دستورالعمل نصب دتکتور حرارتی خطی

1 3

کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

WhatsApp Image 2025 09 15 at 4.12.33 PM

دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

عملکرد

حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

ملاحظات طراحی

طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

* NFPA-72، کد ملی اعلام حریق

* NEC 760، کد ملی برق

* هرگونه الزامات محلی نصب

* الزامات مرجع قانونی ذی‌صلاح (AHJ)

۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

سیم‌کشی مدار تحریک

دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

WhatsApp Image 2025 09 15 at 4.12.34 PM

  • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
    ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
  • WhatsApp Image 2025 09 15 at 4.12.34 PM1
  • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

WhatsApp Image 2025 09 15 at 4.12.35 PM

. دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

WhatsApp Image 2025 09 15 at 4.12.35 PM1

نصب کابل دتکتور حرارتی خطی

کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

WhatsApp Image 2025 09 15 at 4.12.35 PM2

⚠️ هشدار
در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

WhatsApp Image 2025 09 15 at 4.12.36 PM

. کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

WhatsApp Image 2025 09 15 at 4.12.36 PM1

. انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

WhatsApp Image 2025 09 15 at 4.12.37 PM

. بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

⚠️ هشدار
هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

اتصال کابل دتکتور (SENSOR CABLE SPLICING)

کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

  • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
  • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
  • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

۲. استفاده از جعبه تقسیم:
هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

مراحل اتصال درون‌خطی:

۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

🧪تست عملکردی (TESTING):

تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

مراحل تست:

۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

نگهداری
کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

🔧 آسیب به کابل دتکتور:
در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

  • بررسی چشمی
  • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
  • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
    در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
    حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

🔥 پس از وقوع آتش‌سوزی:
از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.

نوشته‌های مشابه

  • روش طراحی سیستم دتکتور دودی مکشی یا اسپیراتینگ ها

    در زمان طراحی شبکه لوله نمونه‌برداری، عوامل متعددی باید مدنظر قرار گیرد. لازم است محل نصب به‌دقت بررسی و بیشترین اطلاعات ممکن جمع‌آوری شود.

    نیازمندی‌ها
    اولین گام، تعیین دقیق نیازهای نصب است. پس از مشخص شدن نیازها، نوع موقعیت قابل بررسی خواهد بود.

    فعالیت‌ها
    نوع فعالیت‌هایی که در فضا انجام می‌شود بسیار اهمیت دارد. یک فضای عمومی با شکل خاص ممکن است نیازهای سیستمی متفاوتی نسبت به یک انبار با همان شکل داشته باشد. اطلاعاتی مانند ساعات فعالیت، حضور یا عدم حضور افراد در فضا، و وجود آلودگی یا هوای آلوده نیز باید در نظر گرفته شود.

    ویژگی‌های فیزیکی
    پس از بررسی نوع کلی نصب، ویژگی‌های فیزیکی فضا باید بررسی شود:

    • آیا فضا، اتاق، فضای خالی، کابینت یا محفظه است؟
    • آیا فضای خالی در کف یا سقف وجود دارد؟ در صورت وجود، چگونه تقسیم‌بندی شده‌اند؟
    • آیا کانال‌هایی وجود دارد؟ کاربرد آن‌ها چیست و آیا خدماتی در آن‌ها قرار دارد؟
    • ابعاد دقیق فضا چیست؟
    • از چه مصالحی استفاده شده و آیا مناطقی وجود دارد که باید از قرارگیری شبکه در آن‌ها اجتناب شود؟
    • آیا سیستم‌های اعلام حریق دیگری وجود دارند؟ در صورت وجود، در چه موقعیتی نصب شده‌اند؟

    شرایط محیطی
    شرایط محیطی داخل فضا می‌تواند تأثیر بسیار مهمی بر روش نمونه‌برداری مناسب برای حفاظت از آن داشته باشد.
    همان‌طور که پیش‌تر اشاره شد، آزمایش دود برای جمع‌آوری این اطلاعات حیاتی است. این آزمایش می‌تواند الگوهای حرکت هوا، نرخ گردش آن، و اینکه آیا در نقطه‌ای جریان هوا ساکن است یا خیر را مشخص کند.

    سایر موارد قابل بررسی شامل موارد زیر است:

    • در صورت ورود هوای تازه، نرخ و میزان آن چقدر است؟
    • آیا به دلیل آلودگی، استفاده از یک دتکتور مرجع لازم است؟
    • دما و رطوبت نسبی چقدر هستند و آیا این مقادیر ثابت یا متغیرند؟
    • آیا فعالیت‌هایی در محیط وجود دارند که دود، گرد و غبار، بخار یا شعله تولید کنند و این فعالیت‌ها چند وقت یک‌بار انجام می‌شوند؟

    ارزیابی ریسک
    در هر نصب، احتمال دارد برخی نواحی نیاز به حفاظت بیشتری نسبت به سایر بخش‌ها داشته باشند. این امر ممکن است به دلیل وجود تجهیزات گران‌قیمت یا نواحی خاصی مانند انبار مواد قابل اشتعال باشد. این نواحی آسیب‌پذیر باید همراه با هرگونه خطرات ساختاری مانند مواد مصنوعی، فوم‌ها یا جداکننده‌های چوب نرم مورد توجه قرار گیرند.

    مکان‌های ممکن برای نصب دستگاه
    در انتخاب محل نصب واحد دتکتور نیز عوامل متعددی باید در نظر گرفته شود. هدف اصلی در تعیین موقعیت دستگاه، ایجاد یک سیستم متعادل است؛ به این معنا که طول لوله‌ها تا حد امکان برابر باشد. همچنین باید تلاش شود تا زمان پاسخ‌دهی و میزان رقیق‌سازی به حداقل برسد.

    واحد دتکتور نیاز به منبع تغذیه دارد و باید دسترسی جهت انجام تعمیرات و نگهداری وجود داشته باشد. همچنین ممکن است دلایل زیبایی‌شناختی باعث شود مکان خاصی برای نصب مناسب نباشد.

    لوله خروجی
    لوله خروجی واحد دتکتور دودی مکشی، در صورت نیاز، می‌تواند دارای لوله‌کشی اضافه شود؛ برای مثال، اگر نیاز باشد هوای عبوری از دتکتور به منبع خود بازگردد. همچنین، لوله‌کشی اضافی می‌تواند برای کاهش صدای فن مورد استفاده قرار گیرد.

  • اصول عملکرد بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.31 AM

    این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

    فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

    بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

    WhatsApp Image 2025 09 14 at 9.19.31 AM1

    بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

    از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM

    تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

    لوازم جانبی  بیم دتکتور دودی اعلام حریق

    لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

    ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

    برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

    کاربرد صحیح بیم دتکتور دودی اعلام حریق

    مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

    اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

    دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

    بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

    ارتفاع سقف در بیم دتکتور دودی اعلام حریق

    حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

    اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

    در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

    محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

    با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

    تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

    مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

    بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

    استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.32 AM1
    استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM2

    محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

    یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

    WhatsApp Image 2025 09 14 at 9.19.33 AM

    اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

    WhatsApp Image 2025 09 14 at 9.19.33 AM1

    عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

    حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.34 AM

    هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

    مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

    استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

    • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
      (NFPA 72-1999, 2-3.4.5.2)
    • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
      (NFPA 72-1999, 2-3.4.4)
    • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
      (NFPA 72-1999, 2-3.4.4)
    • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
    • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
      (NFPA 72-1999, 2-3.4.6.1)

    نصب  بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

    از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

    این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

    فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

    • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
    • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

    با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

    در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

    توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

    سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

    • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
    • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
    • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
    • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
    • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
    • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
    • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

    در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.

  • استفاده از بیم دتکتور با الگوی پیشرفته

    هدف این راهنما ارائه اطلاعات در مورد نصب صحیح بیم دتکتورهای دود در کاربردهای حفاظت از جان و مال است. این راهنما به طور خلاصه اصول عملکرد بیم دتکتورها، الزامات طراحی آنها و کاربردهای عملی آنها به عنوان بخشی از سیستم اعلام حریق را شرح می‌دهد.

    بیم دتکتورها می‌توانند اجزای مهمی از یک سیستم اعلام حریق با طراحی مناسب باشند. قابلیت‌های منحصر به فرد آنها این امکان را فراهم می‌کند تا بسیاری از مشکلات و محدودیت‌های دتکتورهای نقطه‌ای و سیستم‌های مکنده در برخی کاربردها را برطرف کنند. این راهنما برای کمک به درک قابلیت‌ها و محدودیت‌های بیم دتکتورها و تفاوت آنها با دتکتورهای نقطه‌ای تهیه شده است.

    توجه: این سند تنها به عنوان یک راهنمای کلی برای کاربرد بیم دتکتورها در نظر گرفته شده است. همیشه باید به الزامات و دستورالعمل‌های نصب سازنده دتکتور و استانداردهای محلی مراجعه شود.

     

    **دتکتورهای دود مکنده**

    هوا از طریق شبکه‌ای از لوله‌ها مکیده می‌شود تا دود تشخیص داده شود. دود وارد محفظه نمونه‌برداری می‌شود که با تشخیص نور پراکنده‌شده توسط ذرات دود معلق در هوا، وجود آنها را شناسایی می‌کند.

     

    **بیم دتکتور دود نوری (بیم)**

    یک دتکتور آتش که از پرتو نور (معمولاً مادون قرمز) استفاده می‌کند و آن را در یک فضای باز منتشر می‌نماید تا دود ناشی از آتش اولیه را نظارت کند. دو نوع اصلی بیم دتکتور وجود دارد:

    – **انتهایی به انتهایی:** فرستنده و گیرنده در دو انتهای ناحیه تحت حفاظت نصب می‌شوند.

    – **بازتابی:** فرستنده و گیرنده در یک محفظه واحد نصب شده‌اند و پرتو به یک بازتابنده ویژه هدایت می‌شود که در انتهای مقابل ناحیه تحت حفاظت قرار دارد.

     

    **فرستنده (معروف به پرتاب‌کننده، TX)**

    این دستگاه در سیستم بیم دتکتور انتهایی به انتهایی با یک گیرنده اختصاصی جفت می‌شود و سیگنال نوری را در ناحیه تحت حفاظت منتشر می‌کند. فرستنده می‌تواند به صورت یکپارچه با گیرنده در یک واحد ترکیب شود.

     

    گیرنده (معروف به حسگر، RX)
    این دستگاه در سیستم بیم دتکتور دود نوع انتهایی به انتهایی با یک فرستنده اختصاصی جفت می‌شود و سطح سیگنال نور دریافت‌شده پس از عبور از ناحیه تحت حفاظت را نظارت می‌کند.

    کنترلر
    این قطعه از سیستم بیم دتکتور دود نوری است که به مهندس اعلام حریق یا فرد صلاحیت‌دار اجازه می‌دهد تنظیمات، پیکربندی و عیب‌یابی بیم‌ها را در سطح زمین انجام دهد و نیاز به استفاده از تجهیزات دسترسی در ارتفاع را برطرف می‌کند.

    محدوده بیم
    این فاصله کلی بین فرستنده و گیرنده بیم در دتکتورهای نوع انتهایی به انتهایی و فاصله بین فرستنده/گیرنده تا بازتابنده در دتکتورهای بازتابی است.

    این محدوده معمولاً به صورت ‘A تا B’ بیان می‌شود که در آن:

    • A حداقل محدوده عملیاتی (از ۰ متر)
    • B حداکثر محدوده عملیاتی (از ۰ متر) است.

    مثال: محدوده ۵ تا ۱۰۰ متر به این معنی است که بیم می‌تواند در فاصله حداقل ۵ متر و حداکثر ۱۰۰ متر به درستی عمل کند.

    **پوشش دتکتور**

    پوشش دتکتور به ناحیه‌ای گفته می‌شود که در آن دتکتور قادر به تشخیص مؤثر آتش‌سوزی در حال وقوع است. این ناحیه بر اساس استانداردهای محلی و بین‌المللی تعریف می‌شود و معمولاً به صورت عرضی یا مدور از مرکز دتکتور محاسبه می‌گردد.

     

    **جبران انحراف (دریفت)**

    این قابلیت به دتکتور اجازه می‌دهد به صورت خودکار موقعیت و/یا سیگنال ارسالی را تنظیم کند تا همترازی بهینه حفظ شود. این ویژگی با محدودیت‌هایی طراحی شده تا:

    – توانایی تشخیص آتش‌های با رشد کند (آتش‌های کم‌دود) حفظ شود

    – اثرات تجمع آلودگی روی سطوح دتکتور خنثی گردد

    – جابجایی‌های جزئی ساختمان جبران شود

     

    **منشور (بازتابنده)**

    این قطعه در بیم‌های بازتابی استفاده می‌شود. ویژگی بازتاب بالای آن امکان بازگرداندن نور به منبع نور و حسگر مجاور را حتی در مسافت‌های طولانی فراهم می‌کند. با استفاده از آرایه‌ای از منشورها می‌توان به بردهای تا ۱۲۰ متر دست یافت.

     

    **تیرگی (ابسکیوریشن)**

    تیرگی مقدار کاهش شدت نور در اثر وجود ذرات یا مواد نیمه‌شفاف در مسیر بیم است. این مقدار معمولاً به صورت درصد یا کاهش دسی‌بل (dB) بیان می‌شود و معیاری برای تشخیص دود محسوب می‌گردد.

     

    **حساسیت**

    توانایی دتکتور دود در واکنش به سطح معینی از دود. این ویژگی در بیم دتکتورها معمولاً قابل تنظیم است.

     

    **دتکتور نقطهای**

    دستگاهی که آتش اولیه را در یک نقطه مشخص تشخیص میدهد و معمولاً از فناوری تشخیص دود نوری یا یونیزاسیون و یا تشخیص حرارت استفاده میکند. محدوده پوشش دتکتور نقطهای توسط استانداردهای محلی یا ملی تعریف میشود.

     

    **لایهبندی (استراتیفیکیشن)**

    پدیدهای که هنگام گرمتر بودن دود از هوای اطراف رخ میدهد، به طوری که دود تا رسیدن به دمای برابر با هوای اطراف بالا میرود و سپس متوقف میشود.

     

    **چه کسانی باید این راهنما را مطالعه کنند؟**

    در صورتی که یکی از موارد زیر در مورد شما صدق میکند، این راهنما برای شما مفید خواهد بود:

    – شما مسئول طراحی یا مشخص کردن سیستمهای تشخیص حریق هستید

    – مسئول سیستم حفاظت از حریق ساختمان هستید

    – مسئول ایمنی آتش (مارشال آتش) در محل کار خود هستید

    – قصد نصب بیم دتکتور دود یا سایر سیستمهای تشخیص دود را دارید

    – در حوزه ارزیابی ریسک حفاظت از حریق فعالیت میکنید

    – در پشتیبانی یا فروش سیستمهای تشخیص حریق نقش دارید

    – در خدمات آتشنشانی و نجات فعالیت میکنید

     

    **توجه:** این راهنما تنها راهنمای کلی ارائه میدهد. شما باید مقررات محلی و ملی و همچنین مشخصات فنی سازنده را برای دتکتورهای خاص نیز بررسی کنید

    **بیم دتکتور دودی اعلام حریق چیست؟**

     

    رایج‌ترین نوع دتکتور دود، **دتکتور نقطهای دودی** است. این دستگاه شامل یک پرتو نور مادون قرمز است که درون محفظه‌ای کوچک در بدنه دستگاه تابیده می‌شود. هنگام ورود دود به محفظه از طریق منافذ بدنه، پرتو نور تحت تأثیر قرار گرفته و دستگاه را به حالت هشدار می‌برد.

     

    **بیم دتکتورهای دودی اعلام حریق** بر همین اصل کار می‌کنند، با این تفاوت که پرتو نور در فضای باز ساختمان منتشر می‌شود. این سیستم به‌طور مؤثر کل فضای ساختمان را به یک محفظه تشخیص دود تبدیل می‌کند که امکان شناسایی دود در طول مسیر پرتو را فراهم می‌نماید.

    WhatsApp Image 2025 09 27 at 11.49.58 PM

     

    **نحوه عملکرد بیم دتکتور دودی اعلام حریق**

    سیستم تشخیص دود با پرتو نوری به این صورت عمل می‌کند:

    1. **تشکیل پرتو نامرئی**: یک پرتو مادون قرمز نامرئی بین فرستنده و گیرنده برقرار می‌شود.
    2. **تأثیر دود بر پرتو**: هنگام عبور دود از مسیر پرتو، ذرات جامد و قطرات مایع موجود در دود باعث پراکندگی و انعکاس فوتون‌های نور می‌شوند.
    3. **کاهش شدت نور**: این پراکندگی منجر به کاهش شدت نور در سمت مقابل ابر دود می‌گردد.
    4. **تشخیص و هشدار**: سیستم این کاهش شدت نور (که به عنوان تیرگی شناخته می‌شود) را تشخیص داده و آن را به عنوان علامت وجود آتش تفسیر می‌کند.

     

    **مزایای کلیدی:**

    – پوشش گسترده‌تر نسبت به دتکتورهای نقطهای

    – حساسیت تنظیم‌پذیر برای تشخیص دود

    – مناسب برای فضاهای بزرگ و سقف‌های بلند

    WhatsApp Image 2025 09 27 at 11.49.58 PM1

    WhatsApp Image 2025 09 27 at 11.49.59 PM

    انواع بیم دتکتورهای موجود چیست؟

    دو نوع پیکربندی اصلی برای بیم دتکتورها وجود دارد:

    و یا رفلکتوری و انتها به انتها**بازتابشی** و **انتهایی**.

    هر دو شامل یک فرستنده (T) (منبع نور) و یک گیرنده (R) (دتکتور) هستند.

    WhatsApp Image 2025 09 27 at 11.49.59 PM1

    **نصب و نگهداری**

    بیم دتکتورهای بازتابشی نصب و نگهداری آسان‌تر و کم‌هزینه‌تری نسبت به نوع انتهایی دارند، زیرا تنها به کابل‌کشی الکتریکی در یک سمت فضای تحت حفاظت نیاز است و تنها یک دستگاه برای تمیزکاری و نگهداری در زمان سرویس وجود دارد.

     

    **ترازکردن**

    معمولاً ترازکردن بیم بازتابشی ساده‌تر است، زیرا تنها یک قطعه تجهیز در یک انتهای بیم نیاز به تنظیم دارد (معمولاً بازتابنده قابل تنظیم نیست)، درحالی که دتکتورهای انتهایی نیاز به تنظیم در هر دو انتهای بیم دارند.

     

    **فضای مورد نیاز بیم**

    بیم بازتابشی با عبور از فضای بازگشتی از بازتابنده، واگرا می‌شود و بنابراین فضای بیشتری اشغال می‌کند. درحالی که یک بیم انتهایی می‌تواند از فاصله‌ای باریک‌تر عبور کند

    WhatsApp Image 2025 09 27 at 11.49.59 PM2

    تفاوت آن‌ها با سایرین چیست؟
    دتکتورهای دود نقطه‌ای، همان‌طور که از نامشان پیداست، دود را در فاصله‌های بسیار کوتاه و با استفاده از یک محفظه درون خود دتکتور شناسایی می‌کنند. برخی مدل‌ها از اصل پراکندگی نور استفاده می‌کنند، جایی که وجود دود جهت پرتو نور را تغییر می‌دهد تا توسط یک فوتودیود تشخیص داده شود. مدل‌های دیگر تغییر در ویژگی‌های الکتریکی هوای داخل دتکتور را که ناشی از وجود دود است، شناسایی می‌کنند.

    دتکتورهای دود مکنده، هوا را از طریق شبکه‌ای از نقاط نمونه‌برداری متصل به سیستم لوله‌کشی به یک محفظه حسگر می‌کشند. تشخیص دود در این سیستم‌ها بر اساس اصول مشابه دتکتورهای نقطه‌ای انجام می‌شود.

    مهم‌ترین تفاوت بین این فناوری‌ها، نحوه پایش منطقه تحت حفاظت است.

    نحوه نصب صحیح بیم دتکتورهای نوری
    رعایت دستورالعمل‌های زیر عملکرد بهینه دتکتورها را تضمین کرده و از خطاها و هشدارهای کاذب جلوگیری می‌کند:

    نصب بر سطوح سازه‌ای مستحکم:
    فرستنده/گیرنده/بازتابنده را بر بخش‌های سازه‌ای ثابت ساختمان نصب کنید که حداقل جابجایی ناشی از تغییرات دما، ارتعاش یا نشست را تجربه می‌کنند. از دتکتورهای دارای قابلیت تنظیم مجدد خودکار برای جبران جابجایی‌های طولانی‌مدت ساختمان استفاده نمایید.

    انتخاب نوع مناسب بیم برای نصب:
    اگر فضای تحت حفاظت برای یک بیم واحد بیش‌ازحد طولانی است، از آرایش‌های پشت‌به‌پشت، رو‌به‌پشت یا رو‌به‌رو استفاده کنید. یا از دتکتورهای مجهز به فازبندی پویا بیم برای جلوگیری از تداخل بیم‌ها و حذف نیاز به محافظ اضافی بهره ببرید.

    تضمین خط دید واضح برای بیم:
    از سطوح براق در مسیر بیم اجتناب کنید و در دتکتورهای بازتابشی این سطوح را حداقل یک متر از مرکز بیم دور نگه دارید (این فاصله در دتکتورهای انتهایی می‌تواند کمتر باشد).

    همراستایی صحیح بیم:
    از دتکتورهای دارای شاخص‌های همترازی مؤثر یا روال‌های تراز خودکار استفاده کنید تا از راه‌اندازی بیم‌های ناهمتراز جلوگیری شود.

    چیدمان بهینه بیم‌ها برای پوشش فضایی مطلوب:
    بیم‌ها می‌توانند بدون ایجاد سیگنال‌های ناخواسته در گیرنده‌ها، یکدیگر را قطع کنند.

    اجتناب از نور مستقیم خورشید:
    در صورت اجتناب‌ناپذیری (مثلاً در آتریوم‌های شیشه‌ای)، از دتکتورهای دارای الگوریتم‌های جبران نور برای تنظیم تغییرات سطح نور محیط استفاده کنید.

    تعیین وظایف/فواصل نگهداری مناسب:
    میزان آلودگی نوری ناشی از گردوغبار یا تعریق را با بررسی سطوح نزدیک به دتکتورها ارزیابی کنید. آستانه هشدار را متناسب با سطح آلودگی احتمالی تنظیم نمایید. از دتکتورهای دارای الگوریتم‌های پایش و تنظیم بهره برای جبران تغییرات تدریجی سیگنال استفاده کنید. برنامه‌ای برای تمیزکاری دوره‌ای اجزای نوری تعیین نمایید.

    تنظیمات مناسب سیستم:
    مشخصه تأخیر تا خطا را متناسب با عملیات ساختمان پیکربندی کنید (مثلاً برای تحمل انسدادهای موقت بیم توسط ماشین‌آلات). اگر تغییرات عملیاتی مکرر است، یک کنترلر سطح پایین نصب کنید تا تنظیمات به‌راحتی بهینه شوند. از دتکتورهای پیشرفته‌ای که روند شدت بیم را پایش می‌کنند، برای تفکیک آتش واقعی از اثرات دیگر استفاده نمایید

    WhatsApp Image 2025 09 27 at 11.50.00 PM

    جلوگیری از نشستن پرندگان:
    در صورت لزوم، تمهیداتی برای ممانعت از نشستن پرندگان روی دتکتورها و انسداد احتمالی بیم بیندیشید

     

    ثبت گزارش سیستم:
    بیم دتکتورها تجهیزات ایمنی حیاتی هستند. مستندسازی نصب برای نگهداری آینده و اطمینان از ایمنی و صحت نصب ضروری است.

    آرایش‌های نصب

    برای نصب بیم دتکتورهای نوری، آرایش‌های مختلفی وجود دارد که بسته به شرایط محیط و نیازهای حفاظتی می‌توان از آنها استفاده کرد:

    1. آرایش انتهایی (End-to-End):
      • فرستنده (T) و گیرنده (R) در دو طرف فضای تحت حفاظت نصب می‌شوند.
      • مناسب برای فضاهای با مسیر مستقیم و بدون مانع.
    2. آرایش بازتابشی (Reflective):
      • فرستنده/گیرنده (TR) در یک سمت و بازتابنده (Reflector) در سمت مقابل نصب می‌شود.
      • مناسب برای مکان‌هایی که کابل‌کشی به سمت مقابل دشوار است.
    3. آرایش پشت‌به‌پشت (Back-to-Back):
      • دو دتکتور به صورت پشت‌به‌هم نصب شده و هر کدام فضای مجاور را پوشش می‌دهند.
      • برای فضاهای بزرگ با نیاز به پوشش چندمنطقه.
    4. آرایش رو‌به‌پشت (Face-to-Back):
      • فرستنده یک دتکتور به گیرنده دتکتور دیگر نشانه‌گیری می‌کند.
      • جهت پوشش‌دهی زوایای خاص یا فضاهای نامنظم.
    5. آرایش رو‌به‌رو (Face-to-Face):
      • فرستنده و گیرنده دو دتکتور به صورت مستقیم به هم نشانه‌گیری می‌کنند.
      • برای افزایش حساسیت در مناطق حساس.

    انتخاب آرایش مناسب به عواملی مانند ابعاد فضای تحت پوشش، موانع فیزیکی، سهولت نصب و هزینه‌های نگهداری بستگی دارد.

    WhatsApp Image 2025 09 27 at 11.50.00 PM1

    **توصیه‌های استاندارد (BS 5839 بخش 1)**

     

    استاندارد **BS 5839 Part 1** راهنمایی برای **طراحی، نصب، راه‌اندازی و نگهداری** سیستم‌های تشخیص خودکار حریق در ساختمان‌های غیرمسکونی ارائه می‌دهد. برخی از توصیه‌های کلیدی مربوط به **بیم دتکتورهای نوری** به شرح زیر است:

     

    *(این مطالب صرفاً جهت راهنمایی کلی است. برای اطلاعات دقیق‌تر به متن استاندارد مراجعه کنید.)*

     

    ### **ارتفاع نصب دتکتورها**

    – بیم دتکتورها باید **تا حد امکان نزدیک به سقف** نصب شوند تا از تجمع و گسترش دود (Smoke Plume) در زمان آتش‌سوزی بهره‌برداری کنند.

    – **حداکثر ارتفاع قابل پوشش** توسط یک دتکتور به دو عامل بستگی دارد:

    1. **تخت بودن یا نبودن سقف**
    2. **حساسیت دتکتور**

     

    **راهنمای ارتفاع بر اساس حساسیت:**

    WhatsApp Image 2025 09 27 at 11.50.01 PM

    – **حساسیت معمولی** (Normal Sensitivity):

    – آستانه هشدار دتکتور >35% تضعیف سیگنال

    – مناسب برای فضاهای با ارتفاع استاندارد.

     

    – **حساسیت افزایش‌یافته** (Enhanced Sensitivity):

    – آستانه هشدار دتکتور ≤35% تضعیف سیگنال

    – در فضاهای بلندتر، **تشخیص مکمل (Supplementary Detection)** در ارتفاع پایین‌تر نیز توصیه می‌شود (به بخش *«فاصله افقی دتکتورها»* مراجعه کنید).

     

     

    ### **ملاحظات اضافی برای فضاهای بلند:**

    – در محیط‌های با ارتفاع زیاد، ممکن است نیاز به **نصب دتکتورهای اضافی در سطوح پایین‌تر** باشد تا از پوشش بهینه اطمینان حاصل شود.

    – در سقف‌های غیرتخت (مانند سقف‌های شیبدار یا قوسی)، محاسبه ارتفاع نصب باید با دقت بیشتری انجام شود.

     

    *(برای جزئیات فنی بیشتر، از جمله جدول‌های دقیق ارتفاع و فاصله، به استاندارد BS 5839 Part 1 مراجعه نمایید.)*

    بیم دتکتورها را می‌توان در ارتفاعی بسیار بیشتر از دتکتورهای نقطه‌ای (حداکثر ۱۰.۵ متر) نصب کرد، زیرا طول بیشتر فضای تحت حفاظت، مشکل تشخیص چگالی کمتر دود را هنگام پراکندگی آن جبران می‌کند

    WhatsApp Image 2025 09 27 at 11.50.01 PM1

    در برخی مکان‌ها مانند آتریوم‌ها یا زیر نورگیرها، نصب بیم‌ها در نزدیکی حداکثر فاصله مجاز زیر سقف ایمن‌تر است تا بتوانند لایه‌های دود طبقه‌بندی شده‌ای را که به سقف نمی‌رسند تشخیص دهند.

    WhatsApp Image 2025 09 27 at 11.50.01 PM2

    فاصله از سطوح عمودی

    WhatsApp Image 2025 09 27 at 11.50.02 PM

    دتکتورها باید حداقل 0.5 متر فاصله از موارد زیر داشته باشند:

    • نزدیک‌ترین دیوار عمودی؛
    • هر سطح نصب‌شده روی سقف (مانند تیر یا کانال) که بیش از 10% از ارتفاع کل سقف به داخل فضا پیش‌آمدگی دارد؛
    • هر سطح نصب‌شده روی کف که کمتر از 300 میلی‌متر به سقف نزدیک شده است
    • فاصله افقی بیم دتکتورها
      در ارتفاع سقف، حداکثر فاصله افقی بین هر نقطه و بخشی از یک بیم باید ۷.۵ متر باشد

    WhatsApp Image 2025 09 27 at 11.50.02 PM1

    • همین محدودیت ۷.۵ متری برای دتکتورهای نقطه‌ای و دتکتورهای مکنده دود نیز اعمال می‌شود که این موضوع مزیت آشکاری برای بیم دتکتور در فضاهای بزرگ فراهم می‌کند، زیرا پوشش‌دهی بسیار کارآمدتری دارد.
      در مثال نشان داده شده برای یک سطح به مساحت ۱۲۶۰ متر مربع، ۲ بیم دتکتور کافی است، در حالی که ۱۲ دتکتور نقطه‌ای یا نقاط نمونه‌برداری مکنده مورد نیاز است
    • بیم دتکتورهایی که در رأس سقف‌های شیب‌دار نصب می‌شوند، به دلیل اثر «هدایت‌کنندگی» سقف، می‌توانند مناطق افقی وسیع‌تری را پوشش دهند.
      فاصله را به ازای هر ۱ درجه شیب سقف، ۱٪ افزایش دهید تا حداکثر افزایش ۲۵٪ حاصل شود (که حداکثر فاصله ۹.۳۸ متر خواهد بود)

    WhatsApp Image 2025 09 27 at 11.50.02 PM2

    استفاده از تشخیص تکمیلی برای ساختمان‌هایی با سقف‌های بسیار بلند توصیه می‌شود. این کار می‌تواند تشخیص زودتر حریق را فراهم کند و از اثر لایه‌بندی جلوگیری نماید.

    WhatsApp Image 2025 09 27 at 11.50.03 PM

    محدودیت‌های فاصله افقی در این حالت کمتر از فاصله در ارتفاع سقف است، زیرا در بالای حجم تحت حفاظت، سطحی وجود ندارد که از پراکندگی ستون دود جلوگیری کند.

    چه ابزاری برای نصب آن نیاز دارید؟
    دستورالعمل‌های نصب، تراز کردن و آزمایش بیم دتکتور اعلام حریق بسته به مدل و سازنده متفاوت است، بنابراین باید دستورالعمل‌های ارائه‌شده همراه با سیستم خود را دنبال کنید. با این حال، ابزارها و تجهیزات زیر هنگام نصب هر نوع سیستم تشخیص مفید هستند:

    ابزارهای لازم برای نصب دتکتورها روی سازه ساختمان:
    دریل، پیچ‌گوشتی چهارسو و دوسو و غیره.

    کیت راه‌اندازی و آزمایش: این کیت از تأمین‌کننده شما قابل تهیه است و شامل تمام ابزارهای لازم برای آزمایش دتکتور در برابر حریق و خطا می‌باشد.

    مولتی‌متر و سیم‌های آزمایش: برای بررسی منبع تغذیه ورودی هنگام عیب‌یابی.

    بالابر قیچی‌شو یا سایر تجهیزات دسترسی در ارتفاع: برای نصب دتکتورها استفاده می‌شود. همچنین میله‌های دسترسی برای آزمایش دتکتورها پس از نصب مفید هستند، زیرا در وقت صرفه‌جویی کرده و از نیاز به کار در ارتفاع جلوگیری می‌کنند.

    الزامات نگهداری برای بیم دتکتور اعلام حریق چیست؟
    برای حفظ عملکرد دتکتورها، به صورت دوره‌ای مراحل زیر را انجام دهید (فاصله زمانی این کار بستگی به میزان تمیزی محیط عملکرد دارد):

    ۱. دتکتورها را از پنل کنترل سیستم اعلام حریق جدا کنید.
    ۲. اجزای نوری (فرستنده/گیرنده/بازتاب‌دهنده) را با یک پارچه نرم و بدون پرز تمیز کنید.
    ۳. دتکتورها را مجدداً تراز کنید تا از بهینه بودن سطح سیگنال اطمینان حاصل شود.
    ۴. دتکتورها را به پنل کنترل سیستم اعلام حریق متصل کنید.
    ۵. دتکتورها را آزمایش کنید (این معمولاً شامل مسدود کردن بیم در محل گیرنده است).

    WhatsApp Image 2025 09 27 at 11.50.03 PM1

    کجا می‌توان آن‌ها را نصب کرد؟
    فاصله‌های طولانی و بدون مانع:
    – انبارها
    – آشیانه هواپیما
    – ترمینال‌های فرودگاه
    – مراکز ورزشی
    – چاه‌های آسانسور

    ساختمان‌های بلند
    – تأسیسات تولیدی
    – ترمینال‌های فرودگاه
    – آشیانه‌های هواپیما
    – کلیساها
    – آتریوم‌ها

    دسترسی محدود
    – پایانه‌های حمل‌ونقل عمومی
    – ترمینال‌های فرودگاه
    – ساختمان‌های دولتی
    – سایت‌های تولیدی

    تعداد محدود دتکتورها قابل قبول است
    – ملاحظات معماری (ساختمان‌های باستانی، سبک‌های مدرن مینیمالیستی)
    – نصب روی سقف امکان‌پذیر نیست (آتریوم‌ها، سقف‌های شیشه‌ای)
    – دفاتر با پلان باز
    – تشخیص غیر ملموس و نامحسوس مطلوب است (نگارخانه‌های هنری، موزه‌ها، کتابخانه‌ها)

    فضاهای انفجاری
    – تجهیزات الکترونیکی می‌توانند در محفظه‌های ضد انفجار مهر و موم شوند.
    – کنترلر سطح پایین در ناحیه‌ای ایمن و دور از محل خطر برای پایش سیستم قرار می‌گیرد.

    WhatsApp Image 2025 09 27 at 11.50.04 PM

    آیا می‌دانستید؟
    بیم دتکتورهای اعلام حریق تنها قادر به محافظت از فضاها به صورت افقی نیستند. این دتکتورها با موفقیت برای محافظت از نصب‌های عمودی مانند چاه‌های آسانسور نیز استفاده شده‌اند، جایی که تنها یک یا دو دتکتور برای محافظت از چندین طبقه نصب و نگهداری می‌شود، به جای تعداد بسیار بیشتری از دتکتورهای نقطه‌ای.

  • سیستم‌های اسپرینکلر

    5.1 کلیات
    5.1.1 الزامات حداقل
    5.1.1.1 این فصل الزامات حداقل برای بازرسی، آزمایش و نگهداری روتین سیستم‌های اسپرینکلر آب را ارائه می‌دهد.
    5.1.1.2 جدول 5.1.1.2 برای تعیین فرکانس‌های حداقل مورد نیاز برای بازرسی، آزمایش و نگهداری باید استفاده شود.
    5.1.2 اجزای مشترک و شیرها
    اجزای مشترک و شیرها باید طبق فصل 13 بازرسی، آزمایش و نگهداری شوند.
    5.1.3 بررسی موانع
    در صورتی که نیاز به انجام بررسی موانع باشد، باید از روش‌های ذکر شده در فصل 14 پیروی شود.

    5.1.4 نقص‌ها. رویه‌های ذکر شده در فصل 15 باید زمانی که نقصی در سیستم حفاظت پیش می‌آید، دنبال شوند.
    5.1.5 اتصالات شیلنگ. اتصالات شیلنگ باید طبق فصل‌های 6 و 13 بررسی، آزمایش و نگهداری شوند.
    5.2* بازرسی.
    5.2.1 آبپاش‌ها.
    5.2.1.1* آبپاش‌ها باید از سطح زمین به طور سالانه بازرسی شوند.
    5.2.1.1.1* هر آبپاشی که علائم یکی از موارد زیر را نشان دهد باید تعویض شود:
    (1) نشتی
    (2) خوردگی که به عملکرد آبپاش آسیب می‌زند
    (3) آسیب فیزیکی
    (4) از دست دادن مایع در عنصر حساس به حرارت حباب شیشه‌ای
    (5) بارگذاری که به عملکرد آبپاش آسیب می‌زند
    (6) رنگی غیر از رنگ اعمال‌شده توسط سازنده آبپاش
    5.2.1.1.2 هر آبپاشی که به اشتباه در جهت نادرست نصب شده باشد باید با جابجایی خط انشعاب، آویز یا شاخه اصلاح شود یا تعویض گردد.
    5.2.1.1.3* آبپاش‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیاز به بازرسی ندارند.
    5.2.1.1.4 آبپاش‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.1.1.5 اسکاشون‌ها و پوشش‌های آبپاش‌های فرورفته، توکار و پنهان باید با اسکاشون یا پوشش فهرست‌شده خود جایگزین شوند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.1.5.1 زمانی که اسکاشون یا پوشش فهرست‌شده از یک مجموعه فهرست‌شده مفقود شده و دیگر در دسترس تجاری نیست، باید آبپاش تعویض شود.
    5.2.1.1.6 اسکاشون‌ها برای آبپاش‌های معلق که نه فرورفته، نه توکار و نه پنهان هستند نیازی به تعویض ندارند اگر در حین بازرسی مفقود شده باشند.
    5.2.1.2* حداقل فاصله از انبار مطابق با موارد 5.2.1.2.1 تا 5.2.1.2.6 باید در زیر تمام دستگاه‌های معیوب آبپاش حفظ شود.
    5.2.1.2.1* مگر اینکه فاصله‌های بیشتری توسط 5.2.1.2.2، 5.2.1.2.3 یا 5.2.1.2.4 لازم باشد یا فاصله‌های کمتری توسط 5.2.1.2.6 مجاز باشد، فاصله بین دستگاه معیوب و بالای انبار باید 18 اینچ (457 میلی‌متر) یا بیشتر باشد.
    5.2.1.2.2 در صورتی که استانداردهایی غیر از NFPA 13 حداقل فاصله بیشتری از انبار مشخص کنند، باید از آنها پیروی شود.
    5.2.1.2.3* فاصله بین دستگاه معیوب و بالای انبار باید 36 اینچ (914 میلی‌متر) یا بیشتر برای آبپاش‌های ویژه باشد.
    5.2.1.2.4 فاصله از بالای انبار تا دستگاه معیوب باید 36 اینچ (914 میلی‌متر) یا بیشتر باشد زمانی که لاستیک‌های رابر ذخیره شده باشند.
    5.2.1.2.5 آبپاش‌های درون قفسه نیازی به رعایت معیارهای انسداد و الزامات فاصله از انبار ندارند.

    5.2.1.2.6* فاصله بین دستگاه معیوب و بالای انبار می‌تواند کمتر از 18 اینچ (457 میلی‌متر) باشد در صورتی که توسط استاندارد نصب مجاز شناخته شده باشد.
    5.2.1.3* انباری که نزدیک‌تر از حد مجاز به دستگاه معیوب اسپرینکلر قرار دارد طبق قوانین فاصله از انبار استاندارد نصب، که در 5.2.1.2.1 تا 5.2.1.2.4 توضیح داده شده است، باید اصلاح شود.
    5.2.1.4 تأمین اسپرینکلرهای یدکی باید سالانه برای موارد زیر بازرسی شود:
    (1) تعداد و نوع صحیح اسپرینکلرها طبق الزامات 5.4.1.5
    (2) آچار اسپرینکلر برای هر نوع اسپرینکلر طبق الزامات 5.4.1.5.5
    (3) فهرست اسپرینکلرهای یدکی طبق الزامات 5.4.1.5.6
    5.2.2* لوله و اتصالات. لوله‌ها و اتصالات اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.2.1* لوله‌ها و اتصالات باید از هرگونه آسیب مکانیکی، نشتی و خوردگی پاک باشند.
    5.2.2.2 لوله‌های اسپرینکلر نباید تحت بارهای خارجی توسط مواد قرار گیرند که روی لوله استراحت کنند یا از لوله آویزان شوند.
    5.2.2.3* لوله‌ها و اتصالات نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.2.4 لوله‌ها و اتصالات نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.3* آویزها، میله‌ها و پشتیبانی‌ها. آویزها، میله‌ها و پشتیبانی‌های لوله‌های اسپرینکلر باید سالانه از سطح زمین بازرسی شوند.
    5.2.3.1 آویزها، میله‌ها و پشتیبانی‌ها نباید آسیب دیده، شل یا جدا شده باشند.
    5.2.3.2 آویزها، میله‌ها و پشتیبانی‌هایی که آسیب دیده، شل یا جدا شده‌اند باید تعویض یا دوباره محکم شوند.
    5.2.3.3* آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در فضاهای پنهان مانند بالای سقف‌های معلق نیازی به بازرسی ندارند.
    5.2.3.4 آویزها، میله‌ها و پشتیبانی‌های نصب‌شده در مناطقی که به دلیل عملیات‌های فرآیندی به دلایل ایمنی غیرقابل دسترسی هستند باید در هر زمان تعطیلی برنامه‌ریزی‌شده بازرسی شوند.
    5.2.4 دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت. دستگاه‌های راه‌اندازی هشدار آب و سیگنال نظارت باید هر سه ماه یکبار بازرسی شوند تا اطمینان حاصل شود که از آسیب فیزیکی آزاد هستند.
    5.2.5* تابلو اطلاعات طراحی هیدرولیکی. تابلو اطلاعات طراحی هیدرولیکی باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم به لوله‌کش نصب شده و قابل خواندن است.
    5.2.5.1 تابلو اطلاعات طراحی هیدرولیکی که مفقود یا غیرقابل خواندن باشد باید تعویض شود.
    5.2.5.2 سیستم جدول لوله‌ای باید تابلو اطلاعات طراحی هیدرولیکی داشته باشد که روی آن نوشته شده باشد “سیستم جدول لوله‌ای.”
    5.2.6 ردیابی حرارتی. ردیابی حرارتی باید طبق الزامات سازنده بازرسی و نگهداری شود.

    5.2.7 تابلو اطلاعات. تابلو اطلاعات مورد نیاز در 4.1.9 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.8* تابلو اطلاعات عمومی. تابلو اطلاعات عمومی مورد نیاز در NFPA 13 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.2.9 تابلو اطلاعات ضدیخ. تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10 باید سالانه بازرسی شود تا اطمینان حاصل شود که موجود است، به‌طور محکم متصل شده و قابل خواندن است.
    5.3 آزمایش.
    5.3.1* اسپرینکلرها.
    5.3.1.1* در جایی که طبق این بخش نیاز باشد، نمونه اسپرینکلرها باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند.
    5.3.1.1.1 هرگاه اسپرینکلرها به مدت 50 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید آزمایش شوند.
    5.3.1.1.1.1 روش‌های آزمایش باید در فواصل 10 ساله تکرار شوند.
    5.3.1.1.1.2 اسپرینکلرهایی که پیش از سال 1920 ساخته شده‌اند باید تعویض شوند.
    5.3.1.1.1.3* اسپرینکلرهایی که با استفاده از عناصر واکنش سریع ساخته شده‌اند و به مدت 20 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.1.4* نمونه‌های نمایندگی از اسپرینکلرهای نوع لحیم با کلاس دمایی فوق‌العاده بالا [325°F (163°C)] یا بیشتر که در شرایط دمای محیطی حداکثر مجاز نیمه‌پی‌در‌پی تا پیوسته قرار دارند باید در فواصل 5 ساله آزمایش شوند.
    5.3.1.1.1.5 هرگاه اسپرینکلرها به مدت 75 سال نصب شده باشند، باید تعویض شوند یا نمونه‌های نمایندگی از یک یا چند ناحیه نمونه باید به یک آزمایشگاه معتبر که توسط مقام مسئول تایید شده است برای آزمایش میدانی ارسال شوند و آزمایش‌ها در فواصل 5 ساله تکرار شوند.
    5.3.1.1.1.6* اسپرینکلرهای خشک که به مدت 15 سال نصب شده‌اند باید تعویض شوند یا نمونه‌های نمایندگی آزمایش شوند و سپس در فواصل 10 ساله دوباره آزمایش شوند.
    5.3.1.1.2* اسپرینکلرهایی که در محیط‌های سخت قرار دارند، از جمله جو‌های خورنده، باید یکی از موارد زیر باشند:
    (1) تعویض شوند
    (2) آزمایش شوند از طریق نمونه‌های نمایندگی اسپرینکلر در فواصل 5 ساله
    5.3.1.1.3 اسپرینکلرهای مقاوم در برابر خوردگی فهرست‌شده که در محیط‌های سخت نصب شده‌اند باید مجاز باشند که در فواصل 10 ساله آزمایش شوند.
    5.3.1.1.4 در جایی که داده‌های تاریخی نشان دهند، فواصل طولانی‌تری بین آزمایش‌ها مجاز خواهد بود.
    5.3.1.2* نمونه نمایندگی از اسپرینکلرها برای آزمایش طبق 5.3.1.1 باید حداقل از چهار اسپرینکلر یا 1 درصد از تعداد اسپرینکلرها در هر نمونه فردی اسپرینکلر، هرکدام که بیشتر است، تشکیل شده باشد.

    5.3.1.3 هرگاه یکی از اسپرینکلرها در یک نمونه نمایندگی نتواند شرایط آزمایش را برآورده کند، تمام اسپرینکلرهای موجود در ناحیه‌ای که توسط آن نمونه نمایندگی می‌شود باید تعویض شوند.
    5.3.1.3.1 به تولیدکنندگان مجاز است که تغییراتی در اسپرینکلرهای خود در میدان با استفاده از دستگاه‌های فهرست‌شده انجام دهند که عملکرد اصلی را مطابق با لیست بازمی‌گرداند، در صورتی که برای مقام مسئول قابل قبول باشد.
    5.3.2 اسپرینکلرهای برقی.
    5.3.2.1 اسپرینکلرهای برقی باید طبق الزامات سازنده آزمایش شوند.
    5.3.2.2 آزمایش فعال‌سازی الکترونیکی و نظارت باید مطابق با الزامات سازنده و NFPA 72 یا کد هشدار آتش محلی باشد.
    5.3.3 دستگاه‌های هشدار آب.
    5.3.3.1 دستگاه‌های هشدار آب مکانیکی، از جمله اما نه محدود به زنگ‌های موتور آب، باید هر سه ماه یکبار آزمایش شوند.
    5.3.3.2* دستگاه‌های هشدار آب نوع وانی و نوع سوئیچ فشار باید هر شش ماه یکبار آزمایش شوند.
    5.3.3.3 آزمایش دستگاه‌های هشدار آب نوع سوئیچ فشار در سیستم‌های لوله‌های تر باید از طریق باز کردن اتصال آزمایش بازرسان انجام شود.
    5.3.3.3.1 در صورتی که شرایط یخبندان یا سایر شرایط استفاده از اتصال آزمایش بازرسان را منع کند، استفاده از اتصال بای‌پس مجاز خواهد بود.
    5.3.3.4 به جز در موارد مجاز در 5.3.3.4.1، آزمایش دستگاه‌های هشدار آب نوع وانی در سیستم‌های لوله‌های تر باید از طریق جریان آبی معادل جریان خارج از کوچکترین اسپرینکلر با عامل k (یا کوچک‌تر) از سوئیچ جریان انجام شود.
    5.3.3.4.1 یک دستگاه هشدار آب نوع وانی که با ویژگی تست خودکار یکپارچه فهرست‌شده باشد و قادر به تأیید وجود آب در محل دستگاه هشدار آب و عملکرد دستگاه هشدار آب و زنگ باشد، مجاز است که استفاده شود.
    5.3.3.4.2 دستگاه‌های هشدار آب نوع وانی که هر شش ماه یکبار با استفاده از آب گردش‌دهی یا طبق توضیحات 5.3.3.4.1 آزمایش می‌شوند، باید با باز کردن اتصال آزمایش بازرسان در حداقل یک بار هر 3 سال آزمایش شوند.
    5.3.3.5 پمپ‌های آتش‌نشانی نباید در طول آزمایش از سرویس خارج شوند، مگر اینکه دائماً توسط پرسنل واجد شرایط نظارت شوند یا تمام روش‌های اصلاحات در فصل 15 دنبال شوند.
    5.3.4* سیستم‌های ضدیخ. سالانه، قبل از آغاز شرایط یخبندان، محلول ضدیخ باید با استفاده از روش زیر آزمایش شود:
    (1) با استفاده از تابلو اطلاعات ضدیخ مورد نیاز در 4.1.10، سوابق نصب، سوابق نگهداری، اطلاعات مالک، آزمایش‌های شیمیایی، یا سایر منابع معتبر اطلاعات، نوع ضدیخ در سیستم باید تعیین شود و در صورت لزوم یکی از موارد (الف) یا (ب) انجام شود:
    (الف) اگر مشخص شود که ضدیخ از نوعی است که دیگر مجاز نیست، سیستم باید کاملاً تخلیه شود و ضدیخ با محلول قابل قبول جایگزین شود.

    (ب) اگر نوع ضدیخ نتواند به‌طور قابل اعتمادی تعیین شود، سیستم باید کاملاً تخلیه شده و ضدیخ با محلول قابل قبول طبق 5.3.4.4 جایگزین شود.
    (2) اگر ضدیخ طبق 5.3.4(1)(الف) و 5.3.4(1)(ب) تعویض نشود، نمونه‌های آزمایش باید از بالای هر سیستم و از پایین هر سیستم به شرح زیر گرفته شوند:
    (الف) اگر دورترین بخش سیستم نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از دورترین بخش گرفته شود.
    (ب) اگر اتصال به لوله‌های تأمین آب نزدیک به بالای سیستم یا پایین سیستم نباشد، یک نمونه اضافی باید از اتصال به لوله‌های تأمین آب گرفته شود.
    (3) گرانروی خاص هر محلول باید با استفاده از هیدرومتر با مقیاس مناسب یا رفراکتومتر با مقیاس کالیبره‌شده برای محلول ضدیخ بررسی شود.
    (4) اگر هر یک از نمونه‌ها غلظتی بیش از مقدار مجاز در 5.3.4.4 نشان دهد، سیستم باید تخلیه شده و دوباره با محلول جدید قابل قبول پر شود.
    (5) اگر غلظتی بیشتر از آنچه که در حال حاضر طبق 5.3.4.4 مجاز است برای جلوگیری از یخ‌زدگی مایع ضروری بوده باشد، روش‌های جایگزین برای جلوگیری از یخ‌زدگی لوله باید استفاده شود.
    5.3.4.1 محلول ضدیخ باید در دورترین نقطه خود و جایی که با سیستم لوله‌های تر ارتباط دارد آزمایش شود.
    5.3.4.2 در جایی که ظرفیت سیستم‌های ضدیخ بیشتر از 150 گالن (568 لیتر) باشد، آزمایش‌ها باید در یک نقطه اضافی برای هر 100 گالن (379 لیتر) انجام شود.
    5.3.4.2.1 اگر نتایج نشان‌دهنده نقطه انجماد اشتباه در هر نقطه از سیستم باشد، سیستم باید تخلیه شده و دوباره با ضدیخ جدید مخلوط‌شده پر شود.
    5.3.4.2.2 برای محلول‌های مخلوط‌شده، دستورالعمل‌های سازنده باید برای تعداد نقاط آزمایش و فرآیند پرکردن مجدد مجاز باشد.
    5.3.4.3 استفاده از محلول‌های ضدیخ باید مطابق با مقررات بهداشتی ایالتی و محلی باشد.
    5.3.4.3.1* لوله‌ها و اتصالات اسپرینکلر CPVC فهرست‌شده باید فقط با گلیسرین از یخ‌زدگی محافظت شوند.
    5.3.4.3.1.1 استفاده از دی‌اتیلن، اتیلن یا پروپیلن گلیکول‌ها به‌طور خاص ممنوع است.
    5.3.4.4 به جز در موارد مجاز در 5.3.4.4.1 و 5.3.4.4.3، تمامی سیستم‌های ضدیخ باید از محلول‌های ضدیخ فهرست‌شده استفاده کنند.
    5.3.4.4.1* برای سیستم‌های نصب‌شده قبل از 30 سپتامبر 2012، محلول‌های ضدیخ فهرست‌شده تا 30 سپتامبر 2022 مورد نیاز نخواهند بود، مشروط بر اینکه یکی از شرایط زیر برقرار باشد:
    (1) * غلظت محلول ضدیخ باید محدود به 30 درصد پروپیلن گلیکول به‌صورت حجمی یا 38 درصد گلیسرین به‌صورت حجمی باشد.
    (2) * سیستم‌های ضدیخ با غلظت‌های بیش از 30 درصد اما نه بیشتر از 40 درصد پروپیلن گلیکول به‌صورت حجمی و 38 درصد اما نه بیشتر از 50 درصد گلیسرین به‌صورت حجمی مجاز خواهند بود، بر اساس ارزیابی ریسک قطعی تایید‌شده که توسط یک شخص واجد شرایط تایید‌شده توسط مقام مسئول تهیه شده است.

    5.3.4.4.2 محلول‌های جدیدی که معرفی می‌شوند باید محلول‌های ضدیخ از نوع مخلوط‌شده در کارخانه (شیمیایی خالص یا 96.5 درصد مطابق با داروشناسی ایالات متحده) باشند.
    5.3.4.4.3 محلول‌های ضدیخ مخلوط‌شده از پروپیلن گلیکول که غلظتی بیش از 30 درصد به‌صورت حجمی دارند، برای استفاده با اسپرینکلرهای ESFR مجاز هستند، مشروط بر اینکه اسپرینکلرهای ESFR برای چنین استفاده‌ای در یک کاربرد خاص فهرست‌شده باشند.
    5.4 نگهداری.
    5.4.1 اسپرینکلرها.
    5.4.1.1 در صورتی که یک اسپرینکلر به هر دلیلی برداشته شود، نباید دوباره نصب شود.
    5.4.1.2* اسپرینکلرهای تعویضی باید ویژگی‌های مناسب برای کاربرد مورد نظر را داشته باشند که شامل موارد زیر است:
    (1) نوع
    (2) اندازه سوراخ و ضریب K
    (3) درجه حرارت
    (4) پوشش، در صورت وجود
    (5) نوع دفییکتور (مثلاً ایستاده، آویز، دیواری)
    (6) الزامات طراحی
    5.4.1.2.1* اسپرینکلرهای پاششی مجاز هستند تا اسپرینکلرهای قدیمی را تعویض کنند.
    5.4.1.2.2* در صورتی که اسپرینکلرهای مسکونی که قبل از سال 2003 تولید شده و دیگر از سوی سازنده در دسترس نیستند، و طراحی چگالی آنها کمتر از 0.05 گالن در دقیقه در هر فوت مربع (204 میلی‌متر در دقیقه) باشد، می‌توان از اسپرینکلر مسکونی با ضریب K معادل (± 5 درصد) استفاده کرد، مشروط بر اینکه ناحیه پوششفعلی برای اسپرینکلر تعویضی تجاوز نشود.
    5.4.1.2.3 اسپرینکلرهای تعویضی برای اسکله‌ها و دکل‌ها باید با استاندارد NFPA 307 مطابقت داشته باشند.
    5.4.1.3 فقط از اسپرینکلرهای جدید و فهرست‌شده برای تعویض اسپرینکلرهای موجود استفاده شود.
    5.4.1.4* اسپرینکلرهای ویژه و سریع‌العمل تعریف‌شده توسط NFPA 13 باید با اسپرینکلرهایی با همان اندازه سوراخ، دامنه دما، ویژگی‌های واکنش حرارتی و ضریبK تعویض شوند.
    5.4.1.5* حداقل شش اسپرینکلر یدکی باید در محل نگهداری شود تا هر اسپرینکلری که عمل کرده یا به‌گونه‌ای آسیب دیده باشد، به‌سرعت تعویض شود.
    5.4.1.5.1 اسپرینکلرها باید با انواع و درجه حرارت‌های اسپرینکلرهای موجود در ملک همخوانی داشته باشند.
    5.4.1.5.2 موجودی اسپرینکلرهای یدکی باید در کابینتی نگهداری شود که دمای آن در هیچ زمانی از حداکثر دمای سقف‌های مشخص‌شده در جدول 5.4.1.5.2 برای هر یک از اسپرینکلرهای داخل کابینت تجاوز نکند.
    5.4.1.5.3 در صورتی که اسپرینکلرهای خشک با طول‌های مختلف نصب شده باشند، نیازی به نگهداری اسپرینکلرهای خشک یدکی نیست، مشروط بر اینکه راهی برای بازگشت سیستم به حالت عملیاتی فراهم شود.

    5.4.1.5.4 موجودی اسپرینکلرهای یدکی باید شامل تمام انواع و درجه‌های اسپرینکلر نصب‌شده باشد و به شرح زیر باشد:
    (1) برای تاسیسات محافظت‌شده با کمتر از 300 اسپرینکلر حداقل 6 اسپرینکلر
    (2) برای تاسیسات محافظت‌شده با 300 تا 1000 اسپرینکلر حداقل 12 اسپرینکلر
    (3) برای تاسیسات محافظت‌شده با بیش از 1000 اسپرینکلر حداقل 24 اسپرینکلر
    5.4.1.5.5* یک آچار اسپرینکلر مطابق با مشخصات سازنده اسپرینکلر باید برای هر نوع اسپرینکلر نصب‌شده در کابینت قرار داده شود تا برای برداشتن و نصب اسپرینکلرها در سیستم استفاده شود.
    5.4.1.5.6 فهرستی از اسپرینکلرهای نصب‌شده در ملک باید در کابینت اسپرینکلر نصب شود.
    5.4.1.5.6.1* این فهرست باید شامل موارد زیر باشد:
    (1) شماره شناسایی اسپرینکلر (SIN) در صورت وجود؛ یا سازنده، مدل، سوراخ، نوع دفییکتور، حساسیت حرارتی و درجه فشار
    (2) شرح کلی
    (3) تعداد هر نوع که باید در کابینت نگهداری شود
    (4) تاریخ انتشار یا اصلاح فهرست
    5.4.1.6* اسپرینکلرها نباید به هیچ‌وجه تغییر داده شوند یا هیچ‌گونه زینت، رنگ یا پوشش پس از ارسال از کارخانه تولید اعمال شود.
    5.4.1.7 اسپرینکلرها و نازل‌های اسپری خودکار مورد استفاده برای حفاظت از تجهیزات آشپزی تجاری و سیستم‌های تهویه باید سالانه تعویض شوند.
    5.4.1.7.1 در صورتی که اسپرینکلرهای نوع لامپ خودکار یا نازل‌های اسپری استفاده شوند و در بررسی سالانه هیچ تجمع چربی یا مواد دیگر روی اسپرینکلرها یا نازل‌ها مشاهده نشود، این اسپرینکلرها و نازل‌ها نیازی به تعویض نخواهند داشت.
    N 5.4.1.8 اسپرینکلرهای الکتریکی باید مطابق با الزامات سازنده نگهداری شوند.
    5.4.1.9 پوشش‌های حفاظتی.
    5.4.1.9.1* اسپرینکلرهایی که مناطق اسپری و اتاق‌های میکس را در نواحی کاربرد رزین محافظت می‌کنند و با پوشش‌های حفاظتی نصب شده‌اند، باید همچنان از باقی‌مانده‌های پاشش محافظت شوند تا در صورت بروز آتش‌سوزی، به درستی عمل کنند.

    5.4.1.9.2 اسپرینکلرهایی که همانطور که در 5.4.1.9.1 توضیح داده شده نصب شده‌اند، باید با کیسه‌های سلوفانی با ضخامت 0.003 اینچ (0.076 میلی‌متر) یا کمتر یا کیسه‌های کاغذی نازک محافظت شوند.
    5.4.1.9.3 پوشش‌ها باید به صورت دوره‌ای تعویض شوند تا از تجمع رسوبات سنگین جلوگیری شود.
    5.4.2* سیستم‌های لوله خشک. سیستم‌های لوله خشک باید در تمام اوقات خشک نگه داشته شوند.
    5.4.2.1 در طول هوای غیر یخ‌زدگی، سیستم لوله خشک می‌تواند مرطوب بماند، در صورتی که تنها گزینه دیگر خارج کردن سیستم از سرویس باشد تا زمانی که قطعات مورد نیاز یا در حین فعالیت‌های تعمیراتی برسد.
    5.4.2.2 فضاهای یخچالی یا سایر نواحی داخل ساختمان که دما در آن‌ها در 40°F (4°C) یا کمتر نگه داشته می‌شود، نباید اجازه داده شود که مرطوب بمانند.
    5.4.2.3 خشک‌کن‌های هوا باید مطابق با دستورالعمل‌های سازنده نگهداری شوند.
    5.4.2.4 کمپرسورهایی که در ارتباط با سیستم‌های آبیاری لوله خشک استفاده می‌شوند، باید با توجه به دستورالعمل‌های سازنده و همچنین فصل 13 بازرسی، تست و نگهداری شوند.
    5.4.3* سیستم‌های دریایی. سیستم‌های آبیاری که معمولاً با استفاده از آب شیرین به عنوان منبع نگهداری می‌شوند، باید پس از ورود آب خام به سیستم، تخلیه و دوباره با آب شیرین پر شوند، سپس دوباره تخلیه و با آب شیرین پر شوند.
    5.5 الزامات عملکرد اجزا.
    5.5.1 هرگاه یک جزء از سیستم آبیاری تنظیم، تعمیر، بازسازی یا تعویض شود، اقدامات لازم طبق جدول 5.5.1 باید انجام شود.
    5.5.2 در صورتی که استاندارد نصب اصلی با استاندارد ذکر شده متفاوت باشد، استفاده از استاندارد نصب مناسب مجاز است.
    5.5.3 این اقدامات نیازی به بررسی طراحی ندارند که خارج از محدوده این استاندارد است.

  • تأسیس تأسیسات سیستم های اطفاء حریق گاز پایه

    10.1 ایمنی

    بایستی در حین نصب، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک و مخازن عامل، از روش‌های ایمن پیروی شود.

    10.2 عمومی

    10.2.1 سیستم تکمیل‌شده باید توسط پرسنلی که دانش و تجربه لازم در زمینه الزامات این استاندارد، تجهیزات نصب‌شده و راهنمای طراحی، نصب و نگهداری سازنده را دارند، بازبینی و آزمایش شود.
    10.2.2 تنها از تجهیزات و دستگاه‌های فهرست‌شده باید در سیستم‌ها استفاده شود.

    10.2.3 آزمایش پذیرش سیستم

    10.2.3.1 سیستم باید مطابق با الزامات این استاندارد و راهنمای طراحی، نصب و نگهداری سازنده آزمایش شود.
    10.2.3.2 تجهیزات باید بررسی شوند تا تأیید شود که مطابق با دستورالعمل‌های سازنده و اسناد طراحی سیستم نصب شده‌اند.
    10.2.3.3 ابعاد واقعی خطر باید با ابعادی که در نقشه‌های سیستم مشخص شده‌اند، بررسی شوند تا مقدار عامل تأیید شود.
    10.2.3.4 در صورتی که آزمایش تخلیه انجام شود، مخازن عامل باید قبل و بعد از آزمایش تخلیه وزن شوند.
    10.2.3.5 وزن عامل در مخازن باید از طریق وزن‌کشی یا روش‌های تأیید شده دیگر تأیید شود.
    10.2.3.6 برای عوامل گاز بی‌اثر، فشار مخزن باید قبل و بعد از آزمایش تخلیه ثبت شود.
    10.2.3.7 در صورتی که برای عملکرد سیستم لازم باشد، زمان کاهش سرعت فن و زمان بسته شدن دمپر باید تأیید شود که مطابق با معیارهای طراحی سیستم است.

    10.2.4 آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه

    زمانی که توسط مشخصات پروژه الزامی است، آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شود.

    10.3 گزارش آزمایش پذیرش

    10.3.1 آزمایش پذیرشی که در 10.2.3 الزامی است باید در یک گزارش آزمایش مستند شود.
    10.3.2 گزارش آزمایش پذیرش باید توسط مالک سیستم برای تمام مدت عمر سیستم نگهداری شود.

    10.4 بازبینی اجزای مکانیکی

    10.4.1 سیستم توزیع لوله‌کشی باید بازبینی شود تا تأیید شود که با اسناد طراحی و نصب مطابقت دارد.
    10.4.2 اندازه نازل‌ها و لوله‌ها باید مطابق با نقشه‌های سیستم باشد.
    10.4.3 روش‌های کاهش اندازه لوله و وضعیت اتصالات انشعاب باید برای تطابق با طراحی بررسی شوند.
    10.4.4 مفاصل لوله‌کشی، نازل‌های تخلیه و تکیه‌گاه‌های لوله باید به‌طور ایمن بسته شوند تا از حرکت عمودی یا جانبی ناخواسته در حین تخلیه جلوگیری شود.
    10.4.5 نازل‌های تخلیه باید به‌گونه‌ای نصب شوند که لوله‌کشی نتواند در حین تخلیه از اتصال خارج شود.
    10.4.6 در حین مونتاژ، سیستم توزیع لوله‌کشی باید به‌طور داخلی بازبینی شود تا احتمال هرگونه آلودگی با روغن یا ذرات که ممکن است منطقه خطر را آلوده کرده یا توزیع عامل را تحت تأثیر قرار دهد (به دلیل کاهش در مساحت اوریفیس نازل) شناسایی شود.
    10.4.7 نازل تخلیه باید مطابق با فهرست نازل نصب شود.
    10.4.8 اگر محافظ‌های نازل نصب شده‌اند، باید طبق فهرست تجهیزات نصب شوند.
    10.4.9 نازل‌های تخلیه، لوله‌کشی و براکت‌های نصب باید به‌گونه‌ای نصب شوند که خطر آسیب به پرسنل نداشته باشند.
    10.4.10 عامل نباید مستقیماً به نواحی‌ای که ممکن است پرسنل در آن‌ها حضور داشته باشند در منطقه کاری برخورد کند.
    10.4.11 عامل نباید مستقیماً به هیچ جسم رها شده‌ای یا قفسه‌ها، سطوح بالای کابینت‌ها یا سطوح مشابه که ممکن است اشیاء رها شده در آن‌ها وجود داشته باشد و به ش projectiles تبدیل شوند، برخورد کند.

    10.4.12 تمامی مخازن ذخیره عامل باید مطابق با مجموعه تأسیسات تایید شده از نقشه‌های سیستم نصب شوند.

    10.4.13 تمامی مخازن و براکت‌های نصب باید مطابق با الزامات سازنده به‌طور ایمن نصب شوند.

    10.4.14 سیستم لوله‌کشی باید در یک مدار بسته با استفاده از نیتروژن یا گاز خشک فشار آزمایی شود.

    10.4.14.1 لوله باید به حداقل فشار 40 psi (276 kPa) فشار وارد شود.
    10.4.14.2 پس از برداشتن منبع گاز فشار، فشار در لوله نباید کمتر از 80 درصد فشار آزمایش پس از 10 دقیقه باشد.
    10.4.14.3 آزمایش فشار در صورتی که سیستم لوله‌کشی تنها یک تغییر جهت بین مخزن ذخیره‌سازی و نازل تخلیه داشته باشد و تمامی لوله‌ها از نظر سفت بودن فیزیکی بررسی شده باشند، مجاز است که حذف شود.

    10.4.15* آزمایش جریان با استفاده از نیتروژن یا گاز بی‌اثر باید بر روی شبکه لوله‌کشی انجام شود تا تأیید شود که جریان به‌طور مداوم وجود دارد.

    10.5 بازبینی یکپارچگی محفظه

    10.5.1 باید تأیید شود که محفظه حفاظت‌شده به‌طور کلی با اسناد ساخت مطابقت دارد.
    10.5.2 تمامی سیستم‌های سیلاب‌کامل باید مورد بازبینی و آزمایش قرار گیرند تا درزهای هوایی قابل توجهی که می‌توانند منجر به شکست محفظه در نگه‌داشتن سطح غلظت عامل مشخص شده برای مدت زمان مشخص شده شوند، شناسایی و به‌طور مؤثر مهر و موم شوند.
    10.5.3* نتایج کمی باید به‌دست آید و ثبت شود تا تأیید شود که غلظت عامل مشخص‌شده برای مدت زمان مشخص‌شده حفاظت مطابق با بخش 7.4 است، با استفاده از واحد فن دمنده تایید شده یا روش‌های دیگری که توسط مرجع نظارتی تایید شده باشد. (برای راهنمایی، به پیوست D مراجعه کنید.)

    10.6 بازبینی اجزای الکتریکی

    10.6.1 تمامی سیستم‌های سیم‌کشی باید مطابق با کدهای محلی و نقشه‌های سیستم نصب شوند.
    10.6.2 سیم‌کشی جریان متناوب (ac) و مستقیم (dc) نباید در یک لوله یا مسیر مشترک ترکیب شوند، مگر اینکه از شیلدینگ و زمین‌گذاری استفاده شده باشد.
    10.6.3 تمامی مدارهای میدانی باید از خطاهای زمینی و اتصالات کوتاه آزاد باشند.
    o 10.6.3.1 هنگامی که مدارهای میدانی اندازه‌گیری می‌شوند، تمامی اجزای الکترونیکی مانند تشخیص‌دهنده‌های دود و شعله یا تجهیزات الکترونیکی ویژه برای سایر تشخیص‌دهنده‌ها یا پایه‌های نصب آن‌ها باید حذف شده و پل‌ها نصب شوند تا از احتمال آسیب به این دستگاه‌ها جلوگیری شود.
    o 10.6.3.2 اجزای حذف‌شده مطابق با 10.6.3.1 باید پس از اندازه‌گیری‌ها جایگزین شوند.
    10.6.4 تأمین برق به واحد کنترل باید از یک منبع اختصاصی جداگانه باشد که در هنگام راه‌اندازی سیستم قطع نشود.
    10.6.5 منابع انرژی اصلی و 24 ساعته حداقل باید برای تأمین نیازهای عملکردی تشخیص، سیگنال‌دهی، کنترل و فعال‌سازی سیستم قابل اعتماد و کافی باشند.
    10.6.6* تمامی عملکردهای کمکی مانند دستگاه‌های آلارم، نمایشگرها، اعلان‌کننده‌های از راه دور، خاموشی سیستم تهویه و خاموشی برق باید برای عملکرد مطابق با الزامات سیستم و مشخصات طراحی بررسی شوند.
    10.6.7 خاموش کردن آلارم‌ها، در صورت مجاز بودن، نباید تأثیری بر سایر عملکردهای کمکی داشته باشد.
    10.6.8 دستگاه‌های تشخیص باید برای نوع و مکان مطابق با نقشه‌های سیستم بررسی شوند.
    10.6.9* تشخیص‌دهنده‌ها نباید در نزدیکی موانع یا تجهیزات تهویه و خنک‌کننده هوا نصب شوند که می‌تواند ویژگی‌های واکنش آن‌ها را تحت تأثیر قرار دهد.
    10.6.10* طراحی سیستم تشخیص باید حجم تغییرات هوای داخل منطقه حفاظت‌شده را در نظر بگیرد.
    10.6.11 تشخیص‌دهنده‌ها باید مطابق با داده‌های فنی سازنده و الزامات NFPA 72 نصب شوند.
    10.6.12 ایستگاه‌های دستی کشیدن (Manual Pull Stations)
    o 10.6.12.1 ایستگاه‌های دستی کشیدن باید به‌طور ایمن نصب شوند.
    o 10.6.12.2 قسمت قابل استفاده ایستگاه دستی کشیدن باید حداقل 42 اینچ (1.07 متر) و حداکثر 48 اینچ (1.22 متر) از کف تمام‌شده باشد.
    o 10.6.12.3 ایستگاه‌های دستی کشیدن باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.
    o 10.6.12.4 تمامی ایستگاه‌های دستی کشیدن باید به‌طور واضح شناسایی شوند که به کدام خطر حفاظت می‌کنند، عملکرد آن‌ها چیست و روش عملیات آن‌ها چگونه است.
    o 10.6.12.5 تمامی ایستگاه‌های دستی که برای آزادسازی عامل‌ها استفاده می‌شوند باید نیاز به دو اقدام مجزا و متمایز برای عملکرد داشته باشند.
    10.6.13 سیستم‌های با قابلیت اصلی/رزرو
    o 10.6.13.1 برای سیستم‌هایی با قابلیت اصلی/رزرو، سوئیچ اصلی/رزرو باید مطابق با دستورالعمل‌های طراحی، نصب و نگهداری سازنده سیستم و نقشه‌های سیستم نصب شود.
    o 10.6.13.2 اگر نصب شده باشد، سوئیچ اصلی/رزرو باید شناسایی شود.
    10.6.14 سیستم‌هایی که از سوئیچ‌های انصراف استفاده می‌کنند
    o 10.6.14.1 سوئیچ‌های انصراف باید از نوع “deadman” باشند که نیاز به فشار دستی مداوم دارند.
    o 10.6.14.2 سوئیچ‌هایی که در موقعیت انصراف باقی می‌مانند زمانی که آزاد شوند، نباید برای این منظور استفاده شوند.
    o 10.6.14.3 سوئیچ‌های انصراف باید به‌گونه‌ای نصب شوند که در داخل منطقه خطر به‌راحتی قابل دسترس باشند.
    o 10.6.14.4 سوئیچ‌های انصراف باید به‌طور ایمن نصب شوند.
    o 10.6.14.5 ایستگاه‌های انصراف باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.

    10.6.14.6 قسمت قابل استفاده از سوئیچ انصراف نباید کمتر از 42 اینچ (1.07 متر) و بیشتر از 48 اینچ (1.22 متر) از کف تمام‌شده باشد.

    10.6.14.7 ایستگاه‌های دستی کشیدن همیشه باید سوئیچ‌های انصراف را لغو کنند.

    10.6.15 واحد کنترل آزادسازی باید مطابق با مستندات سیستم نصب شده و به‌راحتی قابل دسترس باشد.

    10.7 آزمایش عملکردی

    10.7.1 آزمایش‌های عملکردی مقدماتی

    10.7.1.1 اگر سیستم به یک دفتر دریافت آلارم متصل باشد، دفتر دریافت آلارم باید اطلاع داده شود که آزمایش سیستم آتش‌نشانی قرار است انجام شود و پاسخ اضطراری از سوی آتش‌نشانی یا پرسنل ایستگاه آلارم ضروری نیست.
    10.7.1.2 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید مطلع شوند که آزمایشی قرار است انجام شود.
    10.7.1.3 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید دستورالعمل‌هایی دریافت کنند که به آن‌ها توضیح داده شود چه اتفاقاتی ممکن است در حین آزمایش سیستم اطفاء حریق رخ دهد.
    10.7.1.4* مکانیزم آزادسازی هر مخزن ذخیره عامل باید غیرفعال شده یا با یک دستگاه عملیاتی جایگزین شود به‌طوری‌که فعال‌سازی مدار آزادسازی منجر به آزادسازی عامل نشود.
    10.7.1.5 هر تشخیص‌دهنده باید برای عملکرد آزمایش شود.
    10.7.1.6 تمامی دستگاه‌های آلارم قطبی‌شده و رله‌های کمکی باید برای قطبیت مطابق با دستورالعمل‌های سازنده بررسی شوند.
    10.7.1.7 مدارهای شروع و اعلان باید برای دستگاه‌های انتهای خط، در صورت لزوم، بررسی شوند.
    10.7.1.8 تمامی مدارهای تحت نظارت باید برای پاسخ به مشکلات آزمایش شوند.

    10.7.2 آزمایش عملکرد عملیاتی سیستم

    10.7.2.1 هر مدار شروع تشخیص باید اجرا شود تا تأیید شود که تمامی عملکردهای آلارم مطابق با مشخصات طراحی رخ می‌دهند.
    10.7.2.2 هر آزادسازی دستی باید اجرا شود تا تأیید شود که عملکرد آزادسازی دستی مطابق با مشخصات طراحی انجام می‌شود.
    10.7.2.3 هر مدار سوئیچ انصراف باید اجرا شود تا تأیید شود که عملکرد انصراف مطابق با مشخصات طراحی انجام می‌شود و سیگنال‌های نظارتی بصری و صوتی در پنل کنترل اعلام می‌شود.
    10.7.2.4 تمامی شیرهای خودکار باید برای تأیید عملکرد آزمایش شوند، مگر اینکه آزمایش شیر منجر به آزادسازی عامل یا آسیب به شیر (آزمایش تخریبی) شود.
    10.7.2.5 تجهیزات پنوماتیک، در صورت نصب، باید برای یکپارچگی آزمایش شوند تا از عملکرد صحیح آن‌ها اطمینان حاصل شود.

    10.7.3 عملیات نظارت از راه دور

    10.7.3.1 هر نوع دستگاه شروع باید در حالت برق پشتیبان اجرا شود تا تأیید شود که پس از فعال شدن دستگاه، سیگنال آلارم در پنل از راه دور دریافت می‌شود.

    10.7.3.2 یک وضعیت خطا باید به هر مدار شروع یا اعلان اعمال شود تا تأیید شود که وضعیت مشکل در ایستگاه از راه دور دریافت شده است.

    10.7.3.3 هر دستگاه تحت نظارت باید اجرا شود تا تأیید شود که وضعیت نظارتی در ایستگاه از راه دور دریافت شده است.

    10.7.4 منبع قدرت اصلی پنل کنترل

    یک قطع برق اصلی باید مطابق با مشخصات سازنده آغاز شود تا تأیید شود که سیستم بر روی برق پشتیبان کار می‌کند.

    10.7.5 بازگرداندن سیستم به وضعیت عملیاتی

    10.7.5.1 هنگامی که آزمایش‌های عملکردی به پایان رسید، سیستم باید به وضعیت عملیاتی کامل بازگردانده شود.
    10.7.5.2 دفتر دریافت آلارم و تمامی پرسنل مربوطه در تأسیسات کاربر نهایی باید مطلع شوند که آزمایش سیستم آتش‌نشانی تکمیل شده است و سیستم به وضعیت کامل خدمات بازگشته است.

    10.8 مستندات مالک

    10.8.1 نسخه‌های کاغذی یا الکترونیکی تمامی گزارش‌های آزمایش و مستندات مربوطه باید به مالک سیستم ارائه شود.
    10.8.2 مالک سیستم باید این گزارش‌ها را برای مدت زمان عمر سیستم نگه‌داری کند.

    10.9 آموزش

    10.9.1 تمامی افرادی که احتمالاً مجبور به استفاده از سیستم‌های اطفاء حریق هستند باید آموزش دیده و آموزش‌های خود را در زمینه عملکردهایی که باید انجام دهند، به‌روز نگه دارند.
    10.9.2* پرسنلی که در یک اتاق سرور که توسط عامل پاک‌کننده محافظت می‌شود کار می‌کنند باید آموزش‌هایی در خصوص مسائل ایمنی عامل دریافت کنند.

  • دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

    A.17.8.2 اصول عملکرد دتکتورهای شعله

    (1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

    9k=

    این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

    یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

    9k=

    (2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

    A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

    Z

    تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

    Z

    انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

    بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

    تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

    Z

    محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

    A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

    A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

    Z

    که در آن:

    S = توان تابشی که به حسگر می‌رسد
    k = ثابت تناسب برای حسگر
    P = توان تابشی ساطع‌شده توسط آتش
    e = پایه لگاریتم نپر (۲.۷۱۸۳)
    ζ = ضریب تضعیف هوا
    d = فاصله بین آتش و حسگر

    2Q==

    حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
    این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.