مزایای دتکتورهای دودی مکشی یا اسپیراتینگ ها بر اساس اصول عملکرد

Fire Aspirating Image

تشخیص فعال

دتکتور دودی مکشی یک سامانه تشخیص فعال به‌شمار می‌آید، زیرا به‌طور پیوسته هوا را از ناحیه حفاظت‌شده مکش کرده و به داخل محفظه حسگر هدایت می‌کند. این فرآیند دائمی است و تنها در صورت خاموش شدن دتکتور متوقف می‌شود.

این ویژگی فعال، امکان تشخیص بسیار سریع دود را فراهم می‌سازد و به همین دلیل، دتکتورهای دودی مکشی معمولاً در دسته سامانه‌های تشخیص آتش زودهنگام قرار می‌گیرند. محفظه‌های حسگر بسیار حساس نیز به شناسایی دود در مراحل اولیه آتش‌سوزی، پیش از آسیب به تجهیزات یا ناحیه حفاظت‌شده، کمک شایانی می‌کنند.

اثر افزایشی
سیستم دتکتور دودی مکشی با استفاده از «اثر افزایشی» که ویژگی مشترک این نوع سیستم‌هاست، رقیق‌شدن دود را جبران می‌کند. اثر افزایشی یکی از مزایای مهم فناوری دتکتور دودی مکشی است که منجر به سیستمی با حساسیت بسیار بالا می‌شود، حتی زمانی که چندین منفذ نمونه‌گیری در سیستم وجود دارد.

در فرآیند تشخیص، هوا از طریق تمام منافذ نمونه‌گیری موجود در شبکه لوله‌کشی به داخل کشیده می‌شود، که باعث می‌شود هر منفذ در تشکیل نمونه کلی هوا درون محفظه حسگر نقش داشته باشد. همان‌طور که پیش‌تر توضیح داده شد، این حجم کلی هوا درون محفظه حسگر دتکتور است: هرچه تعداد منافذ نمونه‌گیری بیشتر باشد، حجم هوای بیشتری وجود خواهد داشت. اگر چندین منفذ نمونه‌گیری هوای آلوده به دود را مکش کنند، ذرات دود هنگام انتقال به محفظه حسگر با هم ترکیب می‌شوند. نسبت هوای تمیز به هوای آلوده به دود کاهش می‌یابد. این همان اثر افزایشی است که باعث می‌شود کل سیستم تشخیص، حساس‌تر از یک سیستم سنتی دتکتور دودی نقطه‌ای باشد.

با فرض اینکه حساسیت سطح ۱ حریق در دتکتور دودی مکشی برابر با ۰٫۲۵ درصد کاهش دید در هر فوت (0.25%/ft.) تنظیم شده باشد و این سیستم اتاقی با مساحت ۱۲۱۹٫۲ متر مربع (۴۰۰۰ فوت مربع) را محافظت کند و منافذ نمونه‌گیری با فاصله ۶ متر برای هر منفذ (۲۰ فوت برای هر منفذ) طراحی شده باشند (یعنی هر منفذ ۳۶ متر مربع یا ۴۰۰ فوت مربع را پوشش دهد)، سیستم تشخیص نهایی شامل ۱۰ منفذ نمونه‌گیری خواهد بود. عدد ۰٫۲۵٪/ft.، حساسیت محفظه حسگر دتکتور است.

برای محاسبه حساسیت واقعی هر منفذ نمونه‌گیری، نرخ کاهش دید تنظیم‌شده دتکتور را در تعداد کل منافذ نمونه‌گیری در شبکه لوله‌کشی ضرب می‌کنیم.

برای مثال، اگر حساسیت دتکتور در سطح ۱ حریق روی ۰٫۲۵٪/ft. تنظیم شده باشد و ۱۰ منفذ در شبکه لوله‌کشی وجود داشته باشد، حساسیت هر منفذ نمونه‌گیری برابر با ۲٫۵٪/ft. خواهد بود (۰٫۲۵٪/ft. ضربدر ۱۰ = ۲٫۵٪/ft.). این حساسیت مشابه نرخ کاهش دید یک دتکتور دودی نقطه‌ای سنتی است. این مقدار، حساسیت مؤثر دتکتور را در حالتی نشان می‌دهد که دود تنها وارد یک منفذ نمونه‌گیری شود (مطابق شکل ۸ در پایین).

مزیت سیستم دتکتور دودی مکشی در ماهیت فعال آن برای مکش هم‌زمان هوا از تمامی منافذ نمونه‌گیری است؛ هوا درون لوله ترکیب شده و برای نمونه‌برداری به سمت دتکتور منتقل می‌شود. زمانی‌که هوا از تمام ۱۰ منفذ نمونه‌گیری کشیده می‌شود، غلظت ذرات دود افزایش می‌یابد و غلظت هوای تمیز کاهش پیدا می‌کند. با ترکیب شدن ذرات دود، حساسیت کلی سیستم تشخیص افزایش پیدا می‌کند.

برای توضیح بیشتر اثر افزایشی، همان اتاق ۱۲۱۹٫۲ متر مربعی (۴۰۰۰ فوت مربع) با شبکه لوله‌کشی دارای ۱۰ منفذ نمونه‌گیری را در نظر بگیرید که در آن ذرات دود وارد دو منفذ نمونه‌گیری می‌شوند (مطابق شکل ۸ در پایین). برای تعیین حساسیت جدید هر منفذ، نرخ کاهش دید سطح ۱ حریق (۰٫۲۵٪/ft.) را در تعداد کل منافذ نمونه‌گیری (۱۰) ضرب کرده و سپس بر تعداد منافذی که دود را تشخیص می‌دهند (۲) تقسیم می‌کنیم. در نتیجه، حساسیت مؤثر هر منفذ برابر با ۱٫۲۵٪/ft. خواهد بود، که این یعنی سیستم دتکتور دودی مکشی دو برابر حساس‌تر از یک دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. است.

اگر دود وارد سه منفذ نمونه‌گیری شود، حساسیت مؤثر برابر با ۰٫۸۳٪/ft. خواهد بود، و به همین ترتیب.
حساسیت دتکتور

WhatsApp Image 2025 10 01 at 2.29.13 PM WhatsApp Image 2025 10 01 at 2.29.13 PM1

برای توضیح بیشتر اثر افزایشی، این مثال را می‌توان گسترش داد به حالتی که دود وارد تمامی ۱۰ منفذ نمونه‌گیری شود. هر منفذ نمونه‌گیری حساسیتی برابر با ۰٫۲۵٪/ft. خواهد داشت، که باعث می‌شود سیستم دتکتور دودی مکشی ۱۰ برابر حساس‌تر از دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. باشد (مطابق شکل ۱۰ در صفحه قبل).

آستانه‌های حساسیت پایین
یکی دیگر از مزایای مهم دتکتور دودی مکشی، الکترونیک پیشرفته‌ای است که توانایی تشخیص ذرات دود در نرخ‌های بسیار پایین‌ کاهش دید و در سطوح حساسیت متعدد را فراهم می‌کند. این آستانه‌های تشخیص قابل برنامه‌ریزی هستند و به کاربران نهایی این امکان را می‌دهند که سیستمی با حساسیت بسیار بالا برای محیط‌ها و کاربری‌هایی که نیازمند تشخیص بسیار زودهنگام دود برای ایمنی جانی و تداوم فعالیت هستند، یا سیستمی با حساسیت پایین‌تر برای محیط‌هایی با اهمیت کمتر طراحی کنند. آستانه‌های معمول در سیستم‌های دتکتور دودی مکشی طبق لیست استاندارد UL دارای محدوده حساسیت بین ۰٫۰۰۰۴۶٪/ft. (برای مکان‌هایی که تشخیص زودهنگام دود حیاتی است) تا ۶٫۲۵٪/ft. (برای محیط‌هایی با اهمیت کمتر) هستند. سیستمی با دتکتور دودی مکشی که برای تشخیص دود با پایین‌ترین نرخ کاهش دید لیست‌شده در UL یعنی ۰٫۰۰۰۴۶٪/ft. برنامه‌ریزی شده باشد، بیش از ۱۰۰۰ برابر حساس‌تر از دتکتورهای دودی نقطه‌ای سنتی خواهد بود.

نوشته‌های مشابه

  • دفترچه مهندسان برای بیم دتکتور دودی اعلام حریق

    بخش ۱ – اصول عملکرد
    بیم دتکتور دودی اعلام حریق با پرتو بازتابی شامل یک واحد فرستنده/گیرنده است که یک پرتو را به سمت ناحیه تحت حفاظت ارسال، پایش و دریافت می‌کند.WhatsApp Image 2025 09 16 at 1.20.16 AM

    بیم دتکتور بر اساس اصل تضعیف نور کار می‌کند. عنصر حساس به نور در شرایط عادی، نوری که توسط واحد فرستنده/گیرنده تولید می‌شود را دریافت می‌کند. واحد فرستنده/گیرنده بر اساس درصدی از تضعیف کل نور، روی یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول پرتو و فاصله بین واحد فرستنده/گیرنده و رفلکتور تعیین می‌گردد. برای بیم دتکتورهای دارای تأییدیه UL، تنظیم حساسیت باید با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق» مطابقت داشته باشد.
    بیم دتکتورهای دودی اعلام حریق بر اساس اصل تضعیف عمل می‌کنند. هنگامی که میدان دود تشکیل می‌شود، بیم دتکتور تضعیف تجمعی — درصد مسدود شدن نور ناشی از ترکیب غلظت دود و فاصله خطی میدان دود در طول پرتو — را تشخیص می‌دهد. آستانه معمولاً توسط سازنده و بر اساس شرایط نصب تعیین می‌شود.
    انتخاب حساسیت مناسب، احتمال آلارم‌های مزاحم ناشی از انسداد پرتو به‌وسیله یک جسم جامد که به‌طور ناخواسته در مسیر قرار گرفته را به حداقل می‌رساند. از آنجا که انسداد ناگهانی و کامل پرتو نوری مشخصه معمول دود نیست، بیم دتکتور این حالت را به‌عنوان وضعیت خطا تشخیص می‌دهد نه آلارم.
    همچنین تغییرات بسیار کوچک و آهسته در کیفیت منبع نور مشخصه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گرد و غبار و آلودگی بر روی مجموعه اپتیکی واحد فرستنده/گیرنده یا سطح بازتابی رخ دهد.

    WhatsApp Image 2025 09 16 at 1.20.17 AM

    وقتی بیم دتکتور برای اولین بار روشن و برنامه راه‌اندازی آن اجرا می‌شود، سطح سیگنال نوری آن لحظه را به‌عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، کنترل خودکار بهره (AGC) این تغییر را جبران می‌کند. با این حال، سرعت جبران محدود است تا اطمینان حاصل شود که بیم دتکتور همچنان به آتش‌سوزی‌های تدریجی یا دودکردن حساس می‌ماند. هنگامی که AGC دیگر قادر به جبران کاهش سیگنال نباشد، مثلاً به علت تجمع بیش از حد گرد و غبار، بیم دتکتور وضعیت خطا را اعلام می‌کند.

    WhatsApp Image 2025 09 16 at 1.20.17 AM1

    لوازم جانبی
    لوازم جانبی بیم دتکتور دودی اعلام حریق با پرتو بازتابی ممکن است شامل تابلوی اعلام از راه دور و ایستگاه‌های تست از راه دور باشد که امکان تست دوره‌ای الکترونیکی و/یا حساسیت بیم دتکتور را فراهم می‌کنند. سیستم‌های هوشمند اعلام حریق می‌توانند یک آدرس اختصاصی به بیم دتکتور بدهند تا مکان دقیق آتش بهتر مشخص شود.

    WhatsApp Image 2025 09 16 at 1.20.18 AM

    سایر لوازم جانبی قابل استفاده شامل کیت نصب سطحی، کیت نصب چندحالته، و کیت برد بلند هستند. کیت نصب سطحی برای زمانی است که سیم‌کشی به‌صورت روکار انجام شود. کیت نصب چندحالته امکان نصب بیم دتکتور و رفلکتور را بر روی دیوار یا سقف فراهم می‌کند و برای نصب این کیت بر روی بیم دتکتور باید از کیت نصب سطحی نیز استفاده شود. کیت برد بلند امکان نصب بیم دتکتور را در فاصله‌های بیشتر از رفلکتور، معمولاً بین ۷۰ تا ۱۰۰ متر (۲۳۰ تا ۳۲۸ فوت) فراهم می‌کند.
    هیترها باعث می‌شوند سطح اپتیکی بیم دتکتور و رفلکتور دمایی کمی بالاتر از دمای هوای اطراف داشته باشد، که به کاهش میعان در محیط‌هایی با تغییرات دمایی کمک می‌کند.

    بخش ۲ – مقایسه بیم دتکتور دودی اعلام حریق با دتکتورهای نقطه‌ای دود
    بیم دتکتورها تحت استاندارد UL و NFPA 72، 2013، بخش A.17.7.3.7 قرار دارند. لازم است طراحان این الزامات را به‌طور کامل در انتخاب و کاربرد بیم دتکتورها برای سیستم‌های اعلام حریق در نظر بگیرند.

    پوشش‌دهی
    بیم دتکتورهای دودی اعلام حریق می‌توانند سطحی را پوشش دهند که نیازمند بیش از یک دوجین دتکتور نقطه‌ای باشد. تعداد کمتر دستگاه به معنی هزینه نصب و نگهداری کمتر است.
    این دتکتورها معمولاً حداکثر برد ۱۰۰ متر (۳۳۰ فوت) و حداکثر فاصله بین دو دتکتور ۱۸ متر (۶۰ فوت) دارند، که پوشش تئوریک ۱۸۳۹ مترمربع (۱۹,۸۰۰ فوت مربع) ایجاد می‌کند. توصیه‌های سازنده و عواملی مانند شکل اتاق ممکن است این مقدار را در عمل کاهش دهند.
    دتکتورهای نقطه‌ای دود حداکثر پوشش ۸۳ مترمربع (۹۰۰ فوت مربع) دارند. حداکثر فاصله بین دو دتکتور ۱۲.۵ متر (۴۱ فوت) است، زمانی که عرض ناحیه تحت حفاظت بیش از ۳ متر (۱۰ فوت) نباشد، مانند یک راهرو.

    ارتفاع سقف
    اگرچه زمان پاسخ دتکتور نقطه‌ای دود معمولاً با افزایش فاصله آن از آتش/کف افزایش می‌یابد، این موضوع لزوماً در مورد بیم دتکتورهای دودی اعلام حریق صدق نمی‌کند، زیرا این دتکتورها برای سقف‌های بلند ایده‌آل هستند. با این حال، برخی سازندگان ممکن است با افزایش ارتفاع سقف، به دتکتورهای اضافی نیاز داشته باشند، که این امر به دلیل رفتار مورد انتظار ستون دود است.

    آتش‌سوزی‌ها معمولاً در نزدیکی یا در سطح کف آغاز می‌شوند. هنگامی که این اتفاق می‌افتد، دود به سمت بالا یا نزدیک سقف حرکت می‌کند. به طور معمول، ستون دود در مسیر حرکت از نقطه شروع خود، شروع به گسترش کرده و به شکل یک مخروط وارونه در می‌آید.

    WhatsApp Image 2025 09 16 at 1.20.18 AM1

    تراکم میدان دود می‌تواند تحت تأثیر سرعت رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند تراکم یکنواخت‌تری ایجاد کنند نسبت به آتش‌های کندسوز، که در آن ممکن است در بخش‌های بالایی میدان دود رقیق‌سازی رخ دهد. در برخی کاربردها، به ویژه جایی که سقف‌های بلند وجود دارد، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های کند یا دودزا واکنش‌پذیرتر از دتکتورهای نقطه‌ای باشند، زیرا آنها کل میدان دود را در طول پرتو بررسی می‌کنند. دتکتورهای نقطه‌ای تنها دود را در «نقطه» خاص خود نمونه‌برداری می‌کنند. دودی که وارد محفظه می‌شود ممکن است آن‌قدر رقیق باشد که به سطح لازم برای فعال کردن آلارم نرسد.

    WhatsApp Image 2025 09 16 at 1.20.19 AM

    یکی از محدودیت‌های بیم دتکتور دودی اعلام حریق این است که به عنوان دستگاه‌های خط دید، در معرض تداخل هر جسم یا شخصی هستند که وارد مسیر پرتو شود. بنابراین، استفاده از آنها در بیشتر مناطق اشغال‌شده با ارتفاع سقف معمولی عملی نیست.

    با این حال، بیم دتکتور دودی اعلام حریق اغلب انتخاب اصلی در مکان‌هایی با سقف بلند، مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، آشیانه‌های هواپیما و تالارهای کلیسا، همچنین کارخانه‌ها و انبارها هستند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و حتی مشکلات بیشتری را برای نگهداری صحیح آنها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این مناطق ممکن است مشکلات را کاهش دهد، زیرا به دستگاه‌های کمتری نیاز است و این دستگاه‌ها می‌توانند روی دیوارها که دسترسی به آنها آسان‌تر از سقف‌هاست، نصب شوند.

    کاربردها برای مناطق با سقف بلند در NFPA 92، راهنمای سیستم‌های کنترل دود توصیف شده‌اند. برای اطلاعات بیشتر به پیوست B این راهنما مراجعه کنید.
    بیم دتکتور: ۱۹٬۸۰۰ فوت مربع (۳۳۰ فوت × ۶۰ فوت)
    حداکثر پوشش تئوریک

    سرعت بالای جریان هوا
    مناطق با جریان هوای بالا مشکل ویژه‌ای برای دتکتورهای نقطه‌ای ایجاد می‌کنند، زیرا انتشار دود که در شرایط عادی رخ می‌دهد ممکن است اتفاق نیفتد. از آنجا که سرعت بالای هوا ممکن است دود را از محفظه تشخیص خارج کند، باید عملکرد دتکتور نقطه‌ای زمانی که سرعت هوا بیش از ۱٬۵۰۰ فوت در دقیقه یا زمانی که نرخ تعویض هوا در منطقه محافظت‌شده بیش از ۷٫۵ بار در ساعت است، به دقت بررسی شود. محدوده تشخیص بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (حداکثر محدوده پرتو معمولاً ۳۳۰ فوت است)، در مقایسه با ابعاد یک یا دو اینچی محفظه تشخیص دتکتور نقطه‌ای. بنابراین، احتمال اینکه دود از محدوده تشخیص بیم دتکتور دودی اعلام حریق خارج شود کمتر است. از آنجا که جریان هوای بالا تأثیر زیادی بر بیم دتکتور ندارد، معمولاً نیاز نیست که برای این نوع محیط‌ها فهرست‌شده باشند.

    لایه‌بندی (Stratification)

    WhatsApp Image 2025 09 16 at 1.20.19 AM1

    لایه‌بندی زمانی رخ می‌دهد که دود حاصل از مواد دودزا یا در حال سوختن گرم شده و از هوای خنک‌تر اطراف خود کمتر متراکم شود. دود بالا می‌رود تا زمانی که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد (به NFPA 2013، A.17.7.1.10 مراجعه کنید). بنابراین، لایه‌بندی ممکن است در مکان‌هایی رخ دهد که دمای هوا در سطح سقف بالا باشد، به ویژه جایی که تهویه وجود ندارد.

    روی سقف‌های صاف، بیم دتکتور دودی اعلام حریق عموماً باید در محدوده فاصله مشخص‌شده نصب شوند. در برخی موارد، محل و حساسیت دتکتورها باید نتیجه یک ارزیابی مهندسی باشد که شامل موارد زیر است:

    • ویژگی‌های سازه‌ای
    • اندازه و شکل اتاق‌ها و دهانه‌ها
    • نوع استفاده و اشغال فضا
    • ارتفاع سقف
    • شکل سقف
    • سطح و موانع
    • تهویه
    • شرایط محیطی
    • ویژگی‌های سوختن مواد قابل احتراق موجود
    • چیدمان محتویات منطقه تحت حفاظت

    نتایج ارزیابی مهندسی ممکن است نیاز به نصب در فاصله بیشتری از سقف و در ارتفاع‌های متفاوت برای مقابله با اثرات لایه‌بندی یا موانع دیگر داشته باشد.

    پیش‌لایه‌بندی / نرخ آزادسازی حرارت
    پیش‌لایه‌بندی باید در نظر گرفته شود، زیرا این یک عامل غالب در آتریوم‌هایی با سقف شیشه‌ای است. در دوره‌های آفتابی، گرما می‌تواند در بالای آتریوم تجمع پیدا کند و پیش از آغاز آتش‌سوزی یک لایه لایه‌بندی‌شده در سطح سقف ایجاد کند. عمق این لایه هوای گرم بسته به دمای بیرون و شدت تابش خورشید بر سقف تغییر می‌کند. گرمای ناشی از آتش می‌تواند به این لایه هوای گرم اضافه شده و عمق آن را افزایش دهد (به شکل‌های ۵ تا ۷ مراجعه کنید).

    نرخ آزادسازی حرارت یک آتش تعیین می‌کند که دود تا چه ارتفاعی در آتریوم بالا می‌رود. نرخ آزادسازی حرارت بسته به ماده در حال سوختن، جرم آن و متغیرهای دیگر متفاوت است.

    هنگام تعیین ارتفاع نصب بیم دتکتور دودی اعلام حریق، باید سناریوهای مختلف آتش در نظر گرفته شوند. سناریوهای آتش باید نه تنها بر اساس اشیای معمول موجود در محل، بلکه بر اساس خطرات موقت مانند وسایل مورد استفاده در بازسازی یا در طول دوره جابه‌جایی مستأجران نیز باشند.

    کاربردهای ویژه
    یکی از مهم‌ترین محدودیت‌های دتکتورهای دودی نقطه‌ای، ناتوانی آنها در کارکرد در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. هرچند بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد، اما در بسیاری موارد یک جایگزین مناسب به شمار می‌رود، زیرا محدوده دمای کاری آنها ممکن است بسیار وسیع‌تر از دتکتورهای دودی نقطه‌ای باشد. کاربردهای احتمالی بیم دتکتور شامل فریزرها، انبارهای نگهداری مواد سرد، انبارهای حمل‌ونقل، پارکینگ‌های سرپوشیده، سالن‌های کنسرت و اصطبل‌ها می‌شود.

    WhatsApp Image 2025 09 16 at 1.31.00 AM

    با این حال، بیم دتکتور نباید در محیط‌هایی نصب شود که فاقد کنترل دما هستند و احتمال تشکیل میعان یا یخ‌زدگی وجود دارد. اگر در این مکان‌ها رطوبت بالا و تغییرات سریع دما پیش‌بینی شود، احتمال تشکیل میعان وجود دارد و این شرایط برای کاربرد بیم دتکتور مناسب نیست. همچنین، بیم دتکتور نباید در محل‌هایی نصب شود که واحد فرستنده-گیرنده، رفلکتور یا مسیر نوری بین آنها ممکن است در معرض شرایط جوی بیرونی مانند باران، برف، تگرگ یا مه قرار گیرد. این شرایط عملکرد صحیح دتکتور را مختل می‌کند.

     

    بخش ۳ – ملاحظات طراحی
    عوامل زیادی بر عملکرد دتکتورهای دودی تأثیر می‌گذارند. نوع و مقدار مواد قابل احتراق، سرعت رشد آتش، فاصله دتکتور از آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق دارای تأییدیه UL تحت استاندارد UL 268 (دتکتورهای دود برای سیستم‌های اعلان حریق حفاظتی) هستند و باید طبق NFPA 72 (کد ملی اعلان حریق) و دستورالعمل سازنده نصب و نگهداری شوند.

    حساسیت
    هر سازنده مشخص می‌کند که حساسیت دتکتور باید با توجه به طول پرتو مورد استفاده در یک کاربرد خاص تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول پرتو مجاز طبق دستورالعمل سازنده نصب شود، که این مقادیر توسط فهرست UL محدود شده‌اند.

    محل و فاصله‌گذاری
    پارامترهای محل نصب و فاصله‌گذاری توسط سازندگان توصیه می‌شود. به‌عنوان مثال، در سقف‌های صاف، فاصله افقی بین پرتوهای پیش‌بینی‌شده نباید بیش از ۶۰ فوت (۱۸٫۳ متر) باشد و فاصله بین پرتو و دیوار کناری (دیوار موازی مسیر پرتو) می‌تواند حداکثر نصف این مقدار باشد. هرچند این مثال حداکثر فاصله ۶۰ فوت را مجاز می‌داند، برخی سازندگان ممکن است محدودیت بیشتری اعمال کنند.

    در سقف‌های صاف، بیم دتکتور دودی اعلام حریق باید حداقل ۱۲ اینچ (۰٫۳ متر) پایین‌تر از سطح سقف یا زیر موانع سازه‌ای مانند تیرها، خرپاها، کانال‌های هوا و غیره نصب شود. همچنین، بیم دتکتور باید حداقل ۱۰ فوت (۳٫۰ متر) بالاتر از کف نصب شود تا از موانع رایج ناشی از استفاده روزمره ساختمان دور باشد.

    ملاحظات نصب بیم دتکتور بازتابی
    برای عملکرد صحیح، بیم دتکتور به یک سطح نصب پایدار نیاز دارد. سطحی که حرکت کند، جابه‌جا شود، دچار لرزش یا تغییر شکل شود، باعث آلارم‌های کاذب یا بروز خطا خواهد شد. در فواصل طولانی، جابه‌جایی تنها ۰٫۵ درجه در فرستنده باعث می‌شود نقطه مرکزی پرتو تقریباً ۳ فوت (۰٫۹ متر) تغییر مکان دهد.

    دتکتور باید روی سطوح نصب پایدار مانند آجر، بتن، دیوار باربر محکم، ستون نگهدارنده، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود دچار لرزش یا جابه‌جایی شود، نصب شود. دتکتور نباید روی دیوار فلزی موج‌دار، دیوار فلزی نازک، پوشش خارجی ساختمان، نمای خارجی، سقف معلق، خرپای فلزی باز، تیرهای غیرباربر، الوار یا سطوح مشابه نصب شود. در مواردی که تنها یک سطح پایدار قابل استفاده است، واحد فرستنده-گیرنده باید روی سطح پایدار نصب شود و رفلکتور روی سطح کمتر پایدار قرار گیرد، زیرا رفلکتور نسبت به محل نصب ناپایدار تحمل بیشتری دارد.

    WhatsApp Image 2025 09 16 at 1.20.20 AM

    از آنجا که بیم دتکتور دودی اعلام حریق دستگاه خط دید است و در صورت قطع کامل و ناگهانی سیگنال وارد وضعیت خطا می‌شود، باید همیشه از وجود هرگونه مانع مات در مسیر پرتو جلوگیری کرد.

    «در برخی موارد، پروژکتور پرتو نوری (همان فرستنده/گیرنده) در یک دیوار انتهایی نصب می‌شود و گیرنده پرتو نوری (همان رفلکتور) در دیوار مقابل نصب می‌شود. با این حال، همچنین مجاز است که پروژکتور و گیرنده از سقف آویزان شوند، به شرطی که فاصله آنها از دیوارهای انتهایی بیش از یک‌چهارم فاصله انتخاب‌شده نباشد.» — NFPA 72-2013, A.17.7.3.7

    همچنین باید نیاز به واکنش سریع به دلیل عوامل ایمنی جانی یا ارزش بالای دارایی‌های محافظت‌شده در نظر گرفته شود. در این شرایط، فاصله‌گذاری باید کاهش یابد، یا زمانی که آتش پیش‌بینی‌شده دود کمی به‌ویژه در مراحل اولیه تولید می‌کند. برای مثال، دتکتورهای نصب‌شده روی سقف یک آتریوم بسیار بلند در یک هتل ممکن است نیاز به تکمیل با دتکتورهای اضافی در ارتفاعات پایین‌تر داشته باشند.

    در کاربردهایی که نیاز به کاهش فاصله‌گذاری است، باید دقت شود که دو پرتو موازی به حداقل فاصله از یکدیگر برسند تا گیرنده یک دتکتور نتواند منبع نور دتکتور دیگر را ببیند. در مواردی که دو یا چند دتکتور با پرتوهایی در زوایا نصب می‌شوند، باید اطمینان حاصل شود که گیرنده هر دتکتور تنها نور فرستنده خودش را تشخیص دهد. رعایت روش‌های آزمون ذکرشده در دفترچه راهنمای سازنده بسیار مهم است.

    ملاحظات تکمیلی نصب برای بیم دتکتور دودی اعلام حریق بازتابی

    WhatsApp Image 2025 09 16 at 1.20.20 AM1 1

    باید یک خط دید شفاف و دائمی بین دتکتور و رفلکتور وجود داشته باشد. اجسام بازتابنده نباید در نزدیکی خط دید بین دتکتور و رفلکتور قرار گیرند. اجسام بازتابنده‌ای که بیش از حد به خط دید نزدیک باشند می‌توانند پرتو نور را از فرستنده به گیرنده منعکس کنند. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. اجسام بازتابنده باید حداقل ۱۵ اینچ (۳۸٫۱ سانتی‌متر) از خط دید بین دتکتور و رفلکتور فاصله داشته باشند.

    منابع نوری با شدت بسیار زیاد، مانند نور خورشید و لامپ‌های هالوژن، اگر مستقیماً به سمت گیرنده هدایت شوند، می‌توانند تغییرات شدیدی در سیگنال ایجاد کرده و باعث بروز سیگنال خطا یا آلارم شوند. برای جلوگیری از این مشکل، باید از تابش مستقیم نور خورشید به واحد فرستنده-گیرنده اجتناب شود. حداقل زاویه ۱۰ درجه بین مسیر منبع نور (نور خورشید) و دتکتور، و خط دید بین دتکتور و رفلکتور باید رعایت شود.

    باید از عملکرد دتکتور از طریق شیشه اجتناب شود. از آنجا که بیم دتکتور تک‌سَر بر اساس اصل بازتاب عمل می‌کند، یک شیشه که به‌طور عمود بر خط دید بین دتکتور و رفلکتور قرار گرفته باشد، می‌تواند پرتو نور را از فرستنده به گیرنده بازتاب دهد. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. شیشه همچنین مقداری از نور را هنگام عبور جذب می‌کند. این جذب نور فاصله مجاز نصب بین دتکتور و رفلکتور را کاهش می‌دهد.

    در مواردی که اجتناب از عبور پرتو از شیشه ممکن نیست، برخی شیوه‌های خاص نصب می‌توانند اثرات شیشه را به حداقل برسانند. این روش‌ها شامل خودداری از عبور پرتو از چندین لایه شیشه، قرار دادن شیشه به‌گونه‌ای که به‌طور عمود بر خط دید بین دتکتور و رفلکتور نباشد (حداقل ۱۰ درجه انحراف از حالت عمود توصیه می‌شود) و اطمینان از شفاف، صاف و محکم بودن شیشه است. آزمون مسدودسازی کامل رفلکتور می‌تواند برای تعیین قابل قبول بودن نصب استفاده شود.

    در مکان‌هایی که ارتفاع سقف بیش از ۳۰ فوت (۹٫۱ متر) است، ممکن است نیاز به نصب بیم دتکتور دودی اعلام حریق اضافی در ارتفاع‌های مختلف برای تشخیص دود در سطوح پایین‌تر باشد. برای اطلاعات بیشتر به بخش لایه‌بندی در این راهنما مراجعه کنید.

    پیوست A – واژه‌نامه اصطلاحات

    پنل اعلان (Annunciator)
    دستگاهی که وضعیت یا شرایطی مانند حالت عادی، خطا یا آلارم دتکتور دودی یا سیستم را به صورت دیداری یا شنیداری نمایش می‌دهد.

    کنترل خودکار بهره (Automatic Gain Control – AGC)
    قابلیت بیم دتکتور دودی اعلام حریق برای جبران افت سیگنال نوری ناشی از گردوغبار یا آلودگی. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان به آتش‌های کند و دودزا حساس باقی می‌ماند.

    بیم دتکتور دودی اعلام حریق (بازتابی)
    دستگاهی که با ارسال یک پرتو نور از واحد فرستنده-گیرنده به سمت یک رفلکتور که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند، وجود دود را تشخیص می‌دهد. ورود دود به مسیر پرتو باعث کاهش سیگنال نور شده و آلارم فعال می‌شود.

    برد بیم (Beam Range)
    فاصله بین فرستنده-گیرنده و رفلکتور.

    پوشش دتکتور (Detector Coverage)
    منطقه‌ای که یک دتکتور دود یا دتکتور حرارت قادر به تشخیص مؤثر دود و/یا حرارت است. این منطقه توسط فهرست‌ها و کدهای مربوطه محدود می‌شود.

    لیست‌شده (Listed)
    قرار گرفتن یک دستگاه در فهرست منتشرشده توسط یک سازمان آزمون معتبر که نشان می‌دهد دستگاه با موفقیت طبق استانداردهای پذیرفته‌شده آزمایش شده است.

    تیرگی (انسداد تجمعی) (Obscuration / Cumulative Obscuration)
    کاهش توانایی عبور نور از یک نقطه به نقطه دیگر به دلیل وجود مواد جامد، مایع، گاز یا ذرات معلق. انسداد تجمعی ترکیبی از چگالی این ذرات مانع نور به ازای هر فوت و فاصله خطی‌ای است که این ذرات اشغال می‌کنند، یعنی چگالی دود ضرب‌در فاصله خطی میدان دود. (معمولاً با واحدهایی مانند درصد بر فوت یا درصد بر متر بیان می‌شود).

    رفلکتور (Reflector)
    دستگاهی که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند.

    حساسیت (Sensitivity)
    توانایی یک دتکتور دود برای واکنش به یک سطح مشخص دود.

    دود (Smoke)
    محصولات جامد و گازی حاصل از احتراق که در هوا معلق هستند.

    رنگ دود (Smoke Color)
    روشنی یا تیرگی نسبی دود که از نامرئی تا سفید، خاکستری و سیاه متغیر است.

    چگالی دود (Smoke Density)
    مقدار نسبی محصولات جامد و گازی حاصل از احتراق در یک حجم معین.

    دتکتور نقطه‌ای (Spot-Type Detector)
    دستگاهی که تنها در محل نصب خود دود و/یا حرارت را تشخیص می‌دهد. دتکتورهای نقطه‌ای دارای یک محدوده تعریف‌شده پوشش هستند.

    لایه‌بندی (Stratification)
    اثری که زمانی رخ می‌دهد که دود، که از هوای اطراف خود گرم‌تر است، بالا می‌رود تا به دمای برابر با هوای اطراف برسد و در نتیجه، از بالا رفتن بازمی‌ایستد.

    فرستنده-گیرنده (Transceiver)
    دستگاهی در یک بیم دتکتور دودی اعلام حریق بازتابی که نور را به سمت فضای تحت حفاظت می‌تاباند و آن را پایش می‌کند.

    صفحات شفاف (فیلترها) (Transparencies / Filters)
    صفحه‌ای از شیشه یا پلاستیک با سطح مشخص تیرگی که می‌تواند برای آزمودن سطح حساسیت صحیح بیم دتکتور دودی اعلام حریق استفاده شود.

    وضعیت خطا (Trouble Condition)
    وضعیتی از یک دستگاه یا سیستم که عملکرد صحیح آن را مختل می‌کند، مانند مدار باز در حلقه شروع‌کننده. اعلان وضعیت خطا که روی پنل کنترل یا پنل اعلان نمایش داده می‌شود یک «سیگنال خطا» است.

     

    پیوست B – استاندارد NFPA 92 برای سیستم‌های کنترل دود (ویرایش ۲۰۱۲)

    A.6.4.4.1.5(1)
    هدف از استفاده از یک پرتو رو به بالا برای تشخیص لایه دود، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند پرتو باید با زاویه رو به بالا به گونه‌ای هدف‌گیری شوند که لایه دود را بدون توجه به سطح لایه‌بندی دود قطع کنند. باید از بیش از یک بیم دتکتور دودی اعلام حریق استفاده شود. هنگام استفاده از این دستگاه‌ها برای این کاربرد، باید توصیه‌های سازندگان بررسی شود. دستگاه‌هایی که به این روش نصب می‌شوند ممکن است نیازمند فعالیت نگهداری بیشتری باشند.

    A.6.4.4.1.5(2)
    هدف از استفاده از پرتوهای افقی برای تشخیص لایه دود در سطوح مختلف، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند بیم دتکتور در سقف نصب می‌شوند. دتکتورهای اضافی در سطوح پایین‌تر حجم فضا نصب می‌شوند. موقعیت دقیق پرتوها تابعی از طراحی خاص است، اما باید شامل پرتوهایی در پایین هر فضای بدون تهویه (هوای مرده) شناسایی‌شده و در محل یا نزدیک به ارتفاع طراحی لایه دود، به همراه موقعیت‌های میانی پرتوها در سایر سطوح باشد.

  • راهنمای طراحی دتکتور دودی مکشی برای مهندسین

    قسمت نخست: مفاهیم و ساختارها

    ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

    سطوح حفاظت به شرح زیر خواهند بود:

    1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
      2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
      3. SFD (تشخیص حریق استاندارد Standard Fire Detection

    4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

    الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

    هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

    • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
    • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
    • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
      ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
      ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
      ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

    بخش ۲
    اصول تشخیص دود به روش مکشی (ASD)
    دینامیک جریان هوا

    یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

    • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
    • آشکارساز دود مکشی که شامل موارد زیر است:
      – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
      – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
      – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
    • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

    شبکه لوله‌کشی نمونه‌برداری
    شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

    روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

    • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

    WhatsApp Image 2025 09 29 at 11.40.01 PM

    • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

    WhatsApp Image 2025 09 29 at 11.40.01 PM1

    • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
    • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
    • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
    • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

    WhatsApp Image 2025 09 29 at 11.40.02 PM2

    WhatsApp Image 2025 09 29 at 11.40.02 PM1

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

  • دتکتور حرارتی خطی در حفاظت از انبارها و آشیانه ها

    انبارها و آشیانه‌ها – تشخیص حرارت خطی با استفاده از فناوری فیبر نوری

    فناوری تشخیص حرارت خطی (LHD) مبتنی بر سنجش دمای توزیعی (DTS)، سابقه موفقی در ارائه راهکارهای ایمنی حریق و تشخیص آتش به‌ویژه در فضاهای صنعتی و بزرگ دارد. این فناوری به دلیل نیاز به نگهداری پایین، هزینه مالکیت کم، قابلیت اطمینان بالا و تشخیص مؤثر حریق، گزینه‌ای بسیار مناسب برای پایش فضاهای وسیعی مانند انبارها و آشیانه‌ها محسوب می‌شود.

    مقدمه

    انبارها و آشیانه‌ها در زمینه ایمنی حریق با چالش‌های منحصربه‌فردی روبرو هستند. این فضاها می‌توانند مناطق پرتردد با اقلام قابل اشتعال و بار حرارتی بالا باشند. چالش‌های رایج شامل موارد زیر است:
    • سقف‌های بلند، سازه‌های نامنظم، قفسه‌بندی‌ها، آتریوم‌ها و نواحی سخت‌دسترس
    • دتکتورهای نقطه‌ای دود و حرارت هزینه نصب و نگهداری بالایی دارند و ممکن است فاصله زیادی با منبع دود/حرارت داشته باشند
    • وجود گردوغبار و آلودگی محیط که می‌تواند هم‌زمان عامل افزایش خطر آتش‌سوزی و بروز هشدارهای کاذب برای دتکتورهای بیم و مکشی باشد
    • سیستم تهویه و تهویه مطبوع می‌تواند حرکت دود را مختل کرده و باعث تأخیر در شناسایی حریق توسط دتکتورهای دود شود
    • نگهداری و آزمون‌های دوره‌ای دتکتورها به دلیل دسترسی دشوار مشکل است

    نصب سیستم در انبارها

    در انبارهای پرچگالی، حتی آتش‌سوزی‌های کوچک می‌توانند به سرعت در طول قفسه‌ها و به صورت عمودی گسترش یابند. این امر می‌تواند منجر به نرم شدن سازه‌های فلزی و فروپاشی قفسه‌ها شود و کار را برای سیستم‌های اطفای حریق و نیروهای آتش‌نشانی دشوارتر کند.
    در سیستم‌های دتکتور حرارتی خطی فیبر نوری، کابل دتکتور می‌تواند مستقیماً در داخل قفسه‌ها نصب شود و همیشه به منبع آتش نزدیک باشد.

    به این ترتیب، افزایش دم

    ا به‌سرعت شناسایی شده و احتمال کنترل و مهار آتش به‌مراتب افزایش می‌یابد.

    WhatsApp Image 2025 09 15 at 4.32.30 PM

    کنترلرها معمولاً در نزدیکی تابلوی کنترل حریق نصب می‌شوند و دارای نمایشگر LCD برای نمایش مستقل هشدارها و همچنین انتقال اطلاعات به پنل اعلام حریق هستند.

    WhatsApp Image 2025 09 15 at 4.32.30 PM1

    کابل دتکتور

    کابل دتکتور یک عنصر کاملاً غیرفعال است و بر اساس فیبر نوری استاندارد مخابراتی طراحی شده است. در صنعت حریق، پیکربندی رایج فیبر، فیبر نوری 62.5/125 است که عملکرد برتری تا فاصله 10 کیلومتر ارائه می‌دهد.

    مزایای کابل فیبر نوری غیرفعال شامل:
    • پوشش پیوسته بدون دتکتورهای مجزا؛ سیستم  نقاط اندازه‌گیری را هر ۵۰ سانتی‌متر ثبت می‌کند

    • WhatsApp Image 2025 09 15 at 4.32.30 PM2
      ایمن در برابر تداخلات الکترومغناطیسی؛ مناسب برای مناطق دارای نویز الکترومغناطیسی بالا
      • مقاوم در برابر خوردگی و ارتعاش؛ با طول عمر بیش از ۳۰ سال

    کابل‌های سری FireFiber به‌گونه‌ای طراحی شده‌اند که ضمن حفظ انتقال حرارتی سریع برای واکنش سریع سیستم، بسیار سبک، انعطاف‌پذیر و نصب آسان هستند.

     

    نصب و جانمایی کابل

    کابل دتکتور معمولاً یا از سقف آویزان می‌شود یا روی قفسه‌ها با روش‌های مختلف نصب می‌شود. حداقل سطح حفاظت با نصب کابل در ارتفاع سقف حاصل می‌شود. روش نصب باید با رعایت فاصله‌های استاندارد نصب (معمولاً ۱٫۵ متر) انجام شود.

    WhatsApp Image 2025 09 15 at 4.32.31 PM

    WhatsApp Image 2025 09 15 at 4.32.31 PM1

    هشدارهای هوشمند و پوشش کامل

    WhatsApp Image 2025 09 15 at 4.32.31 PM2

    دو مزیت اصلی سیستم‌های دتکتور حرارتی خطی فیبر نوری بر پایه DTS عبارتند از هشدارهای هوشمند و اندازه‌گیری توزیعی.
    در این سیستم‌ها، سه نوع هشدار قابل پیکربندی است که منجر به تشخیص سریع‌تر حریق و کاهش قابل توجه ریسک می‌شود.

    در مقایسه با سیستم‌های سنتی تشخیص حریق، دتکتورهای دود به هشدارهای کاذب ناشی از آلودگی حساس‌اند و دتکتورهای حرارتی نقطه‌ای تنها زمانی مؤثرند که آتش مستقیماً زیر آن‌ها رخ دهد. سیستم  در هر ۰٫۵ متر یک نقطه اندازه‌گیری دارد و به‌همین دلیل هیچ «نقطه‌ کور» در پوشش وجود ندارد.

     

    مزایای نسبت به فناوری‌های دیگر

    سیستم‌های دتکتور حرارتی خطی فیبر نوری به‌واسطه هشدارهای هوشمند و پوشش پیوسته، مزایای متعددی نسبت به سایر فناوری‌ها دارند.

    WhatsApp Image 2025 09 15 at 4.32.32 PMWhatsApp Image 2025 09 15 at 4.32.32 PM1

    گردوغبار و ذرات موجود در محیط می‌توانند باعث هشدار کاذب یا انسداد در سایر دتکتورها شوند، در حالی که سیستم‌های فیبر نوری از این آسیب‌ها مصون‌اند.

    WhatsApp Image 2025 09 15 at 4.32.33 PM

    WhatsApp Image 2025 09 15 at 4.32.33 PM1

    یکپارچه‌سازی با سایر سیستم‌ها

    سیستم تشخیص حریقی که شامل فناوری DTS باشد، به‌محض شناسایی آتش، اقدامات حفاظتی از پیش‌برنامه‌ریزی‌شده (سیگنال هشدار، کنترل تهویه، اطفا حریق و…) را فعال می‌کند.

    این سیستم باید محل دقیق حریق و داده‌های کلیدی درباره گسترش آن را ارائه دهد تا اقدامات نجات یا اطفا به‌طور مؤثر انجام شود. واحد مرکزی کنترل، دمای هر نقطه را در طول کابل دتکتور اندازه‌گیری می‌کند. این کابل در نرم‌افزار به نواحی مختلف تشخیص حریق تقسیم می‌شود و هر ناحیه می‌تواند آستانه هشدار اختصاصی خود را داشته باشد.

     

    پیکربندی هوشمند زون ها

    سیستم دتکتور حرارتی خطی فیبر نوری امکان پیکربندی هشدارهای هوشمند همراه با نواحی هوشمند را فراهم می‌کند. هر ناحیه می‌تواند با توجه به شرایط محیطی خاص یا هماهنگی با سایر اجزای سیستم، تنظیمات ویژه‌ای داشته باشد؛ مانند: خروجی‌های اضطراری، نواحی تهویه، یا نواحی اطفای حریق.

    با توجه به اینکه سیستم مکان و دمای دقیق هر رویداد را مشخص می‌کند، می‌توان نحوه واکنش سیستم را به‌دقت برنامه‌ریزی کرد:
    • یک ناحیه می‌تواند با رله به تابلو اعلام حریق متصل شده و سیستم اطفای آن ناحیه را فعال کند
    • یا داده‌ها از طریق پروتکل‌هایی مانند Modbus به سیستم مرکزی ارسال شوند تا اقدامات مناسب تعیین گردد

     

    پایداری سیستم (Redundancy)

    بسته به نیاز مشتری، سطوح مختلفی از پایداری سیستم تعریف می‌شود:
    پایداری کابل: در صورت قطع کابل، سیستم به کار خود ادامه می‌دهد (در عین هشدار برای اقدام تعمیراتی)
    پایداری کنترلر: در صورت خرابی یکی از کنترلرها، عملکرد سیستم حفظ می‌شود

    در کاربردهای سقفی، معمولاً فقط یک کنترلر استفاده می‌شود و پایداری از طریق کابل فراهم می‌شود.

     

    نرم‌افزار پیشرفته نمایش تصویری

    نرم‌افزار MaxView از شرکت Bandweaver قابلیت نمایش گرافیکی پیشرفته‌ای ارائه می‌دهد. در نصب‌های پیچیده با چندین ناحیه، اپراتور می‌تواند محل حادثه را به‌صورت بصری، سریع و دقیق شناسایی کند. این موضوع به‌ویژه در هشدارهای اولیه قبل از فعال شدن سیستم اطفای حریق اهمیت دارد.

    در مثال ارائه‌شده، از ۱۱ سیستم دتکتور حرارتی خطی در ۴۶ ردیف قفسه (در دو ناحیه، هر ناحیه ۲۳ ردیف) استفاده شده است. هر قفسه دارای ۸ طبقه است و نرم‌افزار MaxView موقعیت را با دقت تا نزدیک‌ترین ۱ متر در هر طبقه نمایش می‌دهد.

     

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • نصب، دتکتورهای دودی مکشی یا اسپیراتینگ ها

    نصب
    این بخش اصول اولیه نصب شبکه لوله‌کشی سیستم اسپیراتینگ را ارائه می‌دهد. سیستم اسپیراتینگ باید مطابق با استاندارد EN 54-20 و همچنین BS 5839، BS 6266 و/یا «کد عملیاتی FIA برای طراحی، نصب، راه‌اندازی و نگهداری سیستم‌های دتکتور دودی اسپیراتینگ» نصب شود. پیش از آغاز نصب، نصاب باید به خاطر داشته باشد که هر سیستم ویژگی‌ها و تفاوت‌های خاص خود را برای تطبیق با لوله‌کشی سیستم اسپیراتینگ و تضمین عملکرد صحیح سیستم دارد.

    لوله‌های سیستم اسپیراتینگ می‌توانند از جنس پلاستیک یا فلزات غیرآهنی مانند مس باشند. رایج‌ترین لوله در صنعت، لوله‌ای با قطر خارجی ۲۵ میلی‌متر (۰.۷۵ اینچ) از جنس CPVC، PVC، ABS یا UPVC است. با این حال، قطر داخلی لوله می‌تواند بسته به نیاز طراحی سیستم و مقررات و کدهای محلی، بین ۱۵ میلی‌متر تا ۲۱ میلی‌متر (۰.۵۹۱ اینچ تا ۰.۸۲۷ اینچ) متغیر باشد. در اروپا رایج‌ترین لوله، ABS و در ایالات متحده، CPVC است. رایج‌ترین مواد نصب، اتصالات، پایه‌های نگهدارنده، آویزها و روش‌های نصب در بخش‌های بعدی شرح داده شده‌اند.

    الزامات لوله‌کشی
    برای رعایت استاندارد EN 54-20، باید از لوله ABS قرمز مطابق با استاندارد EN 61386 (فشار مکانیکی ۱، ضربه ۱، دما ۳۱) با قطر خارجی اسمی ۲۵ میلی‌متر (قطر داخلی ۲۱ میلی‌متر) استفاده شود. مقاطع لوله باید با چسب مناسب ABS به یکدیگر چسبانده شوند تا از جدا شدن یا نشتی جلوگیری شود. اگر احتمال داده می‌شود که در آینده نیاز به جدا کردن بخشی از لوله باشد، باید از اتصال‌های قابل باز شدن استفاده شود.

    مهم:
    اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم یا اتصال T قرار نداشته باشد.
    هیچ‌گاه لوله‌ها را به خودِ واحد دتکتور دودی اسپیراتینگ نچسبانید.

    اتصالات
    اتصالات برای اتصال بخش‌های مختلف لوله به‌منظور ایجاد شبکه‌های طولانی‌تر استفاده می‌شوند؛ این اتصالات از همان جنس لوله ساخته می‌شوند. انواع مختلفی از اتصالات وجود دارند تا امکان ایجاد خم‌ها، مسیرهای مستقیم، شاخه‌ها و اتصال‌ها فراهم شود. در این صفحه اتصالات رایج توضیح داده شده‌اند.

    کوپلینگ‌ها و یونیت‌ها
    کوپلینگ‌ها و یونیت‌ها برای اتصال دو بخش از لوله در یک خط مستقیم استفاده می‌شوند. کوپلینگ زمانی به کار می‌رود که قرار نیست بخش مربوطه جدا شود. یونیت این امکان را می‌دهد که دو بخش لوله به صورت پیچی به یکدیگر متصل شوند تا در آینده بتوان به آن دسترسی داشت؛ این ویژگی برای بخش‌هایی از شبکه لوله‌کشی که باید به‌طور دوره‌ای برای نگهداری یا تمیزکاری باز شوند، مفید است. از یونیت‌ها همچنین می‌توان برای تراز دقیق سوراخ‌های نمونه‌گیری در بخش خاصی از شبکه لوله‌کشی، مانند بالای دریچه‌های برگشت هوا، استفاده کرد. شکل ۱ در پایین، یک نمونه رایج از یونیت و کوپلینگ پلاستیکی را نشان می‌دهد.

    WhatsApp Image 2025 10 04 at 1.23.43 AM

    خم‌ها/الگ‌ها
    خم‌ها/الگ‌ها برای تغییر جهت شبکه لوله‌کشی استفاده می‌شوند. خم‌های ۴۵° و ۹۰° هر دو قابل استفاده هستند. یک خم معمولی در شکل ۲ پایین نشان داده شده و اتصالات خم پلاستیکی معمولی در شکل ۳ پایین آمده است.
    خم‌ها می‌توانند ۴۵° یا ۹۰° باشند. برای خم‌های ۹۰°، بسیار مهم است که از شعاع‌های کم‌شیب استفاده شود و از خم‌های تیز خودداری گردد، زیرا خم‌های تیز موجب وارد شدن افت فشار غیرضروری شده و زمان پاسخ‌دهی از سوراخ‌هایی که پس از خم قرار دارند را افزایش می‌دهد. اطمینان حاصل کنید که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از یک خم قرار نداشته باشد.

    WhatsApp Image 2025 10 04 at 1.23.44 AM

    WhatsApp Image 2025 10 04 at 1.23.44 AM1

    سه‌راهی و درپوش‌ها
    از سه‌راهی می‌توان برای ایجاد شاخه‌های چندگانه در لوله‌ها استفاده کرد. مهم است که طراحی شاخه‌ها متعادل باشد – یعنی تقریباً از نظر طول و تعداد/اندازه سوراخ‌ها برابر باشند. اطمینان حاصل شود که هیچ سوراخی در فاصله کمتر از ۱۰۰ میلی‌متر از سه‌راهی قرار نداشته باشد. از سه‌راهی‌ها برای اتصال لوله‌های عمودی یا لوله‌های نمونه‌برداری در شبکه استفاده می‌شود. از سه‌راهی‌های خاص می‌توان برای اتصال لوله موئین و یک نقطه نمونه‌برداری استفاده کرد، همان‌طور که در شکل ۴ نشان داده شده است.

    انتهای لوله باید با درپوشی که دارای سوراخ مرکزی برای کنترل جریان هوا است، بسته شود. اگر از درپوش استفاده نشود، در عمل هیچ هوایی از طریق سوراخ‌های جانبی کشیده نخواهد شد. بدون وجود سوراخ در درپوش، میزان جریان هوا از سوراخ‌های جانبی به‌شدت نامتعادل خواهد بود. برای لوله‌هایی با تعداد کم سوراخ نمونه‌برداری، سوراخ درپوش معمولاً هم‌اندازه با سوراخ‌های نمونه‌برداری در طول لوله است. هنگامی که تعداد سوراخ‌های نمونه‌برداری بیش از پنج عدد باشد، سوراخ درپوش ممکن است بزرگ‌تر از سوراخ‌های دیگر در طول لوله باشد. در صورت نیاز، می‌توان درپوش را به‌عنوان یک نقطه نمونه‌برداری در نظر گرفت.

    ممکن است درپوش دارای سوراخ نمونه‌برداری باشد: وجود و اندازه این سوراخ توسط نرم‌افزار طراحی سیستم – PipeIQ – تعیین می‌شود. لطفاً به شکل ۴ زیر مراجعه کنید.

    WhatsApp Image 2025 10 04 at 1.23.45 AM