشتری اعمال کنند.

    در سقف‌های صاف، بیم دتکتور دودی اعلام حریق باید حداقل ۱۲ اینچ (۰٫۳ متر) پایین‌تر از سطح سقف یا زیر موانع سازه‌ای مانند تیرها، خرپاها، کانال‌های هوا و غیره نصب شود. همچنین، بیم دتکتور باید حداقل ۱۰ فوت (۳٫۰ متر) بالاتر از کف نصب شود تا از موانع رایج ناشی از استفاده روزمره ساختمان دور باشد.

    ملاحظات نصب بیم دتکتور بازتابی
    برای عملکرد صحیح، بیم دتکتور به یک سطح نصب پایدار نیاز دارد. سطحی که حرکت کند، جابه‌جا شود، دچار لرزش یا تغییر شکل شود، باعث آلارم‌های کاذب یا بروز خطا خواهد شد. در فواصل طولانی، جابه‌جایی تنها ۰٫۵ درجه در فرستنده باعث می‌شود نقطه مرکزی پرتو تقریباً ۳ فوت (۰٫۹ متر) تغییر مکان دهد.

    دتکتور باید روی سطوح نصب پایدار مانند آجر، بتن، دیوار باربر محکم، ستون نگهدارنده، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود دچار لرزش یا جابه‌جایی شود، نصب شود. دتکتور نباید روی دیوار فلزی موج‌دار، دیوار فلزی نازک، پوشش خارجی ساختمان، نمای خارجی، سقف معلق، خرپای فلزی باز، تیرهای غیرباربر، الوار یا سطوح مشابه نصب شود. در مواردی که تنها یک سطح پایدار قابل استفاده است، واحد فرستنده-گیرنده باید روی سطح پایدار نصب شود و رفلکتور روی سطح کمتر پایدار قرار گیرد، زیرا رفلکتور نسبت به محل نصب ناپایدار تحمل بیشتری دارد.

    WhatsApp Image 2025 09 16 at 1.20.20 AM

    از آنجا که بیم دتکتور دودی اعلام حریق دستگاه خط دید است و در صورت قطع کامل و ناگهانی سیگنال وارد وضعیت خطا می‌شود، باید همیشه از وجود هرگونه مانع مات در مسیر پرتو جلوگیری کرد.

    «در برخی موارد، پروژکتور پرتو نوری (همان فرستنده/گیرنده) در یک دیوار انتهایی نصب می‌شود و گیرنده پرتو نوری (همان رفلکتور) در دیوار مقابل نصب می‌شود. با این حال، همچنین مجاز است که پروژکتور و گیرنده از سقف آویزان شوند، به شرطی که فاصله آنها از دیوارهای انتهایی بیش از یک‌چهارم فاصله انتخاب‌شده نباشد.» — NFPA 72-2013, A.17.7.3.7

    همچنین باید نیاز به واکنش سریع به دلیل عوامل ایمنی جانی یا ارزش بالای دارایی‌های محافظت‌شده در نظر گرفته شود. در این شرایط، فاصله‌گذاری باید کاهش یابد، یا زمانی که آتش پیش‌بینی‌شده دود کمی به‌ویژه در مراحل اولیه تولید می‌کند. برای مثال، دتکتورهای نصب‌شده روی سقف یک آتریوم بسیار بلند در یک هتل ممکن است نیاز به تکمیل با دتکتورهای اضافی در ارتفاعات پایین‌تر داشته باشند.

    در کاربردهایی که نیاز به کاهش فاصله‌گذاری است، باید دقت شود که دو پرتو موازی به حداقل فاصله از یکدیگر برسند تا گیرنده یک دتکتور نتواند منبع نور دتکتور دیگر را ببیند. در مواردی که دو یا چند دتکتور با پرتوهایی در زوایا نصب می‌شوند، باید اطمینان حاصل شود که گیرنده هر دتکتور تنها نور فرستنده خودش را تشخیص دهد. رعایت روش‌های آزمون ذکرشده در دفترچه راهنمای سازنده بسیار مهم است.

    ملاحظات تکمیلی نصب برای بیم دتکتور دودی اعلام حریق بازتابی

    WhatsApp Image 2025 09 16 at 1.20.20 AM1 1

    باید یک خط دید شفاف و دائمی بین دتکتور و رفلکتور وجود داشته باشد. اجسام بازتابنده نباید در نزدیکی خط دید بین دتکتور و رفلکتور قرار گیرند. اجسام بازتابنده‌ای که بیش از حد به خط دید نزدیک باشند می‌توانند پرتو نور را از فرستنده به گیرنده منعکس کنند. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. اجسام بازتابنده باید حداقل ۱۵ اینچ (۳۸٫۱ سانتی‌متر) از خط دید بین دتکتور و رفلکتور فاصله داشته باشند.

    منابع نوری با شدت بسیار زیاد، مانند نور خورشید و لامپ‌های هالوژن، اگر مستقیماً به سمت گیرنده هدایت شوند، می‌توانند تغییرات شدیدی در سیگنال ایجاد کرده و باعث بروز سیگنال خطا یا آلارم شوند. برای جلوگیری از این مشکل، باید از تابش مستقیم نور خورشید به واحد فرستنده-گیرنده اجتناب شود. حداقل زاویه ۱۰ درجه بین مسیر منبع نور (نور خورشید) و دتکتور، و خط دید بین دتکتور و رفلکتور باید رعایت شود.

    باید از عملکرد دتکتور از طریق شیشه اجتناب شود. از آنجا که بیم دتکتور تک‌سَر بر اساس اصل بازتاب عمل می‌کند، یک شیشه که به‌طور عمود بر خط دید بین دتکتور و رفلکتور قرار گرفته باشد، می‌تواند پرتو نور را از فرستنده به گیرنده بازتاب دهد. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. شیشه همچنین مقداری از نور را هنگام عبور جذب می‌کند. این جذب نور فاصله مجاز نصب بین دتکتور و رفلکتور را کاهش می‌دهد.

    در مواردی که اجتناب از عبور پرتو از شیشه ممکن نیست، برخی شیوه‌های خاص نصب می‌توانند اثرات شیشه را به حداقل برسانند. این روش‌ها شامل خودداری از عبور پرتو از چندین لایه شیشه، قرار دادن شیشه به‌گونه‌ای که به‌طور عمود بر خط دید بین دتکتور و رفلکتور نباشد (حداقل ۱۰ درجه انحراف از حالت عمود توصیه می‌شود) و اطمینان از شفاف، صاف و محکم بودن شیشه است. آزمون مسدودسازی کامل رفلکتور می‌تواند برای تعیین قابل قبول بودن نصب استفاده شود.

    در مکان‌هایی که ارتفاع سقف بیش از ۳۰ فوت (۹٫۱ متر) است، ممکن است نیاز به نصب بیم دتکتور دودی اعلام حریق اضافی در ارتفاع‌های مختلف برای تشخیص دود در سطوح پایین‌تر باشد. برای اطلاعات بیشتر به بخش لایه‌بندی در این راهنما مراجعه کنید.

    پیوست A – واژه‌نامه اصطلاحات

    پنل اعلان (Annunciator)
    دستگاهی که وضعیت یا شرایطی مانند حالت عادی، خطا یا آلارم دتکتور دودی یا سیستم را به صورت دیداری یا شنیداری نمایش می‌دهد.

    کنترل خودکار بهره (Automatic Gain Control – AGC)
    قابلیت بیم دتکتور دودی اعلام حریق برای جبران افت سیگنال نوری ناشی از گردوغبار یا آلودگی. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان به آتش‌های کند و دودزا حساس باقی می‌ماند.

    بیم دتکتور دودی اعلام حریق (بازتابی)
    دستگاهی که با ارسال یک پرتو نور از واحد فرستنده-گیرنده به سمت یک رفلکتور که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند، وجود دود را تشخیص می‌دهد. ورود دود به مسیر پرتو باعث کاهش سیگنال نور شده و آلارم فعال می‌شود.

    برد بیم (Beam Range)
    فاصله بین فرستنده-گیرنده و رفلکتور.

    پوشش دتکتور (Detector Coverage)
    منطقه‌ای که یک دتکتور دود یا دتکتور حرارت قادر به تشخیص مؤثر دود و/یا حرارت است. این منطقه توسط فهرست‌ها و کدهای مربوطه محدود می‌شود.

    لیست‌شده (Listed)
    قرار گرفتن یک دستگاه در فهرست منتشرشده توسط یک سازمان آزمون معتبر که نشان می‌دهد دستگاه با موفقیت طبق استانداردهای پذیرفته‌شده آزمایش شده است.

    تیرگی (انسداد تجمعی) (Obscuration / Cumulative Obscuration)
    کاهش توانایی عبور نور از یک نقطه به نقطه دیگر به دلیل وجود مواد جامد، مایع، گاز یا ذرات معلق. انسداد تجمعی ترکیبی از چگالی این ذرات مانع نور به ازای هر فوت و فاصله خطی‌ای است که این ذرات اشغال می‌کنند، یعنی چگالی دود ضرب‌در فاصله خطی میدان دود. (معمولاً با واحدهایی مانند درصد بر فوت یا درصد بر متر بیان می‌شود).

    رفلکتور (Reflector)
    دستگاهی که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند.

    حساسیت (Sensitivity)
    توانایی یک دتکتور دود برای واکنش به یک سطح مشخص دود.

    دود (Smoke)
    محصولات جامد و گازی حاصل از احتراق که در هوا معلق هستند.

    رنگ دود (Smoke Color)
    روشنی یا تیرگی نسبی دود که از نامرئی تا سفید، خاکستری و سیاه متغیر است.

    چگالی دود (Smoke Density)
    مقدار نسبی محصولات جامد و گازی حاصل از احتراق در یک حجم معین.

    دتکتور نقطه‌ای (Spot-Type Detector)
    دستگاهی که تنها در محل نصب خود دود و/یا حرارت را تشخیص می‌دهد. دتکتورهای نقطه‌ای دارای یک محدوده تعریف‌شده پوشش هستند.

    لایه‌بندی (Stratification)
    اثری که زمانی رخ می‌دهد که دود، که از هوای اطراف خود گرم‌تر است، بالا می‌رود تا به دمای برابر با هوای اطراف برسد و در نتیجه، از بالا رفتن بازمی‌ایستد.

    فرستنده-گیرنده (Transceiver)
    دستگاهی در یک بیم دتکتور دودی اعلام حریق بازتابی که نور را به سمت فضای تحت حفاظت می‌تاباند و آن را پایش می‌کند.

    صفحات شفاف (فیلترها) (Transparencies / Filters)
    صفحه‌ای از شیشه یا پلاستیک با سطح مشخص تیرگی که می‌تواند برای آزمودن سطح حساسیت صحیح بیم دتکتور دودی اعلام حریق استفاده شود.

    وضعیت خطا (Trouble Condition)
    وضعیتی از یک دستگاه یا سیستم که عملکرد صحیح آن را مختل می‌کند، مانند مدار باز در حلقه شروع‌کننده. اعلان وضعیت خطا که روی پنل کنترل یا پنل اعلان نمایش داده می‌شود یک «سیگنال خطا» است.

     

    پیوست B – استاندارد NFPA 92 برای سیستم‌های کنترل دود (ویرایش ۲۰۱۲)

    A.6.4.4.1.5(1)
    هدف از استفاده از یک پرتو رو به بالا برای تشخیص لایه دود، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند پرتو باید با زاویه رو به بالا به گونه‌ای هدف‌گیری شوند که لایه دود را بدون توجه به سطح لایه‌بندی دود قطع کنند. باید از بیش از یک بیم دتکتور دودی اعلام حریق استفاده شود. هنگام استفاده از این دستگاه‌ها برای این کاربرد، باید توصیه‌های سازندگان بررسی شود. دستگاه‌هایی که به این روش نصب می‌شوند ممکن است نیازمند فعالیت نگهداری بیشتری باشند.

    A.6.4.4.1.5(2)
    هدف از استفاده از پرتوهای افقی برای تشخیص لایه دود در سطوح مختلف، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند بیم دتکتور در سقف نصب می‌شوند. دتکتورهای اضافی در سطوح پایین‌تر حجم فضا نصب می‌شوند. موقعیت دقیق پرتوها تابعی از طراحی خاص است، اما باید شامل پرتوهایی در پایین هر فضای بدون تهویه (هوای مرده) شناسایی‌شده و در محل یا نزدیک به ارتفاع طراحی لایه دود، به همراه موقعیت‌های میانی پرتوها در سایر سطوح باشد.

  • طراحی سیستم اطفاء حریق با گاز دی اکسید کربن به روش غرقاب کامل

    محاسبه  غلظتی از دی‌اکسید کربن  که بتواند آتش‌سوزی‌های ناشی از مواد قابل‌احتراق واقع در یک فضای بسته را خاموش کند

    NFPA12-ANNEX-D

    ضمیمه D – سامانه‌های اطفاء حریق به روش غرقاب کامل
    این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

    D.1 نظریه طراحی: از دیدگاه عملکرد، یک سامانه غرقاب کامل به‌گونه‌ای طراحی می‌شود که غلظتی از دی‌اکسید کربن ایجاد کند که بتواند آتش‌سوزی‌های ناشی از مواد قابل‌احتراق واقع در یک فضای بسته را خاموش کند. این سامانه همچنین باید بتواند غلظت مؤثر را تا زمانی که حداکثر دما به زیر نقطه شعله‌ور شدن مجدد برسد، حفظ کند.

    برای بسیاری از مواد، ممکن است نیاز به حفظ غلظت دی‌اکسید کربن برای انجام فرآیند خنک‌سازی باشد. مجاری فلزی انتقال هوا که می‌توانند به‌سرعت و به‌طور قابل‌توجهی گرم شوند، مثالی هستند که در آن حفظ غلظت برای خنک‌سازی می‌تواند ضروری باشد.

    غلظت مورد نیاز دی‌اکسید کربن بستگی به نوع ماده قابل‌احتراق دارد. غلظت لازم برای بیشتر آتش‌سوزی‌های سطحی، به‌ویژه آن‌هایی که شامل مایعات و گازها هستند، به‌دقت تعیین شده است. بیشتر این اطلاعات توسط اداره معادن ایالات متحده آمریکا به‌دست آمده است. برای آتش‌سوزی‌های عمیق، غلظت بحرانی مورد نیاز برای اطفاء دقیق مشخص نیست و به‌طور کلی از طریق آزمایش‌های عملی تعیین شده است.

    حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت مشخص، بیشتر از حجم نهایی باقی‌مانده در فضای بسته خواهد بود. در اغلب موارد، دی‌اکسید کربن باید به‌گونه‌ای اعمال شود که باعث اختلاط تدریجی جو شود. هوای جابجا شده از اتاق سرور، در هنگام تزریق دی‌اکسید کربن، از طریق شکاف‌های کوچک یا دریچه‌های خاص به‌راحتی تخلیه می‌شود. بنابراین مقداری از دی‌اکسید کربن همراه با هوای تخلیه‌شده از دست می‌رود. این میزان از دست رفتن، در غلظت‌های بالا بیشتر می‌شود. این روش کاربرد، غرقاب با جریان آزاد نام دارد.

    در شرایط فوق، حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت معین در جو، توسط معادلات زیر بیان می‌شود:

    vjTHIQAAAABJRU5ErkJggg==

    جایی که:

    e = 2.718 (پایه لگاریتم طبیعی)
    X = حجم دی‌اکسید کربن افزوده‌شده به ازای هر واحد حجم فضا

    از معادلات قبلی، حجم دی‌اکسید کربن مورد نیاز برای رسیدن به یک غلظت مشخص قابل محاسبه است. این مقدار دی‌اکسید کربن را می‌توان بر حسب فوت مکعب (متر مکعب) فضای محافظت‌شده به ازای هر پوند (کیلوگرم) دی‌اکسید کربن یا پوند (کیلوگرم) دی‌اکسید کربن به ازای هر ۱۰۰ فوت مکعب (۰.۲۸ متر مکعب) بیان کرد. این نتایج محاسبه و برای مراجعه آسان ترسیم شده‌اند.

    یکی از این منحنی‌ها در شکل D.1(a) نشان داده شده است. در این منحنی فرض شده که دی‌اکسید کربن به حجمی برابر با ۹فوت مکعب بر پوند (۰.۵۶ متر مکعب بر کیلوگرم) در دمای ۸۶درجه فارنهایت (۳۰ درجه سلسیوس) منبسط می‌شود. منحنی بالایی (جابجایی کامل) و منحنی پایینی (بدون خروجی) حالت‌های نظری افراطی هستند که صرفاً برای مقایسه ترسیم شده‌اند. منحنی میانی (جریان آزاد) که باید از آن استفاده شود، باید با در نظر گرفتن ضرایب ایمنی مناسب، اصلاح گردد.

    اطلاعات مشابهی نیز در شکل D.1(b) به صورت نمودار ناموگراف ارائه شده است. ستون A محتوای اکسیژن در مخلوط‌های هوا-دی‌اکسید کربن را نشان می‌دهد؛ ستون B وزن دی‌اکسید کربن در مخلوط‌های هوا-دی‌اکسید کربن را نشان می‌دهد؛ و ستون C حجم فوت مکعب بر پوند دی‌اکسید کربن در این مخلوط‌ها را نشان می‌دهد. در این مورد، فرض شده که دمای نهایی حدود ۵۰ درجه فارنهایت (۱۰ درجه سلسیوس) باشد، که حجمی برابر با ۸.۳۵ فوت مکعب بر پوند (۰.۵۲ متر مکعب بر کیلوگرم) دی‌اکسید کربن ایجاد می‌کند. بنابراین این ناموگراف، مقادیر بیشتری از دی‌اکسید کربن را برای یک غلظت یکسان نشان می‌دهد. داده‌های فصل‌های ۴ تا ۶ بر اساس انبساط ۹ فوت مکعب بر پوند (۰.۵۶ متر مکعب بر کیلوگرم) دی‌اکسید کربن تهیه شده‌اند.

    شایان ذکر است که در برخی محفظه‌های کاملاً عایق‌شده، مانند فریزرها و اتاق‌های تست بی‌پژواک، تبخیر کامل و سریع دی‌اکسید کربن آزادشده ممکن است رخ ندهد. در چنین موارد غیرمعمولی، باید با سازنده مشورت شود.

    مدت زمان لازم برای خنک‌سازی تا زیر نقطه شعله‌ور شدن مجدد، بستگی به نوع آتش‌سوزی و اثر عایقی ماده قابل‌احتراق دارد. برای آتش‌سوزی‌های سطحی می‌توان فرض کرد که آتش تقریباً بلافاصله پس از دستیابی به غلظت مورد نظر، خاموش می‌شود. فضای بسته باید البته برای مدتی پس از تزریق دی‌اکسید کربن، غلظت مناسبی را حفظ کند، که این خود یک عامل ایمنی اضافی فراهم می‌کند.

    برای آتش‌سوزی‌های عمیق، غلظت باید برای مدت زمان بیشتری حفظ شود، چرا که مواد داغ به‌آرامی خنک می‌شوند. مدت زمان خنک‌سازی به‌شدت بسته به نوع ماده متغیر است. چون زمان خنک‌سازی معمولاً طولانی است، باید توجه ویژه‌ای به موضوع حفظ غلظت مؤثر اطفاء داشت.

    آتش‌سوزی‌های سطحی و آتش‌سوزی‌های عمیق اساساً با یکدیگر متفاوت هستند و باید با اهداف متفاوتی به آن‌ها پرداخته شود.

    نمونه‌هایی از خطراتی که توسط سامانه‌های غرقاب کامل محافظت می‌شوند عبارت‌اند از: اتاق‌ها، گاوصندوق‌ها، ماشین‌آلات بسته، کانال‌ها، کوره‌ها، مخازن و محتویات آن‌ها.

    D.2 منابع اضافی: طراحی یک سامانه اطفاء حریق دی‌اکسید کربن به روش غرقاب کامل می‌تواند کاری چالش‌برانگیز باشد. نیاز به در نظر گرفتن ضرایب تبدیل مواد، تغییرات دمایی و بازشوهایی که قابل‌بسته شدن نیستند، تنها برخی از موانع این طراحی هستند. نشریه FSSA با عنوان راهنمای طراحی برای کاربردهای غرقاب کامل با دی‌اکسید کربن، کاربر را گام‌به‌گام در طراحی یک سامانه CO₂ همراه با مثال‌هایی راهنمایی می‌کند.

  • درک دتکتورهای گازی، انواع، ویژگی‌ها و روندهای آینده

    WhatsApp Image 2025 09 23 at 12.36.44 AM

    در چشم‌انداز همواره در حال تحول صنعتی و زیست‌محیطی، شناسایی گازها به یکی از اجزای حیاتی برای حفظ ایمنی، سلامت و استانداردهای زیست‌محیطی تبدیل شده است. دتکتورهای گازی در شناسایی گازهای خطرناک در محیط‌های مختلف، از جمله کارخانه‌های صنعتی، آزمایشگاه‌ها و فضاهای عمومی نقش اساسی دارند. این دتکتورها برای شناسایی و پایش گازهایی طراحی شده‌اند که خطراتی مانند سمیت، قابلیت اشتعال یا خفگی ایجاد می‌کنند.

    WhatsApp Image 2025 09 23 at 12.36.44 AM1

    اما چند نوع دتکتور گازی وجود دارد و این دتکتورها از نظر عملکرد، کاربرد و فناوری چه تفاوت‌هایی دارند؟ در این مقاله، انواع مختلف دتکتورهای گازی، اصول عملکرد، ویژگی‌ها و موارد استفاده خاص آن‌ها را بررسی می‌کنیم تا راهنمای جامعی در این زمینه ارائه دهیم.

    دتکتور گازی چیست؟

    WhatsApp Image 2025 09 23 at 12.36.44 AM2

    دتکتورهای گازی تجهیزات ایمنی هستند که برای پایش و اندازه‌گیری غلظت گازها در یک منطقه طراحی شده‌اند. این دتکتورها هنگام افزایش غلظت گاز از سطح ایمن، به افراد هشدار داده یا به طور خودکار پروتکل‌های ایمنی را فعال می‌کنند. این دتکتورها در صنایعی مانند نفت و گاز، تولیدی، کارخانه‌های شیمیایی و حتی در منازل، جایی که نشت گاز می‌تواند منجر به انفجار، مسمومیت یا خطرات سلامتی شود، ضروری هستند.

     

    انواع دتکتور گازی

    دتکتورهای گازی به‌طور کلی بر اساس روش شناسایی گاز، نوع گاز شناسایی‌شده و محیط مورد استفاده تقسیم‌بندی می‌شوند. در ادامه، انواع کلیدی آن‌ها را معرفی می‌کنیم:

    ۱. دتکتور گازی ثابت

    دتکتورهای گازی ثابت به‌صورت دائم در مکان‌های خاص صنعتی، تجاری یا مسکونی نصب می‌شوند. این دتکتورها برای پایش مداوم هوا در محیط‌های بالقوه خطرناک بسیار حیاتی‌اند.

    مزایا:

    • پایش مداوم به‌صورت ۲۴ ساعته
    • توانایی شناسایی همزمان چندین گاز
    • هشدار زودهنگام در صورت نشتی یا شرایط خطرناک

    WhatsApp Image 2025 09 23 at 12.36.45 AM

    عملکرد: به سامانه کنترل مرکزی متصل می‌شوند و داده‌ها را به‌صورت لحظه‌ای ثبت و اعلام می‌کنند.

    موارد استفاده: پالایشگاه‌ها، کارخانه‌های شیمیایی، معادن، نیروگاه‌ها، فضاهای بسته مانند تونل‌ها و فاضلاب‌ها

     

    ۲. دتکتور گازی قابل حمل

    دتکتورهای قابل حمل، دستگاه‌هایی دستی هستند که برای کارگران یا تیم‌های امداد طراحی شده‌اند تا در محیط‌های متغیر و متحرک، سطح گازها را پایش کنند.

    مزایا:

    • سبک و قابل حمل
    • انعطاف‌پذیر برای استفاده در موقعیت‌های مختلف
    • مناسب برای پایش فردی یا بررسی‌های نقطه‌ای

    عملکرد: با باتری شارژی یا قابل تعویض کار می‌کنند و دارای صفحه‌نمایش، آلارم صوتی و هشدار لرزشی هستند.

    موارد استفاده: فضاهای بسته، پروژه‌های عمرانی، تیم‌های امدادی در حوادث شیمیایی یا صنعتی

     

    ۳. دتکتور گازی تک‌گاز

    دتکتورهای تک‌گاز، ابزارهایی تخصصی برای شناسایی تنها یک نوع گاز خاص هستند و معمولاً برای اندازه‌گیری دقیق گازهای خطرناک خاص استفاده می‌شوند.

    WhatsApp Image 2025 09 23 at 12.36.45 AM1

    مزایا:

    • کاربری ساده و مقرون‌به‌صرفه
    • کوچک و سبک
    • طراحی‌شده برای کاربردهای خاص صنعتی یا اضطراری

    موارد استفاده: فضاهای بسته، حفاظت فردی در برابر گازهایی مانند مونوکسید کربن یا اکسیژن

     

    ۴. دتکتور گازی چندگاز

    دتکتورهای چندگاز ابزارهایی چندمنظوره هستند که می‌توانند به‌صورت هم‌زمان دو یا چند گاز را شناسایی کنند. این دتکتورها برای محیط‌هایی که احتمال وجود چند گاز خطرناک وجود دارد، طراحی شده‌اند.

    مزایا:

    • مقرون‌به‌صرفه برای صنایع با چندین نوع گاز
    • امکان پایش هم‌زمان چند گاز
    • مناسب برای محیط‌های با شرایط متغیر

    موارد استفاده: صنایع معدن، تولید مواد شیمیایی، تصفیه‌خانه‌های فاضلاب، فضاهای بسته

    WhatsApp Image 2025 09 23 at 12.36.45 AM2

    ۵. دتکتور گازی مادون‌قرمز (IR)

    دتکتورهای مادون‌قرمز از نور مادون‌قرمز برای شناسایی گاز استفاده می‌کنند. در این روش، نور از هوای نمونه عبور داده شده و جذب آن توسط مولکول‌های گاز اندازه‌گیری می‌شود.

    عملکرد: گازهایی مانند دی‌اکسید کربن، متان و سایر هیدروکربن‌ها را با دقت بالا تشخیص می‌دهند.

    مزایا:

    • دقت بالا در شناسایی هیدروکربن‌ها
    • طول عمر زیاد و نیاز به نگهداری کم
    • مقاوم در برابر دما و رطوبت

    موارد استفاده: محیط‌های صنعتی مانند پالایشگاه‌ها و تأسیسات نفت و گاز

     

    ۶. دتکتور گازی الکتروشیمیایی

    دتکتورهای الکتروشیمیایی با استفاده از واکنش الکتروشیمیایی، گاز خاصی را شناسایی کرده و جریان الکتریکی متناسب با غلظت گاز تولید می‌کنند.

    مزایا:

    • حساسیت و انتخاب‌پذیری بالا برای گازهای سمی
    • قیمت مناسب
    • مناسب برای محیط‌هایی با غلظت پایین اما خطرناک

    موارد استفاده: تشخیص گازهایی مانند مونوکسید کربن، سولفید هیدروژن، دی‌اکسید نیتروژن

     

    ۷. دتکتور گازی کاتالیتیکی

    این دتکتورها از سنسور احتراق کاتالیتیکی برای تشخیص گازهای قابل اشتعال استفاده می‌کنند. با اکسید شدن گاز روی رشته پلاتینی داغ، گرما و تغییر مقاومت الکتریکی ایجاد می‌شود.

    مزایا:

    • حساسیت بالا به گازهای قابل اشتعال
    • مقرون‌به‌صرفه و قابل اعتماد
    • قابل استفاده در محیط‌های صنعتی و مسکونی

    موارد استفاده: صنایع نفت و گاز، تأسیسات تصفیه فاضلاب، سامانه‌های تهویه مطبوع

     

    ۸. دتکتور گازی فوتو‌یونیزاسیون (PID)

    این دتکتورها با استفاده از نور فرابنفش، مولکول‌های گاز را یونیزه کرده و ذرات باردار حاصل را اندازه‌گیری می‌کنند. برای شناسایی ترکیبات آلی فرار (VOCs) و گازهای سمی بسیار کاربردی هستند.

    مزایا:

    • بسیار حساس با پاسخ سریع
    • مناسب برای گازهای با غلظت پایین
    • توانایی شناسایی گستره وسیعی از گازهای سمی و VOC

    موارد استفاده: نشت‌های شیمیایی، پایش محیط زیست، بهداشت صنعتی

     

    ۹. دتکتور گازی نیمه‌هادی

    این دتکتورها از مواد نیمه‌هادی مانند دی‌اکسید قلع استفاده می‌کنند که در حضور گاز، مقاومت الکتریکی آن‌ها تغییر می‌کند.

    مزایا:

    • استفاده آسان و کم‌هزینه
    • حساس به طیف وسیعی از گازها
    • نگهداری کم و عمر طولانی

    موارد استفاده: تشخیص نشت گاز در منازل، پایش کیفیت هوا، پایش محیطی

     

    ۱۰. دتکتور گازی فراصوتی

    این دتکتورها با شنود امواج صوتی با فرکانس بالا، نشت گاز از ظروف تحت فشار را شناسایی می‌کنند.

    مزایا:

    • مؤثر در محیط‌های پر سروصدا
    • روش غیر تماسی
    • مناسب برای سیستم‌های تحت فشار در محیط‌های خطرناک

    موارد استفاده: خطوط لوله و سامانه‌های صنعتی بزرگ

     

    دتکتورهای گازی از چه سنسورهایی استفاده می‌کنند؟

    دتکتورهای گازی برای تشخیص وجود گازهای مضر، از سنسورهای تخصصی استفاده می‌کنند. این سنسورها حضور یا غلظت گاز خاصی را به سیگنال الکتریکی تبدیل می‌کنند.

    انواع رایج سنسورها در دتکتورهای گازی:

    • الکتروشیمیایی
    • مادون‌قرمز
    • کاتالیتیکی
    • فوتو‌یونیزاسیون
    • نیمه‌هادی

     

    مزایا و معایب دتکتورهای گازی مختلف

    دتکتور ثابت

    مزایا:

    • پایش مداوم
    • مناسب برای محیط‌های پرخطر
    • قابلیت شناسایی چند گاز

    معایب:

    • هزینه نصب اولیه بالا
    • غیرقابل جابجایی

    دتکتور قابل حمل

    مزایا:

    • قابل استفاده در مکان‌های مختلف
    • سبک و مناسب برای کارهای میدانی
    • مناسب برای ایمنی فردی

    معایب:

    • عمر باتری محدود
    • فاقد قابلیت پایش مداوم

    دتکتور تک‌گاز

    مزایا:

    • ساده و مقرون‌به‌صرفه
    • سبک و کوچک

    معایب:

    • فقط یک گاز را شناسایی می‌کند
    • مناسب برای محیط‌های دارای چند گاز نیست

    دتکتور چندگاز

    مزایا:

    • پایش هم‌زمان چند گاز
    • کاربردی در صنایع مختلف

    معایب:

    • گران‌تر از دتکتورهای تک‌گاز
    • بزرگ‌تر و نیازمند نگهداری بیشتر

     

    انتخاب دتکتور مناسب

    در انتخاب دتکتور گازی، عوامل زیر را باید در نظر گرفت:

    • نوع گاز: قابل اشتعال، سمی یا چندگانه
    • محل استفاده: فضاهای بسته یا سایت‌های صنعتی
    • فناوری مورد نیاز: الکتروشیمیایی، مادون‌قرمز، کاتالیتیکی و …
    • نگهداری: نیاز به کالیبراسیون یا تعویض سنسور

     

    روندهای آینده در فناوری دتکتور گازی

    • دتکتورهای بی‌سیم: پایش لحظه‌ای بدون نیاز به اتصال فیزیکی
    • کوچک‌سازی: دتکتورهای شخصی با دقت بالا
    • هوش مصنوعی و تحلیل داده: بهبود نگهداری پیش‌بینی‌شده و ایمنی
    • اتصال به اینترنت اشیا: پایش از راه دور و آنالیز داده
    • سنسورهای پیشرفته: مانند سنسورهای مبتنی بر گرافن با حساسیت بالا و مصرف انرژی کم

     

    نتیجه‌گیری

    دتکتورهای گازی ابزارهای ضروری برای حفظ سلامت، ایمنی و استانداردهای زیست‌محیطی در صنایع مختلف هستند. چه از نوع تک‌گاز و چه چندگاز، انتخاب درست دتکتور متناسب با نیازهای خاص محیط کاری، امری حیاتی است. با درک انواع مختلف دتکتورها، ویژگی‌ها و روندهای نوین، می‌توان انتخابی آگاهانه و ایمن داشت.

     

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

     

  • نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن

    1 مقدمه: مواد ضمیمه زیر برای نشان دادن مثال‌های معمول از نحوه حفاظت در برابر انواع خطرات آتش‌سوزی با استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن ثابت ارائه شده است. لازم به ذکر است که روش‌های توضیح داده‌شده به‌عنوان تنها روش‌های قابل استفاده در نظر گرفته نمی‌شوند. این روش‌ها فقط به منظور کمک به تفسیر و توضیح اهداف استاندارد در مواردی که ممکن است کاربرد صحیح آن‌ها مورد سوال باشد، به‌کار می‌روند.

    B.2 پخت غذا در صنایع/تجاری (سرخ‌کن‌های روغن داغ): سرخ‌کن‌های بزرگ روغن داغ که برای پخت مداوم غذاهایی مانند گوشت، ماهی و تنقلات استفاده می‌شوند، خطرات آتش‌سوزی دارند که نیاز به توجه ویژه هنگام طراحی سیستم اطفاء حریق دی‌اکسید کربن برای حفاظت از آن‌ها دارد.
    اگر روغن پخت بیش از حد گرم شود، پیش از آنکه به جوش بیاید، به دمای خودآتش‌زنی می‌رسد. بنابراین، آتش‌سوزی که شامل بخارات روغن پخت است، ممکن است پس از تخلیه اولیه دی‌اکسید کربن با دمای بالای روغن داغ در مخزن پخت دوباره شعله‌ور شود، مگر اینکه روغن تا زیر دمای آتش‌زنی خنک شود. طراحی بهینه و انرژی‌ساز مخازن پخت مدرن باعث می‌شود که فرایند خنک‌سازی کند باشد.
    چیدمان تجهیزات برای محافظت از آن‌ها برای طراحی صحیح سیستم از اهمیت ویژه‌ای برخوردار است.
    اولاً، استفاده از سرخ‌کن ممکن است شامل گرم‌کردن خارجی روغن با چرخش مجدد روغن از طریق مخزن پخت باشد. این مورد را می‌توان به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثانیاً، برخی از سرخ‌کن‌ها به‌گونه‌ای طراحی شده‌اند که هود بخار و نقاله توسط یک سیستم هیدرولیکی بالا و پایین می‌روند. مایعات هیدرولیکی قابل اشتعال و سازگار با غذا که برای این کار استفاده می‌شوند، ناحیه دیگری از حفاظت را به‌وجود می‌آورند و می‌توان آن‌ها را به‌عنوان “قرار گرفتن در معرض متقابل” در نظر گرفت. (به 6.2.1 مراجعه کنید.)
    ثالثاً، نگرانی‌هایی وجود دارد که یک عملیات با تولید بالا ممکن است سیستم تهویه‌ای داشته باشد که شامل سیستم حذف بخار باشد. این نگرانی باید به‌عنوان بخشی از خطر در نظر گرفته شود. (به 6.2.1 مراجعه کنید.)
    صفحه تخلیه، زمانی که در معرض چکه روغن در انتهای خروجی نقاله قرار دارد، باید پوشانده شود. (به 6.2.1 مراجعه کنید.)
    در نهایت، مخزن بزرگ‌ترین مساحت برای محافظت و بیشترین نیاز به خنک‌سازی کافی را به‌وجود می‌آورد.

    B.2.1 خلاصه‌ای از حفاظت: موارد زیر یک مرجع سریع برای معیارهای حفاظت در طراحی سیستم است.

    B.2.1.1 مخزن: زمانی که مخزن دارای هود متحرک باشد، حفاظت از طریق سیل‌کردن کامل زیر هود طبق 5.1.2 مجاز نیست، مگر اینکه شرایط زیر رعایت شود: (1) هود نباید در حین عملیات پخت بالا برده شود که این به‌معنای موارد زیر است: (a) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قطع می‌شود هنگامی که هود بالا می‌رود (مثلاً برای نگهداری یا تمیزکاری). (b) یک سوئیچ حد دمایی مکانیکی باید استفاده شود که هر زمان که دمای روغن بیشتر از حد دمای تنظیم‌شده به میزان بیش از 20 درصد (درجه فارنهایت یا درجه سلسیوس) از دمای حداکثر معمولی روغن افزایش یابد، عمل کند. این عمل باید موجب موارد زیر شود: i. قطع برق به سیستم گرم‌کننده روغن ii. جلوگیری از بالا بردن هودهای الکتریکی iii. فعال‌سازی آلارم‌های شنیداری و دیداری برای هشدار به عدم بالا بردن هود به‌صورت دستی (c) سوئیچ باید دارای یک دمای بازنشانی خودکار باشد که از 60°F (33.3°C) کمتر از دمای خودآتش‌زنی روغن پخت باشد.

    (2) قبل از اینکه هود بالا برده شود (برای نگهداری و تمیزکاری)،باید یک شیر قطع کن نظارتی بسته شود تا از تخلیه سیستم دی‌اکسید کربن جلوگیری شود. بسته شدن شیر قطع کن باید باعث فعال شدن آلارم دوگانه نظارتی در واحد کنترل شود. (3) منبع انرژی یا سوخت به المنت‌های حرارتی به‌طور خودکار قبل از تخلیه سیستم یا همزمان با آن قطع می‌شود. (4) مقدار دی‌اکسید کربن و مدت زمان تخلیه باید کافی باشد تا یک جو بی‌اکسیژن در مخزن حفظ شود تا دمای روغن پخت کاهش یابد و از شعله‌ور شدن مجدد جلوگیری شود طبق 5.3.5.6. توصیه می‌شود که دما حداقل 60°F (33.3°C) پایین‌تر از دمای خودآتش‌زنی روغن باشد. (5) طراحی سیستم باید بر اساس آزمایش‌های تخلیه برای مدل خاص سرخ‌کن انجام شود تا نشان دهد که با بند B.2.1.1 (4) تطابق دارد. مستندات آزمایش باید در صورت درخواست مقامات ذی‌صلاح یا کاربر نهایی در دسترس باشد. (6) شناسایی حرارتی باید سیستم دی‌اکسید کربن را زمانی که دما برابر یا پایین‌تر از دمای خودآتش‌زنی روغن پخت باشد، فعال کند.

    B.2.1.2 محفظه دائمی: سیستم کاربرد محلی باید به‌گونه‌ای طراحی شود که هود در موقعیت کامل بالا باشد.

    B.2.1.3 تخته تخلیه: استفاده از سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت طبق بخش 6.4 مناسب است.

    B.2.1.4 سیستم تهویه بخار و حذف بخار: سیل کردن کامل با استفاده از غلظت 65 درصد طبق 5.4.2.1 مناسب است.

    B.2.1.5 گرم‌کن روغن خارجی: سیستم کاربرد محلی برای تجهیزات و فیلترهای چرخشی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)، بسته به پیکربندی تجهیزات، مناسب است.

    B.2.1.6 سیستم روغن هیدرولیک: سیستم کاربرد محلی با استفاده از روش نرخ بر اساس مساحت (به بخش 6.4 مراجعه کنید) یا روش نرخ بر اساس حجم (به بخش 6.5 مراجعه کنید)،بسته به پیکربندی تجهیزات، مناسب است.
    زیرا مخزن به حداقل 3 دقیقه تخلیه مایع نیاز دارد (به 6.3.3.5.1 مراجعه کنید)، طراحی سیستم دی‌اکسید کربن می‌تواند شامل دو سیستم لوله‌کشی تخلیه باشد، یکی برای مخزن و دیگری برای خطرات متقابل دیگر.

    B.2.1.7 خاموش کردن تجهیزات: (به بند 4.5.4.9 مراجعه کنید.) همچنین باید به ایمنی شخصی (به بخش 4.3 مراجعه کنید) در هنگام طراحی سیستم توجه شود.

    B.3 هودهای اجاق رستوران، کانال‌های متصل و خطرات مرتبط: حفاظت از هودهای اجاق در آشپزخانه و کانال‌ها با ترکیبی از سیستم‌های سیل کردن کامل و سیستم‌های کاربرد محلی انجام می‌شود. کانال یا دودکش و منطقه پلومن بالای فیلترها می‌توانند با سیل کردن کامل محافظت شوند. سطح زیرین فیلترها و هرگونه خطر خاص مانند سرخ‌کن‌های روغن داغ می‌توانند با کاربرد محلی محافظت شوند. ممکن است لازم باشد که حفاظت کاربرد محلی به سطوح زیر هود و سطوح اجاق گسترش یابد اگر خطر تجمع چربی یا چکه کردن از هود یا کانال در شرایط آتش‌سوزی وجود داشته باشد.
    در حفاظت از کانال با استفاده از ضریب سیل کردن توصیه‌شده 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) حجم کانال، در نظر گرفتن یک دمپر در بالای یا پایین کانال ضروری است، با فراهم آوردن شرایط برای بسته شدن خودکار دمپر در ابتدای تخلیه دی‌اکسید کربن. برای کانال‌هایی که ارتفاع آن‌ها بیشتر از 20 فوت (6.1 متر) یا مسیر افقی آن‌ها بیشتر از 50 فوت (15.3 متر) است، گاز در نقاط میانه معرفی می‌شود تا توزیع مناسب آن تضمین شود. با یک دمپر در بالای دودکش، باید یک نازل درست زیر آن نصب شود و نازل‌های اضافی در بالای آن نصب شوند اگر مسیر کانال از دمپر عبور کند. معمولاً یک نازل در منطقه پلومن مورد نیاز است.

    نازل‌ها باید برای پوشش سطح زیرین فیلترها و تخلیه به مدت 30 ثانیه با نرخ سطح پوشش مشخص‌شده در 6.4.3.5 فراهم شوند. در غیر این صورت، مقدار دی‌اکسید کربن مورد نیاز و نرخ‌های کاربردی می‌توانند با استفاده از نازل‌ها یا روش‌های ویژه‌ای که برای این منظور تأیید یا فهرست شده‌اند، تعیین شوند. اگر سطح زیرین هود عمدتاً با یک جداکننده یا سینی چکه‌ای بسته شده باشد، حفاظت می‌تواند با سیل کردن کامل به‌وسیله ضریب 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) انجام شود و مساحت محیط باز جبران گردد. (به 5.3.5 مراجعه کنید.)

    مقادیر مورد نیاز برای حفاظت از سرخ‌کن‌های روغن داغ یا سایر خطرات آتش‌سوزی خاص، یا هر دو، زیر هود باید علاوه بر الزامات قبلی باشد. تمام خطرات در حال تهویه از طریق یک کانال مشترک باید به‌طور همزمان محافظت شوند.

    شناسایی آتش‌سوزی به‌طور خودکار و فعال‌سازی سیستم برای فضاهای پنهان بالای فیلتر و در سیستم کانال الزامی است. همچنین باید در زیر فیلترها بر روی هر سرخ‌کن روغن داغ، تشخیص‌دهنده‌هایی قرار داده شوند.

    شناسایی آتش‌سوزی قابل مشاهده و فعال‌سازی دستی (به بند 4.5.4.5 مراجعه کنید) می‌تواند برای بخش‌های نمایان خطر قابل قبول باشد؛ با این حال، فعال‌سازی از طریق هر یک از روش‌های خودکار یا دستی باید موجب تخلیه کامل سیستم شود. توجه ویژه باید به انتخاب حسگرهای حرارتی صورت گیرد، با در نظر گرفتن سطح دمای عملیاتی عادی و شرایط افزایش دما در تجهیزات اجاق.

    فعال‌سازی سیستم باید به‌طور خودکار دمپرها را ببندد، فن‌های تهویه اجباری را خاموش کند، و شیر اصلی سوخت یا کلید برق را برای تمام تجهیزات پخت مرتبط با هود قطع کند. این دستگاه‌ها باید از نوعی باشند که نیاز به بازنشانی دستی دارند. (به بند 4.5.4.9 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، باید مراقبت ویژه‌ای برای تمیز نگه داشتن حسگرهای حرارتی و نازل‌های تخلیه از تجمع چربی صورت گیرد. به‌طور کلی، مهر و موم‌ها یا درپوش‌های نازل برای جلوگیری از انسداد روزنه‌های نازل مورد نیاز هستند.

    برای اطلاعات بیشتر، به NFPA 96 مراجعه کنید.

    B.4 دستگاه‌های چاپ روزنامه و دستگاه‌های چاپ روتوگراور: دستگاه‌های چاپ روزنامه، روتوگراور و مشابه آن‌ها خطرات زیادی ایجاد می‌کنند به‌دلیل استفاده از حلال‌های بسیار قابل اشتعال در جوهرها، حضور کاغذ خردشده یا غبار اشباع‌شده با جوهر، روان‌کننده‌ها و غیره. علاوه بر واحدهای چاپ، ممکن است کانال‌های تخلیه، تجهیزات ترکیب جوهر و خطرات الکتریکی مرتبط نیز وجود داشته باشند که نیاز به حفاظت دارند. دستگاه‌های چاپ روتوگراور جوهرهای قابل اشتعال‌تری نسبت به دستگاه‌های چاپ روزنامه استفاده می‌کنند و به همراه درام‌های خشک‌کن حرارتی یا دیگر وسایل خشک‌کن طراحی شده‌اند و خطر بیشتری ایجاد می‌کنند. با این حال، روش حفاظت اصلی برای هر دو دستگاه چاپ روتوگراور و روزنامه مشابه است.

    دستگاه‌های چاپ معمولاً به‌صورت ردیفی (خطی) با پوشه‌هایی که به‌طور متناوب قرار می‌گیرند، مرتب شده‌اند. کاغذ می‌تواند از هر دو طرف پوشه‌ها از واحدهای چاپ عبور کند. جرقه‌های الکتریسیته ساکن یک منبع رایج برای ایجاد آتش‌سوزی هستند. گسترش شعله می‌تواند از واحدهای چاپ به سمت پوشه‌ها یا از پوشه‌ها به سمت واحدهای چاپ باشد.

    دستگاه‌های چاپ “باز” یا “بسته” هستند، بسته به اینکه آیا از محافظت‌کننده‌های مه یا پوشش‌ها استفاده می‌شود. در دستگاه‌های چاپ باز، معمولاً یک سیستم تهویه برای حذف مه جوهر از دستگاه مورد نیاز است و این سیستم تهویه نیاز به حفاظت همزمان دارد.

    اتاق‌های چاپ می‌توانند توسط سیستم‌های سیل کامل محافظت شوند؛ با این حال، سیستم‌های نوع کاربرد محلی معمولاً استفاده می‌شوند. اگرچه خط‌های چاپ و واحدهای چاپ فردی یک سری خطرات در معرض هم هستند، تقسیم‌بندی به‌صورت خط‌ها یا گروه‌بندی مناسب درون خطوط برای دلایل اقتصادی معمول است. کانال‌های تهویه، اتاق‌های ذخیره‌سازی جوهر و اتاق‌های کنترل معمولاً با روش‌های سیل کامل مدیریت می‌شوند.

    تمام خطوط چاپ می‌توانند با روش‌های کاربرد محلی محافظت شوند. یک خط چاپ می‌تواند به گروه‌ها تقسیم شود. در همه موارد، سیستم‌ها باید قادر باشند حفاظت خودکار همزمان و مستقل را برای گروه‌های مجاور از خطوط دیگر و همچنین گروه‌های درون‌خطی که ممکن است آتش به آن‌ها گسترش یابد، ارائه دهند. حفاظت باید به‌گونه‌ای طراحی شود که در صورت وقوع آتش نزدیک به محل اتصال گروه‌های مجاور، سیستم‌های محافظت‌کننده هر دو گروه به‌طور همزمان تخلیه شوند.

    در گروه‌های چاپ فردی، نرخ کاربرد دی‌اکسید کربن می‌تواند بر اساس روش نرخ بر مساحت یا نرخ بر حجم باشد. (به بخش‌های 6.4 و 6.5 مراجعه کنید.)

    اگر از روش نرخ بر مساحت برای دستگاه‌های چاپ استفاده شود، مساحت بر اساس طول کامل رول‌ها، شامل فریم‌های انتهایی، و ارتفاع کامل انبار رول‌ها، شامل مخزن جوهر، محاسبه می‌شود. هر دو طرف انبار رول‌ها باید در نظر گرفته شود. دسته‌های رنگی باید به‌طور مشابه محاسبه شوند. در صورتی که از مخازن جوهر خارجی استفاده شود، حفاظت بر اساس مساحت افقی مخزن است. مساحت کف زیر دستگاه چاپ نیز باید محافظت شود.

    در دستگاه‌های چاپ روتوگراور، خشک‌کن‌ها و کانال‌های اتصال با سیل کردن به میزان 1 پوند/8 فوت مکعب (2 کیلوگرم/متر مکعب) که در 30 ثانیه تخلیه می‌شوند، محافظت می‌شوند. هنگامی که از روش نرخ بر مساحت برای تعیین مقدار دی‌اکسید کربن مورد نیاز برای پوشه‌ها استفاده می‌شود، دی‌اکسید کربن باید از هر دو طرف درایو و طرف عملیاتی در دو سطح اعمال شود. هر نازل باید مساحتی به عرض 4 فوت (1.2 متر) و ارتفاع 4 فوت (1.2 متر) را پوشش دهد.

    هنگامی که از روش نرخ بر حجم استفاده می‌شود، کل گروه دستگاه‌های چاپی که باید به‌عنوان یک بخش محافظت شوند، می‌تواند به‌عنوان یک حجم در نظر گرفته شود. نیازی به افزودن 2 فوت (0.6 متر) به طرفین هر دستگاه چاپ نیست زمانی که فریم به‌عنوان مانع طبیعی عمل می‌کند. یک پوشه منفرد می‌تواند در این حجم گنجانده شود؛ اما یک پوشه دوطبقه نیاز به یک بلوک حجم اضافی برای گنجاندن طبقه بالایی دارد.

    نازل‌ها باید به‌گونه‌ای قرار داده شوند که سطوح پوشش داده شده را پوشش دهند؛ با این حال، ممکن است قرار دادن دقیق آن‌ها مطابق با فهرست‌ها یا تأییدها امکان‌پذیر نباشد. نازل‌ها باید به‌گونه‌ای قرار داده شوند که از هر دو انتهای رول‌های چاپ تخلیه شوند تا دی‌اکسید کربن را در داخل حجم دستگاه چاپ حفظ کنند. این موضوع در مورد پوشه‌ها نیز صدق می‌کند.

    حفاظت باید به‌گونه‌ای تنظیم شود که زمانی که محافظت‌کننده‌های مه در محل یا خارج از محل قرار دارند، مؤثر باشد.

    مقدار دی‌اکسید کربن مورد نیاز برای یک گروه واحد بر اساس تخلیه با نرخ محاسبه‌شده به مدت 30 ثانیه است. ذخیره‌سازی اضافی باید حداقل به اندازه کافی باشد تا از تمام گروه‌های مجاور که ممکن است درگیر شوند محافظت کند، شامل ذخیره‌ای برای گروهی که آتش در آن شروع می‌شود. در سیستم‌های فشار بالا، یک بانک ذخیره واحد می‌تواند به‌عنوان ذخیره برای چندین بانک اصلی استفاده شود؛ با این حال، بانک اصلی برای یک گروه نمی‌تواند به‌عنوان ذخیره برای گروه دیگر استفاده شود، مگر اینکه به‌طور خاص توسط مرجع صلاحیت تأیید شده باشد.

    تمام سیستم‌ها باید به‌گونه‌ای تنظیم شوند که قابلیت فعال‌سازی خودکار را داشته باشند و وسیله‌ای برای فعال‌سازی دستی کمکی فراهم باشد. حداقل یک حسگر حرارتی باید در هر واحد چاپ و پوشه قرار گیرد، بسته به طراحی واحد خاص.

    به‌دلیل ارتعاشات ذاتی مرتبط با دستگاه‌های چاپ، توجه ویژه‌ای باید به وسایل نصب داده شود تا از آسیب‌های ارتعاشی به لوله‌کشی یا سیم‌کشی سیستم شناسایی جلوگیری شود.

    تشخیص فوری به‌ویژه در حفاظت گروهی اهمیت دارد تا از گسترش آتش به سایر گروه‌ها جلوگیری شود. به‌دلیل نیاز به تشخیص سریع برای جلوگیری از گسترش آتش به گروه‌های مجاور یا فعال‌سازی حسگرهای مجاور، یا هر دو، سیستم تشخیص باید از حسگرهای سریع‌العمل با نرخ افزایش، نرخ جبران‌شده یا معادل آن‌ها استفاده کند. خاموشی کامل دستگاه‌های چاپ، تهویه، پمپ‌ها و منابع حرارتی باید همزمان با عملکرد سیستم انجام شود.

    آلارم‌های صوتی در اتاق چاپ و در هر زیرزمین، چاه یا سطوح پایین‌تری که دی‌اکسید کربن ممکن است در آن‌ها جریان پیدا کند، باید همزمان با عملکرد سیستم به صدا درآید. (به بخش A.4.3 مراجعه کنید.)

    علاوه بر نگهداری معمول سیستم، توجه ویژه‌ای باید به اطمینان از ادامه موقعیت و هم‌راستایی صحیح اسپرینکلرها در طول فرآیندهای نگهداری معمول دستگاه‌های چاپ داشته باشیم. توجه ویژه‌ای نیز باید به تأثیرات ارتعاش دستگاه‌های چاپ بر روی فعال‌کننده‌های حرارتی و لوله‌کشی یا سیم‌کشی‌های متصل به آن‌ها داشت.

    B.5 چاه‌های باز:
    چاه‌های باز با عمق تا 4 فوت (1.2 متر) یا عمق برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، باید بر اساس کاربرد محلی محافظت شوند. مساحت مورد نظر برای تعیین مقدار دی‌اکسید کربن، مساحت کل کف چاه است به‌جز هر مساحتی که توسط تانک یا تجهیزات دیگری که به‌طور همزمان محافظت می‌شوند و برای آن‌ها مقدار جداگانه محاسبه شده، پوشش داده شده است. اسپرینکلرها باید به‌گونه‌ای قرار داده شوند که پوشش مناسب برای منطقه محافظت‌شده فراهم کنند، طبق داده‌های فهرست یا تأییدیه‌ها. بنابراین، ممکن است لازم باشد اسپرینکلرهای اضافی در مرکز چاه قرار داده شوند.

    چاه‌های باز که عمق آن‌ها از 4 فوت (1.2 متر) بیشتر است یا عمقی برابر با یک‌چهارم عرض چاه، هرکدام که بیشتر باشد، می‌توانند بر اساس مساحت با استفاده از نرخ تخلیه 4 پوند/دقیقه-فوت مربع (19.5 کیلوگرم/دقیقه-متر مربع) از مساحت کف و زمان تخلیه 30 ثانیه محافظت شوند. اسپرینکلرها باید در اطراف چاه قرار داده شوند تا دی‌اکسید کربن به‌طور یکنواخت از تمام طرف‌ها اعمال شود. باید دقت شود که تعداد مناسبی از اسپرینکلرها با پرتاب کافی برای رسیدن به نواحی مرکزی چاه‌های بزرگ استفاده شود. به‌طور جایگزین، ممکن است بهتر باشد برخی از اسپرینکلرها به‌گونه‌ای قرار داده شوند که مستقیماً در داخل چاه روی تجهیزات نیازمند حفاظت، مانند پمپ‌ها، موتورها یا سایر تجهیزات حیاتی تخلیه شوند.

    تانک‌های غوطه‌وری با دهانه باز باید به‌طور جداگانه توسط کاربرد محلی محافظت شوند، به‌ویژه زمانی که سطح مایع کمتر از 4 فوت (1.2 متر) یا یک‌چهارم عرض چاه از دهانه باز چاه باشد. نواحی چنین تانک‌هایی که به‌طور جداگانه در داخل چاه محافظت می‌شوند، می‌توانند از مساحت چاه کسر شوند. اشیاءی که از دهانه چاه بالا می‌روند باید با استفاده از مساحت سطح یا روش‌های محصورسازی فرضی محافظت شوند.

    اگر دهانه چاه به‌طور جزئی پوشانده شود به‌طوری که مساحت باز کمتر از 3 درصد حجم مکعبی به‌صورت فوت مربع باشد، مقدار دی‌اکسید کربن مورد نیاز می‌تواند بر اساس روش سیل کامل تعیین شود، با استفاده از مقدار اضافی گاز برای جبران نشت برابر با 1 پوند/فوت مربع (5 کیلوگرم/متر مربع) از مساحت باز.

    برای چاه‌های عمیق‌تر از حداقل عمق مشخص‌شده، اسپرینکلرها باید در سطح دو‌سوم از کف قرار داده شوند، مشروط بر اینکه عامل نرخ تخلیه در برابر فاصله از حد مجاز تجاوز نکند، به‌طوری که خطر پاشش مایعاتی که ممکن است موجود باشند، وجود نداشته باشد. در هر صورت، بهتر است اسپرینکلرها زیر دهانه باز قرار گیرند تا از ورود هوای اضافی به داخل چاه جلوگیری شود. اگر عمق چاه از 20 فوت (6.1 متر) بیشتر باشد، مطلوب است که اسپرینکلرها کمی بالاتر از سطح دو‌سوم از کف قرار گیرند تا از اختلاط مناسب در چاه اطمینان حاصل شود.

    زمانی که مقدار دی‌اکسید کربن بر اساس روش‌های سیل کامل معمول محاسبه می‌شود، اسپرینکلر باید سرعت و اثرات آشفتگی کافی تولید کند تا حجم چاه به‌طور کامل با جو دی‌اکسید کربن و هوا به‌طور کامل پر شود.

    B.6 زیر کف‌های بلند
    استفاده از سیستم‌های اطفاء حریق دی‌اکسید کربن به روش سیل کامل برای حفاظت از فضاهای زیرکف که معمولاً در اتاق‌های کامپیوتر و مراکز مشابه الکترونیکی یافت می‌شود، سال‌هاست که به‌طور رایج مورد استفاده قرار می‌گیرد. تجربیات نشان داده است که یک مشکل احتمالی در این نوع حفاظت، نشت بیش‌ازحد مرتبط با فضای زیرکف وجود دارد که می‌تواند به‌دلیل ترکیب کاشی‌های کف سوراخ‌دار و آشفتگی ناشی از تخلیه گاز باشد. بنابراین، مهم است که سیستم به‌گونه‌ای طراحی شود که نشت را جبران کند و تخلیه‌ای نرم برای کاهش آشفتگی فراهم آورد. برای راهنمایی دقیق، باید از تولیدکننده سیستم مشاوره گرفته شود.

    دی‌اکسید کربن، به‌دلیل سنگین‌تر بودن از هوا، تمایل دارد که در فضا باقی بماند و می‌تواند خطراتی برای پرسنلی که برای انجام تعمیرات پس از آتش‌سوزی وارد فضای زیرکف می‌شوند، ایجاد کند. پس از تخلیه سیستم، لازم است که دی‌اکسید کربن به‌طور کامل از فضای زیرکف تخلیه شود پس از آنکه آتش خاموش شد.

    علاوه بر این، اگر هرگونه خدمات یا نگهداری در فضای زیرکف انجام شود، سیستم دی‌اکسید کربن باید قفل شود تا از تخلیه گاز جلوگیری شود.

  • مزایای دتکتورهای دودی مکشی یا اسپیراتینگ ها بر اساس اصول عملکرد

    تشخیص فعال

    دتکتور دودی مکشی یک سامانه تشخیص فعال به‌شمار می‌آید، زیرا به‌طور پیوسته هوا را از ناحیه حفاظت‌شده مکش کرده و به داخل محفظه حسگر هدایت می‌کند. این فرآیند دائمی است و تنها در صورت خاموش شدن دتکتور متوقف می‌شود.

    این ویژگی فعال، امکان تشخیص بسیار سریع دود را فراهم می‌سازد و به همین دلیل، دتکتورهای دودی مکشی معمولاً در دسته سامانه‌های تشخیص آتش زودهنگام قرار می‌گیرند. محفظه‌های حسگر بسیار حساس نیز به شناسایی دود در مراحل اولیه آتش‌سوزی، پیش از آسیب به تجهیزات یا ناحیه حفاظت‌شده، کمک شایانی می‌کنند.

    اثر افزایشی
    سیستم دتکتور دودی مکشی با استفاده از «اثر افزایشی» که ویژگی مشترک این نوع سیستم‌هاست، رقیق‌شدن دود را جبران می‌کند. اثر افزایشی یکی از مزایای مهم فناوری دتکتور دودی مکشی است که منجر به سیستمی با حساسیت بسیار بالا می‌شود، حتی زمانی که چندین منفذ نمونه‌گیری در سیستم وجود دارد.

    در فرآیند تشخیص، هوا از طریق تمام منافذ نمونه‌گیری موجود در شبکه لوله‌کشی به داخل کشیده می‌شود، که باعث می‌شود هر منفذ در تشکیل نمونه کلی هوا درون محفظه حسگر نقش داشته باشد. همان‌طور که پیش‌تر توضیح داده شد، این حجم کلی هوا درون محفظه حسگر دتکتور است: هرچه تعداد منافذ نمونه‌گیری بیشتر باشد، حجم هوای بیشتری وجود خواهد داشت. اگر چندین منفذ نمونه‌گیری هوای آلوده به دود را مکش کنند، ذرات دود هنگام انتقال به محفظه حسگر با هم ترکیب می‌شوند. نسبت هوای تمیز به هوای آلوده به دود کاهش می‌یابد. این همان اثر افزایشی است که باعث می‌شود کل سیستم تشخیص، حساس‌تر از یک سیستم سنتی دتکتور دودی نقطه‌ای باشد.

    با فرض اینکه حساسیت سطح ۱ حریق در دتکتور دودی مکشی برابر با ۰٫۲۵ درصد کاهش دید در هر فوت (0.25%/ft.) تنظیم شده باشد و این سیستم اتاقی با مساحت ۱۲۱۹٫۲ متر مربع (۴۰۰۰ فوت مربع) را محافظت کند و منافذ نمونه‌گیری با فاصله ۶ متر برای هر منفذ (۲۰ فوت برای هر منفذ) طراحی شده باشند (یعنی هر منفذ ۳۶ متر مربع یا ۴۰۰ فوت مربع را پوشش دهد)، سیستم تشخیص نهایی شامل ۱۰ منفذ نمونه‌گیری خواهد بود. عدد ۰٫۲۵٪/ft.، حساسیت محفظه حسگر دتکتور است.

    برای محاسبه حساسیت واقعی هر منفذ نمونه‌گیری، نرخ کاهش دید تنظیم‌شده دتکتور را در تعداد کل منافذ نمونه‌گیری در شبکه لوله‌کشی ضرب می‌کنیم.

    برای مثال، اگر حساسیت دتکتور در سطح ۱ حریق روی ۰٫۲۵٪/ft. تنظیم شده باشد و ۱۰ منفذ در شبکه لوله‌کشی وجود داشته باشد، حساسیت هر منفذ نمونه‌گیری برابر با ۲٫۵٪/ft. خواهد بود (۰٫۲۵٪/ft. ضربدر ۱۰ = ۲٫۵٪/ft.). این حساسیت مشابه نرخ کاهش دید یک دتکتور دودی نقطه‌ای سنتی است. این مقدار، حساسیت مؤثر دتکتور را در حالتی نشان می‌دهد که دود تنها وارد یک منفذ نمونه‌گیری شود (مطابق شکل ۸ در پایین).

    مزیت سیستم دتکتور دودی مکشی در ماهیت فعال آن برای مکش هم‌زمان هوا از تمامی منافذ نمونه‌گیری است؛ هوا درون لوله ترکیب شده و برای نمونه‌برداری به سمت دتکتور منتقل می‌شود. زمانی‌که هوا از تمام ۱۰ منفذ نمونه‌گیری کشیده می‌شود، غلظت ذرات دود افزایش می‌یابد و غلظت هوای تمیز کاهش پیدا می‌کند. با ترکیب شدن ذرات دود، حساسیت کلی سیستم تشخیص افزایش پیدا می‌کند.

    برای توضیح بیشتر اثر افزایشی، همان اتاق ۱۲۱۹٫۲ متر مربعی (۴۰۰۰ فوت مربع) با شبکه لوله‌کشی دارای ۱۰ منفذ نمونه‌گیری را در نظر بگیرید که در آن ذرات دود وارد دو منفذ نمونه‌گیری می‌شوند (مطابق شکل ۸ در پایین). برای تعیین حساسیت جدید هر منفذ، نرخ کاهش دید سطح ۱ حریق (۰٫۲۵٪/ft.) را در تعداد کل منافذ نمونه‌گیری (۱۰) ضرب کرده و سپس بر تعداد منافذی که دود را تشخیص می‌دهند (۲) تقسیم می‌کنیم. در نتیجه، حساسیت مؤثر هر منفذ برابر با ۱٫۲۵٪/ft. خواهد بود، که این یعنی سیستم دتکتور دودی مکشی دو برابر حساس‌تر از یک دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. است.

    اگر دود وارد سه منفذ نمونه‌گیری شود، حساسیت مؤثر برابر با ۰٫۸۳٪/ft. خواهد بود، و به همین ترتیب.
    حساسیت دتکتور

    WhatsApp Image 2025 10 01 at 2.29.13 PM WhatsApp Image 2025 10 01 at 2.29.13 PM1

     

    برای توضیح بیشتر اثر افزایشی، این مثال را می‌توان گسترش داد به حالتی که دود وارد تمامی ۱۰ منفذ نمونه‌گیری شود. هر منفذ نمونه‌گیری حساسیتی برابر با ۰٫۲۵٪/ft. خواهد داشت، که باعث می‌شود سیستم دتکتور دودی مکشی ۱۰ برابر حساس‌تر از دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. باشد (مطابق شکل ۱۰ در صفحه قبل).

    آستانه‌های حساسیت پایین
    یکی دیگر از مزایای مهم دتکتور دودی مکشی، الکترونیک پیشرفته‌ای است که توانایی تشخیص ذرات دود در نرخ‌های بسیار پایین‌ کاهش دید و در سطوح حساسیت متعدد را فراهم می‌کند. این آستانه‌های تشخیص قابل برنامه‌ریزی هستند و به کاربران نهایی این امکان را می‌دهند که سیستمی با حساسیت بسیار بالا برای محیط‌ها و کاربری‌هایی که نیازمند تشخیص بسیار زودهنگام دود برای ایمنی جانی و تداوم فعالیت هستند، یا سیستمی با حساسیت پایین‌تر برای محیط‌هایی با اهمیت کمتر طراحی کنند. آستانه‌های معمول در سیستم‌های دتکتور دودی مکشی طبق لیست استاندارد UL دارای محدوده حساسیت بین ۰٫۰۰۰۴۶٪/ft. (برای مکان‌هایی که تشخیص زودهنگام دود حیاتی است) تا ۶٫۲۵٪/ft. (برای محیط‌هایی با اهمیت کمتر) هستند. سیستمی با دتکتور دودی مکشی که برای تشخیص دود با پایین‌ترین نرخ کاهش دید لیست‌شده در UL یعنی ۰٫۰۰۰۴۶٪/ft. برنامه‌ریزی شده باشد، بیش از ۱۰۰۰ برابر حساس‌تر از دتکتورهای دودی نقطه‌ای سنتی خواهد بود.