اصول عملکرد بیم دتکتور دودی اعلام حریق

smoke detector

بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

WhatsApp Image 2025 09 14 at 9.19.31 AM

این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

WhatsApp Image 2025 09 14 at 9.19.31 AM1

بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

WhatsApp Image 2025 09 14 at 9.19.32 AM

تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

لوازم جانبی  بیم دتکتور دودی اعلام حریق

لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

کاربرد صحیح بیم دتکتور دودی اعلام حریق

مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

ارتفاع سقف در بیم دتکتور دودی اعلام حریق

حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

WhatsApp Image 2025 09 14 at 9.19.32 AM1
استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

WhatsApp Image 2025 09 14 at 9.19.32 AM2

محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

WhatsApp Image 2025 09 14 at 9.19.33 AM

اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

WhatsApp Image 2025 09 14 at 9.19.33 AM1

عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

WhatsApp Image 2025 09 14 at 9.19.34 AM

هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

  • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
    (NFPA 72-1999, 2-3.4.5.2)
  • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
    (NFPA 72-1999, 2-3.4.4)
  • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
    (NFPA 72-1999, 2-3.4.4)
  • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
  • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
    (NFPA 72-1999, 2-3.4.6.1)

نصب  بیم دتکتور دودی اعلام حریق

بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

  • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
  • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

  • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
  • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
  • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
  • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
  • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
  • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
  • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.

نوشته‌های مشابه

  • روش طراحی سیستم دتکتور دودی مکشی یا اسپیراتینگ ها

    در زمان طراحی شبکه لوله نمونه‌برداری، عوامل متعددی باید مدنظر قرار گیرد. لازم است محل نصب به‌دقت بررسی و بیشترین اطلاعات ممکن جمع‌آوری شود.

    نیازمندی‌ها
    اولین گام، تعیین دقیق نیازهای نصب است. پس از مشخص شدن نیازها، نوع موقعیت قابل بررسی خواهد بود.

    فعالیت‌ها
    نوع فعالیت‌هایی که در فضا انجام می‌شود بسیار اهمیت دارد. یک فضای عمومی با شکل خاص ممکن است نیازهای سیستمی متفاوتی نسبت به یک انبار با همان شکل داشته باشد. اطلاعاتی مانند ساعات فعالیت، حضور یا عدم حضور افراد در فضا، و وجود آلودگی یا هوای آلوده نیز باید در نظر گرفته شود.

    ویژگی‌های فیزیکی
    پس از بررسی نوع کلی نصب، ویژگی‌های فیزیکی فضا باید بررسی شود:

    • آیا فضا، اتاق، فضای خالی، کابینت یا محفظه است؟
    • آیا فضای خالی در کف یا سقف وجود دارد؟ در صورت وجود، چگونه تقسیم‌بندی شده‌اند؟
    • آیا کانال‌هایی وجود دارد؟ کاربرد آن‌ها چیست و آیا خدماتی در آن‌ها قرار دارد؟
    • ابعاد دقیق فضا چیست؟
    • از چه مصالحی استفاده شده و آیا مناطقی وجود دارد که باید از قرارگیری شبکه در آن‌ها اجتناب شود؟
    • آیا سیستم‌های اعلام حریق دیگری وجود دارند؟ در صورت وجود، در چه موقعیتی نصب شده‌اند؟

    شرایط محیطی
    شرایط محیطی داخل فضا می‌تواند تأثیر بسیار مهمی بر روش نمونه‌برداری مناسب برای حفاظت از آن داشته باشد.
    همان‌طور که پیش‌تر اشاره شد، آزمایش دود برای جمع‌آوری این اطلاعات حیاتی است. این آزمایش می‌تواند الگوهای حرکت هوا، نرخ گردش آن، و اینکه آیا در نقطه‌ای جریان هوا ساکن است یا خیر را مشخص کند.

    سایر موارد قابل بررسی شامل موارد زیر است:

    • در صورت ورود هوای تازه، نرخ و میزان آن چقدر است؟
    • آیا به دلیل آلودگی، استفاده از یک دتکتور مرجع لازم است؟
    • دما و رطوبت نسبی چقدر هستند و آیا این مقادیر ثابت یا متغیرند؟
    • آیا فعالیت‌هایی در محیط وجود دارند که دود، گرد و غبار، بخار یا شعله تولید کنند و این فعالیت‌ها چند وقت یک‌بار انجام می‌شوند؟

    ارزیابی ریسک
    در هر نصب، احتمال دارد برخی نواحی نیاز به حفاظت بیشتری نسبت به سایر بخش‌ها داشته باشند. این امر ممکن است به دلیل وجود تجهیزات گران‌قیمت یا نواحی خاصی مانند انبار مواد قابل اشتعال باشد. این نواحی آسیب‌پذیر باید همراه با هرگونه خطرات ساختاری مانند مواد مصنوعی، فوم‌ها یا جداکننده‌های چوب نرم مورد توجه قرار گیرند.

    مکان‌های ممکن برای نصب دستگاه
    در انتخاب محل نصب واحد دتکتور نیز عوامل متعددی باید در نظر گرفته شود. هدف اصلی در تعیین موقعیت دستگاه، ایجاد یک سیستم متعادل است؛ به این معنا که طول لوله‌ها تا حد امکان برابر باشد. همچنین باید تلاش شود تا زمان پاسخ‌دهی و میزان رقیق‌سازی به حداقل برسد.

    واحد دتکتور نیاز به منبع تغذیه دارد و باید دسترسی جهت انجام تعمیرات و نگهداری وجود داشته باشد. همچنین ممکن است دلایل زیبایی‌شناختی باعث شود مکان خاصی برای نصب مناسب نباشد.

    لوله خروجی
    لوله خروجی واحد دتکتور دودی مکشی، در صورت نیاز، می‌تواند دارای لوله‌کشی اضافه شود؛ برای مثال، اگر نیاز باشد هوای عبوری از دتکتور به منبع خود بازگردد. همچنین، لوله‌کشی اضافی می‌تواند برای کاهش صدای فن مورد استفاده قرار گیرد.

  • الزامات استفاده از دتکتور گاز در معادن

    پیش‌زمینه دتکتور گاز
    مقررات ایمنی و سلامت کار (معدن‌ها و محل‌های نفت و گاز) ۲۰۲۲ شامل الزامات مربوط به کیفیت هوای تأمین‌شده درون معدن و حدود مجاز آلاینده‌ها در آن هوا است. برای رعایت این الزامات، بهره‌بردار معدن باید تجهیزات دتکتور گاز را در نقاط استراتژیک سراسر معدن فراهم کند. در انتخاب این تجهیزات، بهره‌بردار معدن باید از این موضوع اطمینان داشته باشد که دتکتور گاز انتخاب‌شده می‌تواند در شرایط محیطی متغیر داده‌های دقیقی ارائه دهد.

    مطابق با بندهای ۱۸۷(۱)(e) و (f) مقررات، طراحی تجهیزات زیر (که در این برگه اطلاعات به آن‌ها «دتکتور گاز» گفته می‌شود) در صورتی که در یک معدن زغال‌سنگ زیرزمینی استفاده شوند، باید به ثبت برسد:
    (e) تجهیزاتی دستی با نیروی برق که برای تعیین یا پایش حضور گاز به‌کار می‌روند.
    (f) نصب‌های ثابت با نیروی برق و نصب‌شده بر روی تجهیزات متحرک که برای تعیین یا پایش حضور گاز به‌کار می‌روند، اما شامل سیستم‌های لوله‌ای نیست که آنالایزر آن‌ها در سطح نصب شده باشد.

    اصطلاح «دتکتور گاز» به مجموعه کامل اجزایی اطلاق می‌شود که تجهیزات تشخیص گاز را تشکیل می‌دهند. اجزای یک دتکتور گاز شامل دتکتور گاز، محفظه محافظ، واسط‌های ارتباطی مانند کابل، فیبر نوری و ارتباطات رادیویی، و نیز واحدهای کنترل و فرستنده‌هایی هستند که امکان نمایش مقادیر گاز و نشان دادن خروجی را فراهم می‌کنند تا بهره‌بردار معدن بتواند سطح گاز را تعیین کند.

    هدف از ثبت طراحی این است که تأیید شود تجهیزات دتکتور گاز به‌گونه‌ای طراحی شده‌اند که حداقل نتایج عملکردی مورد نظر را برآورده کنند. طراحی تحت شرایط آزمون تعیین‌شده توسط یک مرکز آزمون مستقل مورد آزمایش قرار می‌گیرد و نتایج مستند می‌شوند.

    طراحی و نتایج آزمون توسط فردی که در طراحی تجهیزات مشارکت نداشته و خود در زمینه طراحی تجهیزات دتکتور گاز دارای صلاحیت است، به‌صورت همتا‌خوانی بازبینی می‌شود. تأییدکننده طراحی باید با طراح درباره اینکه طراحی و عملکرد دتکتور گاز تمام الزامات رسمی‌شده را برآورده می‌کند، از جمله هرگونه ادعای معادل‌بودن برای پیشبرد ثبت، توافق داشته باشد. هرگونه اختلاف نظر درباره طراحی و عملکرد ادعاشده باید به طراح ارجاع داده شود تا حل‌وفصل شود.

    اسناد زیر اطلاعات بیشتری درباره فرآیند ثبت طراحی ارائه می‌دهند:
    • راهنما: ثبت تجهیزات و اقلام برای معدن‌ها و محل‌های نفت و گاز
    • مقاله موضع‌گیری – تناسب، فرم، عملکرد
    • اطلاعیه عمومی – معیارهای صلاحیت برای تأییدکنندگان طراحی
    • سیاست: ثبت طراحی‌ها

    دستور طراحی دتکتور گاز
    نهاد نظارتی یک دستور طراحی منتشر کرده است که برای دریافت ثبت طراحی دتکتور گاز، باید از آن تبعیت شود. این دستور حداقل الزامات عملکردی را که طراحی دتکتور گاز باید برآورده کند، مشخص می‌کند.

    همچنین، این دستور طراحی شایستگی‌های مورد نیاز برای یک مرکز آزمون را نیز تعیین می‌کند.

    طراحی دتکتورهای گاز
    استانداردهای مربوط به طراحی دتکتور گاز در دستور طراحی مشخص شده‌اند. این دستور اجازه می‌دهد از استانداردهای جایگزین نیز در طراحی دتکتورهای گاز استفاده شود، اما طراح باید استانداردهای فنی منتشرشده یا اصول مهندسی مورد استفاده برای شناسایی کنترل‌هایی که سطح ایمنی معادل را فراهم می‌کنند، مستند کند.

    این معادل‌سازی فقط به طراحی دتکتور گاز مربوط می‌شود و شامل نتایج عملکردی که دتکتور باید در حین آزمون نشان دهد، نمی‌شود.

    عملکرد دتکتورهای گاز
    دستور طراحی الزام می‌کند که دتکتور گاز تحت شرایط مشخص توسط یک مرکز آزمون مناسب مورد آزمایش قرار گیرد. مرکز آزمون عملکرد دتکتور گاز را تحت شرایط محیطی مختلف، از جمله تغییرات دما، رطوبت، فشار هوا، سرعت جریان هوا، قرارگیری مداوم در معرض سطح بالای گاز، و تأثیر گازهای دیگر بر دتکتور، ارزیابی خواهد کرد. تمام این عوامل در محیط معدن زیرزمینی اهمیت دارند.

    آزمون‌های آزمایشگاهی همچنین مقدار پایه‌ای برای زمان‌های پاسخ‌گویی (t(50) و t(90)) دتکتور گاز در مواجهه با افزایش و کاهش سطح گاز را تعیین می‌کنند. این آزمون‌ها همچنین مشخص می‌کنند که عملکرد دتکتور گاز، از جمله نمایشگرها و سیگنال‌های خروجی، چگونه تحت تأثیر عواملی همچون موارد زیر قرار می‌گیرد:
    • مدت‌زمان مورد نیاز پس از برق‌دار شدن تا آغاز تشخیص دقیق گاز
    • انتشار امواج الکترومغناطیسی از تجهیزات برقی نزدیک به دتکتور و سایر اجزای دتکتور مانند کابل‌ها

    دستور طراحی الزام می‌کند که دتکتورهای گاز مطابق با معیارهای مشخص‌شده برای گازهای قابل اشتعال، گازهای سمی و اکسیژن (در صورت لزوم) مورد آزمون قرار گیرند. این موضوع تضمین می‌کند که عملکرد دتکتور، شامل زمان پاسخ و تأثیر شرایط محیطی و سایر عوامل مانند برق‌دار شدن و انتشار امواج الکترومغناطیسی، به‌صورت یکنواخت ارزیابی شود.

    نمایشگرها، سیگنال‌ها و نشانگرهای خروجی دتکتور گاز
    دستور طراحی الزام می‌کند که دتکتورهای گاز به‌گونه‌ای طراحی شوند که دارای دتکتورهای داخلی، دتکتورهای از راه دور، یا ترکیبی از این دو باشند. دتکتورهایی که با این الزامات مطابقت دارند، نمایشگر وضعیت، عملکرد هشدار، کنتاکت‌های خروجی و/یا سیگنال‌های هشدار خروجی ارائه می‌دهند که تصمیم‌گیری در مورد مدیریت هوای تهویه، محیط و عملکرد تجهیزات را امکان‌پذیر می‌سازند.

    دتکتورهای گاز همچنین باید به‌گونه‌ای طراحی شوند که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی فراهم کنند که بتوان از آن برای نمایش مقدار گاز در یک نمایشگر دور از دتکتور یا واحد کنترل، به‌عنوان ورودی برای سیستم هشدار یا قطع‌کننده جداگانه، یا به‌عنوان ورودی برای سیستم‌های برداشت و کنترل داده‌های معدن جهت نمایش و بررسی روند سطح گاز استفاده کرد.

    دتکتورهای گاز ممکن است به‌گونه‌ای طراحی شوند که انتقال سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را در داخل واحد کنترل دتکتور گاز انجام دهند یا آن را به‌صورت یک واحد فرستنده جداگانه حفظ کنند.

    سیگنال‌های استاندارد پذیرفته‌شده در صنعت
    سیگنال‌های استاندارد پذیرفته‌شده در صنعت، سیگنال‌هایی هستند که کاربر نهایی می‌تواند بدون استفاده از قطعات خاص انحصاری برای رمزگشایی و بازفرمت‌کردن داده، آن‌ها را تفسیر کند.

    بند ۳.۲.۱۱ از استاندارد AS/NZS 60079.29.1 یک سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را چیزی مانند حلقه جریان ۴ تا ۲۰ میلی‌آمپر تعریف می‌کند.
    بند ۱.۳.۸.۱۰ از استاندارد AS/NZS 4641:2018 نیز سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را به‌صورت مثال‌هایی مانند حلقه جریان ۴–۲۰ میلی‌آمپر یا سیگنال ۳–۱۵ psi بیان می‌کند.

    سیگنال‌های آنالوگ دتکتور گاز
    سیگنال آنالوگ، مانند حلقه جریان ۴–۲۰ میلی‌آمپر، یک سیگنال الکتریکی است که می‌توان آن را با تجهیزات تست الکتریکی اندازه‌گیری و نمایش داد. این سیگنال ممکن است به‌عنوان ورودی برای واحدهای کنترل دتکتور گاز مجزا یا سایر سیستم‌های کنترل و پایش، با استفاده از اجزای جانبی مانند واحد نمایشگر یا واحد هشدار و قطع‌کننده به‌کار رود. همچنین این سیگنال می‌تواند ورودی‌ای برای یک کنترل‌کننده قابل برنامه‌ریزی باشد تا عملکرد هشدار و قطع را آغاز کند یا داده را به سیستم‌های برداشت داده معدن منتقل نماید.

    سیگنال‌های آنالوگ محدود به حلقه جریان ۴–۲۰ میلی‌آمپر نیستند.

    سیگنال‌های دیجیتال دتکتور گاز
    یک دتکتور گاز ممکن است سیگنال خروجی دیجیتال ارائه دهد، به‌جای سیگنال آنالوگ. برای اینکه سیگنال دیجیتال قابل استفاده توسط بهره‌بردار معدن باشد، ساختار سیگنال دیجیتال باید شناخته‌شده باشد. بدون داشتن پروتکل جریان داده دیجیتال، امکان تفسیر محتوای سیگنال ارسالی از سوی دتکتور، از جمله مقدار گاز شناسایی‌شده، وجود ندارد. معمولاً یک مبدل پروتکل برای رمزگشایی سیگنال و امکان استفاده از داده دتکتور گاز توسط بهره‌بردار معدن مورد نیاز است. این اجزای جانبی بخشی از تجهیزات ثبت‌شده طراحی‌شده تلقی می‌شوند.

    آزمایش دتکتور گاز
    برای دستیابی به ثبت طراحی، باید گزارشی از آزمون ارائه شود که تأیید کند دتکتور گاز، شامل دتکتور و تمام اجزای لازم برای اینکه بهره‌بردار معدن بتواند محتوای گاز در جو معدن را تعیین کند، الزامات عملکردی مشخص‌شده در استانداردهای مربوطه را برآورده می‌سازد. اجزای اضافی شامل ماژول‌های نمایشگر، ماژول‌های فرستنده، ترکیب نمایشگر و فرستنده، یا رله‌های هشدار و قطع هستند. در صورتی که دتکتور به‌صورت از راه دور باشد، آزمون شامل کابل‌های ارتباطی‌ای خواهد بود که طراح آن‌ها را مناسب تشخیص داده است.

    چنانچه یک دتکتور گاز شامل عملکرد یک فرستنده دتکتور گاز باشد و فرستنده دتکتور گاز سیگنال داده دیجیتال ارائه دهد، تمام ماژول‌های اختصاصی لازم برای اینکه بهره‌بردار معدن بتواند از سیگنال دیجیتال استفاده کند، باید همراه با دتکتور توسط مرکز آزمون مورد آزمایش قرار گیرند. این ماژول‌های اضافی به‌عنوان بخشی از طراحی ثبت‌شده دتکتور گاز محسوب می‌شوند.

    این آزمون برای تأیید این موضوع لازم است که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی، به‌طور دقیق سطح گازی را که دتکتور در معرض آن قرار گرفته، تحت شرایط متغیر نشان دهد.

    پروتکل هرگونه درایور نرم‌افزاری که توسط مرکز آزمون در زمان آزمون دتکتور گاز استفاده می‌شود، باید مستند شده و به‌عنوان بخشی از مستندات ثبت طراحی درج شود. این امر توسعه درایورهای نرم‌افزاری سازگار با رابط‌های ارتباطی موجود در آن معدن را ممکن می‌سازد.

  • بررسی انواع دتکتورهای گاز

    1. گاز چیست؟

    2-1. ترکیب هوا

    هوا تقریباً از 78٪ نیتروژن، 21٪ اکسیژن و 1٪ گازهای دیگر (مانند آرگون و دی‌اکسید کربن) تشکیل شده است. نیتروژن، که بزرگ‌ترین جزء هواست، پایه‌ی پروتئین‌های ساخته‌شده از اسیدهای آمینه را تشکیل می‌دهد و در بسیاری از موجودات زنده یافت می‌شود. نیتروژن برای تقریباً تمام حیات روی این سیاره ضروری است. با این حال، نیتروژن مستقیماً از هوا به بدن جذب نمی‌شود. نیتروژنی که ما استنشاق می‌کنیم، صرفاً هنگام بازدم خارج می‌شود. اکسیژن، که برای حیات ضروری است و مستقیماً به بدن ما جذب می‌شود، 21٪ از هوا را تشکیل می‌دهد. دی‌اکسید کربن، که برای فتوسنتز گیاهان حیاتی است، کمتر از 1٪ است. جانوران اکسیژن جذب می‌کنند و دی‌اکسید کربن دفع می‌کنند و گیاهان دی‌اکسید کربن جذب می‌کنند و اکسیژن دفع می‌کنند، که این امر تعادل ثابتی در ترکیب کلی هوا و فرآیندهای حیاتی روی این سیاره حفظ می‌کند.

    2-2. خطرات گاز

    به طور کلی، خطرات گاز به سه دسته زیر تقسیم می‌شوند:

     

    گازهای قابل اشتعال

    گازهایی که در صورت ترکیب با هوا، محدوده انفجاری (محدوده اشتعال) دارند.

    بر اساس سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی (GHS*)، این مواد در حالت گازی در فشار استاندارد اتمسفر (101.3 کیلوپاسکال) و دمای 20 درجه سانتی‌گراد تعریف می‌شوند.

    * GHS: سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی

     

    گازهای سمی

    گازهایی که عملکرد بیولوژیکی انسان را مختل می‌کنند.

    گازهای سمی بر اساس مقادیر آستانه‌ای تنظیم می‌شوند که برای محافظت از اثرات مضر سلامتی کارگرانی که در محل کار روزانه 8 ساعت و هفته‌ای 40 ساعت در معرض این مواد قرار می‌گیرند، تعیین شده‌اند.

     

    کمبود اکسیژن

    بدن انسان می‌تواند در غلظت اکسیژن جو حدود 21% به طور طبیعی عمل کند.

    اگر اکسیژن مصرف شود و غلظت آن کاهش یابد (مثلاً در اثر اکسیداسیون فلزات یا فعالیت میکروارگانیسم‌ها) یا اگر اکسیژن توسط گازهای دیگر (مانند N₂ و Ar) جایگزین شود، اثرات آن بر بدن انسان زمانی آشکار می‌شود که غلظت اکسیژن به زیر حدود 18% برسد. در غلظت‌های 6% تا 8% خطر مرگ وجود دارد.

    1. خطرات گازهای قابل اشتعال

    3-1. سه عنصر لازم برای احتراق

     

    احتراق به طور کلی به واکنش اکسیداسیونی گفته می‌شود (که در آن مواد با اکسیژن ترکیب می‌شوند) که همراه با تولید گرما و نور است.

    ماده سوختنی

    گاز حامی احتراق

    منبع اشتعال

    در صورت نبود هر یک از این عناصر، احتراق امکان‌پذیر نیست. برای جلوگیری از احتراق گاز، ضروری است که غلظت گاز را زیر حدی که بتواند مشتعل شود تنظیم و حفظ کرد (با فرض وجود گاز حامی احتراق و منبع اشتعال).

    WhatsApp Image 2025 09 26 at 9.39.48 AM

    3-2. محدوده انفجاری

    اگر یک گاز قابل اشتعال یا بخار ناشی از یک مایع قابل اشتعال با هوا یا اکسیژن مخلوط شود، در صورت وجود منبع احتراق و قرار گرفتن غلظت در محدوده خاصی، منفجر خواهد شد. این محدوده غلظت، محدوده انفجاری نامیده می‌شود. حد پایینی غلظت، حد انفجاری پایین (LEL) و حد بالایی غلظت، حد انفجاری بالا (UEL) نام دارد.

    WhatsApp Image 2025 09 26 at 9.39.48 AM1

    مثال: هیدروژن

    حد انفجاری پایین مقداری است که به صورت تجربی تعیین می‌شود، اما نتایج به‌دست‌آمده ممکن است بسته به شرایط و روش‌های آزمایش متفاوت باشد. بنابراین احتیاط لازم است و مقادیر ذکرشده ممکن است بسته به منبع مرجع متغیر باشند.

     

    رایج است که آشکارسازهای گاز، غلظت گاز را بر اساس حد انفجاری پایین پایش می‌کنند. دلیل این امر آن است که حتی اگر غلظت گاز از حد انفجاری بالا بیشتر باشد، در صورت نشت گاز به اتمسفر، گاز بلافاصله رقیق شده و پخش می‌شود و غلظت آن به محدوده انفجاری می‌رسد. واحد %LEL معمولاً برای بیان غلظت نسبت به حد انفجاری پایین استفاده می‌شود (100%LEL).

     

    3-3. بخار قابل اشتعال

    اگرچه هر دو در حالت گازی هستند، اما گاز و بخار به طور کلی به دو چیز متفاوت اشاره دارند. بخار به ماده‌ای گفته می‌شود که در دمای معمولی به حالت مایع (یا جامد) وجود دارد، اما تحت شرایط خاصی از فاز مایع به فاز گازی تبخیر می‌شود. ویژگی‌های فیزیکی زیر، که بر اساس تغییرات دما تعیین می‌شوند، مشخص می‌کنند که آیا بخار قابل اشتعال می‌تواند به یک خطر تبدیل شود یا خیر.

     

    1. فشار بخار اشباع

    این فشار به فشاری اشاره دارد که در آن یک ماده در دمای خاصی از مایع به گاز تبخیر می‌شود. فشار بخار معمولاً با افزایش دما بالا می‌رود. دمایی که در آن فشار برابر با فشار اتمسفر (101.3 کیلوپاسکال ≈ 760 میلی‌متر جیوه) می‌شود، نقطه جوش نامیده می‌شود. غلظت (غلظت حجمی) گازی که در دمای خاصی تبخیر می‌شود را می‌توان با محاسبه درصد فشار بخار نسبت به فشار اتمسفر تعیین کرد.

    WhatsApp Image 2025 09 26 at 9.39.49 AM

    شکل بالا، منحنی‌های فشار بخار اشباع برای اتانول و آب را نشان می‌دهد. از آنجا که نقطه جوش آب ۱۰۰ درجه سانتی‌گراد است، مشاهده می‌شود که منحنی فشار بخار در فشار ۱۰۱.۳ کیلوپاسکال، دمای ۱۰۰ درجه سانتی‌گراد را نشان می‌دهد. به عبارت دیگر، غلظت بخار آب اشباع در این نقطه ۱۰۰ درصد حجمی است.

     

    از طرف دیگر، اتانول مایعی فرّارتر از آب است (یعنی فشار بخار بالاتری دارد)، همانطور که هر کسی که قبل از تزریق در بیمارستان با اتانول ضدعفونی شده باشد، به راحتی درک می‌کند. در عمل، نقطه جوش اتانول ۷۸ درجه سانتی‌گراد است. این داده نیز نشان می‌دهد که اتانول فرّارتر از آب است.

     

    می‌توانیم غلظت گاز اتانول را در دمای خاصی بر اساس فشار بخار آن دما محاسبه کنیم. به عنوان مثال، از منحنی فشار بخار اشباع می‌توان دریافت که فشار بخار اتانول در ۲۰ درجه سانتی‌گراد تقریباً ۵.۸ کیلوپاسکال است. این مقدار را می‌توان در معادله زیر قرار داد تا غلظت گاز محاسبه شود:

     

    =غلظت گاز (درصد حجمی) = (فشار بخار در دمای مشخص) ÷ (فشار اتمسفر) × ۱۰۰

    = ۵.۸ (kPa) ÷ ۱۰۱.۳ (kPa) × ۱۰۰

    = ۵.۷ درصد حجمی

     

    این محاسبه ارزش به خاطر سپردن دارد. حتی اگر منحنی فشار بخار مانند شکل بالا در دسترس نباشد، معمولاً برگه اطلاعات ایمنی (SDS) ارائه‌شده توسط تولیدکننده مواد شیمیایی، داده‌های فشار بخار را برای دماهای معمولی (۲۰ تا ۳۰ درجه سانتی‌گراد) شامل می‌شود که می‌توان از آنها برای محاسبه غلظت گاز استفاده کرد.

     

    ۲. نقطه اشتعال (Flash Point)

    نقطه اشتعال به کمترین دمایی اشاره دارد که در آن، غلظت بخار یک ماده در هوا به حدی می‌رسد که در صورت وجود منبع احتراق، قابلیت اشتعال پیدا می‌کند. این دما را می‌توان به عنوان دمایی تفسیر کرد که در آن، غلظت بخار قابل اشتعال به حد انفجاری پایین (LEL) می‌رسد. اگر نقطه اشتعال مایعی که بخار قابل اشتعال تولید می‌کند، پایین‌تر از دمای محیطی باشد که مایع در آن استفاده می‌شود، به دلیل خطر بالای آتش‌سوزی و انفجار، احتیاط زیادی در ارزیابی خطر اشتعال لازم است.

     

    ۳. نقطه خودسوزی (Ignition Point)

    این دما به کمترین دمایی اشاره دارد که یک ماده قابل اشتعال در هوا، به دلیل افزایش دمای خود ماده (و نه تماس موضعی با یک جسم داغ مانند جرقه الکتریکی، شعله یا سیم فلزی گداخته) به صورت خودبه‌خود مشتعل می‌شود. تولیدکنندگان تجهیزات الکتریکی ضد انفجار باید دستگاه‌ها را به گونه‌ای طراحی و تولید کنند که دمای سطحی تجهیزات که احتمال تماس با گاز یا بخار قابل اشتعال را دارد، از نقطه خودسوزی گاز یا بخار مربوطه تجاوز نکند.

    ۴-۱. خطرات گازهای سمی

    گازهای مورد استفاده یا تولیدشده به عنوان گازهای فرآیندی در صنایع مختلف، شامل گازهای سمی هستند که حتی در غلظت‌های بسیار کم می‌توانند آسیب‌های جدی به سلامت انسان وارد کنند یا حتی منجر به مرگ شوند.

     

    برخی گازها مانند **سولفید هیدروژن (H₂S)** و **آمونیاک (NH₃)** بوی مشخصی دارند که انسان می‌تواند حضور آن‌ها را تشخیص دهد. با این حال، حس بویایی انسان قادر نیست تعیین کند که آیا غلظت این گازها به سطوح خطرناک رسیده است یا خیر (به عنوان مثال، حد آستانه مجاز مواجهه شغلی برای H₂S موسوم به **TLV-TWA: 1 ppm** طبق استاندارد ACGIH 2018).

     

    **۱ ppm** معادل غلظتی است که با اضافه کردن تنها **یک قطره (۱ میلی‌لیتر = ۱ گرم یا ۱ سی‌سی)** از یک مایع سمی به یک مخزن بزرگ **۱۰۰۰ لیتری (۱ تن یا ۱ مترمکعب)** آب و مخلوط کردن کامل آن به دست می‌آید. فرض کنید این یک قطره (۱ ppm) سس سویا باشد. نه تنها تشخیص آن پس از مخلوط شدن به صورت بصری غیرممکن است، بلکه حتی با چشیدن نیز قابل تشخیص نخواهد بود. هرچند گازها با مایعات متفاوت هستند، بسیاری از گازهای سمی هم **بی‌رنگ** و هم **بی‌بو** هستند.

     

    یک نمونه از چنین گاز سمی، **مونوکسید کربن (CO)** است که گازی بالقوه کشنده بوده و می‌تواند در اثر احتراق ناقص بخاری‌های گازی در منازل تولید شود. این گاز گاهی اوقات به عنوان **قاتل خاموش** شناخته می‌شود، زیرا می‌تواند بدون آنکه تشخیص داده شود، باعث مسمومیت یا مرگ شود.

    ### **۵-۱. خطرات کمبود اکسیژن**

     

    اکسیژن ماده‌ای ضروری برای حفظ عملکرد بیولوژیکی انسان است. **کمبود اکسیژن (هیپوکسی)** تأثیرات جدی بر بدن، به‌ویژه مغز، می‌گذارد و وضعیتی بسیار خطرناک با نرخ مرگ‌ومیر بالا در محیط‌های کاری محسوب می‌شود.

    WhatsApp Image 2025 09 26 at 9.39.53 AM

    بررسی حوادث صنعتی مرتبط با کمبود اکسیژن در ژاپن نشان می‌دهد که بیشتر این موارد در بخش‌های **تولیدی و ساختمانی** رخ داده و سالانه منجر به تلفات متعددی می‌شود.

     

    **طبق آیین‌نامه پیشگیری از کمبود اکسیژن در قانون ایمنی و بهداشت صنعتی ژاپن:**

    – **شرایط کمبود اکسیژن** زمانی است که غلظت اکسیژن در هوا کمتر از ۱۸٪ باشد.

    – از دتکتورهای گاز برای اطمینان از حفظ غلظت اکسیژن بالاتر از ۱۸٪ استفاده می‌شود.

     

    ### **علائم کمبود اکسیژن:**

    – **۱۸٪ – ۱۶٪ اکسیژن:** افزایش تنفس، ضربان قلب سریع‌تر، اختلال در قضاوت و هماهنگی حرکتی.

    – **۱۶٪ – ۱۲٪ اکسیژن:** تنفس سنگین، گیجی، سردرد، خواب‌آلودگی، کاهش قدرت تفکر و حرکت.

    – **۱۲٪ – ۱۰٪ اکسیژن:** حالت تهوع، استفراغ، بیهوشی جزئی، کبودی لب‌ها و پوست.

    – **زیر ۱۰٪ اکسیژن:** بیهوشی، تشنج، آسیب مغزی، ایست تنفسی و مرگ در مدت‌زمان کوتاه.

     

    **هشدار:** در محیط‌های بسته یا فضاهای محدود (مانند مخازن، تونل‌ها، چاه‌ها) احتمال کاهش اکسیژن به‌دلیل واکنش‌های شیمیایی، جابجایی با گازهای دیگر یا مصرف اکسیژن وجود دارد. نظارت مستمر با دستگاه‌های سنجش اکسیژن و استفاده از تجهیزات تنفسی مناسب الزامی است.**

    البته، در ادامه ترجمه‌ی دقیق و روان متن موردنظر بدون هیچگونه افزودنی ارائه شده است:

     

    5-2. سه علت اصلی کمبود اکسیژن

    1. مصرف اکسیژن موجود در هوا
      علل اصلی مصرف اکسیژن:
      اکسیداسیون آهن و فلزات دیگر (ماسه آهن، لوله‌های فلزی، مخازن فلزی)،
      اکسیداسیون رنگ، مصرف زیستی اکسیژن (تنفس انسان‌ها و میکروارگانیسم‌ها)
    2. تخلیه یا ورود هوای کم‌اکسیژن
      هوای کم‌اکسیژن که به دلایل مختلفی ایجاد می‌شود، در صورتی که به‌دلیل شرایط کاری، روش‌های ساخت‌وساز یا شرایط آب‌وهوایی، تخلیه یا وارد مکان‌هایی با کمبود اکسیژن شود، می‌تواند موجب بی‌اکسیژنی گردد.
    3. تولید متان یا ورود گاز بی‌اثر
      کمبود اکسیژن می‌تواند ناشی از انتشار متان (که در طبیعت وجود دارد) یا نشت گازهای بی‌اثر (مانند نیتروژن، دی‌اکسید کربن، آرگون) از مخازن یا لوله‌ها در صنایع تولیدی باشد.

     

    5-3. اکسیژن بیش‌ازحد
    اگرچه اکسیژن برای عملکرد زیستی انسان ضروری است، اما قرارگیری مداوم در معرض غلظت‌ها یا فشارهای جزئی بالای اکسیژن می‌تواند منجر به مسمومیت با اکسیژن شود.
    مسمومیت با اکسیژن باعث تشنج عمومی و از دست دادن هوشیاری می‌شود و در بدترین حالت، منجر به مرگ می‌گردد.
    در محیط‌هایی که امکان بروز اکسیژن بیش‌ازحد وجود دارد، باید غلظت گازها نه‌فقط برای کمبود اکسیژن (کمتر از ۱۸٪)، بلکه برای جلوگیری از غلظت‌های بیش‌ازحد نیز پایش شود.

    البته، در ادامه ترجمه‌ی دقیق و روان متن خواسته‌شده بدون هیچ‌گونه افزودنی آورده شده است:

     

    مناطق معمولی که نیاز به تشخیص گاز دارند
    6-1. بازار دستگاه‌های گازسنج
    بازار دستگاه‌های گازسنج شامل تمامی بازارهایی است که در آن‌ها از گاز استفاده می‌شود.

    1. آزمایشگاه‌ها، دانشگاه‌ها، بیمارستان‌ها
      مراکز تحقیقاتی که از طیف گسترده‌ای از گازها، از جمله گازهای قابل اشتعال و سمی استفاده می‌کنند، تدابیری برای ایمنی کارکنان تحقیقاتی اتخاذ می‌کنند؛ مانند تشخیص سریع نشت گاز از طریق پایش محیط با استفاده از گازسنج‌های ثابت شرکت Riken Keiki.
      علاوه بر گازسنج‌ها، سیستم‌های تحلیلی که قادر به انجام هم‌زمان تحلیل پراش اشعه ایکس (XRD) و فلورسانس اشعه ایکس (XRF) در محل هستند نیز برای کاربردهایی مانند تحقیقات روی آثار فرهنگی غیرقابل‌انتقال مورد استفاده قرار می‌گیرند.
    2. صنعت الکترونیک
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD از گازهایی موسوم به گازهای مواد ویژه (گازهای بسیار سمی و قابل اشتعال) مانند سیلان، آرسین و فسفین استفاده می‌کنند.
      در مورد این گازها، نشت در غلظت‌های بسیار پایین (چند ppm تا چند ده ppm) نیز غیرقابل‌قبول است.
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD ممکن است صدها تا هزاران دستگاه گازسنج Riken Keiki برای محافظت از کارکنان در برابر نشت گاز نصب کرده باشند.
      این دستگاه‌ها مجهز به حسگرهای روش الکترولیز پتانسیواستاتیکی هستند که قادر به تشخیص نشت گاز در حد چند ppm می‌باشند.

     

    1. صنعت فولاد
      گازهایی که به‌عنوان محصولات جانبی در فرآیندهای تولید فولاد (گاز کک، گاز کوره بلند، گاز مبدل) تولید می‌شوند، دارای مقادیر زیادی هیدروژن و مونوکسید کربن هستند.
      این گازها به‌عنوان سوخت برای تولید برق در کارخانه‌های فولاد مجدداً مورد استفاده قرار می‌گیرند.
      گازسنج‌های قابل‌حمل Riken Keiki کارکنان داخل کارخانه‌های فولاد را در برابر خطرات انفجار و مسمومیت محافظت می‌کنند.

     

    1. صنعت پالایش نفت و پتروشیمی
      صنعت پالایش نفت و پتروشیمی در فرآیندهای تولید خود با طیف گسترده‌ای از گازهای قابل اشتعال و سمی سروکار دارد.
      گازسنج‌های ثابت و قابل‌حمل Riken Keiki در کاربردهایی مانند تشخیص نشت گازهای سمی و قابل اشتعال از تجهیزات و لوله‌ها، مدیریت فرآیند و اندازه‌گیری محیط کار مورد استفاده قرار می‌گیرند.
      پایشگرهای ثابت گازهای سمی برای مدیریت گازهای سمی در مرزهای کارخانه نیز به‌طور فزاینده‌ای مورد استفاده قرار می‌گیرند
    2. مناطق آتشفشانی و چشمه‌های آب گرم
      گازهای آتشفشانی در نزدیکی دهانه‌های آتشفشان و در مناطقی که چشمه‌های آب گرم تخلیه می‌شوند، تولید می‌گردند.
      این گازهای آتشفشانی حاوی گازهای سمی مانند دی‌اکسید گوگرد و سولفید هیدروژن هستند که در صورت استنشاق برای انسان مضرند.
      غلظت این گازها به‌طور مداوم به‌دلیل فعالیت‌های آتشفشانی و عوامل دیگر تغییر می‌کند.
      دستگاه‌های گازسنج تخصصی برای پایش شبانه‌روزی غلظت دی‌اکسید گوگرد و سولفید هیدروژن به کار می‌روند تا از کارکنان و گردشگران محافظت شود.

     

    1. صنعت مواد غذایی
      در صنعت مواد غذایی، نیتروژن و دی‌اکسید کربن در فرآیند بسته‌بندی برای جلوگیری از اکسید شدن غذا مورد استفاده قرار می‌گیرند.
      از آنجا که این گازها خفه‌کننده هستند، گازسنج‌های اکسیژن تخصصی در کارخانه‌های مواد غذایی نصب می‌شوند تا از کارکنان در برابر بی‌اکسیژنی محافظت کنند.

     

    1. صنعت ساخت‌وساز
      کار در حفاری‌های زیرزمینی برای ساخت تونل‌ها و همچنین کار درون منهول‌ها می‌تواند کارکنان را در معرض تولید سولفید هیدروژن و شرایط کمبود اکسیژن قرار دهد؛ این وضعیت ناشی از باکتری‌های مصرف‌کننده اکسیژن موجود در لایه‌های زیرزمینی است.
      گازسنج‌های قابل‌حمل اکسیژن و سولفید هیدروژن از کارکنان در برابر خطرات ناشی از کمبود اکسیژن و مسمومیت با سولفید هیدروژن محافظت می‌کنند.
    2. آتش‌نشانی و امداد و نجات
      صحنه‌های آتش‌سوزی و حوادث، کارکنان را در معرض خطرات مختلفی قرار می‌دهند؛ از جمله انفجار ناشی از گازهای قابل اشتعال، کمبود اکسیژن، مسمومیت با مونوکسید کربن در اثر احتراق ناقص، و گازهای سمی مانند سولفید هیدروژن.
      گازسنج‌های شخصی چهارگازه برای پایش هم‌زمان چهار گاز مختلف استفاده می‌شوند. این دستگاه‌ها برای موقعیت‌هایی که نوع دقیق گازهای خطرناک ناشناخته است، بسیار مناسب هستند.

     

    1. حمل‌ونقل دریایی و کشتی‌سازی
      کشتی‌هایی که مقادیر زیادی نفت خام، LNG یا LPG حمل می‌کنند، با خطر نشت گازهای قابل اشتعال از مخازن بار مواجه هستند.
      گازسنج‌های ثابت تخصصی برای پایش نشت گاز در این کشتی‌ها به‌کار می‌روند. این دستگاه‌ها امکان شناسایی سریع نشت‌ها را فراهم کرده و از وقوع انفجار و آلودگی دریایی جلوگیری می‌کنند.
      همچنین، گازسنج‌های قابل‌حمل توسط کارکنان در حین انجام عملیات ساخت‌وساز پوشیده می‌شوند تا آن‌ها را در برابر کمبود خطرناک اکسیژن و مسمومیت با گازهای سمی محافظت کنند.

     

    1. هوافضا
      سوخت موشک‌ها حاوی هیدروژن (گاز قابل اشتعال و بسیار انفجاری) و هیدرازین (گاز سمی برای انسان) است.
      پایش این گازها برای ایمنی کاملاً ضروری است.
      گازسنج‌های ضدانفجار در مکان‌هایی که خطر انفجار بالا وجود دارد، مانند مناطقی که سوخت موشک با آن‌ها سروکار دارد، برای اطمینان از ایمنی استفاده می‌شوند.

    فناوری‌های تشخیص گاز
    7-1. فناوری‌های حسگر گاز
    برای مواجهه با محیط‌ها و انواع گازهای متنوع در طیف گسترده‌ای از صنایع، فناوری‌های مختلف حسگر گاز توسعه یافته‌اند.
    در این بخش، ۱۳ نوع از رایج‌ترین فناوری‌هایی که معمولاً در صنعت استفاده می‌شوند معرفی می‌گردند:

    1. روش احتراق کاتالیستی
    2. روش جدید کاتالیستی سرامیکی
    3. روش نیمه‌رسانا
    4. روش نیمه‌رسانای سیم داغ
    5. روش رسانش گرمایی
    6. روش الکترولیز پتانسیواستاتیکی
    7. روش الکترود با غشای جداکننده
    8. روش سلول گالوانیکی با غشای نفوذپذیر
    9. روش مادون قرمز غیرپراکنشی (NDIR)
    10. روش تداخل‌سنجی
    11. روش نوار شیمیایی
    12. آشکارساز یونش نوری (PID)
    13. روش آشکارسازی ذرات ناشی از پیرولیز

    7-2. روش احتراق کاتالیستی

    1. توضیح مختصر

    این حسگر بر پایه گرمای تولیدشده از سوزاندن گاز قابل اشتعال روی کاتالیست اکسیداسیون، گاز را شناسایی می‌کند. این حسگر رایج‌ترین حسگر گاز است که به‌طور خاص برای گازهای قابل اشتعال طراحی شده است.

    WhatsApp Image 2025 09 26 at 9.39.54 AM

    1. ساختار و اصول عملکرد

    [ساختار]
    این حسگر از یک المان آشکارساز و یک المان جبرانی تشکیل شده است.
    المان آشکارساز شامل سیم پیچ فلز گران‌بها (مانند پلاتین) و کاتالیست اکسیدکننده – ماده‌ای فعال در برابر گاز قابل اشتعال – است که همراه با یک پایه آلومینا روی سیم پخته (سینتر) شده‌اند. این المان در واکنش با هر گاز قابل شناسایی می‌سوزد.
    المان جبرانی شامل سیم پیچ فلز گران‌بها و شیشه – ماده‌ای غیرفعال در برابر گاز قابل اشتعال – است که همراه با پایه آلومینا روی سیم پخته شده‌اند. این المان اثرات محیط را تصحیح می‌کند.

    [اصول عملکرد]
    سیم پیچ فلز گران‌بها، المان آشکارساز را تا دمای ۳۰۰ تا ۴۵۰ درجه سانتی‌گراد گرم می‌کند. سپس گاز قابل اشتعال روی سطح المان آشکارساز می‌سوزد و دمای آن افزایش می‌یابد.
    با تغییر دما، مقاومت سیم پیچ فلز گران‌بها – که بخشی از المان است – تغییر می‌کند. این تغییر مقاومت تقریباً متناسب با غلظت گاز است.
    مدار پل نشان‌داده‌شده در شکل سمت راست به حسگر اجازه می‌دهد تغییر مقاومت را به ولتاژ تبدیل کرده و از آن برای تعیین غلظت گاز استفاده کند.

    حسگر ثابت –
    دسته: حالت جامد
    گاز قابل شناسایی: گازهای قابل اشتعال

     

     

    ویژگی‌ها

    O ویژگی‌های خروجی:
    سیم پیچ فلز گران‌بها که منبع حرارت است، ضریب مقاومت وابسته به دما را به‌صورت خطی تغییر می‌دهد.
    در محدوده غلظت کمتر از حد انفجار (LEL)، واکنش احتراقی متناسب با غلظت گاز است.
    در این محدوده، خروجی حسگر به‌آرامی متناسب با تغییرات غلظت گاز تغییر می‌کند.

    WhatsApp Image 2025 09 26 at 9.39.54 AM1

    پاسخ‌دهی:
    گرمای احتراق تولیدشده روی سطح المان آشکارساز به سیم پیچ فلز گران‌بها منتقل شده و مقاومت مدار پل را تغییر می‌دهد و سپس به سیگنال تبدیل می‌گردد.

    WhatsApp Image 2025 09 26 at 9.39.55 AM

    با نرخ واکنش بالا، این حسگر در پاسخ‌دهی، دقت و قابلیت تکرار عملکرد بسیار خوبی دارد.

    O ویژگی‌های دما و رطوبت:
    مواد به‌کاررفته در اجزای حسگر دارای مقاومت الکتریکی بالا هستند و کمتر تحت تأثیر دما و رطوبت محیط استفاده قرار می‌گیرند، بنابراین قرائت‌ها تقریباً ثابت باقی می‌مانند.

    WhatsApp Image 2025 09 26 at 9.39.55 AM1

    توسعه کاتالیست:
    المان آشکارساز از کاتالیستی استفاده می‌کند که واکنش احتراقی را تسهیل می‌کند.
    این کاتالیست به‌طور اختصاصی برای حسگرهای گاز توسعه یافته و با بهره‌گیری از دانش فنی خاص طراحی شده است، که پایداری بلندمدت را فراهم می‌کند.

     

    ۷–۴. تشخیص گاز با دتکتورهای گاز نیمه‌رسانا

    حسگر ثابت

    **۱. شرح مختصر دتکتورهای گاز نیمه‌رسانا

    این حسگر از یک نیمه‌رسانای اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. حسگر این تغییر مقاومت را به‌عنوان غلظت گاز تشخیص می‌دهد. این یک حسگر همه‌کاره است که انواع گازها از گازهای سمی تا گازهای قابل اشتعال را شناسایی می‌کند. 

     

    **۲. ساختار و اصول کار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی         تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا        در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند

    **[ساختار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی (SnO₂) تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا (Au) در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند. 

    WhatsApp Image 2025 09 26 at 9.39.55 AM2

     

    **[اصول کار دتکتورهای گاز نیمه‌رسانا

    سیم گرم‌کن، سطح نیمه‌رسانای اکسید فلزی را تا ۴۰۰–۳۵۰°C گرم می‌کند. با جذب اکسیژن هوا روی این سطح به‌صورت O و O₂، نیمه‌رسانا مقاومت ثابتی حفظ می‌کند. سپس، گاز متان یا مشابه آن با سطح تماس یافته و جذب شیمیایی می‌شود. این گاز توسط یون‌های O اکسید شده و تجزیه می‌شود. واکنش روی سطح حسگر به‌صورت زیر است: 

     

    CH₄ + ۴O⁻ → CO₂ + ۲H₂O + ۸e⁻ 

    WhatsApp Image 2025 09 26 at 9.39.56 AM

    به‌طور خلاصه، گاز متان روی سطح حسگر جذب شده و اکسیژن جذب‌شده را جدا می‌کند. این امر الکترون‌های آزاد درون حسگر را افزایش داده و مقاومت را کاهش می‌دهد. حسگر با اندازه‌گیری تغییر مقاومت، غلظت گاز را تعیین می‌کند. 

     

    **۳. ویژگی‌های دتکتورهای گاز نیمه‌رسانا 

    **ویژگی‌های خروجی دتکتورهای گاز نیمه‌رسانا

    حسگر تغییرات مقاومت نیمه‌رسانا را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (در سطح ppm) که توسط حسگرهای سرامیکی جدید قابل تشخیص نیستند را نیز شناسایی می‌کند. این حسگر برای غلظت‌های کم بسیار حساس بوده و سطح خروجی بالایی دارد. 

    WhatsApp Image 2025 09 26 at 9.39.56 AM1

    **تشخیص گازهای سمی در دتکتورهای گاز نیمه‌رسانا

    از آنجا که در اصل، مقاومت با تغییر تعداد الکترون‌ها و تحرک آن‌ها تغییر می‌کند، این حسگر طیف وسیعی از گازها از جمله گازهای سمی که گرمای احتراق کمتری تولید می‌کنند را تشخیص می‌دهد. 

     

    **ویژگی‌های پیری دتکتورهای گاز نیمه‌رسانا

    حسگر در بلندمدت پایداری خود را حفظ کرده و عمر طولانی دارد. در مقایسه با حسگرهای مبتنی بر احتراق کاتالیستی، این نوع حسگر مقاومت بالایی در برابر سمیت و شرایط سخت جوی دارد. 

     

    **انتخاب‌پذیری گاز در دتکتورهای گاز نیمه‌رسانا

    با افزودن ناخالصی به ماده نیمه‌رسانا، اثر تداخل تغییر می‌کند. این ویژگی به حسگر اجازه می‌دهد تا برخی گازها را به‌صورت انتخابی تشخیص دهد.

     

     

     

    ۷-۵.تشخیص گاز از طریق روش نیمه‌هادی نوع سیم داغ

     

    سنسور ثابت

    سنسور قابل حمل نیمه‌هادی نوع سیم داغ

     

    ۱. شرح مختصر از دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    این سنسور از یک نیمه‌هادی اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. سنسور این تغییر مقاومت را به عنوان غلظت گاز تشخیص می‌دهد. این یک سنسور گاز با حساسیت بالا برای غلظت‌های کم است.

     

    ۲. ساختار و اصول  دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    [ساختار]

    سنسور از یک المان تشخیصی تشکیل شده است که شامل یک سیم پیچ از جنس فلز گران‌بها (مثلاً پلاتین) و یک نیمه‌هادی اکسید فلزی پخته شده روی سیم پیچ است، و یک المان جبرانی که ماده‌ای غیرفعال در برابر گازهای قابل تشخیص روی آن پخته شده است.

    WhatsApp Image 2025 09 26 at 9.39.57 AM

    [اصول  عملکرد دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM1

    مقاومت (R) المان تشخیصی، ترکیبی از مقاومت (RS) نیمه‌هادی و مقاومت (RH) سیم پیچ فلز گران‌بها است. المان تشخیصی توسط سیم پیچ فلز گران‌بها تا ۳۰۰°C تا ۴۰۰°C گرم می‌شود و مقاومت ثابتی را حفظ می‌کند. سپس، گاز متان یا مشابه با المان تشخیصی تماس پیدا می‌کند و اکسیژن جذب شده روی سطح نیمه‌هادی اکسید فلزی را جدا می‌کند. این امر تعداد الکترون‌های آزاد در داخل نیمه‌هادی را افزایش داده و مقاومت نیمه‌هادی را کاهش می‌دهد. در نتیجه مقاومت کل المان تشخیصی کاهش می‌یابد. با تشخیص تغییر مقاومت توسط مدار پل، سنسور غلظت گاز را تعیین می‌کند.

     

    رده جامد

    گاز قابل تشخیص

     

    ۳. ویژگی‌های دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    ویژگی‌های خروجی  دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM2

    سنسور تغییرات مقاومت نیمه‌هادی را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (سطح ppm) که توسط سنسورهای سرامیکی جدید قابل تشخیص نیستند را نیز تشخیص می‌دهد.

     

     

     

    کوچک‌سازی و صرفه‌جویی در انرژی  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سیم پیچ فلز گران‌بها برای گرم‌کن را می‌توان کوچک‌تر کرد تا سنسوری کوچکتر با مصرف انرژی کمتر فراهم شود.

     

    ویژگی‌های پیری  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سنسور در بلندمدت پایداری خود را حفظ می‌کند و عمر طولانی دارد. در مقایسه با سنسورهای مبتنی بر احتراق کاتالیستی، این نوع سنسور مقاومت بالایی در برابر سمیت و جو شدید دارد.

     

    انتخاب‌پذیری گاز  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    با افزودن یک ناخالصی به نیمه‌هادی اکسید فلزی، اثر تداخل تغییر می‌کند. این ویژگی به سنسور اجازه می‌دهد تا برخی گازها را به صورت انتخابی تشخیص دهد.

     

     

    دتکتور گاز رسانائی گرمائی

    1. توضیح مختصر دتکتور گاز رسانائی گرمائی

     

    این دتکتور با تشخیص تفاوت در رسانایی گرمایی، غلظت گاز را تعیین می‌کند. این یک دتکتور اثبات‌شده برای گازهای قابل اشتعال است که به‌طور مؤثر گازهای با غلظت بالا را تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM

    [ساختار  دتکتور گاز رسانائی گرمائی

    این دتکتور از یک المان تشخیص و یک المان جبران تشکیل شده است. المان‌های تشخیص و جبران در دو نوع موجود هستند: یکی شامل یک سیم‌پیچ پلاتین و مخلوطی از شیشه (یک ماده غیرفعال در برابر گاز قابل اشتعال) و یک پایه آلومینا است که روی سیم‌پیچ پخته شده است، و دیگری شامل یک سیم‌پیچ و یک فلز غیرفعال یا مشابه است که روی سیم‌پیچ پوشش داده شده است. المان تشخیص به گونه‌ای طراحی شده است که گازهای قابل تشخیص با آن تماس پیدا کنند. المان جبران محصور شده است تا هیچ گاز قابل تشخیصی با آن تماس نداشته باشد.

     

    [اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM1

    سیم‌پیچ پلاتین، المان تشخیص را تا 200 تا 500 درجه سانتی‌گراد گرم می‌کند. سپس، یک گاز قابل تشخیص با المان تشخیص تماس پیدا می‌کند و به دلیل رسانایی گرمایی خاص گاز، شرایط اتلاف گرما را تغییر می‌دهد و دمای المان تشخیص را افزایش می‌دهد. با این تغییر دما، مقاومت سیم‌پیچ پلاتین، که بخشی از المان است، تغییر می‌کند. تغییر مقاومت تقریباً متناسب با غلظت گاز است.

     

    با تشخیص تغییر مقاومت توسط مدار پل، دتکتور غلظت گاز را تعیین می‌کند.

     

    1. ویژگی‌های دتکتور گاز رسانائی گرمائی

     

    ویژگی‌های خروجی  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور تغییرات مقاومت سیم‌پیچ پلاتین را تشخیص می‌دهد، خروجی تا رسیدن به صد درصد حجمی تقریباً متناسب با غلظت است. این دتکتور برای تشخیص گازهای با غلظت بالا مناسب است.

    WhatsApp Image 2025 09 26 at 9.39.59 AM

    تشخیص در شرایط بی‌اکسیژن  دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.59 AM1

    از آنجا که دتکتور تغییرات رسانایی گرمایی را تشخیص می‌دهد، می‌تواند گازها را حتی در جو بی‌اکسیژن نیز تشخیص دهد. اما گازهایی با تفاوت کوچک در رسانایی گرمایی با گاز مرجع را تشخیص نمی‌دهد.

     

    دتکتور به‌صورت فیزیکی تغییرات رسانایی گرمایی گاز را تشخیص می‌دهد و شامل واکنش شیمیایی مانند واکنش احتراق نیست. این بدان معناست که با تخریب یا مسمومیت کاتالیزور ارتباطی ندارد و پایداری بلندمدت را فراهم می‌کند.

     

    تشخیص گازهای غیرقابل اشتعال  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور از رسانایی گرمایی خاص گاز استفاده می‌کند، حتی گازهای غیرقابل اشتعال با تفاوت زیاد در رسانایی گرمایی، مانند آرگون، نیتروژن و دی‌اکسید کربن با غلظت بالا را نیز تشخیص می‌دهد.

     

     

     

     

     

    ۷-۷. روش الکترولیز پتانسیواستاتیک

     

     

    ۱. شرح مختصر دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.39.59 AM2

    این دتکتور گاز قابل تشخیص را با استفاده از یک الکترود در پتانسیل ثابت الکترولیز می‌کند تا جریان ایجاد شود و سپس با اندازه‌گیری جریان، غلظت گاز را تعیین می‌نماید. این دتکتور گاز برای تشخیص گازهای سمی بسیار مناسب است. می‌توان پتانسیل خاصی را برای تشخیص گاز خاصی تنظیم کرد.

     

    ۲. ساختار و اصول  دتکتور گاز الکترولیز پتانسیواستاتیک

    [ساختار دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک الکترود (الکترود عمل) همراه با یک غشاء نفوذپذیر گاز و کاتالیزور (مثل طلا یا پلاتین)، الکترود مرجع و الکترود مقابل تشکیل شده که درون محفظه‌ای پلاستیکی پر از محلول الکترولیت قرار گرفته‌اند.

     

    [اصول عملکرد دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک مدار پتانسیواستاتیک برای ثابت نگه داشتن پتانسیل بین الکترود عمل و الکترود مرجع استفاده می‌کند. الکترود عمل گاز قابل تشخیص را مستقیماً الکترولیز می‌کند. اگر گاز قابل تشخیص H2S باشد، واکنش‌های زیر رخ می‌دهد:

    الکترود عمل: H2S + 4H2O → H2SO4 + 8H+ + 8e

    الکترود مقابل: 2O2 + 8H+ + 8e → 4H2O

    جریان تولیدشده متناسب با غلظت گاز است. با اندازه‌گیری جریان بین الکترود عمل و الکترود مقابل، دتکتور غلظت گاز را تعیین می‌کند.

     

    ۳. ویژگی‌های دتکتور گاز الکترولیز پتانسیواستاتیک

    ویژگی‌های خروجی دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون تغییر خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

     

    واکنش‌دهی  دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM1

    منحنی پاسخ همانطور که در شکل سمت راست نشان داده شده است. دتکتور با استفاده از واکنش کاتالیزوری گاز را به جریان تبدیل می‌کند. از آنجا که H2S کاتالیزور الکترود را تغییر نمی‌دهد، دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

    ویژگی‌های پیری  دتکتور گاز الکترولیز پتانسیواستاتیک

    تقریباً تا دو سال، حساسیت دتکتور در سطح حدود ۸۰٪ حساسیت اولیه باقی می‌ماند. از آنجا که رطوبت تأثیر جزئی بر حساسیت دارد، ممکن است خوانش بسته به فصل تغییر کند.

     

    ویژگی‌های دمای دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.01 AM

    با خوانش تقریباً پایدار در دماهای بالا، حساسیت دتکتور با کاهش دما ممکن است کاهش یابد. حتی در ۰°C، حساسیت دتکتور کمتر از ۸۰٪ نخواهد شد. با انجام تصحیح دما، نوسانات خوانش به حداقل می‌رسد.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    ۷-۸. روش تشخیص گاز با دتکتور گاز با الکترود با غشای جداکننده

    ۱. شرح مختصر  دتکتور گاز با الکترود با غشای جداکننده

    بر اساس اصول دتکتور پایه‌گذاری شده بر الکترولیز پتانسیواستاتیک، این دتکتور با یک فیلم نفوذپذیر گاز (غشای جداکننده) و یک الکترود عمل کاملاً جدا از هم ساختار یافته است. این یک دتکتور گاز سمی با انتخاب‌پذیری عالی است.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    . ساختار و اصول  دتکتور گاز با الکترود با غشای جداکننده

    [ساختار دتکتور گاز با الکترود با غشای جداکننده

    دتکتور با یک الکترود عمل – یک الکترود فلزی با یک فیلم نفوذپذیر گاز که روی آن قرار گرفته – همراه با الکترودهای مرجع و مقابل ساختار یافته است. این الکترودها در یک محفظه پلاستیکی پر از محلول الکترولیت قرار دارند. بین الکترود عمل و فیلم، یک لایه بسیار نازک از محلول الکترولیت وجود دارد.

     

    [اصول دتکتور گاز با الکترود با غشای جداکننده

    یک گاز قابل تشخیص از طریق فیلم نفوذپذیر گاز عبور کرده و با یون‌های موجود در محلول الکترولیت واکنش می‌دهد که هالوژن تولید می‌کند. اگر گاز قابل تشخیص Cl باشد، واکنش زیر رخ می‌دهد:

    Cl2 + 2I- → 2Cl- + I2

    I2 تولید شده توسط این واکنش در الکترود عمل کاهش می‌یابد، باعث می‌شود جریانی از مدار عبور کند. از آنجا که این جریان متناسب با غلظت گاز است، دتکتور مقدار جریان را برای تعیین غلظت گاز اندازه می‌گیرد. گاز قابل تشخیص قبل از واکنش با الکترود عمل با محلول الکترولیت واکنش می‌دهد و بنابراین هیچ تداخلی با گازهایی که با محلول الکترولیت واکنش نمی‌دهند رخ نمی‌دهد. این ویژگی به دتکتور انتخاب‌پذیری عالی می‌بخشد.

     

     

    ۳. ویژگی‌ها ی دتکتور گاز با الکترود با غشای جداکننده

    ویژگی‌های خروجی  دتکتور گاز با الکترود با غشای جداکننده

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون هیچ تغییری خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM

    پاسخ‌دهی  دتکتور گاز با الکترود با غشای جداکننده

    دتکتور به سرعت پاسخ می‌دهد. از آنجا که الکترودها یا محلول الکترولیت به ندرت توسط گاز کلر خورده می‌شوند، دتکتور از دقت و تکرارپذیری عالی برخوردار است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM1

    ویژگی‌های پیری  دتکتور گاز با الکترود با غشای جداکننده

    عملکرد دتکتور با گذشت زمان کاهش نمی‌یابد و تقریباً هیچ تغییری در خروجی مشاهده نمی‌شود. با این حال، اگر فیلم نفوذپذیر گاز به دلیل چسبیدن ذرات خارجی، نفوذپذیری گاز را از دست بدهد، این ممکن است منجر به کاهش خروجی شود.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با الکترود با غشای جداکننده

    WhatsApp Image 2025 09 26 at 9.40.02 AM2

    دماهای بالا تقریباً هیچ تأثیری بر خروجی ندارند در حالی که دماهای پایین احتمالاً خروجی را کاهش می‌دهند. حتی در دمای ۰ درجه سانتی‌گراد، دتکتور حساسیت خود را در سطحی نه کمتر از ۸۰٪ حفظ می‌کند. با انجام تصحیحات دما، نوسانات قرائت به حداقل می‌رسد. خروجی تحت تأثیر رطوبت قرار نمی‌گیرد.

     

    ۷-۹. روش تشخیص گاز با دتکتور گاز با سلول گالوانیک غشایی

     

    ۱. شرح مختصر  دتکتور گاز با سلول گالوانیک غشایی

     

     

    این دتکتور ساده و سنتی بر اساس اصول سلول‌ها عمل می‌کند. این دتکتور بدون نیاز به منبع تغذیه خارجی، پایداری بلندمدت دارد.

     

    ۲. ساختار و اصول  دتکتور گاز با سلول گالوانیک غشایی

     

     

    [ساختار دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.03 AM

    دتکتور از یک کاتد (فلز گران‌بها) و آند (سرب) قرارگرفته در یک محلول الکترولیتی تشکیل شده است. یک غشای جداساز به سطح خارجی کاتد چسبیده است. با اتصال کاتد و آند از طریق یک مقاومت ثابت، مقدار ولتاژ خروجی تولید می‌شود.

     

    [اصول دتکتور گاز با سلول گالوانیک غشایی

     

     

    اکسیژن از غشای جداساز عبور کرده و در کاتد کاهش می‌یابد. همزمان در آند، سرب در محلول الکترولیتی حل می‌شود (اکسید می‌شود). واکنش‌های زیر در الکترودها رخ می‌دهد:

    کاتد: O2 + 2H2O + 4e → 4OH

    آند: 2Pb → 2Pb2+ + 4e

     

    جریان ناشی از واکنش کاهش، توسط مقاومت به ولتاژ تبدیل شده و از ترمینال خروجی خارج می‌شود. خروجی دتکتور متناسب با غلظت اکسیژن (فشار جزئی) است.

     

    ۳. ویژگی‌های دتکتور گاز با سلول گالوانیک غشایی

     

     

    ویژگی‌های خروجی  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.04 AM

    غلظت اکسیژن با مقدار جریان متناسب است. دتکتور مقدار جریان را به ولتاژ تبدیل کرده و سپس آن را خروجی می‌دهد. بنابراین، خروجی دتکتور در محدوده ۰ تا ۱۰۰٪ با غلظت اکسیژن متناسب است.

     

    سرعت پاسخ  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM

    با سرعت پاسخ بالا، این دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

     

     

    ویژگی‌های پیری

    با عمر طولانی، این دتکتور می‌تواند به مدت دو تا سه سال مورد استفاده قرار گیرد.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM1

    دتکتور از یک ترمیستور داخلی برای جبران دمایی استفاده می‌کند، بنابراین خوانش تقریباً به دما وابسته نیست.

    ۷-۱۰.تشخیص گاز به  روش مادون قرمز غیرپاشنده

    ۱. شرح مختصر  دتکتور مادون قرمز غیرپاشنده

    بر اساس این واقعیت که بسیاری از گازها اشعه مادون قرمز را جذب می‌کنند، این دتکتور نور مادون قرمز را به سلول اندازه‌گیری اعمال می‌کند تا تغییرات نور مادون قرمز ناشی از جذب گاز قابل تشخیص را شناسایی کند. این روش تمام نور مادون قرمز در محدوده طول‌موج خاصی را بدون تفکیک (پاشش) نور مادون قرمز بر اساس طول‌موج، به‌صورت یکپارچه تشخیص می‌دهد. WhatsApp Image 2025 09 26 at 9.40.06 AM

    . ساختار و اصول  دتکتور مادون قرمز غیرپاشنده

    [ساختار دتکتور مادون قرمز غیرپاشنده

    این دتکتور از یک منبع نور مادون قرمز و یک سنسور مادون قرمز تشکیل شده است که بین آن‌ها یک سلول اندازه‌گیری و یک فیلتر نوری قرار گرفته است. منبع نور مادون قرمز، نور را ساطع می‌کند که از طریق سلول اندازه‌گیری و فیلتر نوری عبور کرده و توسط سنسور مادون قرمز تشخیص داده می‌شود. فیلتر نوری به طول‌موج‌های مادون قرمز که توسط گاز قابل تشخیص جذب می‌شوند، اجازه عبور انتخابی می‌دهد.

     

    [اصول عملکرد دتکتور مادون قرمز غیرپاشنده

    یک گاز قابل تشخیص وارد سلول اندازه‌گیری شده و نور مادون قرمز را جذب می‌کند. این امر باعث کاهش مقدار نور مادون قرمز تشخیص‌داده شده توسط سنسور مادون قرمز می‌شود. برخی از گازهای قابل تشخیص با غلظت‌های شناخته شده وارد می‌شوند تا رابطه (منحنی کالیبراسیون) بین کاهش مقدار نور مادون قرمز و غلظت هر گاز قابل تشخیص تعیین شود. هنگامی که یک گاز قابل تشخیص با غلظت ناشناخته وارد می‌شود، دتکتور از منحنی کالیبراسیون بر اساس کاهش اندازه‌گیری‌شده مقدار نور مادون قرمز برای تعیین غلظت گاز استفاده می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.06 AM1

    . ویژگی‌های دتکتور مادون قرمز غیرپاشنده

    ویژگی‌های خروجی  دتکتور مادون قرمز غیرپاشنده

    WhatsApp Image 2025 09 26 at 9.40.06 AM3

    غلظت گاز و خروجی دتکتور رابطه متناسب ندارند، بلکه رابطه آن‌ها مطابق منحنی نشان‌داده شده در شکل پائین است. (i-C4H10: ایزوبوتان)

     

    ویژگی‌های پاسخ‌دهی  دتکتور مادون قرمز غیرپاشنده

    هنگامی که گاز با دبی ثابت به دتکتور گاز تغذیه می‌شود، دتکتور پاسخ‌های قابل تکرار و دقیقی ارائه می‌دهد. WhatsApp Image 2025 09 26 at 9.40.07 AM2

    ویژگی‌های پیری  در دتکتور مادون قرمز غیرپاشنده

    در محیطی با تغییرات دمایی کم، دتکتور پایدار باقی می‌ماند و بدون کاهش دقت خوانش در طول زمان عمل می‌کند. بسته به محیط، ممکن است دتکتور با گذشت زمان به‌طور قابل توجهی تخریب شود. در این صورت، می‌توان با انجام کالیبراسیون گاز هر شش ماه یکبار، تخریب را به حداقل رساند.

     

    ویژگی‌های دما و رطوبت  در دتکتور مادون قرمز غیرپاشنده

    با انجام تصحیحات دمایی، می‌توان وابستگی خوانش‌ها به دما را در محدوده دمایی مشخص‌شده به حداقل رساند.

    WhatsApp Image 2025 09 26 at 9.40.07 AM3

    در صورت عدم تشکیل میعان (%LEL) در داخل سلول گاز، دتکتور تقریباً تحت تأثیر رطوبت قرار نمی‌گیرد.

    . روش تشخیص گاز با تداخل سنجی

    ۱. شرح کلی  دتکتور گاز تداخل سنجی

    این دتکتور گاز، که یکی از قدیمیترین حسگرهای گاز ماست، تغییرات در ضریب شکست گاز را تشخیص میدهد. با دقت بالا، پایداری بلندمدت را حفظ میکند. در گذشته، داخل معادن زغالسنگ برای اندازهگیری غلظت متان استفاده میشد و در سالهای اخیر، بهطور گسترده برای اندازهگیری غلظت حلالها یا مقادیر حرارتی گازهای سوختی مانند گاز طبیعی کاربرد دارد.

    ۲. ساختار و اصول  دتکتور گاز تداخل سنجی

    [ساختار دتکتور گاز تداخل سنجی

    WhatsApp Image 2025 09 26 at 9.40.08 AM

    منبع نور، نور را ساطع میکند که توسط آینه تخت موازی به دو پرتو نور (A و B) تقسیم و توسط منشور بازتاب میشود. پرتو A یک سفر رفت و برگشت در محفظه گاز D، که گاز قابل تشخیص جریان دارد، انجام میدهد و پرتو B یک سفر رفت و برگشت در محفظه گاز E، که گاز مرجع جریان دارد، انجام میدهد. دو پرتو نور A و B در نقطه C آینه تخت موازی به هم میرسند و یک الگوی تداخلی روی سنسور تصویر از طریق آینه و لنز تشکیل میدهند.

     

    [اصول عملکرد دتکتور گاز تداخل سنجی

    یک الگوی تداخلی به نسبت تفاوت در ضریب شکست بین گاز قابل تشخیص و گاز مرجع حرکت میکند. حسگر مبتنی بر تداخلسنج نوری، مسافت حرکت الگوی تداخلی را اندازهگیری میکند تا ضریب شکست گاز قابل تشخیص را تعیین و آن را به غلظت گاز یا مقدار حرارتی تبدیل کند.

     

    ۳. ویژگی های دتکتور گاز تداخل سنجی

    مسافت حرکت الگوی تداخلی AB که توسط این حسگر اندازهگیری میشود، با معادله زیر نشان داده میشود:

    ویژگیهای خروجی  دتکتور گاز تداخل سنجی

    الگوی تداخلی

    از آنجا که تغییر در ضریب شکست متناسب با تغییر در غلظت گاز است، حسگر خطیبودن بسیار بالایی ارائه میدهد.

     

    پاسخدهی  دتکتور گاز تداخل سنجی

    حسگر اندازهگیری را با تکمیل جایگزینی در محفظه گاز با حجم ۰.۵ تا ۵ میلیلیتر به پایان میرساند. برخی مدلها اندازهگیری را در ۵ تا ۱۰ ثانیه با پاسخ ۹۰٪ تکمیل میکنند.

     

    ویژگیهای پیری  دتکتور گاز تداخل سنجی

    بارزترین ویژگی این حسگر این است که حساسیت آن کاهش نمییابد. حساسیت حسگر فقط به طول محفظه گاز L و طول موج منبع نور λ بستگی دارد. از آنجا که هر دو این پارامترها ثابت هستند، حسگر حساسیت پایدار بلندمدت ارائه میدهد. حتی اگر عنصر نوری کثیف شود، تأثیری بر مسافت حرکت الگوی تداخلی ندارد؛ بنابراین، حسگر تا زمانی که بتواند الگو را تشخیص دهد، حساسیت آن کاهش نمییابد.

     

    ویژگیهای فشار و دما در دتکتور گاز تداخل سنجی

    اگرچه ضریب شکست گاز بسته به دما T و فشار P تغییر میکند، حسگر دما و فشار را اندازهگیری میکند تا آنها را تصحیح کند و بنابراین تحت تأثیر آنها قرار نمیگیرد.

     

     

     

     

     

     

    7-12.تشخیص گاز به روش نوار شیمیایی

    1. شرح کلی دتکتور گاز با نوار شیمیائی

    این حسگر از نوار سلولزی آغشته به ماده رنگزا استفاده می‌کند. با عبور یا نفوذ گاز قابل تشخیص به داخل این نوار، واکنشی شیمیایی رخ داده و رنگ نوار تغییر می‌کند. حسگر با اندازه‌گیری نور بازتاب‌شده از رنگ ایجادشده بر اثر واکنش بین ماده رنگزا و گاز، غلظت بسیار کم گازهای سمی را به صورت کمی تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز با نوار شیمیائی

    [ساختار دتکتور گاز با نوار شیمیائی

    حسگر دارای محفظه‌ای است که گاز قابل تشخیص وارد آن می‌شود. این محفظه یک ظرف ضد نور است که داخل آن منبع نور و بخش گیرنده نور برای تشخیص رنگ نوار قرار گرفته‌اند. حسگر شامل این محفظه گاز و اجزای دیگری مانند مکانیسم قرقره برای جمع‌آوری نوار پس از هر اندازه‌گیری است.

    WhatsApp Image 2025 09 26 at 9.40.08 AM1

    [اصول دتکتور گاز با نوار شیمیائی

    وقتی گاز قابل تشخیص با نوار آغشته به ماده رنگزا تماس پیدا می‌کند، واکنش شیمیایی رخ داده و نوار رنگ می‌گیرد. به عنوان مثال، اگر فسفین (PH3) با نوار تماس پیدا کند، کلوئید نقره طبق فرمول زیر تولید می‌شود و یک لکه رنگی روی نوار سفید ظاهر می‌شود:

    PH3 + AgCIO → Ag + H3PO4 + 1/2 Cl2

     

    حسگر نور را به نقطه رنگی‌شده نوار تابانده و تغییر شدت نور بازتاب‌شده قبل و بعد از ورود گاز را اندازه‌گیری می‌کند؛ بنابراین غلظت گاز را به دقت محاسبه می‌کند.

     

    1. ویژگی‌ها ی دتکتور گاز با نوار شیمیائی

    ویژگی‌های خروجی دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.08 AM2

    وقتی گاز قابل تشخیص وارد بخش تشخیص می‌شود، نوار شروع به رنگ‌گرفتن می‌کند و خروجی به تدریج افزایش می‌یابد. از آنجا که حسگر تغییرات رنگ را اندازه‌گیری می‌کند، خروجی به صورت منحنی نمایش داده می‌شود.

     

     

    ویژگی‌های دما و رطوبت در دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.09 AM

    برای فسفین (PH3)، حسگرهای نوار‌ای وابسته به دما نیستند. همچنین بدون وابستگی زیاد به رطوبت، این حسگر در محدوده دمایی و رطوبتی عملیاتی، قرائت دقیقی ارائه می‌دهد.

     

    ویژگی‌های پیری در دتکتور گاز با نوار شیمیائی

    آزمایش‌های مداوم روی حسگر نشان می‌دهد که بدون کاهش حساسیت به گاز، اندازه‌گیری پایدار انجام می‌دهد.

     

    ویژگی‌های دتکتور گاز با نوار شیمیائی

    – حساسیت بسیار بالا با انتخاب‌پذیری عالی

    – استفاده از نوار کاست که تعویض آن آسان است

    – تغذیه نوار برای هر اندازه‌گیری، که هیچ هیسترزیسی ایجاد نمی‌کند

    – رنگ‌گرفتن نوار بر اثر گاز قابل تشخیص تجمع می‌یابد، که امکان تشخیص غلظت‌های بسیار کم گاز را فراهم می‌کند.

     

     

     

     

     

     

     

     

    7-13. دتکتور یونیزاسیون نوری

    1. شرح کلی دتکتور یونیزاسیون نوری

    این حسگر گاز با اعمال نور فرابنفش به گاز قابل تشخیص، باعث یونیزه شدن آن می‌شود. این عمل جریان یونی ایجاد می‌کند. حسگر این جریان را اندازه‌گیری کرده و غلظت گاز را تعیین می‌نماید. این حسگر محدوده وسیعی از گازها را بدون توجه به آلی یا معدنی بودن آنها تشخیص می‌دهد. معمولاً برای اندازه‌گیری غلظت ترکیبات آلی فرار (VOCs) در محدوده ppb تا ppm استفاده می‌شود.

     

    1. ساختار و اصول دتکتور یونیزاسیون نوری

    [ساختار دتکتور یونیزاسیون نوری

    حسگر از یک محفظه یونیزاسیون برای ورود گاز قابل تشخیص، یک لامپ فرابنفش برای تابش نور و الکترودهای مثبت و منفی برای تشخیص جریان یونی تشکیل شده است.

     

    [اصول عملکرد دتکتور یونیزاسیون نوری

    گاز قابل تشخیص وارد محفظه یونیزاسیون شده و در معرض نور فرابنفش از منبع نور (لامپ فرابنفش) قرار می‌گیرد. این عمل باعث آزاد شدن الکترون‌ها و تولید کاتیون می‌شود. کاتیون‌ها و الکترون‌های تولید شده توسط الکترودهای مثبت و منفی جذب شده و جریان الکتریکی ایجاد می‌کنند. از آنجا که این جریان متناسب با غلظت گاز است، حسگر با اندازه‌گیری مقدار جریان، غلظت گاز قابل تشخیص را تعیین می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.09 AM1

    برای یونیزه کردن یک گاز، نیاز به اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص آن گاز است. انرژی فوتون با واحد الکترون ولت (eV) بیان می‌شود. این حسگر از لامپ‌هایی با انرژی فوتونی 10.6 eV و 11.7 eV استفاده می‌کند. هرچه انرژی فوتون بیشتر باشد، مقدار بیشتری از گاز قابل تشخیص یونیزه می‌شود.

     

    1. ویژگی‌های دتکتور یونیزاسیون نوری

    ویژگی‌های خروجی دتکتور یونیزاسیون نوری

    WhatsApp Image 2025 09 26 at 9.40.10 AM

    برای گازهایی با غلظت پایین (چند صد ppm)، خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد.

    برای گازهایی با غلظت پایین خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد

    لامپ فرابنفش:

    انرژی فوتونی (eV) لامپ فرابنفش توسط ترکیب گاز موجود در لامپ و جنس پنجره لامپ تعیین می‌شود.

     

     

    انرژی یونیزاسیون مواد معمول:

    با اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص هر گاز، حسگر گاز را یونیزه کرده و غلظت آن را تعیین می‌کند. این حسگر معمولاً از لامپ‌های 10.6 eV یا 11.7 eV استفاده می‌کند.

     

    جدول انرژی فوتونی:

    گاز داخل لامپ | جنس پنجره | انرژی فوتونی (eV)

    زنون | یاقوت کبود | 8.4

    کریپتون | فلورید منیزیم | 10.6

    آرگون | فلورید لیتیم | 11.7

     

     

    WhatsApp Image 2025 09 26 at 9.40.10 AM1

     

    7-14. روش تشخیص گاز با ذرات پیرولیز شده

    1. شرح کلی دتکتور گاز با ذرات پیرولیز شده

    این حسگر گاز، گاز قابل تشخیص را حرارت داده تا اکسید تولید کند و سپس ذرات اکسید را با استفاده از یک حسگر ذره سنجی می‌کند. این حسگر پایداری بلندمدت داشته و مقاومت عالی در برابر تداخل و پاسخگویی سریع دارد. حسگر ذره بر اساس اصول مشابه حسگرهای دود یونیزاسیونی که از پرتوها استفاده می‌کنند، کار می‌کند.

     

    1. ساختار و اصول دتکتور گاز با ذرات پیرولیز شده

    [ساختار دتکتور گاز با ذرات پیرولیز شده

    این حسگر معمولاً ترکیبی از یک تجزیه‌گر حرارتی و حسگر ذره است. در مرکز تجزیه‌گر حرارتی یک لوله کوارتزی پیچیده شده با عنصر گرمایشی قرار دارد.

    حسگر ذره شامل یک محفظه اندازه‌گیری (که به طور مداوم با استفاده از پرتوهای آلفا جریان یون تولید می‌کند) و یک محفظه جبران است. گاز قابل تشخیص فقط وارد محفظه اندازه‌گیری می‌شود، در حالی که محفظه جبران به اتمسفر باز است.

     

    [اصول دتکتور گاز با ذرات پیرولیز شده

    بسیاری از گازهای آلی فلزی مانند TEOS در اثر حرارت، اکسید ذره‌ای تولید می‌کنند. گاز قابل تشخیص از طریق تجزیه‌گر حرارتی اکسید شده و وارد حسگر ذره می‌شود.

    در محفظه اندازه‌گیری حسگر ذره، از یک منبع پرتو آلفا برای یونیزه کردن هوا استفاده می‌شود که باعث جریان یونی می‌شود. ذرات وارد محفظه اندازه‌گیری شده و یون‌ها را جذب می‌کنند؛ این امر جریان یونی را کاهش داده و در نتیجه خروجی حسگر کم می‌شود. بر اساس میزان کاهش خروجی، غلظت گاز تعیین می‌شود. محفظه جبران، نوسانات خروجی حسگر ناشی از دما، رطوبت و/یا فشار را جبران می‌کند.

     

     

    1. ویژگی‌های دتکتور گاز با ذرات پیرولیز شده

    ویژگی‌های خروجی دتکتور گاز با ذرات پیرولیز شده

    خروجی حسگر به غلظت ذرات تولید شده از طریق تجزیه حرارتی بستگی دارد. حسگر از یک منحنی کالیبراسیون استفاده می‌کند تا غلظت گاز نسبت به قرائت خطی باشد.

     

    پاسخگویی دتکتور گاز با ذرات پیرولیز شده

    از آنجا که گاز وارد شده به بخش تشخیص بلافاصله در تجزیه‌گر حرارتی اکسید می‌شود، حسگر از سرعت پاسخ بالا و تکرارپذیری عالی برخوردار است.

     

    ویژگی‌های پیری در دتکتور گاز با ذرات پیرولیز شده

    حسگر از Am-241 به عنوان منبع پرتو استفاده می‌کند که نیمه عمر بسیار طولانی (حدود 400 سال) دارد و در نتیجه عملکرد حسگر به مرور زمان به سختی کاهش می‌یابد.

     

    ویژگی‌های دمایی در دتکتور گاز با ذرات پیرولیز شده

    حسگر از محفظه جبران برای جبران اثرات دما استفاده می‌کند و بنابراین ویژگی‌های دمایی عالی از خود نشان می‌دهد.

     

  • سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی

    1 کلیات

    این فصل تغییرات، اصلاحات و اضافات لازم برای کاربردهای دریایی را بیان می‌کند. تمامی الزامات دیگر NFPA 2001 برای سیستم‌های کشتی‌بردی اعمال می‌شود، مگر اینکه توسط این فصل اصلاح شده باشد. در صورتی که مفاد فصل 13 با مفاد فصل‌های 1 تا 11 تضاد داشته باشد، مفاد فصل 13 اولویت دارد.

    13.1.1 دامنه

    این فصل محدود به کاربردهای سیستم‌های اطفاء حریق با عامل تمیز در کشتی‌های تجاری و دولتی است. سیستم‌های بی‌اثرکننده انفجار در توسعه این فصل مد نظر قرار نگرفته‌اند.

    13.2 استفاده و محدودیت‌ها

    13.2.1* سیستم‌های اطفاء حریق با عامل تمیز به‌طور عمده باید برای حفاظت از خطراتی که در محفظه‌ها یا تجهیزاتی هستند که خود شامل یک محفظه برای نگهداری عامل می‌باشد، استفاده شوند.

    13.2.2* علاوه بر محدودیت‌های ذکر شده در 4.2.2، سیستم‌های اطفاء حریق با عامل تمیز نباید برای حفاظت از موارد زیر استفاده شوند:

    1. محفظه‌های بار خشک
    2. بار عمده

    13.2.3 تأثیرات محصولات تجزیه عامل و محصولات احتراق بر مؤثر بودن سیستم اطفاء حریق و تجهیزات باید در هنگام استفاده از عوامل تمیز در محیط‌هایی با دماهای محیطی بالا (مانند اتاق‌های سوزاندن، ماشین‌آلات داغ و لوله‌ها) در نظر گرفته شود.

    13.3 خطرات برای پرسنل

    13.3.1 به‌جز اتاق‌های موتورخانه که در 13.3.1.1 مشخص شده‌اند، سایر فضاهای اصلی ماشین‌آلات باید به‌عنوان فضاهای معمولی اشغال شده در نظر گرفته شوند.

    13.3.1.1 اتاق‌های موتورخانه با حجم 6000 فوت‌مکعب (170 مترمکعب) یا کمتر که فقط برای نگهداری به آن دسترسی دارند، نیازی به رعایت 13.3.1 ندارند.

    13.3.2* برای سیستم‌های دریایی، فاصله‌های الکتریکی باید مطابق با 46CFR، زیرمجموعه J، مهندسی الکتریکی” باشد.

    13.4 تأمین عامل

    13.4.1 این استاندارد از ذخایر اضافی عامل نیاز ندارد.

    13.4.2* ترتیب ذخیره‌سازی مخازن باید مطابق با 5.1.3.1 و 5.1.3.3 تا 5.1.3.5 باشد. در صورتی که تجهیزات در معرض شرایط آب و هوایی شدید قرار گیرند، سیستم باید مطابق با دستورالعمل‌های طراحی و نصب تولیدکننده نصب شود.

    13.4.2.1 به‌جز در مورد سیستم‌هایی که سیلندرهای ذخیره‌سازی در داخل فضای محافظت شده قرار دارند، مخازن فشاری مورد نیاز برای ذخیره‌سازی عامل باید مطابق با 13.4.2.2 باشد.

    13.4.2.2 در صورتی که مخازن عامل خارج از فضای محافظت شده قرار دارند، باید در اتاقی ذخیره شوند که در یک مکان امن و به‌راحتی قابل دسترسی قرار داشته باشد و به‌طور مؤثر تهویه شود به‌طوری‌که مخازن عامل در معرض دماهای محیطی بالاتر از 130°F (55°C) قرار نگیرند. دیوارها و عرشه‌های مشترک بین اتاق‌های ذخیره‌سازی مخازن عامل و فضاهای محافظت شده باید با عایق‌بندی ساختاری کلاس A-60 طبق تعریف 46CFR 72 محافظت شوند. اتاق‌های ذخیره‌سازی مخازن عامل باید بدون نیاز به عبور از فضای محافظت شده قابل دسترسی باشند. درها باید به‌صورت بیرون‌چرخشی باز شوند و دیوارها و عرشه‌ها، از جمله درها و سایر وسایل بستن هرگونه بازشو در آن‌ها، باید مرزهایی بین این اتاق‌ها و فضاهای مجاور باشند و محکم و غیر قابل نفوذ به گاز باشند.

    13.4.3 زمانی که مخازن عامل در فضای اختصاصی ذخیره می‌شوند، درهای خروجی باید به‌صورت بیرون‌چرخشی باز شوند.

    13.4.4 در صورتی که مخازن در معرض رطوبت قرار گیرند، باید به‌طوری نصب شوند که فاصله‌ای حداقل 2 اینچ (51 میلی‌متر) بین عرشه و قسمت پایین مخزن فراهم شود.

    13.4.5 علاوه بر الزامات 5.1.3.4، مخازن باید با حداقل دو بست محکم شوند تا از حرکت ناشی از حرکات کشتی و لرزش جلوگیری شود.

    13.4.6* برای کاربردهای دریایی، تمامی لوله‌ها، شیرها و اتصالات از مواد آهنی باید از داخل و خارج در برابر خوردگی محافظت شوند، مگر اینکه در 13.4.6.1 مجاز باشد.

    13.4.6.1

    بخش‌های بسته لوله و شیرها و اتصالات داخل بخش‌های بسته لوله باید تنها از خارج در برابر خوردگی محافظت شوند.

    13.4.6.2

    جز در مواردی که در 13.4.6.1 مجاز است، قبل از آزمایش پذیرش، داخل لوله‌ها باید تمیز شود بدون اینکه مقاومت آن‌ها در برابر خوردگی تحت تأثیر قرار گیرد.

    13.4.7*

    لوله‌ها، اتصالات، نازل‌ها و آویزها، از جمله مواد پرکننده جوشکاری، در داخل فضای محافظت شده باید دارای دمای ذوب بالاتر از 1600°F (871°C) باشند. استفاده از قطعات آلومینیومی مجاز نیست.

    13.4.8

    لوله‌ها باید حداقل 2 اینچ (51 میلی‌متر) از نازل آخر در هر خط شاخه‌ای فراتر بروند تا از مسدود شدن جلوگیری شود.

    13.5 سیستم‌های شناسایی، راه‌اندازی و کنترل

    13.5.1 کلیات

    13.5.1.1 سیستم‌های شناسایی، راه‌اندازی، آلارم و کنترل باید مطابق با الزامات مقامات صلاحیت‌دار نصب، آزمایش و نگهداری شوند.

    13.5.1.2* برای فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب)،آزادسازی خودکار عامل اطفاء حریق مجاز نیست، مگر اینکه راه‌اندازی سیستم در ایمنی حرکت کشتی تداخل نکند. آزادسازی خودکار عامل اطفاء حریق در هر فضایی که راه‌اندازی سیستم موجب تداخل در ایمنی حرکت کشتی نشود، مجاز است.

    13.5.1.2.1 آزادسازی خودکار برای هر فضای 6000 فوت مکعب (170 مترمکعب) یا کمتر مجاز است.

    13.5.2 شناسایی خودکار

    13.5.2.1 سیستم‌های شناسایی الکتریکی، سیگنال‌دهی، کنترل و راه‌اندازی باید حداقل دو منبع انرژی داشته باشند. منبع اصلی باید از باس اضطراری کشتی باشد. برای کشتی‌هایی که باس اضطراری یا باتری دارند، منبع پشتیبان باید یا باتری هشدار عمومی کشتی یا باتری داخلی سیستم باشد. باتری‌های داخلی باید قادر به راه‌اندازی سیستم برای حداقل 24 ساعت باشند. تمامی منابع انرژی باید تحت نظارت باشند.

    13.5.2.1.1 برای کشتی‌هایی که باس اضطراری یا باتری ندارند، منبع اصلی مجاز است که تأمین انرژی اصلی الکتریکی کشتی باشد.

    13.5.2.2 علاوه بر الزامات ذکر شده در بخش 9.3، مدارهای راه‌اندازی نباید از داخل فضای محافظت شده عبور کنند، مگر در سیستم‌های دریایی که راه‌اندازی الکتریکی دستی استفاده می‌شود.

    13.5.2.2.1 برای سیستم‌هایی که با 13.5.2.4 مطابقت دارند، عبور مدارهای راه‌اندازی از داخل فضای محافظت شده مجاز است.

    13.5.2.3*

    راه‌اندازی دستی برای سیستم‌ها نباید قادر به اجرا شدن با یک اقدام واحد باشد. جز در مواردی که در 13.5.2.3.1 مشخص شده است، ایستگاه‌های راه‌اندازی دستی باید در یک محفظه قرار گیرند.

    13.5.2.3.1

    راه‌اندازی دستی باید به‌صورت راه‌اندازی دستی محلی در محل سیلندرها مجاز باشد.

    13.5.2.4

    سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی دستی در مسیر اصلی خروجی خارج از فضای محافظت‌شده داشته باشند. علاوه بر این، سیستم‌هایی که فضاهای بزرگتر از 6000 فوت مکعب (170 مترمکعب) را محافظت می‌کنند و سیلندرهایی در داخل فضای محافظت‌شده دارند و همچنین سیستم‌هایی که فضاهای ماشین‌آلات اصلی بدون نظارت را محافظت می‌کنند، باید یک ایستگاه راه‌اندازی در یک ایستگاه کنترل که به‌طور مداوم نظارت می‌شود، خارج از فضای محافظت‌شده داشته باشند.

    13.5.2.4.1

    سیستم‌هایی که فضاهای 6000 فوت مکعب (170 مترمکعب) یا کمتر را محافظت می‌کنند، مجاز هستند که یک ایستگاه راه‌اندازی واحد در یکی از مکان‌های توضیح داده‌شده در 13.5.2.4 داشته باشند.

    13.5.2.5

    نور اضطراری باید برای ایستگاه‌های راه‌اندازی از راه دور که سیستم‌های محافظت‌کننده از فضاهای ماشین‌آلات اصلی را سرویس می‌دهند، فراهم شود. تمامی دستگاه‌های عملیات دستی باید برچسب‌گذاری شوند تا خطرات محافظت‌شده را شناسایی کنند. علاوه بر این، اطلاعات زیر باید فراهم شود:

    1. دستورالعمل‌های عملیاتی
    2. مدت زمان تأخیر
    3. اقداماتی که باید در صورت عدم عملکرد سیستم انجام شود
    4. اقدامات دیگری که باید انجام شود مانند بستن دریچه‌ها و گرفتن شمارش سرنشینان

    13.5.2.5.1

    برای سیستم‌هایی که سیلندرها را در داخل فضای محافظت‌شده دارند، باید یک وسیله برای نشان دادن تخلیه سیستم در ایستگاه راه‌اندازی از راه دور فراهم شود.

    13.6 الزامات اضافی برای سیستم‌های محافظت‌کننده از خطرات کلاس B بزرگتر از 6000 فوت مکعب (170 مترمکعب) با سیلندرهای ذخیره‌شده در داخل فضای محافظت‌شده.

    13.6.1*

    یک سیستم شناسایی آتش خودکار باید در فضای محافظت‌شده نصب شود تا هشدار اولیه برای آتش‌سوزی ارائه دهد و از خسارات بالقوه به سیستم اطفاء حریق قبل از فعال شدن دستی آن جلوگیری کند. سیستم شناسایی باید در صورت شناسایی آتش، آلارم‌های شنیداری و بصری را در فضای محافظت‌شده و بر روی پل هدایت کشتی فعال کند. تمامی دستگاه‌های شناسایی و آلارم باید از نظر الکتریکی برای پیوستگی تحت نظارت باشند و هرگونه مشکل باید در پل هدایت کشتی اعلام شود.

    13.6.2*

    مدارهای برق متصل به مخازن باید برای شرایط خرابی و از دست دادن برق تحت نظارت باشند. باید آلارم‌های بصری و شنیداری برای نشان دادن این وضعیت فراهم شود و آلارم‌ها باید در پل هدایت کشتی اعلام شوند.

    13.6.3*

    در داخل فضای محافظت‌شده، مدارهای الکتریکی که برای آزادسازی سیستم ضروری هستند باید در برابر حرارت مقاوم باشند، مانند کابل‌های معدنی با عایق مطابق با ماده 332 از NFPA 70، یا معادل آن. سیستم‌های لوله‌کشی ضروری برای آزادسازی سیستم‌هایی که برای عملیات هیدرولیکی یا پنوماتیکی طراحی شده‌اند باید از فولاد یا مواد مقاوم در برابر حرارت معادل آن باشند.

    13.6.4*

    چیدمان‌های مخازن و مدارهای الکتریکی و لوله‌کشی که برای آزادسازی هر سیستم ضروری هستند، باید به‌گونه‌ای باشند که در صورت آسیب به هر یک از خطوط آزادسازی برق به دلیل آتش‌سوزی یا انفجار در فضای محافظت‌شده (یعنی مفهوم خطای واحد)، تمام بار اطفاء حریق مورد نیاز برای آن فضا هنوز بتواند تخلیه شود.

    13.6.5*

    مخازن باید برای کاهش فشار ناشی از نشت و تخلیه تحت نظارت باشند. باید سیگنال‌های بصری و شنیداری در فضای محافظت‌شده و یا در پل هدایت کشتی یا در فضایی که تجهیزات کنترل آتش متمرکز است، برای نشان دادن وضعیت فشار پایین فراهم شود.

    13.6.6*

    در داخل فضای محافظت‌شده، مدارهای الکتریکی ضروری برای آزادسازی سیستم باید با استانداردهای Class A طبق NFPA 72 طراحی شوند.

    13.7 پوشش

    13.7.1*

    برای جلوگیری از خروج ماده اطفاء حریق از طریق منافذ به خطرات یا مناطق کاری مجاور، منافذ باید یکی از طراحی‌های زیر را داشته باشند:

    1. به‌طور دائم مهر و موم‌شده
    2. مجهز به بسته‌شونده‌های خودکار
    3. مجهز به بسته‌شونده‌های دستی که با یک مدار هشدار برای نشان دادن زمانی که این بسته‌شونده‌ها هنگام فعال‌سازی سیستم مهر و موم نشده‌اند، تجهیز شده‌اند.

    13.7.1.1

    در مواردی که حبس ماده اطفاء حریق عملی نباشد یا در صورتی که سوخت بتواند از یک بخش به بخش دیگر جریان یابد (مانند از طریق بیلج)، محافظت باید گسترش یابد تا بخش‌های مجاور یا مناطق کاری متصل شده را شامل شود.

    13.7.2*

    قبل از تخلیه ماده اطفاء حریق، تمامی سیستم‌های تهویه باید بسته و ایزوله شوند تا از انتقال ماده به دیگر بخش‌ها یا خارج از کشتی جلوگیری شود. باید از خاموش‌شونده‌های خودکار یا خاموش‌شونده‌های دستی که توسط یک نفر از مکانی که ایستگاه تخلیه ماده اطفاء حریق در آن قرار دارد، قابل بسته شدن باشد، استفاده شود.

    13.8 الزامات غلظت طراحی

    13.8.1 ترکیب سوخت‌ها

    برای ترکیب سوخت‌ها، غلظت طراحی باید از مقدار اطفاء شعله برای سوختی که بیشترین غلظت را نیاز دارد، استخراج شود.

    13.8.2 غلظت طراحی

    برای هر سوخت خاص، غلظت طراحی که در 13.8.3 ذکر شده است باید استفاده شود.

    13.8.3 اطفاء شعله

    حداقل غلظت طراحی برای مایعات آتش‌زا و قابل اشتعال کلاس B باید طبق دستورالعمل‌های ذکر شده در IMO MSC/Circ. 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” طبقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری، که به‌روزرسانی‌شده توسط IMO MSC.1/Circ. 1267، اصلاحات دستورالعمل‌ها برای تأیید سیستم‌های گاز اطفاء حریق ثابت معادل” است، تعیین شود.

    13.8.4* مقدار کل سیلابی

    مقدار ماده اطفاء حریق باید بر اساس حجم خالص فضای محافظت‌شده و مطابق با الزامات بند 5 از IMO MSC/Circular 848 تعیین شود.

    13.8.5* مدت زمان محافظت

    مهم است که غلظت طراحی ماده اطفاء حریق نه تنها باید تحقق یابد بلکه باید برای مدت زمان کافی برای اقدام اضطراری موثر توسط پرسنل آموزش‌دیده کشتی حفظ شود. در هیچ موردی مدت زمان نگهداری نباید کمتر از 15 دقیقه باشد.

    13.9 سیستم توزیع

    13.9.1 نرخ کاربرد

    حداکثر نرخ طراحی کاربرد باید بر اساس مقدار ماده اطفاء حریق مورد نیاز برای غلظت دلخواه و زمان لازم برای دستیابی به آن غلظت تعیین شود.

    13.9.2 زمان تخلیه

    13.9.2.1

    زمان تخلیه برای مواد هالوکربنی نباید از 10 ثانیه بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

    13.9.2.2

    برای مواد هالوکربنی، زمان تخلیه باید به‌عنوان زمانی تعریف شود که 95 درصد از جرم ماده اطفاء حریق [در دمای 70°F (21°C)] از نازل‌ها تخلیه شده باشد، که برای دستیابی به غلظت طراحی حداقل ضروری است.

    13.9.2.3

    زمان تخلیه برای مواد گاز بی‌اثر نباید از 120 ثانیه برای 85 درصد غلظت طراحی بیشتر باشد یا طبق نیازمندی‌های مقامات ذی‌صلاح دیگر باشد.

    13.10 انتخاب و موقعیت نازل

    برای فضاهایی که در 13.10.1 شناسایی نشده‌اند، نازل‌ها باید از نوع فهرست‌شده برای هدف مورد نظر باشند. محدودیت‌ها باید بر اساس آزمایش‌های انجام‌شده طبق IMO MSC/Circular 848، دستورالعمل‌های اصلاح‌شده برای تأیید سیستم‌های اطفاء حریق ثابت گازی معادل” مطابقSOLAS 74 برای فضاهای ماشین‌آلات و اتاق‌های پمپ بارگیری تعیین شوند. فاصله نازل‌ها، پوشش منطقه‌ای، ارتفاع و هم‌راستایی نباید از محدودیت‌ها تجاوز کند.

    13.10.1

    برای فضاهایی که فقط سوخت‌های کلاس A وجود دارند، محل قرارگیری نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده برای نازل‌ها باشد.

    13.11 بازرسی و آزمایش

    حداقل سالیانه، تمامی سیستم‌ها باید توسط پرسنل متخصص بازرسی و آزمایش شوند تا عملکرد صحیح آن‌ها تضمین شود. آزمایش‌های تخلیه الزامی نیستند.

    13.11.1

    گزارش بازرسی همراه با توصیه‌ها باید به فرمانده کشتی و نماینده مالک ارائه شود. این گزارش باید برای بازرسی توسط مقامات ذی‌صلاح در دسترس باشد.

    13.11.2

    حداقل سالیانه، مقدار ماده اطفاء حریق در مخازن قابل بازسازی باید توسط پرسنل متخصص بررسی شود. فشار مخزن باید حداقل ماهی یک بار توسط خدمه کشتی تأیید و ثبت شود.

    13.11.3*

    برای مواد هالوکربنی تمیز، اگر یک مخزن بیش از 5 درصد از ماده اطفاء حریق را از دست دهد یا فشار آن بیش از 10 درصد کاهش یابد، باید دوباره پر شود یا تعویض شود.

    13.11.3.1*

    اگر یک مخزن ماده گاز بی‌اثر فشار خود را بیشتر از 5 درصد از دست دهد، باید دوباره پر شود یا تعویض شود. زمانی که از گیج‌های فشار برای این منظور استفاده می‌شود، آن‌ها باید حداقل سالیانه با یک دستگاه کالیبره مقایسه شوند.

    13.11.4

    پیمانکار نصب باید دستورالعمل‌هایی برای ویژگی‌های عملیاتی و روش‌های بازرسی خاص برای سیستم ماده تمیز نصب‌شده روی کشتی فراهم کند.

    13.12 تأیید نصب‌ها

    قبل از پذیرش سیستم، مستندات فنی مانند راهنمای طراحی سیستم، گزارش‌های آزمایش یا گزارش فهرست‌شده باید به مقامات ذی‌صلاح ارائه شود. این مستندات باید نشان دهند که سیستم و اجزای آن با یکدیگر سازگار بوده، در محدوده‌های آزمایش‌شده مورد استفاده قرار می‌گیرند و برای استفاده دریایی مناسب هستند.

    13.12.1 وظایف سازمان فهرست‌بندی

    سازمان فهرست‌بندی باید عملکردهای زیر را انجام دهد:

    1. تأیید اینکه آزمایش‌های آتش‌سوزی مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
    2. تأیید اینکه آزمایش‌های اجزا مطابق با یک استاندارد از پیش تعیین‌شده انجام شده‌اند.
    3. بازبینی برنامه تضمین کیفیت اجزاء.
    4. بازبینی دستورالعمل طراحی و نصب.
    5. شناسایی محدودیت‌های سیستم و اجزاء.
    6. تأیید محاسبات جریان.
    7. تأیید یکپارچگی و قابلیت اطمینان سیستم به‌عنوان یک کل.
    8. داشتن یک برنامه پیگیری.
    9. انتشار فهرستی از تجهیزات.

    13.13 آزمایش فشار دوره‌ای

    آزمایشی طبق بند 10.4.15 باید در فواصل زمانی 24 ماهه انجام شود. برنامه آزمایش دوره‌ای باید شامل آزمایش عملیاتی تمامی آلارم‌ها، کنترل‌ها و تأخیرهای زمانی باشد.

    13.14 انطباق

    سیستم‌های الکتریکی باید مطابق با زیرشاخه 46 CFR بخش 1 باشند. برای کشتی‌های کانادایی، نصب‌های الکتریکی باید مطابق با TP 127 E، استانداردهای الکتریکی ایمنی کشتی‌ها انجام شوند.

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

  • بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق

    11.1 کلیات

    مسئولیت بازرسی، آزمایش، نگهداری و شارژ مجدد سیستم‌های حفاظت در برابر حریق در نهایت بر عهده مالک(ان) سیستم خواهد بود، مگر اینکه این مسئولیت به صورت کتبی به شرکت مدیریت، مستاجر یا طرف دیگر منتقل شده باشد.

    11.1.1 ایمنی

    در طول بازرسی، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک‌کننده و مخازن عامل، باید از روش‌های ایمن پیروی شود. (به بخش A.10.1 مراجعه شود.)

    11.1.2 تکنسین سرویس‌دهی حفاظت در برابر حریق

    پرسنلی که سیستم‌های اطفاء حریق با عامل پاک‌کننده را بازرسی، سرویس‌دهی، آزمایش و نگهداری می‌کنند باید دارای دانش و تجربه کافی در خصوص نیازمندی‌های نگهداری و سرویس‌دهی مندرج در این استاندارد، تجهیزات سرویس‌دهی یا نگهداری شده و روش‌ها و نیازمندی‌های نگهداری یا سرویس‌دهی مندرج در دستورالعمل‌های طراحی، نصب و نگهداری سازنده و هرگونه بولتن‌های مربوطه باشند.

    11.2 بازرسی ماهانه

    11.2.1

    حداقل به صورت ماهانه، باید یک بازرسی بصری مطابق با دستورالعمل‌های نگهداری فهرست‌شده سازنده یا دستورالعمل مالک انجام شود.

    11.2.2

    حداقل، این بازرسی باید شامل تایید موارد زیر باشد، در صورت نیاز:

    (1) پنل آزادسازی تحت برق است و از هیچ وضعیت نظارتی، مشکل یا هشدار خالی است. (2) کنترل‌های دستی مسدود نشده‌اند. (3) سیستم هیچ گونه آسیب فیزیکی یا شرایطی ندارد که بتواند از عملکرد آن جلوگیری کند. (4) فشارسنج‌ها در محدوده قابل‌عمل هستند. (5) تجهیزات یا خطر محافظت‌شده تغییر یا اصلاح نشده است. (6) هر گونه نقص قبلی اصلاح شده است.

    11.2.3

    اگر هرگونه نقصی پیدا شود، باید بلافاصله اقدامات اصلاحی مناسب انجام شود.

    11.2.4

    اگر اقدامات اصلاحی شامل نگهداری یا تعمیرات باشد، باید توسط یک تکنسین سرویس‌دهی حفاظت در برابر حریق انجام شود، طبق بند 11.1.2.

    11.2.5

    هنگامی که بازرسی‌ها انجام می‌شود، باید یک رکورد برای تأیید تکمیل بازرسی نگهداری شود.

    11.2.5.1

    رکورد باید شامل تاریخ انجام بازرسی و حروف اولیه شخص انجام‌دهنده بازرسی باشد.

    11.2.5.2

    رکورد باید شامل هرگونه نقص شناسایی‌شده باشد.

    11.2.5.3

    رکوردها باید تا بازرسی و سرویس نیم‌سالی بعدی نگهداری شوند.

    11.3* سرویس و بازرسی نیم‌سالانه

    حداقل به صورت نیم‌سالی، مقدار عامل و فشار مخازن باید بررسی شوند.

    11.3.1

    برای عوامل پاک‌کننده هالوکربنی که دارای وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل یا کاهش فشار (تنظیم شده برای دما) بیش از 10 درصد باشد، باید دوباره پر شده یا تعویض شود.

    11.3.2

    برای مخازن عامل هالوکربنی که فاقد وسیله‌ای برای نمایش فشار هستند، اگر مخزن نشان‌دهنده کاهش بیش از 5 درصد از مقدار عامل باشد، باید دوباره پر شده یا تعویض شود.

    11.3.3*

    عوامل پاک‌کننده هالوکربنی که در حین سرویس یا نگهداری از مخازن خارج می‌شوند، باید بازیابی شده و مجدداً استفاده شوند یا مطابق با قوانین و مقررات مربوطه دفع شوند.

    11.3.4*

    برای عوامل پاک‌کننده گازهای بی‌اثر، اگر مخزن نشان‌دهنده کاهش فشار (تنظیم‌شده برای دما) بیش از 5 درصد باشد، باید دوباره پر شده یا تعویض شود.

    11.3.5

    هنگامی که از فشارسنج‌های مخزن برای مطابقت با بند 11.3.4 استفاده می‌شود، باید حداقل سالی یک‌بار با یک دستگاه کالیبره جداگانه مقایسه شوند.

    11.3.6

    هنگامی که مقدار عامل در مخزن با دستگاه‌های اندازه‌گیری خاص تعیین می‌شود، این دستگاه‌ها باید فهرست شده باشند.

    11.3.7

    اطلاعات زیر باید روی برچسبی که به مخزن متصل است ثبت شود:

    1. تاریخ بازرسی
    2. شخص انجام‌دهنده بازرسی
    3. نوع عامل
    4. وزن ناخالص مخزن و وزن خالص عامل (فقط برای عوامل پاک‌کننده هالوکربنی)
    5. فشار مخزن و دما (برای عوامل پاک‌کننده هالوکربنی با فشارسنج و عوامل پاک‌کننده گازهای بی‌اثر)

    11.4 بازرسی و سرویس سالانه

    11.4.1

    حداقل سالیانه، تمام سیستم‌ها باید توسط پرسنل واجد شرایط، مطابق با بند 11.1.2 بازرسی، سرویس و برای عملکرد آزمایش شوند.

    11.4.2

    آزمایش‌های تخلیه الزامی نمی‌باشد.

    11.4.3

    گزارش سرویس با توصیه‌ها باید به مالک سیستم ارائه شود.

    11.4.4

    گزارش سرویس باید به‌صورت کاغذی یا الکترونیکی ذخیره و قابل دسترسی باشد.

    11.4.5 شیلنگ‌های سیستم

    11.4.5.1 تمام شیلنگ‌های سیستم باید سالانه از نظر آسیب‌دیدگی مورد بازرسی قرار گیرند.
    11.4.5.2 اگر بازرسی بصری هرگونه نقصی را نشان دهد، شیلنگ باید فوراً تعویض شود یا طبق آنچه در بخش 11.7 مشخص شده آزمایش شود.

    11.4.6 بازرسی محفظه

    11.4.6.1 محفظه محافظت‌شده باید سالانه بازرسی شود یا توسط یک برنامه مدیریتی مستند برای تغییرات در یکپارچگی موانع یا ابعاد محفظه مورد نظارت قرار گیرد.
    11.4.6.2 اگر تغییرات باعث شود که محفظه نتواند غلظت ماده پاک‌کننده را حفظ کند، شرایط باید اصلاح شود.

    11.5 نگهداری

    11.5.1

    این سیستم‌ها باید همیشه در شرایط عملیاتی کامل نگهداری شوند.

    11.5.2

    فعال‌سازی سیستم ماده پاک‌کننده باید فوراً به مقام مسئول گزارش شود.

    11.5.3

    نقص‌ها باید مطابق با فصل 12 رسیدگی شوند.

    11.5.4 نگهداری محفظه

    11.5.4.1 هرگونه نفوذی که از طریق محفظه محافظت‌شده توسط ماده پاک‌کننده ایجاد شود باید فوراً مسدود شود.
    11.5.4.2 روش مسدود کردن باید رتبه مقاومتی آتش اولیه محفظه را بازسازی کند.

    11.6 آزمایش مخزن

    11.6.1

    مخازن ماده پاک‌کننده با طراحی وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا (CTC) یا مشابه نباید بدون آزمایش مجدد شارژ شوند، اگر دوره مجدد ارزیابی که توسط مقام مسئول برای مخزن مشخص شده است از زمان آخرین آزمایش و بازرسی گذشته باشد.

    11.6.1.1 برای مخازن ذخیره‌سازی مواد هالوکربن، آزمایش باید مجاز باشد که شامل یک بازرسی کامل بصری طبق 49 CFR باشد.
    11.6.1.2 یک سیلندر باید مجاز باشد که هر زمان قبل از ماه و سال موعد مجدد ارزیابی، مجدداً ارزیابی شود.
    11.6.1.3 سیلندری که قبل از موعد مجدد ارزیابی پر شده باشد باید هر دو مورد زیر را داشته باشد:
    1. مجاز به باقی ماندن در خدمت
    2. به‌طور دوره‌ای مطابق با بند 11.6.2 بازرسی شود

    11.6.1.4

    یک سیلندر با عمر سرویس مشخص نباید پس از پایان عمر مجاز سرویس آن، دوباره شارژ شده و برای حمل و نقل ارائه شود.

    11.6.2

    مخازن که به طور مداوم در خدمت هستند و نیازی به شارژ مجدد یا تعمیر ندارند، باید هر 5 سال یک‌بار یا بیشتر از آن بر اساس نیاز، یک بازرسی کامل بصری خارجی انجام دهند.

    11.6.2.1

    بازرسی بصری باید مطابق با بخش 3 از استاندارد CGA C-6، استاندارد بازرسی بصری سیلندرهای فولادی گازهای فشرده، باشد، با این تفاوت که مخازن نیازی به مهر و موم شدن در هنگام تحت فشار بودن ندارند.

    11.6.2.2

    نتایج بازرسی باید در هر دو مورد زیر ثبت شوند:

    1. یک برچسب ثبت که به‌طور دائمی به هر مخزن متصل شده است.
    2. یک گزارش بازرسی مناسب.

    11.6.2.3

    یک نسخه تکمیل شده از گزارش بازرسی مخزن باید به مالک سیستم یا نماینده مجاز او تحویل داده شود.

    11.6.2.4

    این سوابق باید توسط مالک برای مدت عمر سیستم نگهداری شوند.

    11.6.2.5

    در صورتی که بازرسی بصری خارجی نشان دهد که مخزن آسیب دیده است، آزمایش‌های اضافی قدرت باید طبق مقررات حمل‌ونقل قابل اجرا انجام شوند.

    11.7 آزمایش شیلنگ

    11.7.1

    تمام شیلنگ‌ها باید هر 5 سال یک‌بار آزمایش یا تعویض شوند.

    11.7.2

    فشاری برابر با 1.5 برابر فشار حداکثر مخزن در دمای 1300 درجه فارنهایت (54.4 درجه سلسیوس) باید در مدت 1 دقیقه اعمال شده و برای 1 دقیقه نگه داشته شود.

    11.7.3

    روش آزمایش باید به شرح زیر باشد:

    1. شیلنگ از هر گونه اتصال جدا می‌شود.
    2. سپس مجموعه شیلنگ در یک محفظه حفاظتی قرار می‌گیرد که به‌طور مناسب اجازه مشاهده بصری آزمایش را می‌دهد.
    3. شیلنگ باید قبل از آزمایش کاملاً با آب پر شود.
    4. سپس فشار به گونه‌ای اعمال می‌شود که در مدت 1 دقیقه به فشار آزمایش برسد. فشار آزمایش به مدت یک دقیقه کامل نگه داشته می‌شود. مشاهداتی برای بررسی هر گونه انحراف یا نشت انجام می‌شود.
    5. پس از مشاهده شیلنگ برای نشت، حرکت اتصالات و انحراف، فشار آزاد می‌شود.

    11.7.4

    مجموعه شیلنگ زمانی که تمام شرایط زیر رعایت شود، قبول می‌شود:

    1. هیچ گونه افت فشاری در طول آزمایش وجود نداشته باشد.
    2. هیچ حرکتی از اتصالات در حین فشار وجود نداشته باشد.
    3. هیچ انحراف دائمی در شیلنگ ایجاد نشده باشد.

    11.7.5

    هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را قبول کند باید با تاریخ آزمایش علامت‌گذاری شود.

    11.7.6

    هر مجموعه شیلنگ که آزمایش را گذرانده باشد باید قبل از نصب مجدد، به‌طور داخلی خشک شود.

    11.7.7

    هر مجموعه شیلنگ که آزمایش هیدرواستاتیک را رد کند باید علامت‌گذاری و از بین برود.

    11.8 آموزش

    تمام افرادی که ممکن است انتظار داشته باشند سیستم‌های اطفاء حریق را بازرسی، سرویس، آزمایش یا نگهداری کنند، باید آموزش دیده و در عملکردهایی که انتظار می‌رود انجام دهند، به‌طور مستمر آموزش دیده بمانند.