سیستم اطفاء حریق ثابت با گاز دی اکسیدکربن از نوع غرقابی کامل و فاقد منبع دی‌اکسید کربن

IMG 1516

8.1 اطلاعات کلی
8.1.1* شرح: سیستم لوله‌ ای قائم یک سیستم اطفاء حریق ثابت از نوع غرقابی کامل، اعمال موضعی یا شلنگ دستی است که فاقد منبع دی‌اکسید کربن به‌صورت دائمی متصل می‌باشد.
8.1.2* موارد استفاده: نصب سیستم‌های لوله‌ای قائم تنها با تأیید مرجع ذی‌صلاح مجاز است.
8.1.3 الزامات عمومی: سیستم‌های لوله‌ای قائم و تأمین سیار باید مطابق الزامات فصل‌های ۴ تا ۷ و همچنین موارد مندرج در بخش‌های 8.2 تا 8.5 نصب و نگهداری شوند.
8.1.3.1 لوله‌کشی باید مطابق با الزامات مربوط به سامانه‌ای باشد که از منبع دائمی متصل استفاده می‌کند.
8.1.3.2 طول‌های قابل توجه لوله‌کشی در تأمین سیار باید در طراحی مدنظر قرار گیرند.

8.2 مشخصات خطر
استفاده از سیستم‌های لوله‌ ای قائم و تأمین سیار در محافظت از خطراتی که در فصل‌های ۴ تا ۷ توصیف شده‌اند مجاز است، مشروط بر اینکه تأخیر در رسیدن به تخلیه مؤثر دی‌اکسید کربن در زمان انتقال تأمین سیار به محل و اتصال آن به سیستم، تأثیر منفی در خاموش‌سازی نداشته باشد.

8.3 الزامات لوله قائم
8.3.1 لوله‌کشی تأمین در سیستم‌های لوله‌ای قائم باید مجهز به اتصالات سریع تعویض بوده و در محل قابل دسترس و به‌وضوح علامت‌گذاری‌شده‌ای برای اتصال به تأمین سیار خاتمه یابد.
8.3.2 این محل باید با میزان دی‌اکسید کربن مورد نیاز و مدت زمان لازم برای تخلیه مشخص شده باشد.

8.4 الزامات تأمین سیار
8.4.1* ظرفیت: تأمین سیار باید دارای ظرفیتی مطابق با الزامات فصل‌های ۴ تا ۷ باشد.
8.4.2 اتصال
8.4.2.1 تأمین سیار باید به نحوی تجهیز شده باشد که بتواند دی‌اکسید کربن را به سیستم لوله‌ای قائم منتقل کند.
8.4.2.2 اتصالات سریع تعویض باید فراهم شوند تا این اتصالات با بیشترین سرعت ممکن برقرار گردند.

8.4.3 قابلیت جابجایی
8.4.3.1 مخزن یا مخازن ذخیره‌سازی دی‌اکسید کربن باید بر روی یک وسیله نقلیه قابل حرکت نصب شده باشند که بتوان آن را با دست، با وسیله نقلیه موتوری جداگانه یا با نیروی محرکه خود به محل آتش‌سوزی رساند.
8.4.3.2 وسیله جابجایی تأمین سیار باید قابل‌اطمینان بوده و قادر باشد با حداقل تأخیر به محل حریق برسد.

8.4.4 محل استقرار
تأمین سیار باید نزدیک به خطراتی که برای حفاظت از آن‌ها در نظر گرفته شده، نگهداری شود تا اطفاء حریق در کوتاه‌ترین زمان ممکن پس از بروز حریق آغاز گردد.

8.4.5 تجهیزات جانبی
تأمین سیار برای سیستم‌های لوله‌ای قائم می‌تواند به شلنگ‌های دستی به عنوان تجهیزات جانبی برای حفاظت از خطرات پراکنده کوچک یا به‌عنوان مکمل سیستم‌های لوله‌ای قائم یا دیگر سامانه‌های ثابت مجهز باشد.

8.5* آموزش
آموزش افراد مسئول این تجهیزات در استفاده و نگهداری از سیستم‌های لوله‌ای قائم و تأمین سیار امری حیاتی است

نوشته‌های مشابه

  • راهنمای طراحی دتکتور دودی مکشی برای مهندسین

    قسمت نخست: مفاهیم و ساختارها

    ابتدا مفهوم برخی کلمات به کار رفته  در مورد سطوح مختلف حفاظت در این مقاله:

    سطوح حفاظت به شرح زیر خواهند بود:

    1. 1. VEWFD (تشخیص حریق بسیار زودهنگام. Very early warning fire detection
      2. EWFD (تشخیص حریق زودهنگام Early Warning Fire Detection
      3. SFD (تشخیص حریق استاندارد Standard Fire Detection

    4) ASD دتکتور دودی مکشی Aspirating Smoke Detector

    الزامات سامانه‌های VEWFD بر اساس استاندارد NFPA 76:

    هنگامی که نیاز به تشخیص حساس‌تری وجود دارد، استاندارد NFPA 76 الزامات نصب این سامانه‌ها را مشخص کرده است. الزامات سامانه‌های VEWFD نوع ASD به شرح زیر است:

    • حداکثر مساحت تحت پوشش هر سوراخ نمونه‌برداری ۱۸.۶ متر مربع (۲۰۰ فوت مربع) است.
    • حداقل حساسیت هشدار برای هر سوراخ نمونه‌برداری باید حداکثر ۰٫۲ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداقل حساسیت اعلام حریق برای هر سوراخ نمونه‌برداری باید حداکثر ۱٫۰ درصد کاهش نور بر فوت (obs/ft.) باشد.
    • حداکثر زمان انتقال (Transport Time) ۶۰ ثانیه است.
    • در مواردی که دو سطح تشخیص (بالا و پایین) مورد نیاز است، سوراخ‌های نمونه‌برداری باید در محل‌های زیر قرار گیرند:
      ۱. هر سطح حفاظتی باید حداکثر ۳۷٫۲ متر مربع (۴۰۰ فوت مربع) به ازای هر سوراخ نمونه‌برداری را پوشش دهد.
      ۲. پوشش کلی بین سوراخ‌های نمونه‌برداری بالا و پایین باید حداکثر ۱۸٫۶ متر مربع (۲۰۰ فوت مربع) باشد.
      ۳. حداکثر زمان انتقال ۶۰ ثانیه است.

    بخش ۲
    اصول تشخیص دود به روش مکشی (ASD)
    دینامیک جریان هوا

    یک سامانه‌ی ASD پایه دارای سه بخش اصلی است (مطابق شکل ۱ در پایین):

    • شبکه لوله‌کشی نمونه‌برداری که هوا را از طریق سوراخ‌های نمونه‌برداری جمع‌آوری کرده و آن را از فضای محافظت‌شده به سمت آشکارساز منتقل می‌کند، جایی که هوا برای وجود ذرات دود بررسی می‌شود.
    • آشکارساز دود مکشی که شامل موارد زیر است:
      – یک محفظه‌ی حسگر با سنسور حساس برای شناسایی ذرات دود معلق در هوا
      – یک مکنده یا فن برای کشیدن هوا از ناحیه‌ی محافظت‌شده به داخل محفظه‌ی حسگر
      – یک فیلتر اختیاری برای حذف ذرات درشت که ممکن است به حسگر داخل محفظه آسیب برسانند
    • لوله‌ی خروجی برای خارج کردن هوای نمونه‌برداری‌شده از آشکارساز.

    شبکه لوله‌کشی نمونه‌برداری
    شبکه لوله‌کشی نمونه‌برداری به یک پورت در قسمت بالا یا پایین آشکارساز متصل می‌شود. این لوله‌ها معمولاً از پلاستیک ساخته می‌شوند، اما می‌توانند از مس، برنج یا فلزات غیرآهنی دیگر نیز تولید شوند. هر تولیدکننده الزامات خاص خود را برای لوله‌های نمونه‌برداری دارد. نوع لوله بر اساس کاربرد مشخص انتخاب شده و در نرم‌افزار طراحی تعیین می‌گردد.

    روش‌های مختلفی برای نصب شبکه لوله‌کشی نمونه‌برداری وجود دارد:

    • پیکربندی تک‌لوله‌ای (شکل ۲ در سمت راست)، که شامل یک لوله متصل به آشکارساز است و در تمام فضای تحت پوشش امتداد می‌یابد. انتخاب این پیکربندی ممکن است به طولانی‌تر شدن مسیر لوله و تأخیر در جمع‌آوری هوای نمونه‌برداری‌شده در آشکارساز منجر شود.

    WhatsApp Image 2025 09 29 at 11.40.01 PM

    • پیکربندی چندلوله‌ای (شکل ۳ در پایین سمت راست)، که از چندین لوله یا لوله‌های شاخه‌دار تشکیل شده است.

    WhatsApp Image 2025 09 29 at 11.40.01 PM1

    • لوله نمونه‌برداری می‌تواند به‌صورت افقی در سطح سقف، داخل قفسه‌ها، یا به‌صورت عمودی برای کاربردهای انبار و فضاهای باز مانند آتریوم نصب شود (شکل ۴ در صفحه‌ی بعد).
    • برای مکان‌های پنهان، لوله نمونه‌برداری می‌تواند در فضای خالی (Void) مخفی شده و با استفاده از لوله‌های مویینۀ کوچکتر، نمونه‌برداری از فضا انجام شود (شکل ۵ در صفحه‌ی بعد).
    • شبکه لوله‌کشی شامل سوراخ‌های نمونه‌برداری است که امکان ورود هوا به داخل لوله را فراهم می‌سازند. فاصله‌گذاری بین این سوراخ‌ها بر اساس نوع سیستم تشخیص نصب‌شده تعیین می‌شود، که این موضوع به‌شدت به نوع کاربرد (مانند انبار، مرکز داده، یا ساختمان‌های تاریخی) بستگی دارد.
    • اندازه‌ی هر سوراخ نمونه‌برداری نیز با استفاده از نرم‌افزار طراحی تعیین می‌شود که در آن دینامیک سیالات در سامانه‌های ASD و معیارهای طراحی مرتبط با نوع سیستم تشخیص موردنظر در نظر گرفته می‌شود (این موارد در بخش‌های بعدی این راهنمای کاربردی شرح داده شده‌اند).

    WhatsApp Image 2025 09 29 at 11.40.02 PM2

    WhatsApp Image 2025 09 29 at 11.40.02 PM1

  • نحوه اتصال بیم دتکتور به سیستم اعلام حریق آدرس پذیر

     

    انواع بیم دتکتور از نظر نوع اتصال

    1. ساده (Conventional Beam Detector):
      • فقط دو خروجی رله دارد (Alarm / Fault)
      • آدرس‌پذیر نیست و نیاز به واسط دارد
    2. آدرس‌پذیر (Addressable Beam Detector):
      • مستقیماً قابل اتصال به لوپ آدرس‌پذیر است
      • آدرس مختص به خود دارد

     

     اتصال بیم دتکتور متعارف به سیستم آدرس‌پذیر توسط ماژول ورودی

    با استفاده از یک ماژول آدرس پذیر که با پنل مرکزی آدرس پذیر دارای پروتکل ارتباطی یکسان می باشد ( هر دو یک برند باشند ) میتوان یک بیم دتکتور متعارف را به پنل آدرس پذیر متصل نمود.

    ماژول های ورودی یا ماژول مانیتور ها دو دسته هستند. دسته اول ماژول های ورودی آدرس پذیر 4 سیمه هستند که تامین برق آنها توسط تابلوی اعلام حریق آدرس پذیر تامین می شود. ماژول های ورودی آدرس پذیر 4 سیمه، همانطور که از اسم آن پیداست از 4 سیم استفاده میکنند که دو سیم آن برق 24 ولت و دو سیم دیگر جهت اتصال به لوپ یا حلقه یا مدار سیستم اعلام حریق آدرس پذیر است.

    نوع دوم ماژول های ورودی آدرس پذیر 2 سیمه هستند و برق آنها توسط برق لوپ، پنل اعلام حریق آدرس پذیر تامین میشود. این ماژول ها بخاطر صرفه جویی در هزینه کابل کشی بسیار به صرفه تر هستند و همچنین نصب آنها راحت تر است.

    حالت 1: تشخیص ورودی معمولاً باز:

    WhatsApp Image 2025 09 29 at 11.39.02 PM


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 3 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد، ماژول می‌تواند سه حالت را در ترمینال‌های ورودی تشخیص دهد: عادی، مدار باز و هشدار (اتصال کوتاه)

    حالت 2: تشخیص ورودی معمولاً بسته:

    WhatsApp Image 2025 09 29 at 11.39.02 PM1


    مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 4 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد..

     

    نحوه اتصال بیم دتکتور متعارف به تابلوی اعلام حریق آدرس پذیر توسط ماژول ورودی 2 سیمه

    WhatsApp Image 2025 09 29 at 11.39.03 PM

    در شکل بالا از یک ماژول ورودی آدرس پذیر 2 سیمه جهت اتصال بیم دتکتور متعارف به پنل کنترل اعلام حریق آدرس پذیر استفاده شده است. تنها تفاوت ماژول های ورودی 2 سیمه و 4 سیمه فقط در نحوه تغذیه ماژول می باشد. در سیستم 4 سیمه ، احتیاج به 2 سیم اضافه جهت اتصال به ترمینال 24 ولت کمکی تابلوی اعلام حریق آدرس پذیر می باشد ولی در سیستم 2 سیمه ،به علت مصرف الکتریکی کم، برق خود را از طریق برق لوپ یا حلقه تابلوی اعلام حریق آدرس پذیر تامین می کند.

     

    نکات مهم:

    • حتماً باید بین منبع تغذیه و بیم دتکتور، ایزولاسیون مناسب رعایت شود.
    • بهتر است از ماژول‌هایی استفاده شود که قابلیت نظارت بر مدار باز یا اتصال کوتاه را دارند.

     

    1. استفاده از بیم دتکتور آدرس‌پذیر اختصاصی

    در این روش، از بیم دتکتورهای تولید شده توسط برند سازنده‌ی سیستم اعلام حریق استفاده می‌شود که مستقیماً قابل اتصال به لوپ هستند و بدون نیاز به ماژول واسط، قادر به اتصال به پنل آدرس‌پذیر هستند.

    در این مورد کافی است تا بیم دتکتور در حال نصب را نیز همانند بقیه آیتم های اعلام حریق در حال نصب،( مانند دتکتور ها و شستی ها و آژیرها) آدرس دهی شود . آدرس دهی معمولا از توسط پروگرامر دستی یا بصورت اتوماتیک از طریق پنل انجام می پذیرد.

    کافیست بیم دتکتور را آدرس دهی کرده و به عنوان آدرس یک ورودی، به پنل اعلام حریق معرفی کنیم. در سیستم های اعلام حریق آدرس پذیر قابلیت تنظیم ورودی ها و خروجی ها بصورت علت و معلول نیز وجود دارد و میتوان توسط پنل کنترل سیستم اعلام حریق آدرس پذیر طوری برنامه نویسی کرد که با شروع عمل بیم دتکتور، عملیات های مربوطه مثل بستن پرده های دودبند یا باز کردن درب های اضطراری یا حتی عملیات خودکار اطفاء آتش بصورت خودکار شروع به کار کند.

     

     

    مزایا:

    • کاهش خطاهای اتصال
    • یکپارچگی بیشتر با پنل اعلام حریق
    • نمایش دقیق وضعیت آلارم و خطا در مانیتور پنل

    معایب:

    • قیمت بالاتر
    • وابستگی به برند خاص
    • محدودیت در تأمین یا تعمیر در پروژه‌های بلندمدت

    WhatsApp Image 2025 09 29 at 11.39.03 PM1

  • NFPA12 پیوست G اطلاعات درباره اثرات گاز دی‌اکسید کربن سیستم اطفاء

    پیوست G اطلاعات عمومی درباره دی‌اکسید کربن
    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاعاتی ارائه شده است.
    G.1 دی‌اکسید کربن به طور متوسط با غلظت حدود ۰.۰۴ درصد حجمی در جو وجود دارد. این ماده همچنین محصول نهایی طبیعی متابولیسم انسان و حیوانات است. دی‌اکسید کربن به چندین روش مهم بر برخی عملکردهای حیاتی تأثیر می‌گذارد، از جمله کنترل تنفس، گشاد شدن و تنگ شدن رگ‌های خونی – به ویژه در مغز – و تنظیم pH مایعات بدن. غلظت دی‌اکسید کربن در هوا نرخ آزادسازی دی‌اکسید کربن از ریه‌ها را کنترل می‌کند و بنابراین بر غلظت دی‌اکسید کربن در خون و بافت‌ها تأثیر می‌گذارد. افزایش غلظت دی‌اکسید کربن در هوا می‌تواند خطرناک شود، زیرا باعث کاهش نرخ آزادسازی دی‌اکسید کربن از ریه‌ها و کاهش دریافت اکسیژن می‌شود. اطلاعات بیشتر در مورد مواجهه با دی‌اکسید کربن را می‌توان از انتشارات شماره 76-194 اداره بهداشت و خدمات انسانی آمریکا (NIOSH) به دست آورد. ملاحظات ایمنی پرسنل در بخش ۴.۳ پوشش داده شده است.
    جدول G.1 اطلاعاتی درباره اثرات حاد سلامتی ناشی از غلظت‌های بالای دی‌اکسید کربن ارائه می‌دهد.

    9k=

    دی‌اکسید کربن یک محصول تجاری استاندارد با کاربردهای فراوان است. این گاز شاید بیشتر به عنوان گازی که به نوشابه‌ها و سایر نوشیدنی‌های گازدار حالت “فیز” می‌دهد، شناخته شده باشد. در کاربردهای صنعتی، دی‌اکسید کربن به دلیل خواص شیمیایی، خواص مکانیکی به عنوان عامل فشاردهنده، یا خواص سرمایشی به صورت یخ خشک استفاده می‌شود.
    در کاربردهای اطفاء حریق، دی‌اکسید کربن دارای چندین ویژگی مطلوب است. این گاز غیرخورنده، بدون آسیب‌رسانی و بدون باقی گذاشتن باقی‌مانده‌ای برای تمیزکاری پس از حریق است. همچنین فشار مورد نیاز برای تخلیه از طریق لوله‌ها و اسپرینکلرها را خود تأمین می‌کند. چون یک گاز است، به راحتی نفوذ کرده و به همه بخش‌های خطر گسترش می‌یابد. دی‌اکسید کربن رسانای الکتریسیته نیست و بنابراین می‌توان از آن در خطرات برقی فعال استفاده کرد. این گاز می‌تواند تقریباً برای تمام مواد قابل احتراق به جز چند فلز فعال، هیدریدهای فلزی و موادی مانند نیترات سلولز که دارای اکسیژن آزاد هستند، به طور مؤثر استفاده شود.
    در شرایط معمول، دی‌اکسید کربن گازی بی‌رنگ و بی‌بو با چگالی حدود ۵۰ درصد بیشتر از چگالی هوا است. بسیاری از افراد ادعا می‌کنند که می‌توانند بوی دی‌اکسید کربن را حس کنند، اما این احتمالاً به دلیل وجود ناخالصی‌ها یا تأثیرات شیمیایی در بینی است. دی‌اکسید کربن به راحتی با فشرده‌سازی و سرمایش به مایع تبدیل می‌شود. با سرمایش و انبساط بیشتر، می‌توان آن را به حالت جامد نیز تبدیل کرد.
    رابطه بین دما و فشار دی‌اکسید کربن مایع در منحنی شکل G.1 نشان داده شده است. با افزایش دمای مایع، فشار نیز افزایش می‌یابد. با افزایش فشار، چگالی بخار بالای مایع افزایش می‌یابد. از سوی دیگر، مایع با افزایش دما منبسط شده و چگالی آن کاهش می‌یابد. در دمای ۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)، مایع و بخار چگالی یکسانی دارند و در نتیجه فاز مایع ناپدید می‌شود. این دما به عنوان دمای بحرانی دی‌اکسید کربن شناخته می‌شود. در دمای زیر دمای بحرانی [۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)]، دی‌اکسید کربن در یک مخزن بسته به صورت بخشی مایع و بخشی گاز است. بالاتر از دمای بحرانی، کاملاً به حالت گاز در می‌آید.
    یکی از ویژگی‌های غیرمعمول دی‌اکسید کربن این است که نمی‌تواند به صورت مایع در فشارهای کمتر از ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)] وجود داشته باشد. این فشار نقطه سه‌گانه است که در آن دی‌اکسید کربن می‌تواند به صورت جامد، مایع یا بخار باشد. زیر این فشار، بسته به دما، دی‌اکسید کربن باید یا به صورت جامد یا گاز باشد.
    اگر فشار در یک مخزن ذخیره‌سازی با تخلیه بخار کاهش یابد، بخشی از مایع تبخیر می‌شود و مایع باقی‌مانده سردتر می‌شود. در فشار ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)]، مایع باقی‌مانده به یخ خشک در دمای ۶۹.۹- درجه فارنهایت (۵۷- درجه سانتی‌گراد) تبدیل می‌شود. کاهش بیشتر فشار به فشار اتمسفری، دمای یخ خشک را به دمای طبیعی ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) کاهش می‌دهد.
    همین فرآیند زمانی اتفاق می‌افتد که دی‌اکسید کربن مایع به اتمسفر تخلیه شود. بخش بزرگی از مایع به بخار تبدیل شده و حجم آن به شدت افزایش می‌یابد. بقیه به ذرات ریز یخ خشک در دمای ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) تبدیل می‌شود. این یخ خشک یا برف باعث می‌شود که تخلیه ظاهری ابری سفیدرنگ داشته باشد. دمای پایین همچنین موجب چگالش بخار آب موجود در هوای مکیده شده می‌شود، به طوری که مه آب معمولی تا مدتی پس از تصعید یخ خشک باقی می‌ماند.
    دی‌اکسید کربن گازی بی‌رنگ، بی‌بو، غیررسانای الکتریکی و بی‌اثر است که یک محیط مناسب برای اطفاء حریق محسوب می‌شود. دی‌اکسید کربن مایع هنگام آزادسازی مستقیم به اتمسفر، به یخ خشک (“برف”) تبدیل می‌شود. گاز دی‌اکسید کربن ۱.۵ برابر سنگین‌تر از هوا است. دی‌اکسید کربن با کاهش غلظت اکسیژن، بخار سوخت، یا هر دو در هوا تا جایی که احتراق متوقف شود، آتش را خاموش می‌کند. (به بخش ۴.۳ مراجعه شود.)

    سیستم‌های اطفاء حریق دی‌اکسید کربن در محدوده این استاندارد برای خاموش کردن آتش‌های مربوط به خطرات خاص یا تجهیزات در کاربری‌های زیر مفید هستند:
    (۱) در جایی که یک محیط بی‌اثر و غیررسانای الکتریکی ضروری یا مطلوب باشد
    (۲) در جایی که پاکسازی سایر محیط‌ها مشکل ایجاد کند
    (۳) در جایی که نصب چنین سیستم‌هایی نسبت به سیستم‌هایی که از محیط‌های دیگر استفاده می‌کنند، اقتصادی‌تر باشد

    برخی از انواع خطرات و تجهیزاتی که سیستم‌های دی‌اکسید کربن می‌توانند به طور رضایت‌بخشی از آن‌ها محافظت کنند شامل موارد زیر است:
    (۱) مواد مایع قابل اشتعال (به بخش ۴.۵.۴.۹ مراجعه شود.)
    (۲) خطرات الکتریکی مانند ترانسفورماتورها، کلیدها، قطع‌کننده‌های مدار، تجهیزات چرخشی و تجهیزات الکترونیکی
    (۳) موتورهایی که از بنزین و سایر سوخت‌های مایع قابل اشتعال استفاده می‌کنند
    (۴) مواد قابل احتراق معمولی مانند کاغذ، چوب و منسوجات
    (۵) جامدات خطرناک

    G.2 اطلاعات بیشتر درباره خواص فیزیکی دی‌اکسید کربن در “راهنمای مهندسی حفاظت از حریق SFPE” قابل دسترسی است.

  • مزایای دتکتورهای دودی مکشی یا اسپیراتینگ ها بر اساس اصول عملکرد

    تشخیص فعال

    دتکتور دودی مکشی یک سامانه تشخیص فعال به‌شمار می‌آید، زیرا به‌طور پیوسته هوا را از ناحیه حفاظت‌شده مکش کرده و به داخل محفظه حسگر هدایت می‌کند. این فرآیند دائمی است و تنها در صورت خاموش شدن دتکتور متوقف می‌شود.

    این ویژگی فعال، امکان تشخیص بسیار سریع دود را فراهم می‌سازد و به همین دلیل، دتکتورهای دودی مکشی معمولاً در دسته سامانه‌های تشخیص آتش زودهنگام قرار می‌گیرند. محفظه‌های حسگر بسیار حساس نیز به شناسایی دود در مراحل اولیه آتش‌سوزی، پیش از آسیب به تجهیزات یا ناحیه حفاظت‌شده، کمک شایانی می‌کنند.

    اثر افزایشی
    سیستم دتکتور دودی مکشی با استفاده از «اثر افزایشی» که ویژگی مشترک این نوع سیستم‌هاست، رقیق‌شدن دود را جبران می‌کند. اثر افزایشی یکی از مزایای مهم فناوری دتکتور دودی مکشی است که منجر به سیستمی با حساسیت بسیار بالا می‌شود، حتی زمانی که چندین منفذ نمونه‌گیری در سیستم وجود دارد.

    در فرآیند تشخیص، هوا از طریق تمام منافذ نمونه‌گیری موجود در شبکه لوله‌کشی به داخل کشیده می‌شود، که باعث می‌شود هر منفذ در تشکیل نمونه کلی هوا درون محفظه حسگر نقش داشته باشد. همان‌طور که پیش‌تر توضیح داده شد، این حجم کلی هوا درون محفظه حسگر دتکتور است: هرچه تعداد منافذ نمونه‌گیری بیشتر باشد، حجم هوای بیشتری وجود خواهد داشت. اگر چندین منفذ نمونه‌گیری هوای آلوده به دود را مکش کنند، ذرات دود هنگام انتقال به محفظه حسگر با هم ترکیب می‌شوند. نسبت هوای تمیز به هوای آلوده به دود کاهش می‌یابد. این همان اثر افزایشی است که باعث می‌شود کل سیستم تشخیص، حساس‌تر از یک سیستم سنتی دتکتور دودی نقطه‌ای باشد.

    با فرض اینکه حساسیت سطح ۱ حریق در دتکتور دودی مکشی برابر با ۰٫۲۵ درصد کاهش دید در هر فوت (0.25%/ft.) تنظیم شده باشد و این سیستم اتاقی با مساحت ۱۲۱۹٫۲ متر مربع (۴۰۰۰ فوت مربع) را محافظت کند و منافذ نمونه‌گیری با فاصله ۶ متر برای هر منفذ (۲۰ فوت برای هر منفذ) طراحی شده باشند (یعنی هر منفذ ۳۶ متر مربع یا ۴۰۰ فوت مربع را پوشش دهد)، سیستم تشخیص نهایی شامل ۱۰ منفذ نمونه‌گیری خواهد بود. عدد ۰٫۲۵٪/ft.، حساسیت محفظه حسگر دتکتور است.

    برای محاسبه حساسیت واقعی هر منفذ نمونه‌گیری، نرخ کاهش دید تنظیم‌شده دتکتور را در تعداد کل منافذ نمونه‌گیری در شبکه لوله‌کشی ضرب می‌کنیم.

    برای مثال، اگر حساسیت دتکتور در سطح ۱ حریق روی ۰٫۲۵٪/ft. تنظیم شده باشد و ۱۰ منفذ در شبکه لوله‌کشی وجود داشته باشد، حساسیت هر منفذ نمونه‌گیری برابر با ۲٫۵٪/ft. خواهد بود (۰٫۲۵٪/ft. ضربدر ۱۰ = ۲٫۵٪/ft.). این حساسیت مشابه نرخ کاهش دید یک دتکتور دودی نقطه‌ای سنتی است. این مقدار، حساسیت مؤثر دتکتور را در حالتی نشان می‌دهد که دود تنها وارد یک منفذ نمونه‌گیری شود (مطابق شکل ۸ در پایین).

    مزیت سیستم دتکتور دودی مکشی در ماهیت فعال آن برای مکش هم‌زمان هوا از تمامی منافذ نمونه‌گیری است؛ هوا درون لوله ترکیب شده و برای نمونه‌برداری به سمت دتکتور منتقل می‌شود. زمانی‌که هوا از تمام ۱۰ منفذ نمونه‌گیری کشیده می‌شود، غلظت ذرات دود افزایش می‌یابد و غلظت هوای تمیز کاهش پیدا می‌کند. با ترکیب شدن ذرات دود، حساسیت کلی سیستم تشخیص افزایش پیدا می‌کند.

    برای توضیح بیشتر اثر افزایشی، همان اتاق ۱۲۱۹٫۲ متر مربعی (۴۰۰۰ فوت مربع) با شبکه لوله‌کشی دارای ۱۰ منفذ نمونه‌گیری را در نظر بگیرید که در آن ذرات دود وارد دو منفذ نمونه‌گیری می‌شوند (مطابق شکل ۸ در پایین). برای تعیین حساسیت جدید هر منفذ، نرخ کاهش دید سطح ۱ حریق (۰٫۲۵٪/ft.) را در تعداد کل منافذ نمونه‌گیری (۱۰) ضرب کرده و سپس بر تعداد منافذی که دود را تشخیص می‌دهند (۲) تقسیم می‌کنیم. در نتیجه، حساسیت مؤثر هر منفذ برابر با ۱٫۲۵٪/ft. خواهد بود، که این یعنی سیستم دتکتور دودی مکشی دو برابر حساس‌تر از یک دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. است.

    اگر دود وارد سه منفذ نمونه‌گیری شود، حساسیت مؤثر برابر با ۰٫۸۳٪/ft. خواهد بود، و به همین ترتیب.
    حساسیت دتکتور

    WhatsApp Image 2025 10 01 at 2.29.13 PM WhatsApp Image 2025 10 01 at 2.29.13 PM1

    برای توضیح بیشتر اثر افزایشی، این مثال را می‌توان گسترش داد به حالتی که دود وارد تمامی ۱۰ منفذ نمونه‌گیری شود. هر منفذ نمونه‌گیری حساسیتی برابر با ۰٫۲۵٪/ft. خواهد داشت، که باعث می‌شود سیستم دتکتور دودی مکشی ۱۰ برابر حساس‌تر از دتکتور دودی نقطه‌ای با حساسیت ۲٫۵٪/ft. باشد (مطابق شکل ۱۰ در صفحه قبل).

    آستانه‌های حساسیت پایین
    یکی دیگر از مزایای مهم دتکتور دودی مکشی، الکترونیک پیشرفته‌ای است که توانایی تشخیص ذرات دود در نرخ‌های بسیار پایین‌ کاهش دید و در سطوح حساسیت متعدد را فراهم می‌کند. این آستانه‌های تشخیص قابل برنامه‌ریزی هستند و به کاربران نهایی این امکان را می‌دهند که سیستمی با حساسیت بسیار بالا برای محیط‌ها و کاربری‌هایی که نیازمند تشخیص بسیار زودهنگام دود برای ایمنی جانی و تداوم فعالیت هستند، یا سیستمی با حساسیت پایین‌تر برای محیط‌هایی با اهمیت کمتر طراحی کنند. آستانه‌های معمول در سیستم‌های دتکتور دودی مکشی طبق لیست استاندارد UL دارای محدوده حساسیت بین ۰٫۰۰۰۴۶٪/ft. (برای مکان‌هایی که تشخیص زودهنگام دود حیاتی است) تا ۶٫۲۵٪/ft. (برای محیط‌هایی با اهمیت کمتر) هستند. سیستمی با دتکتور دودی مکشی که برای تشخیص دود با پایین‌ترین نرخ کاهش دید لیست‌شده در UL یعنی ۰٫۰۰۰۴۶٪/ft. برنامه‌ریزی شده باشد، بیش از ۱۰۰۰ برابر حساس‌تر از دتکتورهای دودی نقطه‌ای سنتی خواهد بود.

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • تشخیص گاز در سردخانه ها

    مقدمه
    تشخیص گاز و نشت‌یابی دو فعالیت مجزا هستند که به موضوعی یکسان می‌پردازند، اما روش‌های آن‌ها بسیار متفاوت است.
    تشخیص گاز شامل آنالیز نمونه‌های هوا برای تعیین وجود گاز مبرد است.
    نشت‌یابی، بازرسی نظام‌مند یک سیستم تبرید به‌منظور مشخص کردن وجود نشتی است.
    اصطلاحات تشخیص گاز و نشت‌یابی قابل جایگزینی با یکدیگر نیستند و نباید با هم اشتباه گرفته شوند.

    دتکتورهای نشت معمولاً تجهیزات دستی هستند که توسط افراد حمل می‌شوند و برای شناسایی نشتی‌ها در سیستم‌های تبرید مورد استفاده قرار می‌گیرند.
    انواع مختلفی از دتکتورهای نشت در دسترس است، از روش‌های ساده‌ای مانند آب صابون گرفته تا ابزارهای الکتریکی پیشرفته.

    دتکتورهای گاز معمولاً در نصب‌های ثابت به کار می‌روند و شامل تعدادی دتکتور هستند که در مکان‌هایی قرار می‌گیرند که در صورت نشت از تأسیسات، احتمال تجمع گاز مبرد وجود دارد.
    این مکان‌ها به چیدمان اتاق ماشین‌آلات و فضاهای مجاور، پیکربندی سیستم و نوع مبرد بستگی دارند.

    پیش از انتخاب دتکتور مناسب تشخیص گاز، باید به چند پرسش پاسخ داده شود:

    • کدام گازها باید اندازه‌گیری شوند و در چه مقادیری؟
      – کدام اصل عملکرد دتکتور برای این کار مناسب‌تر است؟
      – چه تعداد دتکتور مورد نیاز است؟
      – دتکتورها در کجا و چگونه باید نصب و کالیبره شوند؟
    • حدود هشدار مناسب کدام است؟
      – چند سطح هشدار لازم است؟
      – اطلاعات هشدار چگونه باید پردازش شود؟

    این راهنمای کاربردی به این پرسش‌ها پاسخ خواهد داد.

     

    فناوری دتکتور

    انتخاب فناوری دتکتور برای تشخیص گاز مبرد به نوع گاز هدف و محدوده ppm مورد نیاز بستگی دارد.
    دتکتورهای مختلفی وجود دارند که با گازهای رایج، محدوده‌های ppm مناسب و الزامات ایمنی برای سیستم‌های تبرید سازگارند.

    EC – دتکتور الکتروشیمیایی
    دتکتورهای الکتروشیمیایی عمدتاً برای گازهای سمی استفاده می‌شوند و برای آمونیاک مناسب هستند.
    این دتکتورها شامل دو الکترود هستند که در یک محیط الکترولیت غوطه‌ور شده‌اند.
    واکنش اکسایش/کاهش جریان الکتریکی تولید می‌کند که با غلظت گاز متناسب است.
    این دتکتورها بسیار دقیق هستند (±۲٪) و عمدتاً برای گازهای سمی که به روش دیگری قابل شناسایی نیستند یا در مواردی که دقت بالا نیاز است، استفاده می‌شوند.
    دتکتورهای EC مخصوص آمونیاک با محدوده تا ۰ تا ۵۰۰۰ ppm عرضه می‌شوند و طول عمر مورد انتظار آن‌ها حدود ۲ سال است که بستگی به میزان تماس با گاز هدف دارد.
    تماس با نشت‌های بزرگ آمونیاک یا وجود دائمی آمونیاک در پس‌زمینه، طول عمر دتکتور را کاهش می‌دهد.
    دتکتورهای EC تا زمانی که حساسیت آن‌ها بالای ۳۰٪ باشد، قابل کالیبراسیون مجدد هستند.
    این دتکتورها بسیار انتخاب‌پذیر هستند و به ندرت دچار تداخل متقابل می‌شوند. ممکن است به تغییرات ناگهانی رطوبت واکنش نشان دهند اما به سرعت پایدار می‌شوند.

    SC – دتکتور نیمه‌رسانا (حالت جامد)
    عملکرد دتکتور نیمه‌رسانا بر پایه اندازه‌گیری تغییر مقاومت است (متناسب با غلظت)، زمانی که گاز روی سطح یک نیمه‌رسانا که معمولاً از اکسیدهای فلز ساخته شده، جذب می‌شود.
    این دتکتورها برای طیف گسترده‌ای از گازها از جمله گازهای قابل اشتعال، سمی و گازهای مبرد قابل استفاده هستند.

    ادعا می‌شود که این نوع دتکتورها در تشخیص گازهای قابل احتراق در غلظت‌های پایین تا ۱۰۰۰ ppm عملکرد بهتری نسبت به نوع کاتالیستی دارند. این دتکتورها کم‌هزینه، با طول عمر بالا، حساس هستند و می‌توان از آن‌ها برای تشخیص طیف گسترده‌ای از گازها از جمله تمامی مبردهای HCFC، HFC، آمونیاک و هیدروکربن‌ها استفاده کرد.

    با این حال، این دتکتورها انتخاب‌پذیر نیستند و برای تشخیص یک گاز خاص در مخلوط یا در مواردی که احتمال وجود غلظت بالایی از گازهای تداخل‌زا وجود دارد، مناسب نیستند.

    تداخل ناشی از منابع کوتاه‌مدت (مانند گاز اگزوز کامیون) که منجر به هشدارهای اشتباه می‌شود، را می‌توان با فعال کردن تأخیر در آلارم برطرف کرد.

    دتکتورهای نیمه‌رسانا برای هالوکربن‌ها می‌توانند بیش از یک گاز یا یک مخلوط را به طور هم‌زمان تشخیص دهند. این ویژگی به‌ویژه در نظارت بر اتاق ماشین‌آلات با چندین مبرد مختلف مفید است.

    P – دتکتور پلستور
    پلستورها (که گاهی مهره یا کاتالیتیکی نیز نامیده می‌شوند) عمدتاً برای گازهای قابل احتراق از جمله آمونیاک استفاده می‌شوند و در سطوح بالای تشخیص، محبوب‌ترین دتکتورها برای این کاربرد هستند. عملکرد این دتکتور بر اساس سوزاندن گاز در سطح مهره و اندازه‌گیری تغییر مقاومت حاصل‌شده در مهره (که متناسب با غلظت است) می‌باشد.

    این دتکتورها نسبتاً کم‌هزینه، جاافتاده و قابل‌فهم هستند و طول عمر خوبی دارند (عمر مورد انتظار ۳ تا ۵ سال). زمان پاسخ‌دهی معمولاً کمتر از ۱۰ ثانیه است.

    در برخی کاربردها ممکن است دچار مسمومیت شوند.
    مسمومیت به کاهش واکنش دتکتور نسبت به گاز هدف در اثر وجود (آلودگی) یک ماده دیگر در سطح کاتالیست گفته می‌شود که یا با آن واکنش می‌دهد یا لایه‌ای روی آن تشکیل می‌دهد که ظرفیت واکنش با گاز هدف را کاهش می‌دهد. رایج‌ترین مواد مسموم‌کننده ترکیبات سیلیکونی هستند.

    پلستورها عمدتاً برای گازهای قابل احتراق استفاده می‌شوند و بنابراین برای آمونیاک و مبردهای هیدروکربنی در غلظت‌های بالا مناسب هستند. این دتکتورها تمامی گازهای قابل احتراق را تشخیص می‌دهند اما با نرخ‌های مختلف، و بنابراین می‌توان آن‌ها را برای گازهای خاص کالیبره کرد. نسخه‌های خاصی برای آمونیاک وجود دارد.

    IR – مادون قرمز
    فناوری مادون قرمز از این واقعیت بهره می‌برد که بیشتر گازها دارای باند جذب مشخصی در ناحیه مادون قرمز طیف هستند و از این ویژگی برای تشخیص آن‌ها استفاده می‌شود. مقایسه با پرتو مرجع امکان تعیین غلظت را فراهم می‌سازد.

    اگرچه نسبت به دتکتورهای دیگر نسبتاً گران‌قیمت هستند، اما طول عمر بالایی تا ۱۵ سال، دقت زیاد و حساسیت متقابل پایین دارند.

    به دلیل اصل اندازه‌گیری، دتکتورهای مادون قرمز ممکن است در محیط‌های دارای گرد و غبار دچار مشکل شوند، زیرا حضور ذرات زیاد در هوا ممکن است خوانش را مختل کند.

    این دتکتورها برای تشخیص دی‌اکسید کربن توصیه می‌شوند و رایج هستند. اگرچه فناوری آن برای گازهای دیگر نیز وجود دارد، اما معمولاً در راه‌حل‌های تجاری مشاهده نمی‌شود.

    کدام دتکتور برای مبرد خاص مناسب است؟
    بر اساس گاز مبرد هدف و محدوده ppm مورد نظر، جدول زیر نمای کلی از مناسب‌بودن فناوری‌های مختلف دتکتورهای ارائه‌شده توسط دانفوس را ارائه می‌دهد.

    زمان پاسخ‌دهی دتکتور
    زمان پاسخ‌دهی، مدت‌زمان لازم برای خواندن درصد مشخصی از مقدار واقعی در اثر تغییر ناگهانی غلظت گاز هدف توسط دتکتور است.
    زمان پاسخ‌دهی برای اغلب دتکتورها به صورت t90 بیان می‌شود، به این معنا که مدت‌زمانی که طول می‌کشد دتکتور ۹۰ درصد از غلظت واقعی را بخواند. شکل ۴ نمونه‌ای از دتکتوری با زمان پاسخ‌دهی t90 برابر با ۹۰ ثانیه را نشان می‌دهد.

    همان‌طور که در نمودار مشخص است، واکنش دتکتور پس از عبور از ۹۰ درصد کندتر شده و مدت‌زمان بیشتری برای رسیدن به ۱۰۰ درصد نیاز دارد.

    نیاز به تشخیص گاز
    دلایل متعددی برای نیاز به تشخیص گاز وجود دارد. دو دلیل آشکار، محافظت از افراد، تولید و تجهیزات در برابر تأثیر نشت احتمالی گاز و رعایت مقررات است. دلایل مهم دیگر عبارتند از:

    • کاهش هزینه خدمات (هزینه گاز جایگزین و مراجعه تعمیرکار)
      • کاهش هزینه مصرف انرژی به دلیل فقدان مبرد
      • خطر آسیب به محصولات ذخیره‌شده در اثر نشت گسترده
    • امکان کاهش هزینه‌های بیمه
      • مالیات یا سهمیه مربوط به مبردهای ناسازگار با محیط زیست
      کاربردهای مختلف سامانه‌های تبرید به دلایل متفاوتی نیازمند تشخیص گاز هستند.

    آمونیاک به عنوان ماده‌ای سمی با بوی بسیار خاص طبقه‌بندی می‌شود، بنابراین به‌طور طبیعی «هشداردهنده» است. با این حال، استفاده از دتکتورهای گاز برای صدور هشدار اولیه و پایش نواحی‌ای که همواره افراد حضور ندارند (مانند اتاق‌های ماشین‌آلات) الزامی است. باید توجه داشت که آمونیاک تنها مبرد رایج است که از هوا سبک‌تر می‌باشد. در بسیاری از موارد، این ویژگی باعث می‌شود آمونیاک به بالای ناحیه تنفسی صعود کرده و شناسایی نشتی برای افراد دشوار شود. استفاده از دتکتور گاز در نواحی مناسب، هشدارهای اولیه در صورت نشتی آمونیاک را تضمین می‌کند.

    هیدروکربن‌ها به‌عنوان مواد قابل اشتعال طبقه‌بندی می‌شوند. بنابراین، ضروری است که غلظت آن‌ها در اطراف سامانه تبرید از حد اشتعال فراتر نرود.

    مبردهای فلوئوردار همگی دارای اثرات منفی خاصی بر محیط زیست هستند و به همین دلیل باید از هرگونه نشتی آن‌ها جلوگیری کرد.

    دی‌اکسید کربن (CO₂) مستقیماً در فرآیند تنفس دخیل است و باید متناسب با آن با آن برخورد شود. حدود ۰٫۰۴٪ دی‌اکسید کربن به‌طور طبیعی در هوا وجود دارد. در غلظت‌های بالاتر، برخی واکنش‌های منفی مشاهده شده است که با افزایش نرخ تنفس (حدود ۱۰۰٪ در غلظت ۳٪) آغاز شده و به از دست دادن هوشیاری و مرگ در غلظت‌های بالاتر از ۱۰٪ منجر می‌شود.

    مقررات و استانداردها
    الزامات مربوط به تشخیص گاز در کشورهای مختلف جهان متفاوت است. در صفحات بعد نمایی کلی از قوانین و مقررات رایج ارائه شده است.

    اروپا
    استاندارد ایمنی فعلی برای سامانه‌های تبرید در اروپا، EN 378:2016 است.

    سطوح هشدار مشخص‌شده در EN 378:2016 به‌گونه‌ای تعیین شده‌اند که امکان تخلیه ایمن ناحیه را فراهم کنند. این سطوح بازتابی از اثرات ناشی از مواجهه بلندمدت با مبردهای نشت‌یافته نیستند. به‌عبارت‌دیگر، در EN 378 وظیفه دتکتور گاز، هشدار در هنگام وقوع نشتی ناگهانی و زیاد است، در حالی که تهویه اتاق ماشین و اقدامات کیفی سامانه باید اطمینان حاصل کنند که نشتی‌های کوچک تأثیرات منفی برای سلامتی ایجاد نکنند.

    توجه
    الزامات مربوط به دتکتور گاز در اروپا تحت پوشش قوانین ملی کشورهای مختلف قرار دارد و ممکن است با الزامات مندرج در EN 378 تفاوت داشته باشد.

    با چند استثناء، دتکتور گاز مطابق با استانداردهای EN 378:2016 و ISO 5149:2014 برای تمام نصب‌هایی که احتمال دارد غلظت گاز در اتاق از حد عملی فراتر رود، الزامی است.

    در مورد مبردهای سمی و قابل اشتعال، این موضوع تقریباً شامل تمام سامانه‌های صنعتی و تجاری می‌شود. در مورد مبردهای گروه A1، امکان طراحی سامانه‌های کوچکی وجود دارد که نیازی به دتکتور گاز ندارند. اما در بیشتر تأسیسات بزرگ، در صورت بروز نشتی عمده، احتمالاً غلظت مبرد از حد عملی فراتر خواهد رفت و در نتیجه استفاده از دتکتور گاز الزامی می‌گردد.

    راهنمایی‌هایی در بخش ۳ استاندارد EN 378:2016 یا بخش ۳ استاندارد ISO 5149:2014 ارائه شده‌اند. الزامات این دو استاندارد بسیار مشابه بوده و در شکل ۵ خلاصه شده‌اند.

    در صورتی که با انجام محاسبات مشخص شود غلظت مبرد در یک اتاق هرگز به حد عملی نمی‌رسد، دیگر نیازی به استفاده از دتکتور گاز ثابت نیست، به‌جز در مورد خاصی در استاندارد EN 378 که سیستم در زیرزمین نصب شده و بار مبرد آن از مقدار m2 فراتر رود (تقریباً معادل ۱ کیلوگرم پروپان). ISO 5149 چنین استثنایی را ندارد.

    مقدار m2 برابر است با ۲۶ مترمکعب ضرب در LFL (حد پایین اشتعال‌پذیری). برای پروپان، این مقدار برابر است با:
    ۲۶ m³ × ۰٫۰۳۸ kg/m³ = ۰٫۹۸۸ kg
    یا اگر LFL برحسب گرم اندازه‌گیری شود:
    ۲۶ m³ × ۳۸ g/m³ = ۹۸۸ g
    در نتیجه، m2 دارای واحد نیست، چرا که واحد نهایی آن به واحد انتخاب‌شده برای LFL بستگی دارد.

    بیشتر هیدروکربن‌ها دارای مقدار LFL مشابه هستند، بنابراین مقدار m2 معمولاً در حدود ۱ کیلوگرم است.

    با این حال، اگر غلظت بتواند به حد عملی برسد، حتی برای مبردهای گروه A1، نصب دتکتور ثابت الزامی است – البته با چند استثناء جزئی.
    حدود عملی برای مبردهای مختلف در پیوست II که از بخش ۱ استاندارد EN 378-2016 استخراج شده، ارائه شده است. در این جداول، حد عملی آمونیاک بر اساس سمیت آن تعیین شده است. حدود عملی هیدروکربن‌ها بر اساس قابلیت اشتعال آن‌ها و معادل ۲۰ درصد از حد پایین اشتعال‌پذیری تعیین شده‌اند. حدود عملی برای تمامی مبردهای گروه A1 بر اساس حد مواجهه با سمیت حاد (ATEL) تعیین شده است.
    اگر کل بار مبرد در یک اتاق تقسیم بر حجم خالص اتاق بیشتر از «حد عملی» (مطابق پیوست II) باشد، به‌طور منطقی می‌توان نتیجه گرفت که باید سامانه دتکتور گاز ثابت نصب شود.
    هر دو استاندارد EN378:2016 و ISO 5149:2014 الزام می‌کنند که دستگاه نمایشگری برای نشان دادن فعال شدن شیر اطمینان در سامانه‌هایی با مبرد ۳۰۰ کیلوگرم یا بیشتر نصب شود. یکی از روش‌ها، نصب دتکتور گاز در خط تخلیه است.

    مقررات F-Gas
    مقررات F-Gas (EC) شماره ۵۱۷/۲۰۱۴
    یکی از اهداف مقررات F-Gas محدود کردن، جلوگیری و کاهش انتشار گازهای گلخانه‌ای فلوئوردار تحت پوشش پروتکل کیوتو است. این دستورالعمل برای همه کشورهای عضو اتحادیه اروپا و همچنین سه کشور منطقه اقتصادی اروپا (EEA) شامل ایسلند، لیختن‌اشتاین و نروژ اجباری است.
    این مقررات موضوعات متعددی از جمله واردات، صادرات و استفاده از گازهای سنتی HFC و PFC در تمام کاربردهایشان را پوشش می‌دهد. این مقررات از اول ژانویه ۲۰۱۵ لازم‌الاجرا شده است.

    الزامات بازرسی نشتی به منظور پیشگیری از نشت و تعمیر هرگونه نشتی کشف‌شده، بر اساس معادل‌های دی‌اکسید کربن مبرد در هر مدار محاسبه می‌شود. معادل دی‌اکسید کربن برابر است با مقدار شارژ (کیلوگرم) ضرب در پتانسیل گرمایش جهانی (GWP) مبرد.

    بازرسی دوره‌ای نشتی توسط افراد مجاز با فرکانس زیر لازم است که بستگی به مقدار مبرد مصرفی دارد:
    • معادل ۵ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۱۲ ماه – به استثناء سیستم‌های کاملاً بسته که کمتر از ۱۰ تن معادل CO2 دارند
    • معادل ۵۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه (۱۲ ماه در صورت وجود سامانه مناسب تشخیص نشتی)
    • معادل ۵۰۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه. سامانه مناسب تشخیص نشتی الزامی است. سامانه تشخیص نشتی باید حداقل هر ۱۲ ماه یک‌بار بررسی شود.