معرفی دتکتورهای تاندا

18278811

WhatsApp Image 2025 09 28 at 3.15.10 PM

بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

WhatsApp Image 2025 09 28 at 3.15.10 PM1

در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

WhatsApp Image 2025 09 28 at 3.15.10 PM2

هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

WhatsApp Image 2025 09 28 at 3.15.11 PM

بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

WhatsApp Image 2025 09 28 at 3.15.11 PM1

از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.

 

 

نوشته‌های مشابه

  • طراحی سیستم اطفاء حریق گازپایه برای اتاق سرور

    ۶.۱ مشخصات، نقشه‌ها و تأییدیه‌ها

    ۶.۱.۱ مشخصات

    ۶.۱.۱.۱ مشخصات سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی، باید تحت نظارت فردی تهیه شود که دارای تجربه کامل و صلاحیت لازم در طراحی این‌گونه سیستم‌ها بوده و با مشورت مرجع ذی‌صلاح انجام گیرد.

    ۶.۱.۱.۲ مشخصات باید شامل تمام موارد مربوط و لازم برای طراحی صحیح سیستم باشد، از جمله تعیین مرجع ذی‌صلاح، تفاوت‌های مجاز نسبت به استاندارد به‌تأیید مرجع ذی‌صلاح، معیارهای طراحی، توالی عملکرد سیستم، نوع و گستره آزمون‌های تأییدی که پس از نصب سیستم باید انجام شود، و الزامات آموزش مالک.

    ۶.۱.۲ نقشه‌های اجرایی

    ۶.۱.۲.۱ نقشه‌های اجرایی و محاسبات باید پیش از شروع نصب یا بازسازی سیستم برای تأیید به مرجع ذی‌صلاح ارائه شوند.

    ۶.۱.۲.۲ نقشه‌های اجرایی و محاسبات باید فقط توسط افرادی تهیه شوند که دارای تجربه کامل و صلاحیت لازم در طراحی سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی هستند.

    ۶.۱.۲.۳ هرگونه انحراف از نقشه‌های اجرایی نیاز به کسب اجازه از مرجع ذی‌صلاح دارد.

    ۶.۱.۲.۴ نقشه‌های اجرایی باید با مقیاس مشخص رسم شوند.

    ۶.۱.۲.۵ نقشه‌های اجرایی باید موارد زیر را که مرتبط با طراحی سیستم هستند نشان دهند:
    (۱) نام مالک و ساکن

    طراحی سیستم ۲۰۰۱-۱۹

    (۲) مکان، شامل آدرس خیابانی
    (۳) نقطه قطب‌نما و نمادهای توضیحی
    (۴) مکان و ساختار دیوارها و تقسیمات حفاظتی
    (۵) مکان دیوارهای آتش‌بر
    (۶) برش مقطع enclosure، به صورت دیاگرام کامل یا شماتیک، شامل مکان و ساختار مجموعه‌های کف-سقف ساختمان در بالا و پایین، کف‌های با دسترسی بلند، و سقف‌های معلق
    (۷) نوع عامل مورد استفاده
    (۸) غلظت عامل در کمترین و بالاترین دمایی که enclosure محافظت می‌شود
    (۹) شرح اشغال‌ها و خطراتی که محافظت می‌شوند، مشخص کردن اینکه آیاenclosure معمولاً اشغال شده است یا خیر
    (۱۰) برای enclosure محافظت شده با سیستم اطفاء حریق با گاز پاک، تخمین فشار مثبت حداکثر و فشار منفی حداکثر، نسبت به فشار محیطی، که انتظار می‌رود پس از تخلیه عامل توسعه یابد
    (۱۱) شرح مواجهات اطراف enclosure
    (۱۲) شرح ظروف ذخیره‌سازی عامل مورد استفاده، شامل حجم داخلی، فشار ذخیره‌سازی، و ظرفیت اسمی بیان شده بر اساس واحدهای جرم یا حجم عامل در شرایط استاندارد دما و فشار
    (۱۳) شرح نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، و مساحت معادل روزنه
    (۱۴) شرح لوله‌ها و اتصالات مورد استفاده، شامل مشخصات مواد، درجه، و رتبه فشار
    (۱۵) شرح سیم یا کابل مورد استفاده، شامل طبقه‌بندی، اندازه [آمریکاییAWG]، شیلدینگ، تعداد رشته‌ها در هادی، ماده هادی، و برنامه کدگذاری رنگ؛ الزامات جداسازی هادی‌های مختلف سیستم؛ و روش مورد نیاز برای ایجاد اتصال‌های سیم
    (۱۶) شرح روش نصب دتکتورها
    (۱۷) برنامه تجهیزات یا فهرست مواد برای هر دستگاه یا وسیله نشان‌دهنده نام دستگاه، سازنده، مدل یا شماره قطعه، تعداد و شرح
    (۱۸) نمای نقشه‌ای از منطقه محافظت‌شده نشان‌دهنده تقسیماتenclosure (تمام و جزئی ارتفاع)، سیستم توزیع عامل، شامل ظروف ذخیره‌سازی عامل، لوله‌ها و نازل‌ها؛ نوع آویز لوله‌ها و نگهدارنده‌های لوله‌های سخت؛ سیستم‌های شناسایی، هشدار و کنترل، شامل تمام دستگاه‌ها و شماتیک اتصالات سیمی بین آن‌ها؛ مکان‌های دستگاه‌های پایان خط؛ مکان دستگاه‌های کنترل‌شده مانند دمپرها و پرده‌ها؛ و مکان علائم آموزشی
    (۱۹) نمای ایزومتریک از سیستم توزیع عامل نشان‌دهنده طول و قطر هر بخش لوله؛ شماره‌های مرجع گره‌ها مربوط به محاسبات جریان؛ اتصالات، شامل کاهنده‌ها، تغییرات، و جهت‌گیری تکیه‌گاه‌ها؛ و نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، نرخ جریان، و مساحت معادل روزنه
    (۲۰) نقشه مقیاس‌دار از طرح گرافیکی پنل اعلان در صورتی که از سوی مرجع ذی‌صلاح درخواست شده باشد
    (۲۱) جزئیات هر پیکربندی منحصر به فرد از نگهدارنده لوله‌های سخت، نشان‌دهنده روش اتصال به لوله و ساختار ساختمان
    (۲۲) جزئیات روش اتصال ظروف، نشان‌دهنده روش اتصال به ظرف و ساختار ساختمان
    (۲۳) شرح کامل گام به گام توالی عملیات سیستم، شامل عملکرد سوئیچ‌های هشدار و نگهداری، تایمرهای تأخیر، و خاموشی اضطراری برق
    (۲۴) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به پنل کنترل سیستم و پنل گرافیکی اعلان
    (۲۵) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به رله‌های خارجی یا اضافی
    (۲۶) محاسبات کامل برای تعیین حجم enclosure، مقدار عامل پاک، و اندازه باتری‌های پشتیبان؛ روش استفاده‌شده برای تعیین تعداد و مکان دستگاه‌های شناسایی صوتی و بصری؛ و تعداد و مکان دتکتورها
    (۲۷) جزئیات ویژگی‌های خاص
    (۲۸) منطقه شیر فشار اطمینان یا مساحت معادل نشت برای enclosure محافظت‌شده جهت جلوگیری از توسعه اختلاف فشار در مرزهای enclosure که بیش از حد مجاز فشار enclosure مشخص‌شده در هنگام تخلیه سیستم باشد

    ۶.۱.۲.۶ جزئیات سیستم باید شامل اطلاعات و محاسبات در مورد مقدار عامل؛ فشار ذخیره‌سازی ظرف؛ حجم داخلی ظرف؛ مکان، نوع، و نرخ جریان هر نازل، شامل مساحت معادل روزنه؛ مکان، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ‌ها؛ و مکان و اندازه تأسیسات ذخیره‌سازی باشد.
    ۶.۱.۲.۶.۱ کاهش اندازه لوله و جهت‌گیری تکیه‌گاه‌ها باید مشخص شود.
    ۶.۱.۲.۶.۲ اطلاعات مربوط به مکان و عملکرد دستگاه‌های شناسایی، دستگاه‌های عملیاتی، تجهیزات کمکی، و مدارهای الکتریکی، در صورت استفاده، باید ارائه شود.
    ۶.۱.۲.۶.۳ دستگاه‌ها و وسایل استفاده‌شده باید شناسایی شوند.
    ۶.۱.۲.۶.۴ هر ویژگی خاص باید توضیح داده شود.
    ۶.۱.۲.۶.۵ سیستم‌های پیش‌مهندسی شده نیازی به مشخص کردن حجم داخلی ظرف، نرخ‌های جریان نازل، طول معادل لوله‌ها، اتصالات و شیلنگ‌ها، یا محاسبات جریان ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده می‌شوند.
    ۶.۱.۲.۶.۶ برای سیستم‌های پیش‌مهندسی شده، اطلاعات مورد نیاز توسط دفترچه طراحی سیستم فهرست‌شده باید برای تأیید سیستم بر اساس محدودیت‌های فهرست‌شده به مرجع ذی‌صلاح ارائه شود.
    ۶.۱.۲.۷ یک دفترچه راهنمای “طبق ساخت” و نگهداری که شامل توالی کامل عملیات و مجموعه کاملی از نقشه‌ها و محاسبات باشد باید در سایت نگهداری شود.
    ۶.۱.۲.۸ محاسبات جریان
    ۶.۱.۲.۸.۱ محاسبات جریان همراه با نقشه‌های اجرایی باید برای تأیید به مرجع ذی‌صلاح ارائه شوند.
    ۶.۱.۲.۸.۲ نسخه برنامه محاسبات جریان باید در چاپ خروجی محاسبات کامپیوتری مشخص شود.
    ۶.۱.۲.۸.۳ زمانی که شرایط میدانی نیاز به تغییرات مادی از نقشه‌های تأیید شده داشته باشد، تغییر باید برای تأیید ارائه شود.
    ۶.۱.۲.۸.۴ زمانی که تغییرات مادی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اصلاح‌شده “طبق ساخت” باید ارائه شوند.

    ۶.۱.۳ تأیید نقشه‌ها

    ۶.۱.۳.۱ نقشه‌ها و محاسبات باید قبل از نصب تأیید شوند.

    ۶.۱.۳.۲ در صورتی که شرایط میدانی نیاز به هرگونه تغییر اساسی از نقشه‌های تأیید شده داشته باشد، تغییر باید قبل از اجرایی شدن برای تأیید ارسال شود.
    ۶.۱.۳.۳ زمانی که چنین تغییرات اساسی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اجرایی باید به‌روزرسانی شوند تا سیستم نصب‌شده را به‌طور دقیق نشان دهند.

    ۶.۲ محاسبات جریان سیستم
    ۶.۲.۱ محاسبات جریان سیستم باید با استفاده از روش محاسباتی فهرست‌شده یا تأیید شده توسط مرجع ذی‌صلاح انجام شود.
    ۶.۲.۱.۱ طراحی سیستم باید در محدوده محدودیت‌های فهرست‌شده سازنده باشد.
    ۶.۲.۱.۲ طراحی‌هایی که شامل سیستم‌های پیش‌مهندسی شده هستند، نیازی به ارائه محاسبات جریان مطابق با بند ۶.۱.۲.۸ ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده شوند.

    ۶.۲.۲ شیرها و اتصالات باید برای طول معادل بر اساس اندازه لوله یا لوله‌کشی که با آن‌ها استفاده خواهند شد، ارزیابی شوند.
    ۶.۲.۲.۱ طول معادل شیر ظرف باید فهرست شده باشد.
    ۶.۲.۲.۲ طول معادل شیر ظرف باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۶.۲.۳ طول‌های لوله‌کشی و جهت‌گیری اتصالات و نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده سازنده باشد.

    ۶.۲.۴ اگر نصب نهایی از نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدید که نصب “طبق ساخت” را نشان دهند باید تهیه شوند

  • راهکارهای سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی سیستم اطفاء آتش

    این مقاله به بررسی راهکارهای کاربرد سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی در کارخانه‌های تولید مهمات و سایر تأسیساتی که نیاز به سیستم مهار آتش آبپاشی (Deluge) با سرعت بالا دارند می‌پردازد. همچنین فناوری دتکتور شعله‌ای نوری و پیشرفت‌های اخیر در سیستمی که به کاربران در دستیابی به انطباق با کدها و استانداردهای صنعتی کمک می‌کند، مرور خواهد شد.

    ۱.۰ مقدمه
    برای برآورده‌کردن الزامات زمانی پاسخ‌دهی کل سیستم طبق کدها و استانداردهای صنعتی فوق‌سریع، سیستم دتکتور شعله‌ای و آزادسازی باید قادر باشد رویداد را شناسایی کرده و سیگنالی به سیستم آبپاشی ارسال کند که این سیستم باید ظرف ۱۰۰ میلی‌ثانیه یا کمتر از لحظه حضور منبع انرژی در مقابل دتکتور تا شروع جریان آب از نازل آبپاش واکنش نشان دهد.

    WhatsApp Image 2025 09 16 at 5.25.44 AM

    برای اینکه یک سیستم به‌عنوان «سریع» شناخته شود، باید ظرف ۵۰۰ میلی‌ثانیه یا کمتر عمل کند (ارجاع به استاندارد NFPA 15)در کاربردهایی که به این سیستم‌ها نیاز دارند، آتش بسیار سریع‌تر از آن رشد می‌کند که بتوان از دتکتورهای حرارتی یا دتکتورهای دود استفاده کرد، زیرا این دتکتورها ممکن است چندین ثانیه طول بکشند تا آتش را شناسایی کنند.

    WhatsApp Image 2025 09 16 at 5.25.45 AMWhatsApp Image 2025 09 16 at 5.25.45 AM1

    برای درک روش‌های به‌کارگیری دتکتور شعله‌ای نوری فوق‌سریع در کارخانه‌های پردازش مهمات، مرور مختصری بر اصول پایه عملکرد فناوری دتکتور شعله‌ای ضروری است.

    ۲.۰ مروری بر دتکتور شعله‌ای نوری
    دتکتورهای شعله‌ای تشخیص انرژی تابشی، آتش را از طریق حس و تحلیل تابش الکترومغناطیسی منتشر شده از آتش شناسایی می‌کنند. انواع مختلف آتش طیف‌های نوری متفاوتی منتشر می‌کنند که امکان شناسایی آن‌ها را فراهم می‌کند.
    بازه طیفی انتشار که دتکتور به آن حساس است باید به‌طور دقیق کنترل شود تا اثر تابش طیفی ناشی از نور خورشید، نور محیط، ماشین‌آلات و تجهیزات پردازش به حداقل برسد. شکل ۱ نمای کلی از طیف الکترومغناطیسی و نواحی فروسرخ (IR) و فرابنفش (UV) مطلوب برای تشخیص شعله را نشان می‌دهد.
    در ادامه شرح مختصری از هر فناوری مناسب برای تشخیص شعله فوق‌سریع (UV، IR و UV/IR) آمده است.

    ۲.۱ فناوری‌های دتکتور شعله‌ای نوری

    ۲.۱.۱ فرابنفش (UV)

    دتکتورهای شعله‌ای UV از یک دتکتور تشکیل شده‌اند که شامل لوله خلأ از نوع Geiger-Mueller است. این دتکتور معمولاً به‌گونه‌ای طراحی می‌شود که به یک باند بسیار باریک از انرژی نوری در محدوده ۱۸۵۰ تا ۲۴۵۰ آنگستروم (Å) پاسخ دهد و مدل‌های خاصی نیز وجود دارند که این محدوده را تا ۲۶۵۰Å گسترش می‌دهند. همان‌طور که در شکل ۲ نشان داده شده، محدوده حساسیت UV خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد.

    وقتی تابش UV منتشر شده از آتش با دتکتور تماس پیدا می‌کند، پالس‌های ولتاژی تولید می‌شود که فرکانس آن‌ها متناسب با شدت تابش UV است. این پالس‌ها توسط یک میکروپروسسور پردازش شده و با پارامترهای برنامه‌ریزی‌شده مقایسه می‌شوند. اگر میزان پالس‌های پردازش‌شده از آستانه تعیین‌شده فراتر رود، آلارم فعال می‌شود.

    WhatsApp Image 2025 09 16 at 5.25.45 AM2WhatsApp Image 2025 09 16 at 5.25.46 AM

    این دتکتورها قادر به تشخیص هر نوع آتش بوده و در شرایط ایده‌آل می‌توانند زمان پاسخ کمتر از ۱۵ میلی‌ثانیه داشته باشند.

    از آنجا که دتکتورهای UV می‌توانند به‌صورت ضدنور خورشید طراحی شوند و تحت تأثیر تابش حرارتی قرار نگیرند، می‌توان آن‌ها را در بسیاری از کاربردها با موفقیت به‌کار برد.

    همانند هر فناوری دتکتور دیگری، مزایا و معایبی وجود دارد. دتکتورهای شعله‌ای UV نسبت به رعد و برق، جوشکاری و پرتوهای ایکس حساس هستند. انسداد فیزیکی جزئی شعله یا وجود دود و/یا بخارات جاذب UV ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی شود. شکل ۴ را ببینید.

    WhatsApp Image 2025 09 16 at 5.25.46 AM1

    ۲.۱.۲ فروسرخ (IR)

    WhatsApp Image 2025 09 16 at 5.25.46 AM2

    دتکتورهای شعله‌ای IR از یک دتکتور پیرولکتریک تشکیل شده‌اند. درون دتکتور پیرولکتریک، یک فیلتر تداخلی نوری استفاده می‌شود تا یک ناحیه عبور باند ایجاد کند که برای تشخیص اختصاصی آتش مناسب باشد. این فیلترها بر اساس طول موج مورد نظر انتخاب می‌شوند که معمولاً بین ۴٫۲ تا ۴٫۸ میکرومتر (μm) در باند انتشار CO₂ قرار دارد. همان‌طور که در شکل ۵ نشان داده شده، محدوده حساسیت IR خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد

    .WhatsApp Image 2025 09 16 at 5.25.47 AM3

    WhatsApp Image 2025 09 16 at 5.25.47 AM1WhatsApp Image 2025 09 16 at 5.25.47 AM2WhatsApp Image 2025 09 16 at 5.25.48 AM

    دتکتورهای شعله‌ای IR (شکل ۶) می‌توانند آتش‌هایی را که پیش از آن دود ایجاد می‌کنند یا حاوی بخارات هستند، راحت‌تر از دتکتورهای مبتنی بر فناوری UV شناسایی کنند. زمان پاسخ در شرایط ایده‌آل می‌تواند کمتر از ۱۵ میلی‌ثانیه باشد. از آنجا که دتکتورهای IR می‌توانند مقاوم در برابر نور خورشید ساخته شوند و تحت تأثیر تابش UV قرار نمی‌گیرند، می‌توان آن‌ها را در بسیاری از کاربردهایی که برای دتکتورهای UV چالش‌برانگیز است، با موفقیت به کار برد.

     

    اگر انرژی الکترومغناطیسی منتشرشده شامل طول موج‌هایی باشد که از فیلتر تداخلی عبور می‌کنند، نور با یک عنصر تک‌بلوری برخورد می‌کند. این عنصر سیگنال کوچکی تولید می‌کند که دامنه و فرکانس آن متناسب با تابش الکترومغناطیسی منتشرشده از آتش است. این سیگنال سپس توسط یک میکروپروسسور پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه می‌شود و در صورت احراز شرایط، آلارم آتش فعال می‌گردد.
    دتکتورهای شعله‌ای IR ممکن است به اجسام داغ مدوله‌شده و منابع نوری حساس باشند. وجود آب، برف یا یخ بر روی لنز دتکتور نیز ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی آتش شود (شکل ۷ را ببینید).

    ۲.۱.۳ فرابنفش-فروسرخ (UVIR)
    دتکتورهای شعله‌ای UVIR ترکیبی از فناوری‌های UV و IR را در یک دتکتور شعله‌ای به کار می‌گیرند (شکل ۸). برای فعال‌شدن آلارم آتش، هر دو دتکتور UV و IR باید تابش الکترومغناطیسی منتشرشده را شناسایی کرده و هر دو سیگنال پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه شوند. شکل ۹ نواحی حساسیت الکترومغناطیسی یک دتکتور UVIR را نشان می‌دهد.
    فناوری UVIR می‌تواند عملکرد مناسب در تشخیص آتش را در حالی فراهم کند که در مقایسه با فناوری UV یا IR به‌تنهایی مقاومت بیشتری در برابر فعال‌سازی کاذب دارد. تمام مزایا و محدودیت‌های فناوری‌های UV و IR در مورد یک دتکتور شعله‌ای UVIR نیز صدق می‌کند. این ویژگی‌ها باعث شده که فناوری UVIR به‌طور گسترده پذیرفته شود.
    علاوه بر رله آلارم آتش که زمانی عمل می‌کند که هر دو دتکتور UV و IR آتش را تشخیص دهند، دتکتورهای شعله‌ای UVIR شرکتهای معتبر تولیدی  دارای یک رله کمکی قابل برنامه‌ریزی داخلی نیز هستند. این رله کمکی می‌تواند طوری پیکربندی شود که در شرایط آلارم فقط UV، فقط IR یا پیش‌آلارم UVIR تغییر وضعیت دهد و انعطاف‌پذیری بیشتری را برای دتکتور شعله‌ای در مکان‌هایی که ویژگی‌های طیفی ماده مورد نظر ممکن است متغیر باشد، فراهم کند.

    ۲.۲ حفظ عملکرد تشخیص
    در اکثر کاربردها، این احتمال وجود دارد که لنز دتکتور به‌وسیله مواد خارجی مسدود شود. آلودگی لنز دتکتور ممکن است باعث تأخیر یا حتی جلوگیری از رسیدن تابش طیفی آتش به دتکتور(های) موجود در دتکتور شعله‌ای گردد. بنابراین بسیار مهم است که دتکتور قادر به بررسی خودکار تمام سطوح نوری، دتکتورها و مدارهای داخلی خود باشد.
    دتکتور باید قادر باشد به‌طور خودکار اپراتور را در صورت تأثیر بر عملکرد آن آگاه سازد. در صورت بروز این وضعیت خطا، می‌توان یک فرآیند مشخص را متوقف کرد یا اقدامات دیگری را بر اساس نیاز انجام داد.

    WhatsApp Image 2025 09 16 at 5.25.49 AM

    برخی دتکتورهای شعله‌ای نوری دارای قابلیت یکپارچگی نوری خودکار (oiR) هستند که یک تست عملکرد کالیبره‌شده را هر یک دقیقه یک‌بار برای اطمینان از توانایی عملیاتی کامل دتکتور انجام می‌دهند (شکل ۱۰). برای انجام تست یکپارچگی نوری، منابع داخلی IR و UV کالیبره‌شده و کنترل‌شده توسط میکروپروسسور برای هر سنسور موجود در دتکتور، سیگنال‌های تست را فراهم می‌کنند. اگر دتکتور دچار آلودگی نوری یا هرگونه مشکل عملکرد داخلی شود، زمانی که کمتر از نصف محدوده تشخیص اولیه باقی مانده باشد، وضعیت خطای یکپارچگی نوری را گزارش خواهد کرد. معمولاً این خطا ناشی از کثیف بودن لنز است و با تمیز کردن، عملکرد کامل دتکتور بازگردانده می‌شود.

    برخی نواحی کارخانه مستعد گرد و غبار و آلاینده‌های معلق در هوا هستند که ممکن است باعث تجمع رسوبات روی لنز دتکتور شوند. برای این محیط‌ها، شرکت شرکت های تولیدی پیشرفته شیلدهای هوایی ارائه می‌دهد که با ایجاد جریان مداوم هوای پاک بر سطح بیرونی لنز دتکتور، تجمع آلاینده‌ها را کاهش داده و به افزایش فاصله زمانی بین سرویس‌های نگهداری کمک می‌کنند. این شیلدهای هوایی هیچ‌گونه اختلالی در نصب دتکتور، زاویه دید آن یا تست یکپارچگی نوری ایجاد نمی‌کنند.

    ۲.۳ ثبت رویدادها
    هنگام وقوع یک رویداد یا وضعیت خطا، ضروری است که اطلاعات دقیق به‌سرعت گردآوری شود. واحد کنترل اعلام حریق سرویس اطفاء، باید توانایی ارائه اطلاعات سطح بالا شامل ورودی‌های فعال‌شده یا نوع خطای رخ‌داده را داشته باشد. علاوه بر این، برای بررسی رویدادها، به‌دست آوردن جزئیات بیشتر مفید است. هر دتکتور شعله‌ای شرکت های تولیدی پیشرفته دارای قابلیت ثبت رویداد داخلی است که به‌طور خودکار برای هر رویداد یا خطای رخ‌داده، زمان و تاریخ را ثبت می‌کند. رویدادهایی مانند روشن یا خاموش شدن دستگاه، شرایط خطا، پیش‌آلارم و آلارم آتش به همراه دمای محیط و ولتاژ ورودی در زمان وقوع رویداد ذخیره می‌شوند.

    ۲.۴ انتخاب فناوری
    هنگام انتخاب فناوری برای حفاظت از افراد، فرآیندها، دارایی‌ها و ساختمان‌ها، باید نهایت دقت در طراحی سیستم به‌کار گرفته شود تا در شرایط پیش‌بینی‌شده به‌درستی عمل کند. نوع فناوری دتکتور شعله‌ای انتخابی برای یک ناحیه باید بر اساس یک ارزیابی طراحی مبتنی بر عملکرد انتخاب شود. لازم است درک کامل از اهداف عملکردی مورد انتظار برای هر دتکتور در سیستم به‌دست آید.

    برخی موارد قابل بررسی در ارزیابی طراحی مبتنی بر عملکرد شامل:

    • ترکیب آتش
    • ویژگی‌های آتش (نرخ رشد، ویژگی‌های سوختن، طیف انتشار)
    • حداقل اندازه آتشی که نیاز به تشخیص دارد
    • بخارات کاهنده UV یا گرد و غبار کاهنده IR
    • منابع غیرآتش

    دتکتورهای شعله‌ای نوری ممکن است بسته به مدل و سازنده عملکرد متفاوتی داشته باشند. تنها روش قابل اعتماد برای سنجش حساسیت دتکتور شعله‌ای نسبت به یک ماده خاص، قرار دادن آن در معرض یک رویداد کنترل‌شده واقعی است. با این حال، تولید آتش‌های آزمایشی تکرارپذیر و کاملاً یکسان دشوار است. بنابراین، معمولاً لازم است چندین بار یک ماده خاص در معرض دتکتور قرار گیرد تا داده‌های آزمایشی معتبر به‌دست آید.

    علاوه بر این، باید بین حساسیت مطلوب دتکتور به ماده مورد نظر و حساسیت آن به منابع تابش غیردر اثر آتش، تعادل برقرار شود. دتکتوری که بیش از حد به محیط اطراف حساس باشد و باعث آلارم‌های مزاحم شود، قطعاً نامطلوب است. بنابراین، دتکتور باید در معرض منابع رایج موجود در ناحیه مورد پایش قرار گیرد تا ارزیابی دقیقی از عملکرد کلی دتکتور شعله‌ای انجام شود.

    این جنبه‌ها ممکن است چالش‌های متعددی را برای مهندس مسئول اجرای ارزیابی مبتنی بر عملکرد ایجاد کنند. برنامه‌ریزی و کنترل مؤثر توسط مهندس آزمون، دقت هر اندازه‌گیری مبتنی بر عملکرد را به حداکثر می‌رساند.

    ۲.۵ ملاحظات برای ارزیابی طراحی مبتنی بر عملکرد آشکارسازی شعله نوری

    ۲.۵.۱ محل آزمون

    WhatsApp Image 2025 09 16 at 5.25.49 AM1

    • محلی برای آزمون شناسایی کنید که دسترسی، مشاهده و امکان خروج ایمن برای همه افراد درگیر را فراهم کند. امکان کنترل دسترسی به محل آزمون مطلوب است.
    • آزمون‌های آتش در محیط‌های داخلی ممکن است تحت تأثیر تجمع مواد معلق کاهنده مانند دود، گرد و غبار و بخارات حلال قرار گیرند که همگی می‌توانند عملکرد آشکارسازی شعله را منفی تحت تأثیر قرار دهند. برای دستیابی به نتایج آزمون و عملکرد آشکارسازی شعله ثابت، باید قبل و بین تمام آزمون‌های داخلی، تبادل هوای پاک فراهم شود.
    • اطمینان حاصل کنید که روش مناسبی برای خاموش کردن آتش آزمون در محل موجود باشد یا اگر ماده به راحتی خاموش نمی‌شود، تدابیری برای کنترل سوختن آن اتخاذ شده باشد.
    • اطمینان حاصل کنید که تمام مواد سوخته به طور کامل خاموش شده و تمام مواد باقی‌مانده سوخته به‌درستی دفع شوند.
    • بهتر است شرایطی که در کاربرد واقعی محل نصب دتکتورهای شعله‌ای پیش خواهد آمد، شبیه‌سازی شود. موانع احتمالی دید دتکتورهای شعله‌ای نسبت به منطقه را در نظر بگیرید.
    • در صورت امکان، دمای محیط، رطوبت، جهت و سرعت باد را کنترل کنید.

    ۲.۵.۲ فرآیند آزمون

    • پیش از شروع آزمون، دمای محیط، رطوبت، جهت و سرعت باد را ثبت کنید.
    • بسته به شرایط محیطی، آزمون‌های آتش که در فضای باز انجام می‌شوند ممکن است تحت تأثیر تغییرات در ویژگی‌های انتشار شعله قرار گیرند. فیلم‌برداری از آزمون‌های آتش در فضای باز می‌تواند برای تعیین اثرات احتمالی تغییرات جهت و سرعت باد ارزشمند باشد.
    • نوع یا انواع سوخت، اندازه‌های موردنظر آتش، فاصله‌ها و نیازمندی‌های زمانی که دتکتورهای شعله‌ای باید در کاربرد واقعی به آن‌ها پاسخ دهند را شناسایی کنید. از این داده‌ها برای تعیین شاخص‌های عملکرد مورد نظر برای کاربرد و روش ارزیابی استفاده کنید.
    • حداقل سه آزمون تکراری از هر نوع سوخت در هر فاصله انجام دهید تا داده‌های معتبر به دست آید.
    • روشی که برای اشتعال ماده استفاده می‌شود نباید باعث واکنش دتکتورهای شعله‌ای شود. اگر دتکتورها به منبع اشتعال واکنش نشان دهند، این امر ممکن است دقت اندازه‌گیری زمان را تحت تأثیر قرار دهد.
    • منابع اشتعال آتش مانند کبریت‌های برقی توصیه نمی‌شوند، زیرا ممکن است ماده قابل اشتعالی را وارد ماده مورد نظر کنند که به طور معمول وجود ندارد. این ماده ممکن است طیف گسیلی متفاوتی نسبت به طیف ماده مورد نظر تولید کند.
    • روش پذیرفته‌شده‌ای را برای تعیین سرعت واکنش دتکتور مشخص کنید. نمونه‌های معمول شامل استفاده از تایمر دیجیتال یا سیستم فیلم‌برداری با سرعت بالا هستند.
    • تمام فناوری‌ها/انواع دتکتور، شماره سریال‌ها و موقعیت‌ها (فاصله و زاویه) نسبت به آتش، همچنین تمام تنظیمات آستانه آتش دتکتورها و/یا تنظیمات تأخیر زمانی را ثبت کنید.
    • اطمینان حاصل کنید که تمام دتکتورها به‌درستی تراز شده و لنزها تمیز باشند.

    ۲.۵.۳ سوخت‌های آزمون

    • آزمون‌های آتش برای جامدات قابل اشتعال، مهمات و پیشرانه‌ها به دلیل تنوع زیاد در قابلیت اشتعال و نرخ انتشار آتش، نیازمند ملاحظات ویژه هستند. اندازه آتش ایجاد شده توسط این مواد با تعیین وزن ماده نسوخته، حجم و آرایش قبل از اشتعال مشخص می‌شود.
    • پودرها و پیشرانه‌های قابل اشتعال با نرخ‌های مختلفی می‌سوزند که به آرایش ماده بستگی دارد (مثال: ۳۰ گرم باروت به‌صورت انباشته به‌طور متفاوتی نسبت به ۳۰ گرم گسترده‌شده روی سطح ۵ سانتی‌متر مربع می‌سوزد). روش چیدمان پودرها یا پیشرانه‌های قابل اشتعال را استاندارد کرده و برای هر آزمون تکرار کنید.
    • اگر منطقه تحت نظارت شامل پردازش چندین ماده آتش‌بازی باشد، سیستم باید طوری طراحی شود که امکان آشکارسازی بدترین حالت، یعنی کندترین ماده در حال سوختن را فراهم کند.

     

    هر آزمون باید با استفاده از مواد جدید انجام شود و هرگز سوخت‌ها بیش از یک بار سوزانده نشوند، زیرا احتمال دارد ماده در صورت اشتعال مجدد ویژگی‌های متفاوتی نشان دهد.

    ۲.۶ توصیه‌های آزمون منابع هشدار مزاحم
    منابع معمول هشدار مزاحم دتکتور شعله‌ای در زیر فهرست شده‌اند. نباید هیچ واکنش هشدار حریق دتکتور شعله‌ای در اثر قرار گرفتن در معرض این منابع رخ دهد:

    • نور مستقیم خورشید
    • لامپ رشته‌ای ۳۰۰ وات در فاصله ۵ فوت
    • لامپ فلورسنت ۳۴ وات در فاصله ۱ فوت
    • لامپ هالوژن ۵۰۰ وات (با لنز پلاستیکی یا شیشه‌ای) در فاصله ۵ فوت
    • بخاری کوارتز مادون قرمز برقی (۱۵۰۰ وات) در فاصله ۱۰ فوت
    • بی‌سیم دستی دوطرفه (۵ وات) در حالت ارسال در فاصله ۳ فوت
    • مدوله کردن انرژی منبع هشدار مزاحم با نرخ تقریباً ۲ تا ۱۰ هرتز (با استفاده از یک چرخاننده بدون حرارت، نه دست) نیز نباید باعث واکنش هشدار حریق دتکتور شعله‌ای شود.
    • هر منبع هشدار مزاحم شناخته‌شده دیگر باید همان‌گونه که در کاربرد واقعی وجود دارد به دتکتورها ارائه شود تا درک مناسبی از اثر احتمالی آن‌ها به دست آید.
    • توانایی آشکارسازی شعله در حضور منابع انرژی تابشی رایج فوق. این منابع در بسیاری از کارخانه‌ها و محیط‌های تولیدی یافت می‌شوند.
      ممکن است نیازهایی وجود داشته باشد که برآورده یا کشف نشده‌اند. یک بررسی کامل که شامل بحث آزاد باشد، می‌تواند راهکارهای غیرمتعارف را آشکار کرده و به راه‌حل‌های آشکارسازی منجر شود.

    ۳.۰ رعایت کدها و استانداردها
    کدها و استانداردها، مانند آن‌هایی که توسط انجمن ملی حفاظت از آتش (NFPA) و دولت ایالات متحده تدوین شده‌اند، دانش و اطلاعات لازم برای به حداقل رساندن خطر و اثرات آتش را فراهم می‌کنند. کدهایی مانند NFPA 101 «کد ایمنی حیات»، NFPA 72 «کد ملی هشدار و اعلام حریق»، NFPA 15 «استاندارد سیستم‌های ثابت آب‌پاش برای حفاظت در برابر آتش» و معیارهای یکپارچه تسهیلات (UFC) UFC 3-600-01 از این نمونه‌ها هستند.
    همچنین مهم است که هر سیستمی که هدف آن آشکارسازی و اطفای حریق است، به‌طور کامل با تمام کدها و استانداردهای قابل اجرا مطابقت داشته باشد. بنابراین، انتخاب دتکتورهای شعله‌ای و سیستم‌های کنترلی که دارای تأییدیه از سازمان‌های شخص ثالث باشند، اهمیت دارد. انتخاب محصولات مناسب در نهایت به کاربر کمک می‌کند تا انطباق را به دست آورد.

    ۳.۱
    برای رعایت کدها و استانداردهای فعلی، خروجی‌های دتکتورهای شعله‌ای فوق‌سریع باید به یک واحد کنترل هشدار حریق خدمات آزادسازی که به‌طور خاص برای این خدمات فهرست شده باشد، متصل شوند و دتکتورها نیز باید برای استفاده با همان واحد کنترل فهرست شده باشند. این واحد کنترل عملکردهای مهمی مانند نظارت بر ورودی‌ها و خروجی‌ها را انجام می‌دهد تا اطمینان حاصل شود سیستم در زمان نیاز به‌درستی عمل می‌کند.
    HSDM برای داشتن زمان واکنش مستقل ۲ میلی‌ثانیه طراحی شده است و هنگامی که با دتکتور شعله‌ای UV، UV/IR یا IR شرکت Det-Tronics ترکیب می‌شود، سیستم ترکیبی می‌تواند در شرایط ایده‌آل پاسخی کمتر از ۱۵ میلی‌ثانیه ارائه دهد.
    HSDM با نظارت پیوسته بر تمام ورودی‌ها و خروجی‌ها، عملکرد سیستم را تضمین می‌کند و از یک شبکه محلی/مدار خط سیگنال (LON/SLC) استفاده می‌کند که نظارت کلاس X را برای اتصال بین HSDM و کنترلر سیستم ایمنی EQP فراهم می‌آورد.
    ماژول HSDM دارای شش کانال ورودی و شش کانال خروجی قابل پیکربندی است که می‌توان آن‌ها را برای عملکرد تحت نظارت یا بدون نظارت برنامه‌ریزی کرد. هر کانال ورودی، اتصالات بسته را از دستگاه‌های آشکارساز حریق مانند دتکتورهای شعله‌ای نوری، دتکتورهای حرارتی، دتکتورهای دود و شستی‌های دستی می‌پذیرد. کانال‌های خروجی برای فعال‌سازی سلونوئیدهای تأییدشده شخص ثالث که برای راه‌اندازی شیرهای سیلابی پایلوت‌دار استفاده می‌شوند، طراحی شده‌اند.
    دتکتورهای شعله‌ای نوری، ماژول سیلابی فوق‌سریع و کنترلر سیستم ایمنی به مشتریان این امکان را می‌دهند که سیستمی مطابق با الزامات UFC و NFPA طراحی کنند (شکل ۱۱).
    خروجی رله هشدار حریق از دتکتور شعله‌ای نوری UV، IR یا UV/IR به HSDM متصل می‌شود. دتکتور شعله‌ای همراه با HSDM قادر به ارائه زمان واکنش فوق‌سریع، کمتر از ۲۰ میلی‌ثانیه در شرایط ایده‌آل است.
    HSDM یک سیگنال اولویت‌دار روی کابل LON ارسال می‌کند که توسط کنترلر سیستم ایمنی EQP دریافت می‌شود. این ارتباط پرسرعت نیست. EQP از منطق از پیش برنامه‌ریزی‌شده برای تعیین اقدامات بعدی استفاده می‌کند که معمولاً شامل ارسال سیگنال به یک ماژول ورودی/خروجی مجزا و پیشرفته است که به نوبه خود برای فعال‌سازی تجهیزات اعلان هشدار استفاده می‌شود. همچنین ارتباط اضافی با نگهبانان، پلیس، آتش‌نشانی یا سایر بخش‌های مورد نیاز نیز امکان‌پذیر است.
    یک سیستم آشکارسازی شعله و آزادسازی که به‌خوبی طراحی و فهرست شده باشد، می‌تواند به کاربران کمک کند تا الزامات کدهای UFC و NFPA برای یک سیستم آب‌پاش فوق‌سریع را برآورده کنند.

    ۳.۲ رعایت نیاز زمان واکنش کمتر از ۱۰۰ میلی‌ثانیه (ms)
    در حالی که بحث سرعت واکنش دتکتورهای شعله‌ای مهم است، باید توجه داشت که اندازه‌گیری مهم‌تر، سرعت واکنش کل سیستم است که شامل دتکتور شعله‌ای، واحد کنترل هشدار حریق خدمات آزادسازی، شیرهای سلونوئیدی و یک بخش سیلابی است. یک دتکتور شعله‌ای فوق‌سریع می‌تواند آتش در حال گسترش سریع را در حدود ۲۰ میلی‌ثانیه و در شرایط ایده‌آل شناسایی کند. واحد کنترل هشدار حریق خدمات آزادسازی نیز ممکن است ظرف چند میلی‌ثانیه واکنش نشان دهد. شیر سلونوئیدی زمانی را برای تخلیه فشار پایلوت از شیر سیلابی نیاز دارد و در نهایت، آب نیز زمانی را برای عبور از لوله‌کشی تا نازل و از نازل تا آتش طی می‌کند. بنابراین، باید در نظر داشت که سرعت واکنش دتکتور و واحد کنترل تنها بخشی کوچک از کل زمان واکنش سیستم است.
    توجه دقیق باید به نصب دتکتورها در نزدیک‌ترین فاصله ممکن به خطر بالقوه و اطمینان از عدم وجود مانع بین دتکتور و منطقه تحت نظارت که می‌تواند خط دید دتکتور را مسدود کند، معطوف شود. تمام حباب‌های هوا باید از داخل لوله‌کشی سیستم هیدرولیک خارج شوند. علاوه بر این، باید سریع‌ترین سلونوئیدهای ممکن استفاده شوند و نازل‌های سیلابی نیز باید در نزدیک‌ترین فاصله ممکن به خطر بالقوه نصب شوند. رعایت دقیق این موارد، سرعت کل سیستم را به‌طور چشمگیری بهبود می‌بخشد (شکل ۱۲).

    ۴.۰ راهکارهایی برای آشکارسازی شعله نوری فوق‌سریع

    دتکتورهای شعله نوری مدرن به‌گونه‌ای طراحی شده‌اند که به کاربران در دستیابی به انطباق با کدها و استانداردهای UFC و NFPA کمک کنند. برخی شرکت‌ها مدل‌های X2200 UV، X9800 IR و X5200 UVIR از دتکتورهای شعله را ارائه می‌دهند که در صورت پیکربندی و نصب صحیح، قادر به ارائه زمان پاسخ‌دهی با سرعت بالا و فوق‌العاده سریع هستند.
    علاوه بر آزمون‌های حرارتی سختگیرانه، آزمون‌های آزمایشگاهی و شبیه‌سازی‌هایی که در کارخانه انجام می‌شود، تمامی دتکتورهای شعله پیش از ارسال به مشتریان، در مرکز آزمون مهندسی با استفاده از آتش واقعی آزمایش می‌شوند.

  • سیستم‌های اطفاء حریق دی‌اکسید کربن با کاربرد موضعی NFPA12-ANNEX F- Local Application Carbon Dioxide Systems

    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاع‌رسانی ارائه شده است.

    F.1 یک سیستم اطفاء حریق دی‌اکسید کربن با کاربرد موضعی طراحی شده است تا دی‌اکسید کربن را مستقیماً به آتش‌سوزی‌ای که می‌تواند در یک ناحیه یا فضایی بدون محصورسازی واقعی رخ دهد، اعمال کند. چنین سیستم‌هایی باید به گونه‌ای طراحی شوند که دی‌اکسید کربن را در حین عملکرد سیستم به نحوی به خطر مورد اطفاء برسانند که تمام سطوح سوختنی یا شعله‌ور را پوشش داده یا احاطه کند.

    نرخ جریان و مدت زمان کاربرد مورد نیاز بستگی به نوع ماده قابل احتراق درگیر، ماهیت خطر (اینکه آیا سطح مایع مانند مخزن غوطه‌وری یا مخزن کوئنچ است یا یک قطعه ماشین‌آلات پیچیده مانند دستگاه چاپ) و محل و فاصله اسپرینکلرهای دی‌اکسید کربن نسبت به خطر دارد.

    عوامل مهمی که در طراحی یک سیستم کاربرد موضعی باید در نظر گرفته شود عبارتند از: نرخ جریان، محدودیت‌های ارتفاع و مساحت اسپرینکلرهای استفاده‌شده، میزان دی‌اکسید کربن مورد نیاز، و سیستم لوله‌کشی. مراحل زیر برای طراحی یک سیستم لازم است:

    (۱) تعیین مساحت خطر مورد اطفاء. در تعیین این مساحت، مهم است که نقشه دقیق خطر را با نشان دادن تمام ابعاد و محدودیت‌ها جهت جانمایی اسپرینکلرها ترسیم کنید. حدود خطر باید با دقت تعریف شوند تا تمام مواد قابل احتراق که می‌توانند در خطر گنجانده شوند را شامل شود، و احتمال وجود کالا یا سایر موانع در یا نزدیک خطر باید به دقت بررسی شود.

    (۲) برای اسپرینکلرهای نوع سقفی، با توجه به محدودیت‌های ارتفاع خطر مورد اطفاء، اسپرینکلرها را به گونه‌ای جانمایی کنید که خطر را تحت پوشش قرار دهند، با استفاده از اسپرینکلرهای مختلف در محدوده‌های ارتفاع و مساحت مجاز که در لیست‌ها یا تأییدیه‌های این اسپرینکلرها بیان شده است. حدود پوشش مساحت یک اسپرینکلر برای یک ارتفاع خاص از اطلاعات لیست شده تعیین می‌شود که در قالبی مشابه شکل F.1(a) ارائه شده است. در نظر داشته باشید که تمام پوشش‌های اسپرینکلر بر اساس مربع‌های تقریبی ترسیم می‌شوند. این مرحله برای اسپرینکلرهای کنار مخزن یا خطی حذف می‌شود.

    (۳) بر اساس ارتفاع هر اسپرینکلر از سطح خطر، نرخ جریان بهینه‌ای که هر اسپرینکلر باید برای اطفاء خطر داشته باشد را تعیین کنید. این مقدار از یک نمودار مانند شکل F.1(b) که در لیست‌های جداگانه یا تأییدیه‌های اسپرینکلرها ارائه شده است، به دست می‌آید. برای اسپرینکلرهای کنار مخزن یا خطی، بر اساس شکل خطر، اسپرینکلرها را در محدوده‌های فاصله‌ای مجاز طبق تأییدیه یا لیست جانمایی کنید. بر اساس فاصله یا مساحت پوشش، نرخ جریان مناسب را از نمودارهای تأیید شده‌ای مانند شکل F.1(c) و F.1(d) انتخاب کنید. این مرحله برای اسپرینکلرهای نوع سقفی حذف می‌شود.

    (۴) مدت زمان تخلیه برای خطر را تعیین کنید. این زمان همیشه حداقل ۳۰ ثانیه خواهد بود، اما می‌تواند طولانی‌تر باشد، بسته به عواملی مانند ماهیت ماده در خطر و احتمال نیاز برخی نقاط داغ به زمان خنک‌کنندگی بیشتر.

    (۵) نرخ جریان تک‌تک اسپرینکلرها را جمع کنید تا نرخ جریان کل به دست آید و این مقدار را در مدت زمان تخلیه ضرب کنید تا مقدار کل دی‌اکسید کربن مورد نیاز برای اطفاء خطر محاسبه شود. سپس این عدد را در ۱.۴ (برای سیستم‌های پرفشار) ضرب کنید تا ظرفیت کل سیلندرهای ذخیره‌سازی به دست آید.

    (۶) محل استقرار مخزن یا سیلندرهای ذخیره‌سازی را تعیین کرده و لوله‌کشی اتصال‌دهنده اسپرینکلرها به مخازن ذخیره را طراحی کنید.

    (۷) از سیلندرهای ذخیره شروع کرده و افت فشار را در طول لوله‌کشی سیستم تا هر اسپرینکلر محاسبه کنید تا فشار نهایی در هر اسپرینکلر به دست آید (به بخش C.1 مراجعه شود). مطمئن شوید که طول معادل لوله برای اتصالات و اجزای سیستم را در محاسبات لحاظ کرده‌اید. طول‌های معادل اجزای سیستم در لیست‌ها یا تأییدیه‌های جداگانه این اجزا موجود است. شرایط ذخیره‌سازی را برای سیستم‌های پرفشار برابر با ۷۵۰ psi (۵۱۷۱kPa) و برای سیستم‌های کم‌فشار برابر با ۳۰۰ psi (۲۰۶۸ kPa) در نظر بگیرید. در طراحی اولیه، باید اندازه‌های لوله‌ها را در نقاط مختلف سیستم فرض کنید. پس از انجام محاسبات برای تعیین فشار اسپرینکلرها، ممکن است لازم باشد اندازه لوله‌ها را برای دستیابی به فشارهای بالاتر یا پایین‌تر تغییر دهید تا نرخ جریان مناسب حاصل شود.

    (۸) بر اساس فشار اسپرینکلرها از مرحله (۷) و نرخ جریان جداگانه هر اسپرینکلر از مرحله (۳)، یک اوریفیس معادل را انتخاب کنید که بیشترین تطابق را با مساحت مورد نیاز برای تولید نرخ جریان طراحی شده داشته باشد، با استفاده از جدول‌های 4.7.5.2.1، 4.7.5.3.1، و A4.7.4.4.3.

    2Q==

    IMG 1522 1 IMG 1523 IMG 1524

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • استفاده از موئین یا کاپیلاری در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    لوله موئین، یک قطعه لوله انعطاف‌پذیر است که به لوله اصلی نمونه‌برداری متصل می‌شود و در انتهای آن یک سوراخ نمونه‌برداری قرار دارد. هدف از استفاده از این لوله‌ها، گسترش ناحیه نمونه‌برداری به دور از شبکه اصلی لوله‌ها است.

    از لوله‌های موئین زمانی استفاده می‌شود که نمونه‌برداری از یک فضای بسته مانند یک کابینت یا سقف کاذب انجام می‌شود، یا در مواردی که به دلایل ظاهری یا امنیتی ضروری است. این روش، شبکه اصلی لوله‌کشی را پنهان می‌کند و تنها یک نقطه کوچک نمونه‌برداری در فضا باقی می‌گذارد. شکل ۵در زیر، لوله موئینی را نشان می‌دهد که از لوله اصلی نمونه‌برداری به پایین امتداد یافته و سوراخ نمونه‌برداری در محل مورد نظر قرار دارد.

    نرم‌افزار طراحی، افزودن لوله‌های موئین و نقاط نمونه‌برداری به طراحی شبکه لوله را پشتیبانی می‌کند و جریان هوای مناسب در سیستم را محاسبه می‌نماید. حداکثر طول معمول برای لوله‌های انعطاف‌پذیر موئین ۸ متر (۲۶فوت) است، اما این مقدار می‌تواند بسته به محاسبات نرم‌افزار طراحی متغیر باشد. زمانی که چندین لوله موئین در یک شبکه استفاده می‌شود، طول هر یک از آن‌ها باید تقریباً برابر باشد تا تعادل سیستم حفظ شود.

    توجه ۱: توصیه می‌شود از اجرای طولانی لوله‌هایی که هم دارای سوراخ‌های نمونه‌برداری استاندارد و هم نقاط نمونه‌برداری موئین هستند، خودداری شود، زیرا این امر می‌تواند جریان هوا را نامتعادل کرده و زمان پاسخ‌دهی نقاط موئین را کاهش دهد.

    IMG 1300 IMG 1301 IMG 1302

    سوراخ‌های نمونه‌برداری
    سوراخ‌های نمونه‌برداری می‌توانند مستقیماً روی لوله، روی یک درپوش انتهایی، یا در یک نقطه نمونه‌برداری در انتهای لوله موئین قرار گیرند. مهم‌ترین عامل، سوراخ‌کاری صحیح با قطری مطابق با مشخصات تعیین‌شده توسط نرم‌افزار طراحی است.

    سوراخ‌های نمونه‌برداری باید پس از نصب شبکه لوله‌کشی ایجاد شوند. برای جلوگیری از مسدود شدن سوراخ‌ها توسط گرد و غبار و آلودگی، سوراخ‌ها باید در قسمت زیرین لوله‌های نمونه‌برداری و نه در بالای آن‌ها ایجاد شوند. این کار از ورود ذرات افتاده به درون سوراخ‌ها جلوگیری می‌کند. دستورالعمل‌های زیر هنگام سوراخ‌کاری لوله‌ها باید رعایت شود:

    سوراخ‌ها باید به صورت عمود (۹۰ درجه) بر لوله ایجاد شوند. اگر مته به صورت عمود نگه داشته نشود، سوراخ به شکل دایره‌ای کامل نخواهد بود و ممکن است بر جریان هوا تأثیر بگذارد.
    سوراخ‌ها باید دقیقاً در مکان‌هایی که نرم‌افزار طراحی مشخص کرده است، ایجاد شوند.
    سوراخ‌ها باید دقیقاً با اندازه تعیین‌شده توسط نرم‌افزار طراحی ایجاد شوند.
    سوراخ‌ها نباید به صورت دوطرفه (از هر دو سمت لوله) سوراخ شوند.
    سوراخ‌کاری باید با مته‌ای تیز و با سرعت کم انجام شود. این کار خطر ایجاد پلیسه و همچنین احتمال ورود گرد و غبار و براده به داخل لوله را کاهش می‌دهد.
    پس از سوراخ‌کاری تمام سوراخ‌ها، بهتر است با دمیدن هوای فشرده داخل لوله، هرگونه گرد و غبار یا آلودگی را از لوله پاکسازی کرد. همچنین می‌توان با باز کردن درپوش انتهایی و استفاده از جاروبرقی صنعتی، ذرات را از سمت اتصال لوله به آشکارساز بیرون کشید.
    نکته بسیار مهم: پیش از دمیدن هوای فشرده یا اتصال جاروبرقی صنعتی به شبکه لوله، باید لوله نمونه‌برداری را از آشکارساز جدا کرد، چراکه ورود ذرات ریز به محفظه سنجش ممکن است به قطعات داخلی آسیب برساند.

    IMG 1303

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.