بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق

IMG 1863 scaled

11.1 کلیات

مسئولیت بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق در نهایت بر عهده مالک(ان) سیستم خواهد بود، مگر اینکه این مسئولیت به صورت کتبی به شرکت مدیریت، مستاجر یا طرف دیگر منتقل شده باشد.

11.1.1 ایمنی

در طول بازرسی، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک‌کننده و مخازن عامل، باید از روش‌های ایمن پیروی شود. (به بخش A.10.1 مراجعه شود.)

11.1.2 تکنسین سرویس‌دهی حفاظت در برابر حریق

پرسنلی که سیستم‌های اطفاء حریق با عامل پاک‌کننده را بازرسی، سرویس‌دهی، آزمایش و نگهداری می‌کنند باید دارای دانش و تجربه کافی در خصوص نیازمندی‌های نگهداری و سرویس‌دهی مندرج در این استاندارد، تجهیزات سرویس‌دهی یا نگهداری شده و روش‌ها و نیازمندی‌های نگهداری یا سرویس‌دهی مندرج در دستورالعمل‌های طراحی، نصب و نگهداری سازنده و هرگونه بولتن‌های مربوطه باشند.

11.2 بازرسی ماهانه

11.2.1

حداقل به صورت ماهانه، باید یک بازرسی بصری مطابق با دستورالعمل‌های نگهداری فهرست‌شده سازنده یا دستورالعمل مالک انجام شود.

11.2.2

حداقل، این بازرسی باید شامل تایید موارد زیر باشد، در صورت نیاز:

(1) پنل آزادسازی تحت برق است و از هیچ وضعیت نظارتی، مشکل یا هشدار خالی است. (2) کنترل‌های دستی مسدود نشده‌اند. (3) سیستم هیچ گونه آسیب فیزیکی یا شرایطی ندارد که بتواند از عملکرد آن جلوگیری کند. (4) فشارسنج‌ها در محدوده قابل‌عمل هستند. (5) تجهیزات یا خطر محافظت‌شده تغییر یا اصلاح نشده است. (6) هر گونه نقص قبلی اصلاح شده است.

11.2.3

اگر هرگونه نقصی پیدا شود، باید بلافاصله اقدامات اصلاحی مناسب انجام شود.

11.2.4

اگر اقدامات اصلاحی شامل نگهداری یا تعمیرات باشد، باید توسط یک تکنسین سرویس‌دهی حفاظت در برابر حریق انجام شود، طبق بند 11.1.2.

11.2.5

هنگامی که بازرسی‌ها انجام می‌شود، باید یک رکورد برای تأیید تکمیل بازرسی نگهداری شود.

11.2.5.1

رکورد باید شامل تاریخ انجام بازرسی و حروف اولیه شخص انجام‌دهنده بازرسی باشد.

11.2.5.2

رکورد باید شامل هرگونه نقص شناسایی‌شده باشد.

11.2.5.3

رکوردها باید تا بازرسی و سرویس نیم‌سالی بعدی نگهداری شوند.

11.3* سرویس و بازرسی نیم‌سالانه

حداقل به صورت نیم‌سالی، مقدار عامل و فشار مخازن باید بررسی شوند.

11.3.1

برای عوامل پاک‌کننده هالوکربنی که دارای وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل یا کاهش فشار (تنظیم شده برای دما) بیش از 10 درصد باشد، باید دوباره پر شده یا تعویض شود.

11.3.2

برای مخازن عامل هالوکربنی که فاقد وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل باشد، باید دوباره پر شده یا تعویض شود.

11.3.3*

عوامل پاک‌کننده هالوکربنی که در حین سرویس یا نگهداری از مخازن خارج می‌شوند، باید بازیابی شده و مجدداً استفاده شوند یا مطابق با قوانین و مقررات مربوطه دفع شوند.

11.3.4*

برای عوامل پاک‌کننده گازهای بی‌اثر، اگر مخزن نشان‌دهنده کاهش فشار (تنظیم‌شده برای دما) بیش از 5 درصد باشد، باید دوباره پر شده یا تعویض شود.

11.3.5

هنگامی که از فشارسنج‌های مخزن برای مطابقت با بند 11.3.4 استفاده می‌شود، باید حداقل سالی یک‌بار با یک دستگاه کالیبره جداگانه مقایسه شوند.

11.3.6

هنگامی که مقدار عامل در مخزن با دستگاه‌های اندازه‌گیری خاص تعیین می‌شود، این دستگاه‌ها باید فهرست شده باشند.

11.3.7

اطلاعات زیر باید روی برچسبی که به مخزن متصل است ثبت شود:

1. تاریخ بازرسی
2. شخص انجام‌دهنده بازرسی
3. نوع عامل
4. وزن ناخالص مخزن و وزن خالص عامل (فقط برای عوامل پاک‌کننده هالوکربنی)
5. فشار مخزن و دما (برای عوامل پاک‌کننده هالوکربنی با فشارسنج و عوامل پاک‌کننده گازهای بی‌اثر)

11.4 بازرسی و سرویس سالانه

11.4.1

حداقل سالیانه، تمام سیستم‌ها باید توسط پرسنل واجد شرایط، مطابق با بند 11.1.2 بازرسی، سرویس و برای عملکرد آزمایش شوند.

11.4.2

آزمایش‌های تخلیه الزامی نمی‌باشد.

11.4.3

گزارش سرویس با توصیه‌ها باید به مالک سیستم ارائه شود.

11.4.4

گزارش سرویس باید به‌صورت کاغذی یا الکترونیکی ذخیره و قابل دسترسی باشد.

11.4.5 شیلنگ‌های سیستم

11.4.5.1 تمام شیلنگ‌های سیستم باید سالانه از نظر آسیب‌دیدگی مورد بازرسی قرار گیرند.
11.4.5.2 اگر بازرسی بصری هرگونه نقصی را نشان دهد، شیلنگ باید فوراً تعویض شود یا طبق آنچه در بخش 11.7 مشخص شده آزمایش شود.

11.4.6 بازرسی محفظه

11.4.6.1 محفظه محافظت‌شده باید سالانه بازرسی شود یا توسط یک برنامه مدیریتی مستند برای تغییرات در یکپارچگی موانع یا ابعاد محفظه مورد نظارت قرار گیرد.
11.4.6.2 اگر تغییرات باعث شود که محفظه نتواند غلظت ماده پاک‌کننده را حفظ کند، شرایط باید اصلاح شود.

11.5 نگهداری

11.5.1

این سیستم‌ها باید همیشه در شرایط عملیاتی کامل نگهداری شوند.

11.5.2

فعال‌سازی سیستم ماده پاک‌کننده باید فوراً به مقام مسئول گزارش شود.

11.5.3

نقص‌ها باید مطابق با فصل 12 رسیدگی شوند.

11.5.4 نگهداری محفظه

11.5.4.1 هرگونه نفوذی که از طریق محفظه محافظت‌شده توسط ماده پاک‌کننده ایجاد شود باید فوراً مسدود شود.
11.5.4.2 روش مسدود کردن باید رتبه مقاومتی آتش اولیه محفظه را بازسازی کند.

11.6 آزمایش مخزن

11.6.1

مخازن ماده پاک‌کننده با طراحی وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا (CTC) یا مشابه نباید بدون آزمایش مجدد شارژ شوند، اگر دوره مجدد ارزیابی که توسط مقام مسئول برای مخزن مشخص شده است از زمان آخرین آزمایش و بازرسی گذشته باشد.

11.6.1.1 برای مخازن ذخیره‌سازی مواد هالوکربن، آزمایش باید مجاز باشد که شامل یک بازرسی کامل بصری طبق 49 CFR باشد.
11.6.1.2 یک سیلندر باید مجاز باشد که هر زمان قبل از ماه و سال موعد مجدد ارزیابی، مجدداً ارزیابی شود.
11.6.1.3 سیلندری که قبل از موعد مجدد ارزیابی پر شده باشد باید هر دو مورد زیر را داشته باشد:
1. مجاز به باقی ماندن در خدمت
2. به‌طور دوره‌ای مطابق با بند 11.6.2 بازرسی شود

11.6.1.4

یک سیلندر با عمر سرویس مشخص نباید پس از پایان عمر مجاز سرویس آن، دوباره شارژ شده و برای حمل و نقل ارائه شود.

11.6.2

مخازن که به طور مداوم در خدمت هستند و نیازی به شارژ مجدد یا تعمیر ندارند، باید هر 5 سال یک‌بار یا بیشتر از آن بر اساس نیاز، یک بازرسی کامل بصری خارجی انجام دهند.

11.6.2.1

بازرسی بصری باید مطابق با بخش 3 از استاندارد CGA C-6، استاندارد بازرسی بصری سیلندرهای فولادی گازهای فشرده، باشد، با این تفاوت که مخازن نیازی به مهر و موم شدن در هنگام تحت فشار بودن ندارند.

11.6.2.2

نتایج بازرسی باید در هر دو مورد زیر ثبت شوند:

1. یک برچسب ثبت که به‌طور دائمی به هر مخزن متصل شده است.
2. یک گزارش بازرسی مناسب.

11.6.2.3

یک نسخه تکمیل شده از گزارش بازرسی مخزن باید به مالک سیستم یا نماینده مجاز او تحویل داده شود.

11.6.2.4

این سوابق باید توسط مالک برای مدت عمر سیستم نگهداری شوند.

11.6.2.5

در صورتی که بازرسی بصری خارجی نشان دهد که مخزن آسیب دیده است، آزمایش‌های اضافی قدرت باید طبق مقررات حمل‌ونقل قابل اجرا انجام شوند.

11.7 آزمایش شیلنگ

11.7.1

تمام شیلنگ‌ها باید هر 5 سال یک‌بار آزمایش یا تعویض شوند.

11.7.2

فشاری برابر با 1.5 برابر فشار حداکثر مخزن در دمای 1300 درجه فارنهایت (54.4 درجه سلسیوس) باید در مدت 1 دقیقه اعمال شده و برای 1 دقیقه نگه داشته شود.

11.7.3

روش آزمایش باید به شرح زیر باشد:

1. شیلنگ از هر گونه اتصال جدا می‌شود.
2. سپس مجموعه شیلنگ در یک محفظه حفاظتی قرار می‌گیرد که به‌طور مناسب اجازه مشاهده بصری آزمایش را می‌دهد.
3. شیلنگ باید قبل از آزمایش کاملاً با آب پر شود.
4. سپس فشار به گونه‌ای اعمال می‌شود که در مدت 1 دقیقه به فشار آزمایش برسد. فشار آزمایش به مدت یک دقیقه کامل نگه داشته می‌شود. مشاهداتی برای بررسی هر گونه انحراف یا نشت انجام می‌شود.
5. پس از مشاهده شیلنگ برای نشت، حرکت اتصالات و انحراف، فشار آزاد می‌شود.

11.7.4

مجموعه شیلنگ زمانی که تمام شرایط زیر رعایت شود، قبول می‌شود:

1. هیچ گونه افت فشاری در طول آزمایش وجود نداشته باشد.
2. هیچ حرکتی از اتصالات در حین فشار وجود نداشته باشد.
3. هیچ انحراف دائمی در شیلنگ ایجاد نشده باشد.

11.7.5

هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را قبول کند باید با تاریخ آزمایش علامت‌گذاری شود.

11.7.6

هر مجموعه شیلنگ که آزمایش را گذرانده باشد باید قبل از نصب مجدد، به‌طور داخلی خشک شود.

11.7.7

هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را رد کند باید علامت‌گذاری و از بین برود.

11.8 آموزش

تمام افرادی که ممکن است انتظار داشته باشند سیستم‌های اطفاء حریق را بازرسی، سرویس، آزمایش یا نگهداری کنند، باید آموزش دیده و در عملکردهایی که انتظار می‌رود انجام دهند، به‌طور مستمر آموزش دیده بمانند.

نوشته‌های مشابه

  • راهنمای جامع استفاده از بیم دتکتور دودی اعلام حریق

    تشخیص نوری بیم راهکاری اقتصادی برای شناسایی دود در فضاهای باز بزرگ مانند مراکز خرید، انبارها و فرودگاه‌ها ارائه می‌دهد.

    ابتدا بیایید به دیگر روش‌های تشخیص که معمولاً استفاده می‌شوند نگاه کنیم و دلیل انتخاب بیم دتکتور دودی اعلام حریق به جای آن‌ها را بررسی کنیم.

    دتکتور نقطه‌ای اغلب استفاده می‌شود اما می‌تواند منجر به شبکه‌ای پیچیده از چندین دتکتور همپوشان گردد که نصب آن‌ها بسیار زمان‌بر، سیم‌کشی آن‌ها پرهزینه و دسترسی به آن‌ها هنگام تعمیر و نگهداری دشوار خواهد بود. یک بیم دتکتور دودی اعلام حریق نوری به طور کلی می‌تواند جایگزین حدود ۱۶ دتکتور نقطه‌ای منفرد گردد و ۱۵۰۰ متر مربع را پوشش دهد.WhatsApp Image 2025 09 18 at 2.08.33 AM

    سیستم‌های نمونه‌برداری مکشی معمولاً روی سقف نصب می‌شوند اما پیچیده و زمان‌بر برای نصب هستند. این سیستم‌ها شامل شبکه‌ای از لوله‌های نمونه‌برداری، درپوش‌ها و زانوها می‌باشند. همه این‌ها نیاز به نصب و نگهداری دارند. خود لوله‌کشی می‌تواند مزاحم باشد و نیاز به پنهان کردن در ساختار ساختمان داشته باشد.

    WhatsApp Image 2025 09 18 at 2.08.33 AM1

    WhatsApp Image 2025 09 18 at 2.08.34 AM

    برخی کدهای اجرایی نصب همچنین ارتفاعی را که دتکتور نقطه‌ای و مکشی می‌توانند استفاده شوند محدود می‌کنند زیرا هرچه سقف بالاتر باشد، چگالی ذرات کمتر خواهد شد و ممکن است زیر آستانه هشدار مورد نیاز این نوع دتکتورها قرار گیرد. بیم دتکتور دودی اعلام حریق در ارتفاع کارآمدتر است زیرا وقتی دود بالا می‌رود پخش می‌شود و ناحیه بزرگ‌تری را تحت تأثیر قرار می‌دهد و به این ترتیب مسیر بیم بیشتری تحت تأثیر قرار می‌گیرد. این مسیر تشخیص گسترده کارآمدتر از محفظه کوچک یک دتکتور نقطه‌ای است.

    WhatsApp Image 2025 09 18 at 2.08.34 AM1

    سیستم‌های تشخیص نقطه‌ای و مکشی به بالارفتن دود تا سقف وابسته هستند. مشکلاتی نیز می‌تواند به دلیل لایه‌ای موسوم به لایه استراتیفیکیشن ایجاد شود. ذرات دود سنگین‌تر از هوا هستند و توسط هوای گرم اطرافشان از میان هوای خنک‌تر بالا برده می‌شوند. این هوای خنک اطراف، ستون دود را سرد کرده و هوای گرم محبوس شده در زیر سقف یک لایه حرارتی تشکیل می‌دهد که مانع رسیدن دود به سقف می‌شود.

    WhatsApp Image 2025 09 18 at 2.08.34 AM2

    دتکتور نقطه‌ای و مکشی ممکن است به دلیل این پدیده قادر به تشخیص دود نباشند. با این حال، بیم دتکتور دودی اعلام حریق معمولاً ۶۰۰ میلی‌متر پایین‌تر از سقف نصب می‌شود (مطابق BS5839) که به این معناست کمتر احتمال دارد بالای خط استراتیفیکیشن قرار گیرد.

    تشخیص شعله و ویدئویی: نوعی بسیار تخصصی و پرهزینه از تشخیص که اغلب به عنوان یک روش ثانویه با حساسیت بالا و سریع در محیط‌های با ارزش بالا مانند تولید هواپیما استفاده می‌شود.

    انتخاب نوع دتکتور در نهایت با ارزیابی وضعیت، ویژگی‌های ساختمان، محیط، سرعت تشخیص، ارزیابی ریسک‌های بالقوه و مواد موجود تعیین می‌گردد.

    بیم دتکتور دودی اعلام حریق راهکاری همه‌کاره و مقرون‌به‌صرفه برای حفاظت از نواحی وسیع، به‌ویژه با سقف‌های بلند ارائه می‌دهد.

    انواع بیم دتکتور دودی اعلام حریق نوری: سه نوع اصلی بیم وجود دارد که باید در نظر گرفت.

    بیم دتکتور دودی اعلام حریق غیر موتوری «رفلکتیو»: این نوع به سادگی با ارسال یک پرتو نامرئی مادون قرمز که به یک رفلکتور در انتهای مقابل برخورد می‌کند کار می‌کند و سپس مسیر دید را برای انسداد مانیتور می‌کند. هر دو فرستنده و گیرنده در یک واحد قرار دارند. این نوع معمولاً استفاده می‌شود اما تنها باید در محیط مناسب استفاده گردد. فقط در فضاهایی باید استفاده شود که ساختار آن‌ها صلب بوده و فاقد هرگونه حرکت باشند. ساختمان‌ها می‌توانند به دلایل متعددی حرکت کنند، ساختمان‌های جدید می‌توانند نشست کنند، انبارهای فلزی بزرگ می‌توانند در شرایط گرم و سرد تاب بردارند و شرایط آب‌وهوایی نامساعد مانند برف می‌تواند ساختمان‌ها را تغییر شکل دهد. باید توجه داشت که یک درجه حرکت ساختمان می‌تواند باعث انحراف بیم حدود ۱.۴ متر در ۱۰۰ متر شود که منجر به آلارم کاذب در یک بیم ثابت خواهد شد. راه‌اندازی، تنظیم و نگهداری بیم فقط در ارتفاع قابل انجام است و نیاز به تجهیزات دسترسی در ارتفاع خواهد داشت.

    بیم دتکتور دودی اعلام حریق انتها به انتها: این نوع معمولاً یک کاربرد تخصصی و پرهزینه است که نیاز به شلیک پرتو از میان فضاهای کوچک دارد که ممکن است برای بیم‌های رفلکتوری مشکل‌ساز باشند زیرا احتمال بازگشت ناخواسته سیگنال از سازه‌های نزدیک وجود دارد. آن‌ها با یک فرستنده در یک انتها و یک گیرنده در انتهای مقابل کار می‌کنند که انسداد را بررسی می‌کند. این نوع تشخیص نیاز به سیم‌کشی در هر دو انتها دارد که می‌تواند به معنای اجرای پرهزینه کابل‌های ۱۰۰ متر یا بیشتر و دسترسی در ارتفاع برای راه‌اندازی، تنظیم و نگهداری باشد.

    بیم دتکتور دودی اعلام حریق موتوری: پیشرفتی که به دلیل محدودیت‌های بیم ثابت و انتها به انتها ایجاد شده است. موتوری بودن و هوشمندی بیم به این معناست که می‌توان آن‌ها را به طور خودکار هم‌تراز و راه‌اندازی کرد و این کار در سطح زمین از طریق یک کنترلر از راه دور چندزبانه با کاربری ساده انجام می‌شود. تنظیم پارامترهای بیم مانند زمان واکنش نیز می‌تواند از طریق این کنترلر انجام گیرد. هنگامی که بیم هوشمند موتوری هم‌تراز شد، در سرویس به طور مداوم هم‌ترازی خود را حفظ می‌کند، به این معنا که حرکت ساختمان دیگر مشکلی ایجاد نمی‌کند و در نتیجه صرفه‌جویی در زمان، هزینه، اعتبار و به طور مهم کاهش آلارم‌های کاذب حاصل خواهد شد.

    چه مواردی باید هنگام استفاده از بیم دتکتور دودی اعلام حریق در نظر گرفته شود؟

    بیم دتکتور دودی اعلام حریق با اندازه‌گیری انسداد سیگنال دریافتی خود کار می‌کند. ساختمان‌هایی با دیواره‌های باز یا فضاهای باز به بیرون می‌توانند نسبت به ابر و مه حساس باشند. تغییرات شدید دمای ساختمان می‌تواند باعث ایجاد میعان روی رفلکتور یا سر بیم شود که موجب قرائت‌های کاذب خواهد شد. باید مراقب سناریوهای مختلف جوی به‌ویژه در ماه‌های زمستان بود. برخی بیم‌ها دارای راه‌حل‌های ضد میعان هستند. محیط‌هایی که دود و بخار تولید می‌کنند مانند سالن‌های جوشکاری و پایانه‌های اتوبوس می‌توانند مشکل‌ساز باشند.

    بیم‌های موتوری اکنون به گزینه اصلی صنعت تبدیل شده‌اند و در سراسر جهان فروخته می‌شوند و با فراهم کردن ایمنی کار از سطح زمین موجب صرفه‌جویی در زمان و هزینه می‌شوند.

     

  • طراحی سیستم‌های اطفاء حریق گاز پایه به روش سیلاب کامل

    ۷.۱ enclosure

    ۷.۱.۱ در طراحی سیستم اطفاء حریق به روش سیلاب کامل، ویژگی‌هایenclosure محافظت‌شده باید مورد توجه قرار گیرد.
    ۷.۱.۲ مساحت منافذی که قابل بسته شدن نیستند در enclosure محافظت‌شده باید به حداقل برسد.
    ۷.۱.۳ مرجع ذی‌صلاح می‌تواند برای اطمینان از عملکرد سیستم مطابق با الزامات این استاندارد، از سیستم‌های فشرده‌سازی/افزایش فشار یا آزمایش‌های دیگر استفاده کند. (برای اطلاعات بیشتر به پیوست D مراجعه کنید.)
    ۷.۱.۴ برای جلوگیری از از دست رفتن عامل از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید به طور دائمی مهر و موم شده یا مجهز به بسته‌کننده‌های خودکار باشند.
    ۷.۱.۵ در صورتی که محدود کردن عامل عملی نباشد، یکی از موارد زیر باید اعمال شود:
    (۱) حفاظت باید گسترش یابد تا شامل خطرات یا مناطق کاری متصل مجاور شود.
    (۲) عامل اضافی باید از طریق پیکربندی تخلیه گسترش‌یافته به enclosure محافظت‌شده وارد شود.
    ۷.۱.۶ در صورتی که یک سیستم اطفاء حریق به روش سیلاب کامل با عامل پاک برای حفاظت از یک اتاق با کف بلند یا فرورفته در نظر گرفته شده باشد، اتاق و کف بلند یا فرورفته باید به طور همزمان محافظت شوند.
    ۷.۱.۶.۱ اگر فقط فضای زیر کف بلند قرار است توسط سیستم سیلاب کامل محافظت شود، باید از گاز بی‌اثر برای محافظت از آن فضا استفاده شود.
    ۷.۱.۶.۲ هر حجم، اتاق و کف بلند یا فرورفته که باید محافظت شود باید دارای دتکتورها، شبکه لوله‌کشی و نازل‌ها باشد.
    ۷.۱.۷ به جز سیستم‌های تهویه شناسایی شده در بند ۷.۱.۷.۲، سیستم‌های تهویه هوای فشرده، شامل سیستم‌های تهویه بازگشتی مستقل، باید به طور خودکار خاموش یا بسته شوند در صورتی که ادامه کار آن‌ها عملکرد سیستم اطفاء حریق را تحت تأثیر منفی قرار دهد یا منجر به گسترش آتش شود.
    ۷.۱.۷.۱ در صورتی که سیستم تهویه هوای فشرده یا بازگشتی مستقل به طور خودکار خاموش یا بسته نشود، حجم کانال‌های سیستم تهویه بازگشتی خود-contained که در زیر ارتفاع سقف فضای محافظت‌شده نصب شده‌اند باید به عنوان بخشی از حجم کل خطر هنگام تعیین مقدار عامل در نظر گرفته شود.
    ۷.۱.۷.۲ سیستم‌های تهویه‌ای که برای تأمین ایمنی ضروری هستند نیازی به خاموش شدن هنگام فعال‌سازی سیستم اطفاء حریق ندارند.
    ۷.۱.۷.۳ در صورتی که سیستم تهویه مجاز به ادامه کار طبق بند ۷.۱.۷.۲باشد، باید تخلیه گسترش‌یافته عامل فراهم شود تا غلظت طراحی برای مدت زمان مورد نیاز حفاظت حفظ شود.
    ۷.۱.۸ enclosure محافظت‌شده باید دارای استحکام ساختاری و یکپارچگی لازم برای نگهداری تخلیه عامل باشد.
    ۷.۱.۸.۱ اگر فشارهای ایجادشده تهدیدی برای استحکام ساختاریenclosure ایجاد کند، باید تهویه فراهم شود تا از فشارهای زیاد جلوگیری شود.
    ۷.۱.۸.۲ طراحان باید به دستورالعمل‌های سازنده سیستم در خصوص تهویهenclosure مشورت کنند. (برای منطقه تهویه relief فشار یا مساحت معادل نشت، به بند ۶.۱.۲.۵(۲۸) مراجعه کنید.)

    ۷.۲ الزامات غلظت طراحی

    ۷.۲.۱ عمومی
    ۷.۲.۱.۱ غلظت حداقل اطفاء حریق یا غلظت بی‌اثر باید برای تعیین غلظت طراحی حداقل برای سوخت خاص استفاده شود.
    ۷.۲.۱.۲ برای ترکیب‌های سوختی، باید از غلظت حداقل اطفاء حریق یا غلظت بی‌اثر برای سوختی که نیاز به بالاترین غلظت دارد استفاده شود مگر اینکه آزمایش‌هایی روی ترکیب واقعی انجام شده باشد.

    ۷.۲.۲ خاموش کردن شعله

    ۷.۲.۲.۱ خطرات کلاس A
    ۷.۲.۲.۱.۱ غلظت حداقل اطفاء حریق برای سوخت‌های کلاس A باید از طریق آزمایش به عنوان بخشی از برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳تعیین شود.

    ۷.۲.۲.۱.۲ غلظت حداقل طراحی برای یک خطر سطحی کلاس A باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
    (۱) غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۲ برای سیستم‌هایی با شناسایی و فعال‌سازی خودکار (به بند ۹.۱.۲ مراجعه کنید) یا ۱.۳ برای سیستم‌هایی با فعال‌سازی دستی فقط (به بند ۹.۱.۱.۱ مراجعه کنید).
    (۲) برابر با حداقل غلظت اطفاء حریق برای هپتان همانطور که از بند ۷.۲.۲.۲.۱ (۲) تعیین شده است.

    ۷.۲.۲.۱.۳ غلظت حداقل طراحی برای آتش‌های عمیق باید از طریق آزمایش خاص کاربردی تعیین شود.

    ۷.۲.۲.۲ خطرات کلاس B
    ۷.۲.۲.۲.۱ غلظت اطفاء حریق برای سوخت‌های کلاس B باید از طریق بزرگ‌ترین مورد از موارد زیر تعیین شود:
    (۱) غلظت کلاس B همانطور که از طریق یک برنامه فهرست‌بندی مطابق با بند ۷.۲.۲.۳ تعیین شده است.
    (۲) غلظت اطفاء حریق برای سوخت خاص، همانطور که از طریق روش فنجان برنر (به پیوست B مراجعه کنید) تعیین شده است.
    هشدار: در شرایط خاص، ممکن است خاموش کردن یک جت گاز در حال سوخت خطرناک باشد. به عنوان اولین اقدام، تأمین گاز را قطع کنید.

    ۷.۲.۲.۲.۲ تجهیزات اندازه‌گیری که در استفاده از روش فنجان برنر به کار می‌روند باید کالیبره شده باشند.
    ۷.۲.۲.۲.۳ غلظت حداقل طراحی برای یک خطر سوخت کلاس B باید غلظت اطفاء حریق، همانطور که در بند ۷.۲.۲.۲.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳ باشد.

    ۷.۲.۲.۳ برنامه فهرست‌بندی
    به حداقل، برنامه فهرست‌بندی باید مطابق با UL 2127، سیستم‌های اطفاء حریق با گاز بی‌اثر تمیز، یا UL 2166، سیستم‌های اطفاء حریق با گاز هالوکربن تمیز، یا معادل آن باشد.

    ۷.۲.۲.۴ خطرات کلاس C
    ۷.۲.۲.۴.۱ غلظت حداقل طراحی برای یک خطر کلاس C باید غلظت حداقل اطفاء حریق کلاس A باشد، همانطور که در بند ۷.۲.۲.۱.۱ تعیین شده است، ضرب در یک عامل ایمنی ۱.۳۵.
    ۷.۲.۲.۴.۲ غلظت حداقل طراحی برای فضاهایی که حاوی خطرات الکتریکی انرژی‌دار با ولتاژ بالاتر از ۴۸۰ ولت هستند و در حین و بعد از تخلیه برق دارند، باید از طریق تحلیل خطر و آزمایشات لازم تعیین شود.

    ۷.۲.۳ بی‌اثر کردن
    ۷.۲.۳.۱ غلظت بی‌اثر باید از طریق آزمایش تعیین شود.
    ۷.۲.۳.۲ غلظت بی‌اثر باید در تعیین غلظت طراحی عامل استفاده شود زمانی که شرایطی برای بازگشت مجدد یا انفجار وجود دارد.
    ۷.۲.۳.۳ غلظت حداقل طراحی برای بی‌اثر کردن جو یک enclosure که خطر آن یک مایع یا گاز قابل اشتعال است، باید غلظت بی‌اثر ضرب در یک عامل ایمنی ۱.۱ باشد.

    ۷.۳ مقدار سیستم سیلاب کامل
    ۷.۳.۱ مقدار عامل هالوکربنی که برای دستیابی به غلظت طراحی مورد نیاز است، باید از طریق معادله زیر محاسبه شود:

    guFQK+BdJPAAAAAElFTkSuQmCC

    مقادیر پارامترها عبارتند از:

    W = مقدار عامل پاک کننده [پوند (کیلوگرم)]

    V = حجم خالص خطر، که به‌صورت حجم ناخالص منهای حجم ساختارهای ثابت غیر قابل نفوذ به بخار عامل پاک کننده محاسبه می‌شود [فوت‌مکعب (مترمکعب)]

    C = غلظت طراحی عامل (درصد حجم)

    s = حجم ویژه بخار عامل فوق‌گرم در فشار 1 اتمسفر و دمای حداقل پیش‌بینی شده [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    7.3.1.1 غلظت عامل هالوکربنی که در محفظه حفاظت‌شده توسعه خواهد یافت، باید در دمای حداقل و حداکثر طراحی با استفاده از معادله زیر محاسبه شود:

    مقادیر پارامترها عبارتند از:

    C = غلظت عامل [درصد حجم]

    W = مقدار نصب‌شده عامل [پوند (کیلوگرم)]

    s = حجم ویژه گاز عامل در دمای حداقل/حداکثر طراحی خطر [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    V = حجم محفظه ساخته‌شده [فوت‌مکعب (مترمکعب)]

    7.3.1.2 غلظت‌های عامل محاسبه‌شده بر اساس داده‌های ساخته‌شده و نصب‌شده و دماهای حداقل و حداکثر طراحی فضای حفاظت‌شده باید طبق الزامات 6.1.2.7 و 6.2.4 ثبت شوند.

    7.3.2* مقدار عامل گاز بی‌اثر مورد نیاز برای دستیابی به غلظت طراحی باید با استفاده از معادله 7.3.2، 7.3.2.1a یا 7.3.2.1b محاسبه شود:

    مقادیر پارامترها عبارتند از:

    X = حجم گاز بی‌اثر اضافه‌شده در شرایط استاندارد 14.7 psi مطلق، 70°F (1.013 بار مطلق، 21 درجه سلسیوس) به ازای حجم فضای خطر [فوت‌مکعب/فوت‌مکعب (مترمکعب/مترمکعب)]

    sJ = حجم ویژه گاز بی‌اثر در 70°F (21 درجه سلسیوس) و 14.7 psi مطلق (1.013 بار مطلق)

    s = حجم ویژه گاز بی‌اثر در 14.7 psi مطلق و دمای حداقل طراحی [درجه فارنهایت (درجه سلسیوس)] از حجم حفاظت‌شده [فوت‌مکعب/پوند (مترمکعب/کیلوگرم)]

    C = غلظت طراحی گاز بی‌اثر (درصد حجم)

    7.3.2.1* معادله جایگزینی برای محاسبه غلظت‌های عامل گاز بی‌اثرمجاز است، به‌شرح زیر:

    B8vFtHzjS0rvAAAAABJRU5ErkJggg==

    t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در فارنهایت)

    B+oGJ7zCObEBAAAAABJRU5ErkJggg==

    جایی که:

    t = حداقل دمای پیش‌بینی شده در حجم محافظت‌شده (در سلسیوس)

    7.3.2.2 مقدار طراحی شده گاز بی‌اثر در واحدهای جرم باید به صورت زیر محاسبه شود:

    جایی که:

    W = مقدار گاز بی‌اثر [پوند (کیلوگرم)]
    V = حجم خطر [پای³ (متر³)]
    [7.3.2.2a]
    [7.3.2.2b]
    s = حجم ویژه گاز در دمای خطر [پای³ /پوند (متر³ /کیلوگرم)]
    C = غلظت گاز بی‌اثر [% حجم]

    7.3.2.3 غلظت گاز بی‌اثر تمیز که در محفظه محافظت‌شده تولید خواهد شد، باید در دمای طراحی حداقل و حداکثر محاسبه شود، با استفاده از یکی از معادلات زیر:

    جایی که:

    C = غلظت گاز [٪ حجم]
    W = مقدار نصب‌شده گاز [پوند (کیلوگرم)]
    s = حجم ویژه گاز در دمای طراحی حداقل/حداکثر خطر [پای³ /پوند (متر³ /کیلوگرم)]
    V = حجم محفظه ساخته‌شده [پای³ (متر³)]

    7.3.3* عوامل طراحی. در صورتی که شرایط خاصی بر کارایی اطفاء حریق تأثیر بگذارد، حداقل مقدار گاز باید از طریق استفاده از عوامل طراحی افزایش یابد.

    7.3.3.1 * عامل طراحی تی. غیر از موارد شناسایی‌شده در 7.3.3.1.3، هنگامی که یک منبع گاز واحد برای محافظت از چندین خطر استفاده می‌شود، باید از عامل طراحی جدول 7.3.3.1 استفاده شود.

    7.3.3.1.1 برای کاربرد جدول 7.3.3.1، تعداد عامل طراحی تی باید برای هر خطری که سیستم از آن محافظت می‌کند، با استفاده از راهنماهای زیر تعیین شود:
    (1) از نقطه‌ای که سیستم لوله‌کشی وارد خطر می‌شود، تعداد تی‌های موجود در مسیر جریان که به منبع گاز برمی‌گردند باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود (تی‌های استفاده‌شده در یک منیفولد را شامل نشوید).
    (2) هر تی که در داخل خطر گاز را به خطر دیگری می‌رساند، باید در تعداد عامل طراحی تی برای آن خطر گنجانده شود.

    7.3.3.1.2 خطر با بزرگ‌ترین تعداد عامل طراحی تی باید در جدول 7.3.3.1 برای تعیین عامل طراحی استفاده شود.

    7.3.3.1.3 برای سیستم‌هایی که آزمون تخلیه را با موفقیت پشت سر می‌گذارند، این عامل طراحی اعمال نخواهد شد.

    7.3.3.2* عوامل طراحی اضافی. طراح باید عوامل طراحی اضافی را برای هر یک از موارد زیر تعیین و مستند کند:
    (1) دهانه‌های غیرقابل بستن و تأثیر آن‌ها بر توزیع و غلظت (برای جزئیات بیشتر به 7.6.3 مراجعه کنید).
    (2) کنترل گازهای اسیدی
    (3) بازآتش‌سوزی از سطوح گرم‌شده
    (4) نوع سوخت، پیکربندی‌ها، سناریوهایی که به طور کامل در غلظت اطفاء حریق، هندسه محفظه و موانع در نظر گرفته نشده‌اند و تأثیر آن‌ها بر توزیع.Z

    7.3.3.3* عامل طراحی برای فشار محفظه. مقدار طراحی گاز تمیز باید طبق جدول 7.3.3.3 تنظیم شود تا فشارهای محیطی که بیشتر از 11 درصد (معادل تقریباً 3000 فوت (915 متر) تغییر ارتفاع) از فشارهای استاندارد سطح دریا [29.92 اینچ جیوه در 70°F (760 میلیمتر جیوه در 0°C)] متفاوت است، جبران شود.

    7.4* مدت زمان حفاظت.
    7.4.1 برای سیستم‌های اطفاء حریق شعله‌ای، حداقل غلظت 85 درصد از حداقل غلظت طراحی باید در بالاترین ارتفاع محتوای محافظت‌شده در داخل خطر برای مدت زمان 10 دقیقه یا مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.
    7.4.2 برای سیستم‌های بی‌اثر کننده، حداقل غلظت نباید کمتر از غلظت بی‌اثر کننده تعیین‌شده مطابق با 7.2.3.1 باشد و باید در طول فضای محافظت‌شده برای مدت زمانی کافی برای پاسخگویی پرسنل آموزش‌دیده حفظ شود.

    7.5 سیستم توزیع.
    7.5.1 * زمان تخلیه اولیه.
    7.5.1.1* برای گازهای هالوکربنی، زمان تخلیه نباید بیشتر از 10 ثانیه باشد یا طبق الزامات مقامات مسئول.
    7.5.1.2 برای گازهای بی‌اثر، زمان تخلیه نباید بیشتر از 60 ثانیه برای خطرات سوخت کلاس B، 120 ثانیه برای خطرات آتش‌سوزی سطحی کلاسA یا خطرات کلاس C باشد یا طبق الزامات مقامات مسئول. (برای جزئیات بیشتر به A.7.5.1.1 مراجعه کنید.)
    7.5.1.3* محاسبات جریان انجام شده طبق بخش 6.2 یا طبق دستورالعمل‌های سیستم‌های پیش‌مهندسی‌شده فهرست‌شده باید برای اثبات انطباق با 7.5.1.1 یا 7.5.1.2 استفاده شود.
    7.5.1.4 برای سیستم‌های پیشگیری از انفجار، زمان تخلیه گازها باید به گونه‌ای باشد که غلظت حداقل طراحی بی‌اثر قبل از رسیدن غلظت بخارات قابل اشتعال به محدوده قابل اشتعال بدست آید.

    7.5.2* تخلیه طولانی. در صورتی که تخلیه طولانی برای حفظ غلظت طراحی برای مدت زمان مشخص ضروری باشد، مقادیر اضافی گاز باید با نرخ کاهش یافته به کار گرفته شوند.
    7.5.2.1 تخلیه اولیه باید در محدودیت‌های مشخص شده در 7.5.1.1 تکمیل شود.
    7.5.2.2 عملکرد سیستم تخلیه طولانی باید با آزمایش تأیید شود.

    7.6 انتخاب و مکان‌یابی نازل‌ها.
    7.6.1 نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند.
    7.6.2 نازل‌ها باید در داخل محفظه محافظت‌شده مطابق با محدودیت‌های فهرست‌شده از نظر فاصله، پوشش کف و هم‌راستایی قرار گیرند.
    7.6.3 نوع نازل‌های انتخاب‌شده، تعداد آن‌ها و مکان‌یابی آن‌ها باید به گونه‌ای باشد که غلظت طراحی در تمام قسمت‌های محفظه خطر ایجاد شود و به گونه‌ای باشد که تخلیه موجب پاشیدن مایعات قابل اشتعال یا ایجاد ابرهای گرد و غبار نشود که بتوانند آتش را گسترش دهند، انفجار ایجاد کنند یا به طور دیگری بر محتویات یا یکپارچگی محفظه تأثیر منفی بگذارند.

    2Q==

  • تأسیس تأسیسات سیستم های اطفاء حریق گاز پایه

    10.1 ایمنی

    بایستی در حین نصب، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک و مخازن عامل، از روش‌های ایمن پیروی شود.

    10.2 عمومی

    10.2.1 سیستم تکمیل‌شده باید توسط پرسنلی که دانش و تجربه لازم در زمینه الزامات این استاندارد، تجهیزات نصب‌شده و راهنمای طراحی، نصب و نگهداری سازنده را دارند، بازبینی و آزمایش شود.
    10.2.2 تنها از تجهیزات و دستگاه‌های فهرست‌شده باید در سیستم‌ها استفاده شود.

    10.2.3 آزمایش پذیرش سیستم

    10.2.3.1 سیستم باید مطابق با الزامات این استاندارد و راهنمای طراحی، نصب و نگهداری سازنده آزمایش شود.
    10.2.3.2 تجهیزات باید بررسی شوند تا تأیید شود که مطابق با دستورالعمل‌های سازنده و اسناد طراحی سیستم نصب شده‌اند.
    10.2.3.3 ابعاد واقعی خطر باید با ابعادی که در نقشه‌های سیستم مشخص شده‌اند، بررسی شوند تا مقدار عامل تأیید شود.
    10.2.3.4 در صورتی که آزمایش تخلیه انجام شود، مخازن عامل باید قبل و بعد از آزمایش تخلیه وزن شوند.
    10.2.3.5 وزن عامل در مخازن باید از طریق وزن‌کشی یا روش‌های تأیید شده دیگر تأیید شود.
    10.2.3.6 برای عوامل گاز بی‌اثر، فشار مخزن باید قبل و بعد از آزمایش تخلیه ثبت شود.
    10.2.3.7 در صورتی که برای عملکرد سیستم لازم باشد، زمان کاهش سرعت فن و زمان بسته شدن دمپر باید تأیید شود که مطابق با معیارهای طراحی سیستم است.

    10.2.4 آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه

    زمانی که توسط مشخصات پروژه الزامی است، آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شود.

    10.3 گزارش آزمایش پذیرش

    10.3.1 آزمایش پذیرشی که در 10.2.3 الزامی است باید در یک گزارش آزمایش مستند شود.
    10.3.2 گزارش آزمایش پذیرش باید توسط مالک سیستم برای تمام مدت عمر سیستم نگهداری شود.

    10.4 بازبینی اجزای مکانیکی

    10.4.1 سیستم توزیع لوله‌کشی باید بازبینی شود تا تأیید شود که با اسناد طراحی و نصب مطابقت دارد.
    10.4.2 اندازه نازل‌ها و لوله‌ها باید مطابق با نقشه‌های سیستم باشد.
    10.4.3 روش‌های کاهش اندازه لوله و وضعیت اتصالات انشعاب باید برای تطابق با طراحی بررسی شوند.
    10.4.4 مفاصل لوله‌کشی، نازل‌های تخلیه و تکیه‌گاه‌های لوله باید به‌طور ایمن بسته شوند تا از حرکت عمودی یا جانبی ناخواسته در حین تخلیه جلوگیری شود.
    10.4.5 نازل‌های تخلیه باید به‌گونه‌ای نصب شوند که لوله‌کشی نتواند در حین تخلیه از اتصال خارج شود.
    10.4.6 در حین مونتاژ، سیستم توزیع لوله‌کشی باید به‌طور داخلی بازبینی شود تا احتمال هرگونه آلودگی با روغن یا ذرات که ممکن است منطقه خطر را آلوده کرده یا توزیع عامل را تحت تأثیر قرار دهد (به دلیل کاهش در مساحت اوریفیس نازل) شناسایی شود.
    10.4.7 نازل تخلیه باید مطابق با فهرست نازل نصب شود.
    10.4.8 اگر محافظ‌های نازل نصب شده‌اند، باید طبق فهرست تجهیزات نصب شوند.
    10.4.9 نازل‌های تخلیه، لوله‌کشی و براکت‌های نصب باید به‌گونه‌ای نصب شوند که خطر آسیب به پرسنل نداشته باشند.
    10.4.10 عامل نباید مستقیماً به نواحی‌ای که ممکن است پرسنل در آن‌ها حضور داشته باشند در منطقه کاری برخورد کند.
    10.4.11 عامل نباید مستقیماً به هیچ جسم رها شده‌ای یا قفسه‌ها، سطوح بالای کابینت‌ها یا سطوح مشابه که ممکن است اشیاء رها شده در آن‌ها وجود داشته باشد و به ش projectiles تبدیل شوند، برخورد کند.

    10.4.12 تمامی مخازن ذخیره عامل باید مطابق با مجموعه تأسیسات تایید شده از نقشه‌های سیستم نصب شوند.

    10.4.13 تمامی مخازن و براکت‌های نصب باید مطابق با الزامات سازنده به‌طور ایمن نصب شوند.

    10.4.14 سیستم لوله‌کشی باید در یک مدار بسته با استفاده از نیتروژن یا گاز خشک فشار آزمایی شود.

    10.4.14.1 لوله باید به حداقل فشار 40 psi (276 kPa) فشار وارد شود.
    10.4.14.2 پس از برداشتن منبع گاز فشار، فشار در لوله نباید کمتر از 80 درصد فشار آزمایش پس از 10 دقیقه باشد.
    10.4.14.3 آزمایش فشار در صورتی که سیستم لوله‌کشی تنها یک تغییر جهت بین مخزن ذخیره‌سازی و نازل تخلیه داشته باشد و تمامی لوله‌ها از نظر سفت بودن فیزیکی بررسی شده باشند، مجاز است که حذف شود.

    10.4.15* آزمایش جریان با استفاده از نیتروژن یا گاز بی‌اثر باید بر روی شبکه لوله‌کشی انجام شود تا تأیید شود که جریان به‌طور مداوم وجود دارد.

    10.5 بازبینی یکپارچگی محفظه

    10.5.1 باید تأیید شود که محفظه حفاظت‌شده به‌طور کلی با اسناد ساخت مطابقت دارد.
    10.5.2 تمامی سیستم‌های سیلاب‌کامل باید مورد بازبینی و آزمایش قرار گیرند تا درزهای هوایی قابل توجهی که می‌توانند منجر به شکست محفظه در نگه‌داشتن سطح غلظت عامل مشخص شده برای مدت زمان مشخص شده شوند، شناسایی و به‌طور مؤثر مهر و موم شوند.
    10.5.3* نتایج کمی باید به‌دست آید و ثبت شود تا تأیید شود که غلظت عامل مشخص‌شده برای مدت زمان مشخص‌شده حفاظت مطابق با بخش 7.4 است، با استفاده از واحد فن دمنده تایید شده یا روش‌های دیگری که توسط مرجع نظارتی تایید شده باشد. (برای راهنمایی، به پیوست D مراجعه کنید.)

    10.6 بازبینی اجزای الکتریکی

    10.6.1 تمامی سیستم‌های سیم‌کشی باید مطابق با کدهای محلی و نقشه‌های سیستم نصب شوند.
    10.6.2 سیم‌کشی جریان متناوب (ac) و مستقیم (dc) نباید در یک لوله یا مسیر مشترک ترکیب شوند، مگر اینکه از شیلدینگ و زمین‌گذاری استفاده شده باشد.
    10.6.3 تمامی مدارهای میدانی باید از خطاهای زمینی و اتصالات کوتاه آزاد باشند.
    o 10.6.3.1 هنگامی که مدارهای میدانی اندازه‌گیری می‌شوند، تمامی اجزای الکترونیکی مانند تشخیص‌دهنده‌های دود و شعله یا تجهیزات الکترونیکی ویژه برای سایر تشخیص‌دهنده‌ها یا پایه‌های نصب آن‌ها باید حذف شده و پل‌ها نصب شوند تا از احتمال آسیب به این دستگاه‌ها جلوگیری شود.
    o 10.6.3.2 اجزای حذف‌شده مطابق با 10.6.3.1 باید پس از اندازه‌گیری‌ها جایگزین شوند.
    10.6.4 تأمین برق به واحد کنترل باید از یک منبع اختصاصی جداگانه باشد که در هنگام راه‌اندازی سیستم قطع نشود.
    10.6.5 منابع انرژی اصلی و 24 ساعته حداقل باید برای تأمین نیازهای عملکردی تشخیص، سیگنال‌دهی، کنترل و فعال‌سازی سیستم قابل اعتماد و کافی باشند.
    10.6.6* تمامی عملکردهای کمکی مانند دستگاه‌های آلارم، نمایشگرها، اعلان‌کننده‌های از راه دور، خاموشی سیستم تهویه و خاموشی برق باید برای عملکرد مطابق با الزامات سیستم و مشخصات طراحی بررسی شوند.
    10.6.7 خاموش کردن آلارم‌ها، در صورت مجاز بودن، نباید تأثیری بر سایر عملکردهای کمکی داشته باشد.
    10.6.8 دستگاه‌های تشخیص باید برای نوع و مکان مطابق با نقشه‌های سیستم بررسی شوند.
    10.6.9* تشخیص‌دهنده‌ها نباید در نزدیکی موانع یا تجهیزات تهویه و خنک‌کننده هوا نصب شوند که می‌تواند ویژگی‌های واکنش آن‌ها را تحت تأثیر قرار دهد.
    10.6.10* طراحی سیستم تشخیص باید حجم تغییرات هوای داخل منطقه حفاظت‌شده را در نظر بگیرد.
    10.6.11 تشخیص‌دهنده‌ها باید مطابق با داده‌های فنی سازنده و الزامات NFPA 72 نصب شوند.
    10.6.12 ایستگاه‌های دستی کشیدن (Manual Pull Stations)
    o 10.6.12.1 ایستگاه‌های دستی کشیدن باید به‌طور ایمن نصب شوند.
    o 10.6.12.2 قسمت قابل استفاده ایستگاه دستی کشیدن باید حداقل 42 اینچ (1.07 متر) و حداکثر 48 اینچ (1.22 متر) از کف تمام‌شده باشد.
    o 10.6.12.3 ایستگاه‌های دستی کشیدن باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.
    o 10.6.12.4 تمامی ایستگاه‌های دستی کشیدن باید به‌طور واضح شناسایی شوند که به کدام خطر حفاظت می‌کنند، عملکرد آن‌ها چیست و روش عملیات آن‌ها چگونه است.
    o 10.6.12.5 تمامی ایستگاه‌های دستی که برای آزادسازی عامل‌ها استفاده می‌شوند باید نیاز به دو اقدام مجزا و متمایز برای عملکرد داشته باشند.
    10.6.13 سیستم‌های با قابلیت اصلی/رزرو
    o 10.6.13.1 برای سیستم‌هایی با قابلیت اصلی/رزرو، سوئیچ اصلی/رزرو باید مطابق با دستورالعمل‌های طراحی، نصب و نگهداری سازنده سیستم و نقشه‌های سیستم نصب شود.
    o 10.6.13.2 اگر نصب شده باشد، سوئیچ اصلی/رزرو باید شناسایی شود.
    10.6.14 سیستم‌هایی که از سوئیچ‌های انصراف استفاده می‌کنند
    o 10.6.14.1 سوئیچ‌های انصراف باید از نوع “deadman” باشند که نیاز به فشار دستی مداوم دارند.
    o 10.6.14.2 سوئیچ‌هایی که در موقعیت انصراف باقی می‌مانند زمانی که آزاد شوند، نباید برای این منظور استفاده شوند.
    o 10.6.14.3 سوئیچ‌های انصراف باید به‌گونه‌ای نصب شوند که در داخل منطقه خطر به‌راحتی قابل دسترس باشند.
    o 10.6.14.4 سوئیچ‌های انصراف باید به‌طور ایمن نصب شوند.
    o 10.6.14.5 ایستگاه‌های انصراف باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.

    10.6.14.6 قسمت قابل استفاده از سوئیچ انصراف نباید کمتر از 42 اینچ (1.07 متر) و بیشتر از 48 اینچ (1.22 متر) از کف تمام‌شده باشد.

    10.6.14.7 ایستگاه‌های دستی کشیدن همیشه باید سوئیچ‌های انصراف را لغو کنند.

    10.6.15 واحد کنترل آزادسازی باید مطابق با مستندات سیستم نصب شده و به‌راحتی قابل دسترس باشد.

    10.7 آزمایش عملکردی

    10.7.1 آزمایش‌های عملکردی مقدماتی

    10.7.1.1 اگر سیستم به یک دفتر دریافت آلارم متصل باشد، دفتر دریافت آلارم باید اطلاع داده شود که آزمایش سیستم آتش‌نشانی قرار است انجام شود و پاسخ اضطراری از سوی آتش‌نشانی یا پرسنل ایستگاه آلارم ضروری نیست.
    10.7.1.2 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید مطلع شوند که آزمایشی قرار است انجام شود.
    10.7.1.3 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید دستورالعمل‌هایی دریافت کنند که به آن‌ها توضیح داده شود چه اتفاقاتی ممکن است در حین آزمایش سیستم اطفاء حریق رخ دهد.
    10.7.1.4* مکانیزم آزادسازی هر مخزن ذخیره عامل باید غیرفعال شده یا با یک دستگاه عملیاتی جایگزین شود به‌طوری‌که فعال‌سازی مدار آزادسازی منجر به آزادسازی عامل نشود.
    10.7.1.5 هر تشخیص‌دهنده باید برای عملکرد آزمایش شود.
    10.7.1.6 تمامی دستگاه‌های آلارم قطبی‌شده و رله‌های کمکی باید برای قطبیت مطابق با دستورالعمل‌های سازنده بررسی شوند.
    10.7.1.7 مدارهای شروع و اعلان باید برای دستگاه‌های انتهای خط، در صورت لزوم، بررسی شوند.
    10.7.1.8 تمامی مدارهای تحت نظارت باید برای پاسخ به مشکلات آزمایش شوند.

    10.7.2 آزمایش عملکرد عملیاتی سیستم

    10.7.2.1 هر مدار شروع تشخیص باید اجرا شود تا تأیید شود که تمامی عملکردهای آلارم مطابق با مشخصات طراحی رخ می‌دهند.
    10.7.2.2 هر آزادسازی دستی باید اجرا شود تا تأیید شود که عملکرد آزادسازی دستی مطابق با مشخصات طراحی انجام می‌شود.
    10.7.2.3 هر مدار سوئیچ انصراف باید اجرا شود تا تأیید شود که عملکرد انصراف مطابق با مشخصات طراحی انجام می‌شود و سیگنال‌های نظارتی بصری و صوتی در پنل کنترل اعلام می‌شود.
    10.7.2.4 تمامی شیرهای خودکار باید برای تأیید عملکرد آزمایش شوند، مگر اینکه آزمایش شیر منجر به آزادسازی عامل یا آسیب به شیر (آزمایش تخریبی) شود.
    10.7.2.5 تجهیزات پنوماتیک، در صورت نصب، باید برای یکپارچگی آزمایش شوند تا از عملکرد صحیح آن‌ها اطمینان حاصل شود.

    10.7.3 عملیات نظارت از راه دور

    10.7.3.1 هر نوع دستگاه شروع باید در حالت برق پشتیبان اجرا شود تا تأیید شود که پس از فعال شدن دستگاه، سیگنال آلارم در پنل از راه دور دریافت می‌شود.

    10.7.3.2 یک وضعیت خطا باید به هر مدار شروع یا اعلان اعمال شود تا تأیید شود که وضعیت مشکل در ایستگاه از راه دور دریافت شده است.

    10.7.3.3 هر دستگاه تحت نظارت باید اجرا شود تا تأیید شود که وضعیت نظارتی در ایستگاه از راه دور دریافت شده است.

    10.7.4 منبع قدرت اصلی پنل کنترل

    یک قطع برق اصلی باید مطابق با مشخصات سازنده آغاز شود تا تأیید شود که سیستم بر روی برق پشتیبان کار می‌کند.

    10.7.5 بازگرداندن سیستم به وضعیت عملیاتی

    10.7.5.1 هنگامی که آزمایش‌های عملکردی به پایان رسید، سیستم باید به وضعیت عملیاتی کامل بازگردانده شود.
    10.7.5.2 دفتر دریافت آلارم و تمامی پرسنل مربوطه در تأسیسات کاربر نهایی باید مطلع شوند که آزمایش سیستم آتش‌نشانی تکمیل شده است و سیستم به وضعیت کامل خدمات بازگشته است.

    10.8 مستندات مالک

    10.8.1 نسخه‌های کاغذی یا الکترونیکی تمامی گزارش‌های آزمایش و مستندات مربوطه باید به مالک سیستم ارائه شود.
    10.8.2 مالک سیستم باید این گزارش‌ها را برای مدت زمان عمر سیستم نگه‌داری کند.

    10.9 آموزش

    10.9.1 تمامی افرادی که احتمالاً مجبور به استفاده از سیستم‌های اطفاء حریق هستند باید آموزش دیده و آموزش‌های خود را در زمینه عملکردهایی که باید انجام دهند، به‌روز نگه دارند.
    10.9.2* پرسنلی که در یک اتاق سرور که توسط عامل پاک‌کننده محافظت می‌شود کار می‌کنند باید آموزش‌هایی در خصوص مسائل ایمنی عامل دریافت کنند.

  • مواد نصب و نگهدارنده‌های لوله در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    پایه‌ها و آویزهای نگهدارنده
    شبکه لوله‌کشی با استفاده از پایه‌های نصب لوله، همان‌طور که در شکل ۶ در سمت چپ نشان داده شده است، به سقف یا اجزای سازه‌ای محکم نصب می‌شود. همچنین می‌توان آن را با استفاده از بست‌های ساده لوله، آویزهای یو (Clevis)، بست‌های قابل تنظیم، گیره‌های C شکل و میل‌گردهای رزوه‌شده از سقف بتنی آویزان کرد. انواع مختلفی از پایه‌ها نیز موجود است، از جمله کلیپس‌ها، بست‌های زینی یا بست‌های کمربندی، همان‌طور که در شکل ۷ در بالا نشان داده شده است. انتخاب ابزار نصب بستگی به نوع مصالح نصب، شرایط محیطی و کدها و مقررات محلی دارد.

    فواصل نصب بست‌ها و نگهدارنده‌های لوله نمونه‌برداری بر اساس دما و قطر لوله تعیین می‌شود، همان‌طور که در جدول ۱ زیر نشان داده شده است.

    نصب بست‌ها و آویزهای نگهدارنده با فواصل مشخص‌شده بسیار حائز اهمیت است تا از خم شدن لوله و ایجاد فشار در محل اتصالات، زانویی‌ها و رابط‌ها جلوگیری شود؛ چراکه این فشار ممکن است باعث ترک‌خوردگی یا شکستگی لوله گردد.

    IMG 1306

    کلیپس‌های نصب باز نباید به‌صورت وارونه استفاده شوند، به‌طوری‌که قسمت باز آن‌ها رو به پایین قرار گیرد، زیرا ممکن است لوله به‌صورت ناگهانی از کلیپس خارج شود.

    در کاربردهایی که لوله نمونه‌برداری زیر کف کاذب نصب می‌شود، می‌توان لوله را مستقیماً به پایه‌های کف کاذب با استفاده از بست‌های سیمی، بست‌های کانال یا سایر تجهیزات نصب، متصل کرد.

    برچسب‌گذاری لوله‌ها
    طبق استانداردهای شناخته‌شده‌ای مانند NFPA 72، FIA و سایر کدها و مقررات، لازم است لوله‌های سیستم اسپیراتینگ برچسب‌گذاری شوند تا از سایر لوله‌ها متمایز شده و به‌طور مشخص به‌عنوان بخشی از سیستم تشخیص حریق شناسایی گردند.

    هم شبکه لوله‌کشی نمونه‌برداری و هم هر سوراخ نمونه‌برداری باید مشخص شوند. لوله و سوراخ‌های نمونه‌برداری باید در محل‌های زیر برچسب‌گذاری شوند:

    ۱. در محل تغییر جهت یا انشعاب لوله‌کشی
    ۲. در هر دو طرف نفوذ از دیوارها، کف‌ها یا سایر موانع
    ۳. در فواصل مناسب روی لوله‌ها به‌گونه‌ای که در فضا قابل مشاهده باشند، اما فاصله بین آن‌ها بیشتر از ۶۱ متر (۲۰ فوت) نباشد
    ۴. در محل هر سوراخ نمونه‌برداری

    لوله باید با عبارتی مشابه این برچسب‌گذاری شود:
    «لوله نمونه‌برداری آشکارساز دود – از جابه‌جایی خودداری شود»
    برای مشاهده نمونه برچسب لوله و سوراخ نمونه‌برداری به شکل ۸مراجعه کنید.

    IMG 1307 IMG 1308 IMG 1309

    اجزاء نگهداری
    پیشنهاد می‌شود که یک شیر توپی ایزوله و یک اتصالات T-joint همراه با درپوش انتهایی روی لوله نمونه‌برداری نصب شود، تقریبا ۵ تا ۳۰ سانتیمتر (۶ اینچ تا ۱ فوت) از ورودی لوله آشکارسازدتکتور دودی مکشی. این شیر در طول نگهداری مکرر استفاده خواهد شد. این موضوع به‌ویژه برای سیستم‌های دتکتور دودی مکشی که از محیط‌های کثیف محافظت می‌کنند یا در مکان‌هایی که نیاز به نگهداری مکرر است، اهمیت دارد. شکل ۹ را در زیر سمت چپ مشاهده کنید.

  • سیستم‌های تشخیص، راه‌اندازی، هشدار و کنترل تخلیه گاز تمیز برای سیستم اطفاء حریق

    9.1.1 پنل کنترل برای سرویس تخلیه
    سیستم‌های تشخیص، راه‌اندازی، هشدار و کنترل باید مطابق با استانداردNFPA 72 طراحی، نصب، آزمایش و نگهداری شوند.

    9.1.1.1 سیستم‌هایی که فقط از طریق راه‌اندازی دستی مکانیکی عمل می‌کنند، در صورتی که مقامات مسئول اجازه دهند، مجاز هستند.

    9.1.1.2 یک منبع تأمین قدرت اصلی اختصاصی و یک منبع برق پشتیبان با حداقل 24 ساعت و حداقل 5 دقیقه جریان هشدار باید برای عملیات تشخیص، سیگنال‌دهی، کنترل و راه‌اندازی سیستم مورد استفاده قرار گیرد.

    9.1.1.3 سیستم اعلام حریق ساختمان‌های محافظت‌شده باید فقط برای کنترل پنل تخلیه سیستم اطفاء حریق گاز تمیز استفاده شود، در صورتی که برای تخلیه با دستگاه خاص سیستم اطفاء حریق گاز تمیز فهرست شده باشد، طبق بندهای 9.4.8 و 9.4.9.

    9.1.1.4 اگر پنل کنترل تخلیه سیستم اطفاء حریق گاز تمیز در یک ساختمان محافظت‌شده که سیستم اعلام حریق جداگانه‌ای دارد، قرار گیرد، باید توسط سیستم اعلام حریق ساختمان برای سیگنال‌های هشدار، نظارتی و مشکل‌دار نظارت شود.

    9.1.1.5 اگر واحد کنترل سیستم اعلام حریق تخلیه در یک ساختمان محافظت‌شده که سیستم اعلام حریق جداگانه‌ای دارد، قرار گیرد، باید برای سیگنال‌های هشدار، نظارتی و مشکل‌دار نظارت شود، اما نباید به عملیات یا خرابی سیستم اعلام حریق ساختمان وابسته باشد یا تحت تأثیر قرار گیرد.

    9.1.2 شروع و راه‌اندازی
    تشخیص خودکار و راه‌اندازی خودکار باید استفاده شوند.

    9.1.3 روش‌های سیم‌کشی*
    سیم‌کشی مدارهای شروع و تخلیه باید در کانال‌های خاص نصب شوند.

    9.1.3.1 به جز موارد مجاز در 9.1.3.2، سیم‌کشی جریان متناوب (ac) و جریان مستقیم (dc) نباید در یک کانال یا مسیر مشترک ترکیب شوند.

    9.1.3.2 ترکیب سیم‌کشی ac و dc در یک کانال یا مسیر مشترک مجاز است، در صورتی که شیلد شده و به زمین متصل باشد.

    9.2 تشخیص خودکار

    9.2.1 تشخیص خودکار باید توسط هر روش یا دستگاه فهرست‌شده‌ای باشد که قادر به تشخیص و نشان دادن حرارت، شعله، دود، بخارات قابل اشتعال یا شرایط غیرعادی در خطر باشد، مانند مشکلات فرآیند که احتمالاً باعث آتش‌سوزی شوند.

    9.2.2 در جایی که یک سیستم عامل جدید در فضایی که سیستم تشخیص موجود دارد نصب می‌شود، باید تحلیلی از دستگاه‌های تشخیص انجام شود تا اطمینان حاصل شود که سیستم تشخیص در شرایط عملیاتی خوبی قرار دارد و به موقعیت آتش‌سوزی طبق اهداف طراحی سیستم پاسخ خواهد داد.

    9.3 راه‌اندازی دستی

    یک وسیله راه‌اندازی دستی باید برای سیستم فراهم شود، مگر در مواردی که بر اساس 9.3.4 اجازه حذف آن داده شده باشد.

    9.3.1 راه‌اندازی دستی باید باعث عملکرد همزمان شیرهای خودکار کنترل‌کننده تخلیه گاز و توزیع آن شود.

    9.3.2 یک سوئیچ فشار تخلیه که سیگنال هشدار را به پنل تخلیه ارسال می‌کند، در جایی که از راه‌اندازی دستی مکانیکی استفاده می‌شود و امکان عملکرد مکانیکی سیستم وجود دارد، الزامی است.

    9.3.3 در جایی که از پنل تخلیه استفاده نمی‌شود، سوئیچ فشار تخلیه باید عملکردهای الکتریکی مورد نیاز هنگام راه‌اندازی سیستم را آغاز کند، از جمله اطلاع‌رسانی.

    9.3.4 برای سیستم‌های خودکار، وسیله راه‌اندازی دستی لازم نیست، زمانی که خطر محافظت‌شده غیرقابل سکونت باشد و خطر در مکانی دورافتاده قرار داشته باشد که پرسنل به‌طور معمول در آنجا حضور ندارند.

    9.3.5 وسیله‌های راه‌اندازی دستی باید همیشه در دسترس باشند، حتی در زمان وقوع آتش‌سوزی.

    9.3.6 وسیله‌های راه‌اندازی دستی باید برای هدف مورد نظر قابل شناسایی باشند.

    9.3.7 عملیات هر وسیله دستی باید باعث عملکرد کامل سیستم به‌طور طراحی‌شده شود.

    9.3.8 کنترل‌های دستی نباید به نیرویی بیشتر از 40 پوند (178 نیوتن) یا حرکت بیشتر از 14 اینچ (356 میلی‌متر) برای راه‌اندازی نیاز داشته باشند.

    9.3.9 حداقل یک وسیله کنترل دستی برای فعال‌سازی باید در فاصله‌ای بیشتر از 4 فوت (1.2 متر) از کف قرار گیرد.

    9.3.10 تمام وسایل عملیاتی دستی باید با نام خطراتی که از آن‌ها محافظت می‌کنند شناسایی شوند.

    9.4 دستگاه‌های عملیاتی و تجهیزات کنترل برای تخلیه گاز، کنترل تخلیه و خاموش کردن تجهیزات

    9.4.1 عملیات دستگاه‌های تخلیه گاز یا شیرها، کنترل تخلیه‌ها و تجهیزات خاموش کردن که برای عملکرد موفقیت‌آمیز سیستم ضروری هستند، باید از طریق وسایل مکانیکی، الکتریکی یا پنوماتیکی فهرست‌شده انجام شود.

    9.4.2 دستگاه‌های عملیاتی باید برای کاربرد در محیطی که در آن به کار می‌روند، مناسب باشند.

    9.4.3 تجهیزات عملیاتی نباید به راحتی از کار بیافتند یا در معرض عملیات تصادفی قرار گیرند.

    9.4.4 دستگاه‌ها معمولاً باید طوری طراحی شوند که به درستی از -20°F تا 130°F (-29°C تا 54°C) عمل کنند یا به گونه‌ای علامت‌گذاری شوند که محدودیت‌های دمایی آن‌ها را نشان دهند.

    9.4.5 دستگاه‌های عملیاتی باید به‌گونه‌ای قرار گیرند، نصب شوند یا محافظت شوند که در برابر آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌ها که می‌تواند باعث از کار افتادن آن‌ها شود، مقاوم باشند.

    9.4.6 در صورتی که فشار گاز از سیستم یا مخازن پیلوت به عنوان وسیله‌ای برای تخلیه مخازن ذخیره‌سازی عامل استفاده شود، نرخ تأمین و تخلیه باید برای تخلیه تمام مخازن باقی‌مانده طراحی شود.

    9.4.7 تمام دستگاه‌ها برای خاموش کردن تجهیزات کمکی باید با عملکرد سیستم به عنوان بخش‌های یکپارچه از سیستم عمل کنند.

    9.4.8 تجهیزات کنترل باید به طور خاص برای تعداد و نوع دستگاه‌های فعال‌کننده مورد استفاده فهرست شده باشند.

    9.4.9 تجهیزات کنترل و دستگاه‌های فعال‌کننده باید برای سازگاری با یکدیگر فهرست شده باشند.

    9.4.10 نظارت بر حذف عملگر الکتریکی

    9.4.10.1 حذف عملگر الکتریکی از شیر تخلیه مخزن ذخیره‌سازی عامل یا شیر انتخاب‌کننده‌ای که کنترل می‌کند، باید باعث ایجاد هشدار صوتی و بصری از نقص سیستم در پنل کنترل تخلیه سیستم شود.

    9.4.10.2 بند 9.4.10.1 شامل سیستم‌های تحت پوشش فصل 13 این استاندارد نمی‌شود، به جز سیستم‌هایی که در بخش 13.6 گنجانده شده‌اند.

    9.4.11 تجهیزات کنترل باید دستگاه‌های فعال‌کننده و سیم‌کشی‌های مرتبط را نظارت کرده و در صورت نیاز باعث راه‌اندازی آنها شود.

    9.4.12 حذف دستگاه فعال‌کننده مخزن اصلی عامل از شیر تخلیه یا شیر انتخاب‌کننده باید باعث ایجاد سیگنال مشکل یا نظارتی در واحد کنترل تخلیه شود.

    9.4.13 در جایی که از تجهیزات کنترل پنوماتیک استفاده می‌شود، خطوط باید در برابر از دست دادن یکپارچگی محافظت شوند.

    9.5 دستگاه‌های هشدار، وسایل اطلاع‌رسانی و نشانگرها

    9.5.1 دستگاه‌های اطلاع‌رسانی یا نشانگرهای پنل کنترل باید برای نشان دادن عملکرد سیستم، خطرات برای پرسنل یا خرابی هر دستگاه تحت نظارت استفاده شوند.

    9.5.2 نوع (مانند صوتی، بصری)، تعداد و محل قرارگیری دستگاه‌های اطلاع‌رسانی و نشانگرها باید به گونه‌ای باشد که هدف آن‌ها برآورده شود و تمام الزامات را تأمین کند.

    9.5.3 دستگاه‌های اطلاع‌رسانی باید به گونه‌ای طراحی شوند که طبق الزامات برنامه واکنش اضطراری ساختمان عمل کنند.

    9.5.4 هشدار صوتی و بصری قبل از تخلیه باید در داخل منطقه محافظت‌شده فضاهای قابل سکونت فراهم شود تا هشدار قوی برای تخلیه قریب‌الوقوع داده شود.

    9.5.5 عملکرد دستگاه‌های اطلاع‌رسانی باید پس از تخلیه عامل ادامه یابد تا زمانی که اقدام مثبت برای شناسایی هشدار انجام شده و اقدام مناسب انجام شود.

    9.6 کلیدهای لغو

    کلیدهای لغو برای سیستم‌های تخلیه گاز تمیز مجاز هستند.

    9.6.1 در صورتی که کلیدهای لغو نصب شوند، باید در داخل منطقه محافظت‌شده و نزدیک به راه‌ خروج منطقه قرار گیرند.

    9.6.2 کلید لغو باید از نوعی باشد که برای لغو نیاز به فشار دستی دائمی داشته باشد.

    9.6.3 راه‌اندازی دستی باید عملکرد لغو را لغو کند.

    9.6.4 عملکرد تابع لغو باید باعث ایجاد هشدار صوتی و بصری مشخص از نقص سیستم شود.

    9.6.5 کلیدهای لغو باید به‌طور واضح برای هدف مورد نظر قابل شناسایی باشند.

    9.7 تأخیرهای زمانی

    9.7.1 باید یک هشدار پیش‌تخلیه و تأخیر زمانی کافی برای اجازه به تخلیه پرسنل قبل از تخلیه فراهم شود.

    9.7.2 برای نواحی خطرناک که در معرض آتش‌های رشد سریع هستند، جایی که فراهم کردن تأخیر زمانی تهدیدی برای جان و مال ایجاد کند، مجاز است که تأخیر زمانی حذف شود.

    9.7.3 تأخیرهای زمانی باید تنها برای تخلیه پرسنل یا آماده‌سازی منطقه خطر برای تخلیه استفاده شوند.

    9.7.4 تأخیرهای زمانی نباید به عنوان روشی برای تأیید عملکرد دستگاه شناسایی قبل از وقوع فعال‌سازی خودکار استفاده شوند.

    9.8 کلید قطع‌کننده

    9.8.1 برای جلوگیری از تخلیه ناخواسته سیستم عامل تمیز الکتریکی، باید یک کلید قطع‌کننده تحت نظارت فراهم شود.

    9.8.2 کلید قطع‌کننده باید در برابر استفاده غیرمجاز با یکی از روش‌های زیر محافظت شود:

    1. در داخل پنل کنترل قفل‌شونده قرار گیرد.
    2. در داخل یک محفظه قفل‌شونده قرار گیرد.
    3. برای فعال‌سازی کلید به کلید نیاز داشته باشد.

    9.8.3 زمانی که کلید قطع‌کننده برای فعال‌سازی نیاز به کلید دارد، کلید دسترسی نباید زمانی که مدار قطع‌کننده قطع است، قابل جدا شدن باشد.

    9.8.4 غیر فعال کردن توالی آزادسازی سیستم سرکوب از طریق برنامه‌نویسی نرم‌افزاری نباید به‌عنوان جایگزینی برای استفاده از یک کلید قطع‌کننده فیزیکی قابل قبول باشد.

    9.8.5 کلید قطع‌کننده باید فهرست شده باشد.

    9.9 شیرهای قفل‌شونده

    اگر شیر قفل‌شونده نصب شده باشد، پنل آزادسازی باید یک سیگنال نظارتی را هنگامی که شیر قفل‌شونده در وضعیت کاملاً باز نباشد، اعلام کند.

  • راهنمای دتکتورهای دودی مکشی یا اسپیراتینگ ها برای مهندسین

    دتکتور دود مکشی (Aspirating Smoke Detector)

    تمام سیستم‌های دتکتور دود مکشی (ASD) دارای تجهیزات مشابهی هستند، اما نوع فناوری تشخیص آن‌ها متفاوت است. در حال حاضر چند نوع فناوری تشخیص وجود دارد:

    سیستم‌های مبتنی بر لیزر (دارای فیلتر)

    در این روش، از لیزر به‌عنوان منبع نوری در داخل محفظه تشخیص استفاده می‌شود. ابتدا هوا از یک سیستم فیلتراسیون عبور می‌کند تا ذرات بزرگ حذف شوند. سپس نمونه‌ی هوای فیلتر شده از مقابل لیزر عبور داده می‌شود و پراکندگی نور ناشی از ذرات دود توسط یک کلکتور نوری اندازه‌گیری می‌شود. الکترونیک پیشرفته‌ی دتکتور، میزان ذرات دود موجود در محفظه را تعیین می‌کند.

    سیستم‌های مبتنی بر لیزر (بدون فیلتر)

    این روش که معمولاً با عنوان “شمارش ذرات” شناخته می‌شود نیز از لیزر به عنوان منبع نوری استفاده می‌کند. اما در این پیکربندی، هوا بدون عبور از فیلتر مستقیماً وارد محفظه حسگر می‌شود. با عبور هوا از مقابل لیزر، کلکتور نوری تعداد ذرات در اندازه میکرونی مشخص را شمارش می‌کند تا تعیین شود که آیا میزان کافی از ذرات دود وجود دارد یا خیر. الکترونیک پیشرفته این فناوری قادر است بین ذرات معلق گرد و غبار و ذرات دود در نمونه تفاوت قائل شود.

    اتاقک ابری (Cloud Chamber)

    این روش قدیمی‌ترین و ابتدایی‌ترین فناوری مکشی تشخیص دود است. عنصر حسگر آن یک محفظه‌ی مهر و موم‌شده حاوی بخار آب بسیار متراکم است. هنگامی که یک ذره دود باردار با بخار آب متراکم برخورد می‌کند، یونیزه می‌شود. یون‌های ایجاد شده به عنوان هسته‌های تراکم عمل می‌کنند که مه در اطراف آن‌ها شکل می‌گیرد (زیرا بخار آب بسیار متراکم بوده و در آستانه‌ی چگالش قرار دارد). این فرآیند باعث بزرگ‌تر شدن اندازه ذره می‌شود، به‌طوری که از حالت نامرئی (زیر طول موج نور) به حالتی می‌رسد که قابل شناسایی توسط سلول نوری درون محفظه می‌شود.

    حسگر با منبع دوگانه (Dual Source Sensor)

    در این روش، از یک LED آبی برای شناسایی غلظت‌های بسیار پایین دود و از یک لیزر مادون قرمز برای تشخیص موارد مزاحم مانند گرد و غبار استفاده می‌شود که ممکن است باعث آلارم‌های اشتباه شوند. الگوریتم‌های پیشرفته سیگنال‌های هر دو منبع را تفسیر می‌کنند تا مشخص شود که نمونه‌ی هوا حاوی دود است یا فقط گرد و غبار معلق. سطح تشخیص ذرات می‌تواند تا حداقل 0.0015% بر متر (یا 0.00046% بر فوت) کاهش یابد.

    اصول اگزاست (تخلیه هوا) در دتکتور دود مکشی

    در کاربردهای عادی، معمولاً فشار هوا در فضای حفاظت‌شده با فشار هوا (APS) برابر با فشار هوای فضای نصب دتکتور است، و لوله اگزاست از خروجی فشار اگزاست دتکتور (AES) خارج می‌شود. به همین دلیل، نرم‌افزار طراحی که زمان انتقال و حساسیت دتکتور را محاسبه می‌کند، فرض می‌کند که فشار هوای دو فضا برابر است.

    اندازه سوراخ‌های نمونه‌برداری، اندازه لوله، زمان انتقال و سرعت فن مکنده همگی تابعی از حجم هوایی هستند که از محفظه نمونه‌برداری عبور می‌کند. محفظه حسگر برای تشخیص ذرات دود طراحی شده که با سرعت مشخص فن از درون آن عبور می‌کنند.

    • اگر فشار APS بیشتر از AES باشد، سرعت ورود هوا به محفظه حسگر ممکن است بیشتر از سرعت نامی فن شود که می‌تواند بر دقت تشخیص دود اثر مستقیم بگذارد.
    • مهم: اگر AES بیشتر از APS باشد، فشار هوا در حال فشار آوردن به هوای خروجی است و در نتیجه باعث ایجاد مقاومت و کند شدن فن می‌شود. این امر موجب افزایش زمان انتقال و کاهش حجم هوای ورودی به محفظه حسگر می‌گردد.

    نکته: برای حذف تفاوت فشار، باید هوای خروجی دوباره به همان اتاقی که از آن نمونه‌برداری شده بازگردانده شود (مطابق شکل 6 صفحه بعد).

    می‌توان لوله‌ای را به پورت خروجی متصل کرد تا هوای خروجی را از محل واحد دور کند؛ به‌عنوان مثال برای کاهش نویز، کاهش خطر تداخل یا انسداد عمدی، یا بهبود حفاظت محیطی. باید از لوله‌ای با مشخصات مشابه لوله‌های نمونه‌برداری استفاده شود و در تعیین محل خروجی جدید دقت شود تا مسدود شدن تصادفی یا عمدی آن رخ ندهد.

    روش‌های نمونه‌برداری دتکتور حرارتی خطی (ASD)

    برای هدف این راهنما، پنج روش نمونه‌برداری قابل قبول برای تمام کاربردهای ممکن وجود دارد:

    نمونه‌برداری اولیه (Primary Sampling)

    نام این روش گمراه‌کننده است؛ زیرا معمولاً به‌عنوان یک سیستم تکمیلی استفاده می‌شود و نه سیستم تشخیص اصلی. در نمونه‌برداری اولیه، نمونه‌گیری هوا از یک محل خاص یا جایی انجام می‌شود که احتمال حرکت هوا در آن بیشتر است. برای مناطقی با جریان هوای بالا، مانند دیتاسنترها یا اتاق‌های تمیز، محل نمونه‌برداری اولیه در دریچه‌های برگشت هوا، واحدهای هواساز (AHU) یا کانال‌های برگشت هوا قرار دارد.

    نمونه‌برداری ثانویه (Secondary Sampling)

    در این روش، سوراخ‌های نمونه‌برداری در سطح سقف و در مکان‌هایی مشابه با دتکتورهای نقطه‌ای دود نصب می‌شوند. فاصله‌گذاری بین سوراخ‌ها باید مطابق با استاندارد یا آیین‌نامه مربوطه باشد.

    نمونه‌برداری موضعی (Localised Sampling)

    WhatsApp Image 2025 09 30 at 3.50.37 PM

    این روش شامل حفاظت از تجهیزات یا نواحی خاص در یک فضای باز بزرگ است. نمونه‌برداری موضعی ممکن است در سیستم نمونه‌برداری رک‌ها (Rack Sampling) در یک انبار بزرگ باز استفاده شود.

    نمونه‌برداری داخل کابینت
    در این نوع روش نمونه‌برداری، سوراخ‌های مکش هوا به‌گونه‌ای نصب می‌شوند که تجهیزات خاصی را در یک فضای باز بزرگ‌تر پایش کنند. این روش با نمونه‌برداری موضعی متفاوت است، زیرا حجم تحت حفاظت بسیار کوچک‌تر بوده و تجهیز مورد نظر معمولاً به‌صورت خودکفا درون یک کابینت یا رک رایانه‌ای قرار دارد. سامانه تشخیص مکشی (ASD) هوایی را که برای خنک‌سازی تجهیزات استفاده می‌شود، پایش می‌کند. این نوع نمونه‌برداری معمولاً بر روی تجهیزاتی نصب می‌شود که آسیب دیدن آن‌ها در اثر آتش می‌تواند نتایج فاجعه‌باری به دنبال داشته باشد.

    نمونه‌برداری درون کانال
    در این نوع نمونه‌برداری، به‌جای استفاده از آشکارسازهای دود کانال‌نصب سنتی، از سامانه تشخیص مکشی (ASD) استفاده می‌شود تا در صورت وقوع آتش‌سوزی، سامانه تهویه مطبوع (HVAC) مرتبط خاموش شده یا دمپرها بسته شوند تا از گسترش دود جلوگیری گردد. همچنین می‌توان از آن برای تشخیص ذرات دود موجود در هوای خروجی (یا ورودی) استفاده کرد، به‌ویژه زمانی که آشکارسازی با حساسیت بیشتر مورد نیاز است.