محاسبات برای طراحی سیستم اطفاء حریق بوسیله گاز دی اکسید کربن

IMG 1571

A.5.1.2 دستیابی و حفظ غلظت صحیح اطمینان می‌دهد که آتش به‌طور کامل و دائمی در ماده قابل احتراق خاص یا مواد دخیل در آتش خاموش می‌شود.

A.5.2.1 در این نوع حفاظت، فرض بر این است که فضای نسبتاً بسته‌ای برای کاهش از دست دادن عامل اطفاء حریق در نظر گرفته شده است. مساحت منافذ غیرقابل بسته شدن مجاز بستگی به نوع مواد قابل احتراق دارد.

A.5.2.1.1 در صورتی که دو یا چند خطر به دلیل نزدیکی آن‌ها به طور همزمان در آتش درگیر شوند، باید هر خطر با یک سیستم جداگانه حفاظت شود، یا با ترکیبی از سیستم‌ها که به‌طور همزمان عمل کنند، یا با یک سیستم واحد که باید به‌طور همزمان برای تمام خطرات بالقوه درگیر طراحی و تنظیم شود.

A.5.2.1.3 برای آتش‌های عمیق، باید از منافذ پایین اجتناب شود، صرف‌نظر از نیازهای تهویه، تا غلظت اطفاء حریق برای مدت زمان لازم حفظ شود. دریچه‌های تهویه تحت این شرایط باید تا حد امکان در بالاترین نقطه محفظه قرار گیرند.

A.5.2.3 تقریباً تمام خطراتی که مواد قابل احتراقی دارند که آتش سطحی تولید می‌کنند، می‌توانند مقادیر مختلفی از موادی که آتش‌های عمیق تولید می‌کنند را در خود جای دهند. انتخاب صحیح نوع آتشی که سیستم باید برای اطفاء آن طراحی شود، اهمیت زیادی دارد و در بسیاری از موارد نیازمند قضاوت صحیح پس از بررسی دقیق تمام عوامل مختلف است. اساساً، چنین تصمیمی بر اساس پاسخ به سوالات زیر گرفته می‌شود:
(1) آیا احتمال ایجاد آتش عمیق وجود دارد، با توجه به سرعت شناسایی و کاربرد سیستم مورد نظر؟
(2) اگر آتش عمیق ایجاد شود، آیا به‌طور جزئی خواهد بود، شرایط به‌گونه‌ای است که باعث شعله‌ور شدن ماده‌ای که آتش سطحی تولید کرده است نخواهد شد، و آیا می‌توان ترتیبی برای اطفاء دستی آن پس از تخلیه دی‌اکسیدکربن قبل از ایجاد مشکل فراهم کرد؟
(3) آیا ارزش‌ها یا اهمیت تجهیزات به‌گونه‌ای است که حفاظت نهایی توجیه‌پذیر باشد، صرف‌نظر از هزینه اضافی برای فراهم کردن سیستمی که قادر به اطفاء آتش‌های عمیق باشد؟

خواهید دید که در صورتی که احتمال کمی از آتش عمیق وجود داشته باشد که مشکلاتی ایجاد کند، در بسیاری از موارد پذیرش این خطر کم ممکن است توجیه‌پذیر باشد و انتخاب سیستمی که فقط آتش‌های سطحی را خاموش کند صحیح باشد. به عنوان مثال، ترانسفورماتورهای الکتریکی و سایر تجهیزات الکتریکی پر شده با روغن معمولاً به‌عنوان تولیدکننده آتش سطحی در نظر گرفته می‌شوند، اگرچه ممکن است این احتمال وجود داشته باشد که هسته گرم شده آتش عمیق در عایق الکتریکی ایجاد کند. از سوی دیگر، اهمیت برخی از تجهیزات الکتریکی برای تولید می‌تواند به‌گونه‌ای باشد که برخورد با خطر به‌عنوان آتش عمیق توجیه‌پذیر باشد.

اغلب، تصمیم‌گیری نیاز به مشاوره با مقامات صلاحیت‌دار و با مالک و مهندسان شرکت تأمین‌کننده تجهیزات دارد. مقایسه هزینه‌ها بین سیستمی که برای اطفاء آتش سطحی طراحی شده است و سیستمی که برای اطفاء آتش عمیق طراحی شده است، می‌تواند عامل تعیین‌کننده باشد. در همه موارد، توصیه می‌شود که تمام طرف‌های ذی‌نفع کاملاً از هرگونه خطرات موجود آگاه باشند، اگر سیستم فقط برای اطفاء آتش سطحی طراحی شود و از هزینه‌های اضافی مربوط به طراحی سیستمی که قادر به اطفاء آتش عمیق است.

A.5.2.3.1 آتش‌های سطحی رایج‌ترین خطراتی هستند که به‌ویژه به سیستم‌های اطفاء حریق با سیل کامل مناسب هستند.

A.5.2.3.2 در هر صورت، پس از آتش عمیق، ضروری است که خطر بلافاصله بررسی شود تا اطمینان حاصل شود که اطفاء حریق کامل بوده و هر ماده‌ای که در آتش دخیل بوده است برداشته شود.

در مواقعی که جو انفجاری از بخارات قابل اشتعال یا گرد و غبار قابل احتراق در داخل یک محفظه وجود دارد، تخلیه دی‌اکسیدکربن مایع می‌تواند باعث ایجاد جرقه‌ای استاتیکی شود که انفجار ایجاد کند. خطر انفجار می‌تواند با تزریق بخار دی‌اکسیدکربن به داخل خطر برای ایجاد جو بی‌اثر کاهش یابد. تزریق بخار دی‌اکسیدکربن باید به‌آرامی انجام شود تا از ایجاد آشفتگی که می‌تواند گرد و غبار قابل احتراق را در داخل محفظه به حالت معلق درآورد، جلوگیری شود. یک مثال از چنین خطری، سیلوی ذخیره زغال‌سنگ است.
(توجه: حفاظت در برابر حریق و بی‌اثر کردن سیلوهای زغال‌سنگ از محدوده این استاندارد خارج است.) به A.4.2.1 مراجعه کنید.

A.5.3.2.2 حداقل غلظت نظری دی‌اکسیدکربن و حداقل غلظت طراحی دی‌اکسیدکربن برای جلوگیری از اشتعال برخی مایعات و گازهای رایج در جدول 5.3.2.2 آورده شده است.

A.5.3.3.1 از آنجا که در فضای کوچک نسبت به حجم محصور، مساحت مرز بیشتری وجود دارد، بنابراین احتمال نشت بیشتر و به تبع آن نیاز به در نظر گرفتن فاکتورهای حجم گرید شده در جدول 5.3.3(a) و جدول 5.3.3(b) است.
حداقل مقادیر گاز برای کوچکترین حجم‌ها در جدول آورده شده است تا هدف ستون B در جدول‌های 5.3.3(a) و 5.3.3(b) روشن شود و از همپوشانی احتمالی در حجم‌های مرزی جلوگیری شود.

A.5.3.5.1 زمانی که تهویه اجباری مدنظر نباشد، نشت مخلوط دی‌اکسیدکربن و هوا از فضای محصور بستگی به یکی یا چند مورد از پارامترهای زیر دارد:
(1) دمای محفظه: دی‌اکسیدکربن در دمای پایین کمتر گسترش می‌یابد و چگالی بیشتری خواهد داشت؛ بنابراین، مقدار بیشتری از آن در صورت وجود منافذ در قسمت پایین محفظه نشت خواهد کرد.
(2) حجم محفظه: درصد گاز دی‌اکسیدکربن که از هر منفذ در یک فضای کوچک نشت می‌کند، بسیار بیشتر از آن است که از همان منفذ در فضای بزرگتر نشت کند.
(3) تهویه: معمولاً یک منفذ در یا نزدیک به سقف مطلوب است تا گازهای سبک‌تر از اتاق خارج شوند طی تخلیه.
(4) محل منافذ: چون دی‌اکسیدکربن از هوا سنگین‌تر است، ممکن است نشت دی‌اکسیدکربن از منافذ نزدیک به سقف بسیار کم یا هیچ‌گونه نشت نداشته باشد، در حالی که نشت در سطح کف می‌تواند قابل توجه باشد.

A.5.3.5.3 خطراتی که در محفظه‌هایی که معمولاً دمای آن‌ها بالاتر از 2000 درجه فارنهایت (93 درجه سلسیوس) است، قرار دارند، بیشتر در معرض خطر بازاشتعال هستند. بنابراین، اضافه کردن دی‌اکسیدکربن اضافی توصیه می‌شود تا غلظت‌های اطفاء حریق برای مدت زمان بیشتری حفظ شود، و این اجازه می‌دهد تا ماده خاموش‌شده خنک شود و احتمال بازاشتعال زمانی که گاز پخش می‌شود، کاهش یابد.

A.5.3.5.5 تحت شرایط عادی، آتش‌های سطحی معمولاً در طول دوره تخلیه خاموش می‌شوند.

A.5.3.5.7 آزمایش‌ها نشان داده‌اند که دی‌اکسیدکربن که مستقیماً بر روی سطح مایع توسط نازل‌های نوع کاربرد محلی اعمال می‌شود، می‌تواند برای تأمین خنک‌کنندگی مورد نیاز جهت جلوگیری از بازاشتعال پس از پایان تخلیه دی‌اکسیدکربن ضروری باشد.

A.5.4.1 اگرچه داده‌های خاص آزمایشی در دسترس نیست، اما شناخته شده است که برخی از انواع آتش‌های عمیق ممکن است نیاز به زمان‌های نگهداری بیش از 20 دقیقه داشته باشند. مقدار دی‌اکسیدکربن مورد نیاز برای آتش‌های عمیق بر اساس محفظه‌های نسبتاً محکم است.

A.5.4.2 برای مواد قابل اشتعال که قادر به تولید آتش‌های عمیق هستند، غلظت‌های مورد نیاز دی‌اکسیدکربن نمی‌توانند با دقت مشابهی با مواد سوختی سطحی تعیین شوند. غلظت اطفاء حریق به جرم ماده موجود بستگی خواهد داشت زیرا اثرات عایق حرارتی وجود دارد. بنابراین، عوامل سیل کردن بر اساس شرایط آزمایشی عملی تعیین شده‌اند.

A5.4.2.1 به طور کلی، عوامل سیل کردن برای فراهم کردن غلظت‌های طراحی مناسب برای اتاق‌ها و محفظه‌های ذکر شده در جدول 5.4.2.1 یافت شده است.
برای اطلاعات بیشتر، به پیوست D مراجعه کنید.
بسته به قابلیت اشتعال، این خطرات ممکن است شامل آتش‌های عمیق نباشند. (به 5.3.5.6 مراجعه کنید.)

A5.5.2 نرخ‌های حداقل طراحی اعمال شده برای آتش‌های سطحی یا عمیق معمولی کافی در نظر گرفته شده‌اند. با این حال، در مواردی که سرعت گسترش آتش سریع‌تر از حالت عادی برای نوع آتش باشد، یا زمانی که مقادیر بالا یا تجهیزات حیاتی درگیر باشند، نرخ‌های بالاتر از حداقل‌ها می‌توانند و در بسیاری از موارد باید استفاده شوند.
در مواردی که یک خطر شامل ماده‌ای باشد که هر دو نوع آتش سطحی و عمیق را تولید کند، نرخ اعمال باید حداقل نرخ مورد نیاز برای آتش‌های سطحی باشد.
پس از انتخاب نرخ مناسب برای خطر، جداول و اطلاعاتی که در ادامه آمده باید استفاده شود یا مهندسی خاصی که نیاز است باید برای به دست آوردن ترکیب صحیح از رهاسازی‌های مخزن، لوله‌کشی تأمین و اندازه‌های اوریفیس که این نرخ مطلوب را تولید کند، انجام شود.
نرخ نشت از یک محفظه در غیاب تهویه اجباری عمدتاً به تفاوت چگالی بین جو داخل محفظه و هوای اطراف محفظه بستگی دارد.
معادله زیر می‌تواند برای محاسبه نرخ از دست دادن دی‌اکسیدکربن استفاده شود، به این فرض که نشت کافی در قسمت بالایی محفظه وجود دارد تا ورود هوای آزاد را امکان‌پذیر کند:

4ffu5FbiHe8aAAAAAASUVORK5CYII=

جایی که:

R = نرخ دی‌اکسیدکربن [پوند در دقیقه (کیلوگرم در دقیقه)]
C = نسبت غلظت دی‌اکسیدکربن
p = چگالی بخار دی‌اکسیدکربن [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
A = مساحت بازشو [فوت مربع (متر مربع)] (شامل ضریب جریان)
g = ثابت گرانش [32.2 فوت بر ثانیه مربع (9.81 متر بر ثانیه مربع)]
p1 = چگالی جو [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
p2 = چگالی هوای اطراف [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
h = ارتفاع ایستا بین بازشو و بالای محفظه [فوت (متر)]

اگر تنها در دیوارها بازشوهایی وجود داشته باشد، مساحت بازشوهای دیوار می‌تواند برای محاسبات تقسیم بر 2 شود زیرا فرض بر این است که هواي تازه می‌تواند از نیمی از بازشوها وارد شود و گاز محافظ از نیمی دیگر خارج خواهد شد.
شکل E.1 (ب) می‌تواند به‌عنوان راهنمایی برای برآورد نرخ‌های تخلیه در سیستم‌های تخلیه طولانی استفاده شود. منحنی‌ها با استفاده از معادله قبلی محاسبه شده‌اند، با فرض دمای 70 درجه فارنهایت (21 درجه سلسیوس) داخل و خارج محفظه. در یک سیستم واقعی، دمای داخل معمولاً با تخلیه کاهش می‌یابد، که باعث افزایش نرخ از دست رفتن گاز می‌شود. به دلیل وجود متغیرهای زیاد، ممکن است نیاز به آزمایش سیستم نصب‌شده برای اطمینان از عملکرد صحیح باشد.
در صورتی که نشت قابل توجهی وجود داشته باشد، غلظت طراحی باید به سرعت به دست آید و برای مدت زمان طولانی حفظ شود. دی‌اکسیدکربن مورد نیاز برای جبران نشت باید با نرخ کمتری اعمال شود. نرخ تخلیه طولانی‌شده باید به اندازه کافی برای حفظ غلظت طراحی باشد.

A.5.5.2.1 معمولاً زمان تخلیه اندازه‌گیری شده زمانی در نظر گرفته می‌شود که دستگاه اندازه‌گیری شروع به ثبت حضور دی‌اکسیدکربن می‌کند تا غلظت طراحی به دست آید.

A.5.5.3 حفاظت از موتورهای احتراق ثابت و توربین‌های گازی درNFPA 37 مورد بررسی قرار گرفته است.
برای تجهیزات الکتریکی محصور از نوع گردش داخلی، مقدار اولیه تخلیه نباید کمتر از 1 پوند (0.45 کیلوگرم) گاز برای هر 10 فوت مکعب (0.28 متر مکعب) از حجم محصور تا 2000 فوت مکعب (56.6 متر مکعب) باشد. برای حجم‌های بزرگتر، 1 پوند (0.45 کیلوگرم) گاز برای هر 12 فوت مکعب (0.34 متر مکعب) یا حداقل 200 پوند (90.8 کیلوگرم) باید استفاده شود. جدولA.5.5.3(الف) و جدول A.5.5.3(ب) می‌تواند به‌عنوان راهنما برای برآورد مقدار گاز مورد نیاز برای تخلیه طولانی‌شده جهت حفظ حداقل غلظت 30 درصد برای زمان کاهش شتاب استفاده شود. این مقدار بر اساس حجم داخلی دستگاه و زمان کاهش شتاب است، با فرض نشت متوسط. برای دستگاه‌های بدون گردش داخلی که دارای دمپر هستند، 35 درصد به مقادیر نشان داده‌شده در جدول A.5.5.3(الف) و جدول A.5.5.3(ب) باید اضافه شود تا حفاظت از تخلیه طولانی‌شده تأمین شود.

A.5.5.4.2 روش‌های موجود برای جبران دماهای بالایی شامل کاهش چگالی پر کردن برای دماهای بالا و فشرده‌سازی نیتروژن همراه با کاهش چگالی پر کردن برای دماهای پایین است. باید با تولیدکنندگان مشورت شود برای راهنمایی بیشتر.

A.5.6.1 ملاحظه‌های تهویه فشار شامل عواملی مانند استحکام محفظه و نرخ تزریق است.

A.5.6.2 منافذ و نشت‌هایی مانند درها، پنجره‌ها و دمپرها که ممکن است به راحتی قابل شناسایی نباشند یا به راحتی محاسبه نشوند، در سیستم‌های سیلاب دی‌اکسیدکربن معمولاً به‌اندازه کافی برای تهویه طبیعی بدون نیاز به تهویه اضافی فراهم کرده‌اند. اتاق‌های ذخیره‌سازی رکوردها، فضاهای یخچالی و کانال‌های تهویه نیز تحت شرایط سیستم متوسط خود نیاز به تهویه اضافی ندارند.
در بسیاری از موارد، به‌ویژه زمانی که مواد خطرناک درگیر هستند، منافذ تهویه برای تهویه انفجاری قبلاً فراهم شده است. این‌ها و سایر منافذ موجود معمولاً تهویه کافی را فراهم می‌کنند.
عملیات ساخت‌وساز عمومی راهنمای جدول A.5.6.2 را برای در نظر گرفتن استحکام عادی و فشارهای مجاز محفظه‌های متوسط فراهم می‌آورد.

A.6.1.2 نمونه‌هایی از خطراتی که توسط سیستم‌های کاربردی محلی محافظت می‌شوند شامل وان‌های غوطه‌وری، تانک‌های خنک‌کننده، اتاق‌های اسپری، ترانسفورماتورهای الکتریکی پر شده از روغن، دریچه‌های بخار، آسیاب‌های نورد، دستگاه‌های چاپ و غیره می‌شود.

A.6.1.4 به بخش‌های 4.3، 4.5.5 و A.4.3 اشاره می‌شود در مورد خطرات ناشی از کدورت دید و کاهش غلظت اکسیژن به مقداری که نمی‌تواند حیات را پشتیبانی کند، نه تنها در ناحیه اطراف تخلیه، بلکه در مناطق مجاور که گاز می‌تواند به آنجا مهاجرت کند.

A.6.3.1 در محاسبه مجموع مقدار دی‌اکسیدکربن مورد نیاز برای یک سیستم کاربردی محلی، نرخ جریان همه نازل‌ها باید با هم جمع شوند تا نرخ جریان جرمی برای حفاظت از خطر خاص به‌دست آید. این نرخ باید ضربدر زمان تخلیه شود.

A.6.3.1.1 این سیلندرها معمولاً در ظرفیت‌های اسمی 50 پوند، 75 پوند و 100 پوند (22.7 کیلوگرم، 34.1 کیلوگرم و 45.4 کیلوگرم) دی‌اکسیدکربن اندازه‌گیری می‌شوند. زمانی که سیلندرها با دی‌اکسیدکربن در چگالی پر کردن عادی که از 68 درصد بیشتر نباشد، پر می‌شوند، بخشی از تخلیه از سیلندرها به‌صورت دی‌اکسیدکربن مایع و باقی‌مانده به‌صورت بخار خواهد بود. برای مقاصد طراحی، تخلیه بخار به‌عنوان اثربخش در خاموش کردن آتش در نظر گرفته نمی‌شود. مشخص شده است که مقدار دی‌اکسیدکربن تخلیه‌شده از نازل به‌صورت مایع دی‌اکسیدکربن از 70 درصد تا 75 درصد از کل مقدار دی‌اکسیدکربن موجود در سیلندر متغیر است و بنابراین لازم است ظرفیت اسمی سیلندر برای یک سیستم خاص 40 درصد افزایش یابد تا بخش بخار دی‌اکسیدکربن در نظر گرفته شود. به‌عنوان مثال، یک سیلندر 50 پوندی (22.7 کیلوگرم) می‌تواند بین 35 پوند و 37.5 پوند (15.9 کیلوگرم و 17.0 کیلوگرم) دی‌اکسیدکربن به‌صورت مایع تخلیه کند که بخش مؤثر تخلیه در خاموش کردن آتش است.

A.6.3.1.2 زمانی که دی‌اکسیدکربن مایع از یک لوله‌کشی گرم عبور می‌کند، مایع به‌سرعت تبخیر می‌شود تا دمای لوله به دمای اشباع دی‌اکسیدکربن برسد. مقدار دی‌اکسیدکربن مایع تبخیرشده به این روش بستگی به مقدار کل حرارت دارد که باید از لوله‌کشی برداشته شود و حرارت نهان تبخیر دی‌اکسیدکربن دارد. برای دی‌اکسیدکربن با فشار بالا، حرارت نهان تبخیر حدود 64Btu/pound (149 kJ/kg) است؛ برای دی‌اکسیدکربن با فشار پایین، حرارت نهان تبخیر حدود 120 Btu/pound (279 kJ/kg) است.
مقدار حرارت که باید از لوله‌کشی برداشته شود، حاصل‌ضرب وزن لوله‌کشی در ظرفیت حرارتی ویژه فلز و تغییر دمای متوسط لوله‌کشی است. برای لوله‌کشی فولادی، ظرفیت حرارتی ویژه متوسط حدود 0.11 Btu/pound·°F (0.46 kJ/kg·K) تغییر دما است. تغییر دمای متوسط نیز تفاوت بین دمای آغاز تخلیه و دمای متوسط مایع در حال جریان در لوله خواهد بود. برای دی‌اکسیدکربن با فشار بالا، می‌توان دمای متوسط مایع در لوله‌کشی را حدود 60 درجه فارنهایت (16 درجه سلسیوس) فرض کرد. برای دی‌اکسیدکربن با فشار پایین، دمای متوسط را می‌توان حدود -5 درجه فارنهایت (-21 درجه سلسیوس) فرض کرد. این دماها البته تا حدودی متناسب با فشار نازل‌های متوسط تغییر خواهند کرد، اما چنین تنظیمات جزئی تأثیر قابل توجهی بر نتایج نخواهد گذاشت. معادله زیر می‌تواند برای محاسبه مقدار دی‌اکسیدکربن تبخیرشده در لوله‌کشی استفاده شود:

 

جایی که:

W = C0₂ تبخیر شده [پوند (کیلوگرم)]
w = وزن لوله‌کشی [پوند (کیلوگرم)]
Cp = گرمای ویژه فلز در لوله [Btu/پوند·°F; 0.11 برای فولاد (kJ/کیلوگرم·K; 0.46 برای فولاد)]
T₁ = دمای متوسط لوله قبل از تخلیه [°F (°C)]
T₂ = دمای متوسط C0₂ [°F (°C)]
H = حرارت نهان تبخیر C0₂ مایع [Btu/پوند (kJ/کیلوگرم)]

A.6.3.3 چون آزمایش‌های انجام شده در فهرست یا تاییدیه‌های اسپرینکلرهای دی‌اکسید کربن ایجاب می‌کند که آتش در حداکثر زمان ۲۰ ثانیه خاموش شود، زمان حداقل ۳۰ ثانیه برای این استاندارد تعیین شده است. این زمان اضافی به‌عنوان یک ضریب ایمنی برای شرایط غیرقابل پیش‌بینی در نظر گرفته شده است. مهم است که این زمان تخلیه به‌عنوان حداقل در نظر گرفته شود و شرایطی مانند دماهای بالا و خنک شدن سطوح بسیار داغ در منطقه خطر ممکن است نیاز به افزایش زمان تخلیه برای اطمینان از خاموشی کامل و مؤثر داشته باشد.

A.6.3.3.2 جریان دی‌اکسید کربن نیازی نیست که همزمان در تمام اسپرینکلرها شروع یا متوقف شود، اما همه اسپرینکلرها باید حداقل به مدت زمان تخلیه مایع کربن دی‌اکسید به‌طور همزمان کار کنند.

A.6.3.3.5 دمای حداکثر سوخت مایع در حال سوخت محدود به نقطه جوش آن است که در آن سرمایش تبخیری با ورود حرارت مطابقت دارد. در بیشتر مایعات، دمای خود اشتعال بسیار بالاتر از دمای جوش است، بنابراین باز اشتعال بعد از خاموش شدن تنها می‌تواند توسط یک منبع اشتعال خارجی ایجاد شود. با این حال، برخی مایعات منحصر به فرد دارای دماهای خود اشتعال بسیار پایین‌تری نسبت به دمای جوش خود هستند. روغن‌های پخت‌وپز معمولی و موم پارافین ذوب‌شده این ویژگی را دارند. برای جلوگیری از باز اشتعال در این مواد، لازم است تا جوّ اطفاء حریق تا زمانی که سوخت پایین‌تر از دمای خود اشتعال آن سرد شود، حفظ شود. یک زمان تخلیه ۳ دقیقه‌ای برای واحدهای کوچک کافی است، اما ممکن است برای واحدهای با ظرفیت بزرگتر به زمان بیشتری نیاز باشد.

A.6.4.1 کاربرد عملی روش نرخ بر اساس مساحت در راهنمای طراحی FSSA برای سیستم‌های محلی دی‌اکسید کربن نرخ بر اساس مساحت توضیح داده شده است. این راهنما به کاربر در تمام فرآیند طراحی سیستم دی‌اکسید کربن بر اساس نرخ مساحت با مثال‌ها کمک می‌کند. کاربر با مراحل مختلف طراحی سیستم شامل چیدمان، محاسبات و طراحی کلی سیستم آشنا خواهد شد.

A.6.4.2.1 در فهرست‌های فردی یا تاییدیه‌های اسپرینکلرهای نوع سقفی، آزمایش‌هایی برای تعیین جریان بهینه‌ای که یک اسپرینکلر باید برای ارتفاع نصب آن نسبت به سطح مایع استفاده کند، انجام می‌شود. این آزمایش‌ها به شرح زیر انجام می‌شوند:

1. آزمایش‌های آتش‌سوزی برای اسپرینکلرهای نوع سقفی انجام می‌شود تا یک منحنی که جریان‌های حداکثر قابل استفاده برای اسپرینکلرها را در ارتفاعات مختلف نشان می‌دهد، توسعه یابد.
2. پس از آزمایش‌های فوق، حداقل جریان برای ارتفاعات مختلف فرض می‌شود که ۷۵ درصد از حداکثر جریان قبلاً تعیین شده است.
3. پس از آزمایش‌های فوق، آزمایش‌هایی انجام می‌شود تا مساحت آتش تغییر کند تا بیشترین مساحتی که یک اسپرینکلر در ارتفاعات مختلف می‌تواند خاموش کند، تعیین شود.
4. از داده‌های مراحل قبلی دو منحنی رسم می‌شود: یک منحنی جریان در مقابل ارتفاع و منحنی مساحت در مقابل ارتفاع.

این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، بنابراین مهم است که مساحت پوشش اسپرینکلرها در ارتفاعات مختلف بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. در سیستم‌های اسپرینکلر چندگانه، این محدودیت‌ها برای بخش‌های خطر که هر اسپرینکلر به‌طور جداگانه پوشش می‌دهد، استفاده می‌شود.

چون این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، مهم است که به‌خاطر داشته باشید که پوشش مساحت برای اسپرینکلرها در ارتفاعات مختلف که توسط منحنی دوم نشان داده شده، باید بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. همچنین مهم است که به یاد داشته باشید این دو منحنی محدودیت‌های پوشش تک اسپرینکلر را نشان می‌دهند. در سیستم‌های چند اسپرینکلری، این محدودیت‌ها برای بخشی از خطر که توسط هر اسپرینکلر پوشش داده می‌شود، استفاده می‌شود.

A.6.4.2.2 برای اسپرینکلرهای کنار مخزن و خطی، آزمایش‌های آتش‌سوزی برای توسعه منحنی‌هایی که حداکثر و حداقل جریان‌های قابل استفاده برای اسپرینکلر را به مساحت آتشی که اسپرینکلر قادر به خاموش کردن آن است، مرتبط می‌کند، انجام می‌شود. همچنین محدودیت‌های اضافی در مورد حداکثر عرض خطر و الزامات فاصله بین اسپرینکلرها و نزدیک‌ترین گوشه خطر وجود دارد. در این آزمایش‌ها، اسپرینکلرها معمولاً در فاصله ۶اینچی (۱۵۲ میلی‌متر) از سطح مایع نصب می‌شوند، که پارامتر ارتفاع را حذف می‌کند. این آزمایش‌ها به‌صورت زیر انجام می‌شوند.

اسپرینکلرهای تک یا چندگانه روی لبه سینی‌های مربعی یا مستطیلی نصب می‌شوند. در آزمایش‌های اسپرینکلر چندگانه، اسپرینکلرها روی یک طرف یا دو طرف متقابل نصب می‌شوند. آزمایش‌ها روی اندازه‌های مختلف سینی و آرایش‌های فاصله‌ای مختلف انجام می‌شود تا منحنی حداکثر نرخ یا منحنی پاشش ایجاد شود که می‌توان آن را به‌عنوان تابعی از جریان در مقابل مساحت پوشش یا عرض خطر ترسیم کرد. پس از این مرحله، حداقل جریان برای شرایط مختلف مساحت یا عرض خطر (با محدودیت‌های فاصله‌ای مناسب دیگر) توسط یک سری آزمایش مشابه تعیین می‌شود.

برای همه این آزمایش‌ها، جریان‌ها بر اساس دمای ذخیره‌سازی ۰درجه فارنهایت (۱۸- درجه سانتی‌گراد) برای سیستم‌های فشار پایین (فشار متوسط ۳۰۰ psi یا ۲۰۶۸ kPa) یا دمای ذخیره‌سازی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) برای سیستم‌های فشار بالا (فشار متوسط ۷۵۰ psi یا ۵۱۷۱ kPa) محاسبه می‌شوند. در سیستم‌های فشار بالا، دمای واقعی ذخیره‌سازی می‌تواند بین ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) و ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) متغیر باشد. به همین دلیل، آزمایش‌های منحنی حداکثر نرخ یا پاشش با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی بالاتر از نرخ محاسبه شده ایجاد می‌کند. آزمایش‌های نرخ حداقل با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی پایین‌تر از نرخ محاسبه شده ایجاد می‌کند.

از داده‌های حاصل از این آزمایش‌ها، یک منحنی جریان در مقابل مساحت پوشش یا عرض خطر ترسیم می‌شود که منحنی حداکثر یا پاشش آن با ضریبی معادل ۱۰ درصد کاهش و نرخ حداقل آن با ضریبی معادل ۱۵ درصد افزایش می‌یابد. یک منحنی معمولی برای اسپرینکلر کنار مخزن در شکل F.1 (c) و یک منحنی برای اسپرینکلر خطی در شکل F.1 (d) نشان داده شده است.

A.6.4.3.4 برای آزمایش‌های فهرست و تاییدیه، اسپرینکلرهای محلی دی‌اکسید کربن نوع سقفی روی آتش‌سوزی‌های دو بعدی سینی انجام می‌شوند. (مراجعه شود به A.6.4.2.1.) برخی اسپرینکلرها هنگام استفاده روی چنین آتش‌سوزی‌های “مسطح” پوشش مساحت عالی دارند. اگرچه مخروط واقعی تخلیه می‌تواند تنها روی یک مساحت کوچک از آتش تأثیر بگذارد، دی‌اکسید کربن می‌تواند از ناحیه برخورد واقعی خارج شده و مساحت بسیار بزرگتری از سینی آتش را به‌طور مؤثر پوشش دهد.

اگر سطحی که تخلیه دی‌اکسید کربن روی آن برخورد می‌کند، بسیار نامنظم باشد، ممکن است تخلیه نازل نتواند تمام قسمت‌های خطر را به‌طور مؤثر پوشش دهد. اگر نازل‌های استفاده شده دارای مناطق برخورد کوچکی نسبت به مناطق پوشش فهرست شده خود باشند، ممکن است نیاز به نازل‌های اضافی برای پوشش کامل اشیاء با اشکال نامنظم باشد. در صورتی که چنین خطراتی با اشکال نامنظم باید پوشش داده شوند، طراح باید اطمینان حاصل کند که تعداد، نوع و مکان نازل‌ها برای تضمین پوشش کامل سطوح خطر کافی است. بررسی پوشش اسپرینکلرهای محلی از جمله قسمت‌های مهم آزمایش تخلیه است.

A.6.4.4.5 ممکن است نیاز به نازل‌های اضافی برای این منظور خاص باشد، به‌ویژه اگر انبار بیش از ۲ فوت (۰.۶ متر) بالاتر از سطح محافظت شده قرار گیرد.

A.6.5.1 کاربرد عملی روش نرخ به حجم پیچیده است. طراحی یک سیستم می‌تواند با استفاده از مثال‌ها و یک محاسبه گام به گام از یک سیستم، تسهیل شود. دستورالعمل‌های طراحی FSSA برای سیستم‌های کاربرد محلی دی‌اکسید کربن با روش نرخ به حجم توضیح می‌دهند که چگونه یک سیستم دی‌اکسید کربن با استفاده از این روش طراحی شود.

A.6.5.3.2 شکل A.6.5.3.2 نمودار پوشش جزئی است.

A.6.6.2 دماهای ذخیره‌سازی فشار بالا که از ۳۲ درجه فارنهایت تا ۱۲۰ درجه فارنهایت (۰ درجه سانتی‌گراد تا ۴۹ درجه سانتی‌گراد) متغیر هستند، نیاز به روش‌های خاص برای جبران تغییرات نرخ جریان ندارند. در صورتی که دماهای ذخیره‌سازی فشار بالا بتوانند زیر ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) یا بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) قرار گیرند، ممکن است نیاز باشد ویژگی‌های خاصی در سیستم گنجانده شود تا نرخ جریان صحیح تضمین شود.

A.7.1.1 یک منبع دی‌اکسید کربن جداگانه می‌تواند برای استفاده از شلنگ دستی فراهم شود، یا دی‌اکسید کربن می‌تواند از یک واحد ذخیره‌سازی مرکزی که چندین خط شلنگ را تأمین می‌کند یا از سیستم‌های ثابت دستی یا خودکار تأمین شود. (مراجعه شود به ۴.۶.۱.۱.)

A.7.1.3 استفاده از لوله‌های دستی یا سیستم‌های ثابت یا خودکار برای انتقال دی‌اکسید کربن از یک واحد ذخیره‌سازی مرکزی که به چندین لوله‌ متصل است، امکان‌پذیر است. (مراجعه شود به 4.6.1.1.)
A.7.1.4 اشاره‌ای به 4.3.1 و A.4.3 در مورد خطرات برای پرسنل به دلیل کاهش دید و کاهش غلظت اکسیژن تا حدی که قادر به حمایت از حیات نباشد، نه تنها در منطقه تخلیه بلکه در مناطق مجاور که گاز ممکن است به آنجا منتقل شود، می‌شود.
A.7.5.2 اتصال مجموعه نازل تخلیه به شلنگ با استفاده از اتصال گردشی برای فراهم آوردن راحتی بیشتر در جابجایی توصیه می‌شود.
A.7.5.4 عملکرد سیستم‌های لوله‌ دستی به عمل دستی و جابجایی دستی نازل تخلیه بستگی دارد. بنابراین سرعت و سادگی عملیات برای اطفاء حریق موفق ضروری است.
A.7.5.4.2 از شیرهای بلیدر یا دستگاه‌های مشابه می‌توان برای کاهش تاخیر در تخلیه مایع در سیستم‌های فشار پایین استفاده کرد.
A.8.1.1 تأمین دی‌اکسید کربن بر روی یک وسیله نقلیه متحرک نصب شده است که می‌تواند به محل حریق کشیده یا رانده شود و به سرعت به سیستم لوله‌ کشی متصل شود که خطرات درگیر را محافظت می‌کند. تأمین متحرک عمدتاً تجهیزات آتش‌نشانی یا پرسنل آتش‌نشانی است که برای استفاده مؤثر به آموزش نیاز دارند.
A.8.1.2 سیستم‌های لوله‌ کشی و تأمین متحرک می‌توانند برای تکمیل سیستم‌های حفاظت در برابر حریق ثابت استفاده شوند یا به تنهایی برای محافظت از خطرات خاص استفاده شوند:
(1) تأمین متحرک می‌تواند به عنوان یک پشتیبان برای تکمیل تأمین ثابت استفاده شود.
(2) تأمین متحرک همچنین می‌تواند با لوله‌های دستی برای محافظت از خطرات پراکنده تجهیز شود.
A.8.4.1 ممکن است مقادیر اضافی دی‌اکسید کربن برای جبران تاخیر در رساندن تأمین متحرک به خطر مورد نیاز باشد.
A.8.5 اثربخشی حفاظت در برابر حریق فراهم شده توسط سیستم‌های لوله‌ کشی و تأمین متحرک به کارایی و توانایی نیروی انسانی که تأمین متحرک را اداره می‌کند بستگی دارد. به طور کلی، این تجهیزات در دسته تجهیزات آتش‌نشانی قرار دارند که به یک گروه از پرسنل ثابت نیاز دارند.
A.9.1(2)(c) مثال‌ها شامل فضاهایی هستند که موتورهایی برای پیشرانه، موتورهایی که ژنراتورهای الکتریکی را به حرکت درمی‌آورند، ایستگاه‌های پر کردن سوخت، پمپ‌های بارگیری یا ماشین‌آلات تهویه، گرمایش و تهویه مطبوع را در خود دارند.
A.9.1(2)(d) سیستم‌های دی‌اکسید کربن برای فضاهای وسیله نقلیه که برای مسافران قابل دسترسی هستند، توصیه نمی‌شود.
A.9.2.1 منظور این است که NFPA 12، از جمله این فصل، به عنوان یک سند مستقل برای طراحی، نصب و نگهداری سیستم‌های دی‌اکسید کربن دریایی استفاده شود.
فصل 9 در سال 1998 اضافه شد تا به نصب‌های دریایی پرداخته شود. این فصل به عنوان جایگزین سایر استانداردها مانند 46CFR 119، نصب ماشین‌آلات” طراحی شده است.
A.9.3.3.1 برخی از موتورهای احتراق داخلی برای پیشرانه و ژنراتورهای مولد برق، هوای احتراق را از فضای محافظت شده که در آن نصب شده‌اند، می‌کشند. چون این نوع موتورها موظف به خاموش شدن قبل از تخلیه سیستم هستند، در برخی موارد، سیستم خودکار تخلیه ممکن است پیشرانه یا تأمین برق را زمانی که بیشترین نیاز است، خاموش کند. یک سیستم غیرخودکار به خدمه کشتی انعطاف‌پذیری بیشتری می‌دهد تا بهترین مسیر عمل را انتخاب کنند. به عنوان مثال، در حالی که کشتی در یک کانال پر ازدحام در حال حرکت است، توانایی مانور کشتی می‌تواند از تخلیه فوری سیستم مهم‌تر باشد.

A.9.3.3.2 در سکوی‌های فراساحلی و برخی از کشتی‌ها، محفظه‌های ماشین‌آلات کوچک اغلب به‌گونه‌ای قرار دارند که دسترسی پرسنل در هنگام وقوع حریق دشوار و/یا خطرناک است و ممکن است تأخیر غیرقابل قبولی در فعال‌سازی سیستم‌ها ایجاد کند. تا زمانی که ایمنی زندگی و قابلیت ناوبری کشتی تحت تأثیر منفی قرار نگیرد، فعال‌سازی خودکار سیستم‌های محافظت‌کننده از این فضاها مجاز است.
A.9.3.3.4 به‌استثنای فضاهای محافظت‌شده بسیار کوچک که در 9.3.3.3.3 ذکر شده است، هدف این استاندارد این است که دو عملیات دستی جداگانه برای ایجاد تخلیه یک سیستم دریایی نیاز باشد. فراهم کردن یک کنترل دستی جداگانه برای هر یک از شیرهای کنترل تخلیه مورد نیاز در 9.3.3.3 این هدف را محقق می‌کند. این الزامات استثنایی است بر «عملیات دستی معمولی» که در 4.5.1.2 تعریف شده است.
A.9.3.3.5 برای یک سیستم دی‌اکسید کربن فشار بالا، کنترل دستی اضطراری برای تأمین، اپراتور دستی بر روی سیلندرهای پیلوت است.
A.9.3.3.7 دی‌اکسید کربن کافی باید فراهم شود تا آلارم‌ها را با فشار نامی خود برای مدت زمان لازم فعال نگه دارد.
A.9.3.6.2.2 یک مثال از جایی که تخلیه‌ها ضروری است، نقاط پایین در لوله‌کشی دی‌اکسید کربن است که همچنین توسط سیستم تشخیص دود از نوع نمونه‌برداری استفاده می‌شود.
آتش‌سوزی در فضاهای باری ممکن است به‌طور کامل توسط تخلیه دی‌اکسید کربن اطفاء نشود. اینکه آتش به‌طور کامل اطفاء شده است یا فقط سرکوب شده است بستگی به چندین عامل دارد، از جمله نوع و مقدار مواد سوختی. احتمال نشت مقداری از جو دی‌اکسید کربن غنی‌شده از محفظه بار وجود دارد. بنابراین، ممکن است نیاز باشد دی‌اکسید کربن اضافی به‌طور موقت تخلیه شود تا سرکوب آتش در محفظه بار تا زمانی که کشتی به بندر برسد، حفظ شود. پس از رسیدن به بندر، قبل از باز شدن درب محفظه بار، یک گروه آتش‌نشانی مجهز و آموزش‌دیده باید آماده باشد تا اطفاء کامل مواد سوخته را انجام دهد.

 

نوشته‌های مشابه

  • معرفی سیستم‌های اطفاء حریق با گاز دی‌اکسید کربن

    1 محدودیت‌ها برای محفظه‌های معمولاً اشغال‌شده
    4.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی نباید در محفظه‌های معمولاً اشغال‌شده نصب شوند، مگر در مواردی که در بندهای 4.1.1.1، 4.1.1.2، 4.1.1.3، 4.1.1.4 یا 4.1.1.5 مجاز شمرده شده باشد.

    4.1.1.1 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از پایین‌ترین سطح اثرات منفی مشاهده‌شده (LOAEL) را ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.1.2 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده برای آتش‌سوزی‌های مربوط به تجهیزات الکتریکی فعال با ولتاژ بیشتر از 400 ولت و کابل‌های الکتریکی گروهی باشند، جایی که هیچ عامل گازی جایگزین به‌طور موفقیت‌آمیزی آزمایش نشده باشد.

    4.1.1.3 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، زمانی که روش‌های طراحی یا سخت‌افزار یا هر دو برای درزگیری بازشوها یا تخلیه طولانی‌مدت برای دیگر عوامل گازی در دسترس نباشند.

    4.1.1.4 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های بارگیری کشتی‌های دریایی باشند.

    4.1.1.5 سیستم‌های جدید اطفاء حریق با گاز دی‌اکسید کربن به‌صورت سیلابی باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده در اتاق‌های موتور کشتی‌های دریایی باشند، زمانی که مشخص شود که غلظت بی‌اثر شدن لازم است و غلظت بی‌اثر شدن مورد نیاز با استفاده از عوامل گازی جایگزین، غلظتی بالاتر از LOAEL ایجاد می‌کند یا غلظت اکسیژن کمتر از 8 درصد است.

    4.1.2 سیستم‌های موجود. سیستم‌های دی‌اکسید کربن به‌صورت سیلابی موجود باید مجاز به نصب در محفظه‌های معمولاً اشغال‌شده باشند، مشروط بر اینکه به‌طور کامل با شیرهای قفل‌کننده سیستم، آلارم‌های پیش‌تخلیه پنوماتیک و تأخیرهای زمانی پنوماتیک مشخص‌شده در بند 4.5.6 مجهز شده باشند.

    4.2 استفاده و محدودیت‌های دی‌اکسید کربن
    4.2.1 سیستم‌های اطفاء حریق با دی‌اکسید کربن که از مناطق در برابر انفجار محافظت می‌کنند، باید از نازل‌های فلزی استفاده کنند و کل سیستم باید به‌طور کامل به زمین متصل شود.

    4.2.2 علاوه بر این، اشیاء در معرض تخلیه از نازل‌های دی‌اکسید کربن باید به‌طور کامل به زمین متصل شوند تا از تجمع بارهای الکترواستاتیکی احتمالی جلوگیری شود.

    4.3 ایمنی پرسنل
    4.3.1 خطرات برای پرسنل
    4.3.1.1 باید به احتمال حرکت و نشستن گاز دی‌اکسید کربن در مکان‌های مجاور خارج از فضای محافظت‌شده توجه شود. (به بند 4.3.1.3 مراجعه کنید.)

    4.3.1.2 همچنین باید به محل‌هایی توجه شود که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از یک دستگاه تخلیه ایمنی در یک مخزن ذخیره، مهاجرت یا جمع شود.

    4.3.1.3 در هر استفاده از گاز دی‌اکسید کربن، باید به احتمال گرفتار شدن پرسنل در جو یا ورود به جوی که به دلیل تخلیه دی‌اکسید کربن خطرناک شده است، توجه شود.

    4.3.1.3.1 تدابیری باید فراهم شود تا از تخلیه سریع پرسنل اطمینان حاصل شود، ورود به چنین جوهایی که در بند 4.3.1.3 توضیح داده شده است جلوگیری شود، و روش‌هایی برای نجات سریع پرسنل گرفتار شده فراهم گردد.

    4.3.1.3.2 باید آموزش‌های لازم به پرسنل ارائه شود.

    4.3.2 علائم
    4.3.2.1 علائم هشدار باید در مکان‌های قابل مشاهده در هر فضای محافظت‌شده، در هر ورودی به فضاهای محافظت‌شده، در فضاهای نزدیک به فضاهای محافظت‌شده که مشخص شده است گاز دی‌اکسید کربن ممکن است مهاجرت کرده و خطراتی برای پرسنل ایجاد کند، و در هر ورودی به اتاق‌های ذخیره‌سازی دی‌اکسید کربن و جایی که گاز دی‌اکسید کربن ممکن است در صورت تخلیه از دستگاه ایمنی یک مخزن ذخیره جمع شود، نصب شوند.

    4.3.2.2 فرمت، رنگ، سبک حروف کلمات سیگنال، حروف‌نگاری پیام، اندازه حروف و مقررات ایمنی نمادها باید مطابق با استاندارد ANSI Z535.2 باشد.

    4.3.2.3 علائم ایمنی و کلمات پیام باید با استفاده از فرمت سه‌پنلی که در بندهای 4.3.2.3.1 تا 4.3.2.3.6.2 مشخص شده است، ارائه شوند.

    4.3.2.3.1 علائم نشان داده‌شده در شکل 4.3.2.3.1 باید در هر فضای محافظت‌شده استفاده شود.

    4.3.2.3.2 علائم نشان داده‌شده در شکل 4.3.2.3.2 باید در هر ورودی به فضای محافظت‌شده استفاده شود.

    4.3.2.3.3 علائم نشان داده‌شده در شکل 4.3.2.3.3 باید در هر ورودی به فضای محافظت‌شده برای سیستم‌هایی که با بوگیر سبز زمستانی تجهیز شده‌اند، استفاده شود.

    2Q==

    9k=

    ۴.۳.۲.۳.۴ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۴ باید در هر فضای مجاور که احتمال تجمع گاز دی‌اکسید کربن تا سطح خطرناک وجود دارد، نصب شود.

    ۴.۳.۲.۳.۵ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۵ باید در بیرون از هر ورودی اتاق ذخیره‌سازی دی‌اکسید کربن نصب شود.

    ۴.۳.۲.۳.۶ تابلوها برای عملکرد دستی:

    ۴.۳.۲.۳.۶.۱ تابلوهای هشدار باید در تمام مکان‌هایی که عملکرد دستی سیستم ممکن است انجام شود، نصب شوند.

    ۴.۳.۲.۳.۶.۲ تابلوی نشان داده شده در شکل ۴.۳.۲.۳.۶.۲ باید در کنار هر ایستگاه فعال‌سازی دستی نصب شود.

    Z

    2Q==

    2Q==

    ۴.۳.۲.۴ برای نصب‌هایی که دارای تابلوهای موجودی هستند که با الزامات بند ۴.۳.۲.۳ تفاوت دارند اما با الزامات بند ۴.۳.۲.۱مطابقت دارند، این تابلوهای موجود قابل‌قبول تلقی می‌شوند، مشروط بر اینکه مرکز دارای برنامه آموزشی تابلوها باشد که کلیه تابلوهای مرتبط با سیستم اطفاء را پوشش دهد و تمام افرادی که به فضای تحت حفاظت دسترسی دارند یا آموزش‌های لازم را دیده باشند یا همیشه با فرد آموزش‌دیده در آن فضا همراه باشند.
    در تأسیسات مشمول این بند، در نصب‌های جدید باید از همان نوع تابلوهایی استفاده شود که در تابلوهای موجود مرکز استفاده شده است. تمام تابلوها در یک مرکز باید سبک و قالب یکسانی داشته باشند.

    ۴.۳.۳ روش‌های تخلیه:

    ۴.۳.۳.۱ تمام افرادی که ممکن است در هر زمان وارد فضای تحت حفاظت با دی‌اکسید کربن شوند باید نسبت به خطرات موجود هشدار داده شوند و روش‌های ایمن تخلیه به آنان آموزش داده شود.

    ۴.۳.۳.۱.۱ باید تدابیری اتخاذ شود تا از ورود افراد فاقد تجهیزات ایمنی به فضاهایی که در اثر تخلیه دی‌اکسید کربن ناایمن شده‌اند، جلوگیری گردد، تا زمانی که فضا تهویه شود و آزمایش‌های مناسب ایمنی محیط را تأیید کرده باشند. افرادی که آموزش ندیده‌اند یا مجهز به دستگاه تنفسی مستقل (SCBA) نیستند، نباید در فضاهایی که غلظت گاز از ۴ درصد بیشتر است باقی بمانند.

    ۴.۳.۳.۲ هشداردهنده‌های صوتی و نوری باید طبق بند ۴.۵.۶فراهم شوند.

    ۴.۳.۳.۳* به تمام کارکنان اطلاع داده شود که تخلیه گاز دی‌اکسید کربن از سیستم‌های با فشار بالا یا پایین به‌صورت مستقیم روی فرد، می‌تواند باعث آسیب به چشم، گوش یا حتی زمین خوردن در اثر فشار شدید گاز شود.

    ۴.۳.۳.۴ در تمام سیستم‌ها به‌جز مواردی که محدودیت‌های ابعادی وجود دارد و مانع ورود افراد به فضای تحت حفاظت می‌شود، باید قفل ایمنی (lockout) فراهم شود.

    ۴.۳.۳.۴.۱ شیر قفل ایمنی باید روی تمام سیستم‌هایی که امکان مهاجرت دی‌اکسید کربن و ایجاد خطر برای افراد وجود دارد، نصب شود.

    ۴.۳.۳.۴.۲ در سیستم‌های فشار پایین، شیر قطع مخزن نباید به‌عنوان شیر قفل ایمنی در نظر گرفته شود، مگر طبق مجوز بند ۴.۳.۳.۴.۳.

    ۴.۳.۳.۴.۳ در مواردی که یک مخزن فشار پایین تنها یا چند سیستم را تغذیه می‌کند که خطرات مرتبط به هم را پوشش می‌دهند، و هیچ‌کدام از این خطرات در صورت خاموش بودن تجهیزات نیاز به حفاظت ندارند، می‌توان از شیر قطع مخزن به‌عنوان شیر قفل ایمنی برای کل سیستم استفاده کرد.

    ۴.۳.۳.۴.۴* کلید قطع سرویس نباید به‌جای شیر قفل ایمنی برای جلوگیری از تخلیه عامل مورد استفاده قرار گیرد. (به بند ۴.۵.۴.۱۲ مراجعه شود.)

    ۴.۳.۳.۴.۵ هنگام انجام تعمیرات یا آزمایش روی سیستم، باید سیستم قفل شود یا فضای حفاظت‌شده و فضاهای در معرض مهاجرت گاز تخلیه شوند.

    ۴.۳.۳.۴.۶ زمانی که قرار است در دوره قفل ایمنی حفاظت ادامه یابد، باید فرد یا افرادی به‌عنوان “نگهبان حریق” با تجهیزات اطفاء دستی یا نیمه‌ثابت مناسب یا ابزار لازم برای بازیابی حفاظت تعیین شوند.

    ۴.۳.۳.۴.۶.۱ نگهبان حریق باید به یک محل با پایش دائمی ارتباط داشته باشد.

    ۴.۳.۳.۴.۶.۲ مقامات مسئول تداوم حفاظت باید از قفل ایمنی و بازگردانی مجدد سیستم مطلع شوند.

    ۴.۳.۳.۵* هنگام حمل سیلندرهای سیستم، باید دستورالعمل‌های ایمنی رعایت شود.

    ۴.۳.۴ فاصله‌های الکتریکی:

    ۴.۳.۴.۱* تمام اجزای سیستم باید به‌گونه‌ای قرار گیرند که حداقل فاصله از اجزای برقدار مطابق با جدول ۴.۳.۴.۱ و شکل ۴.۳.۴.۱حفظ شود.

    ۴.۳.۴.۲* در ارتفاعات بیش از ۳۳۰۰ فوت (۱۰۰۰ متر)، فاصله از اجزای برقدار باید به میزان ۱ درصد برای هر ۳۳۰ فوت (۱۰۰متر) افزایش در ارتفاع، افزایش یابد.

    ۴.۳.۴.۳* برای هماهنگی فاصله موردنیاز با طراحی الکتریکی، باید سطح عایق‌کاری پایه طراحی (BIL) تجهیزات تحت حفاظت ملاک قرار گیرد، اگرچه در ولتاژهای نامی ۱۶۱ کیلوولت یا کمتر، این موضوع تأثیرگذار نیست.

    ۴.۳.۴.۴* فاصله انتخاب‌شده تا زمین باید بر اساس بیشترین مقدار بین پیک سوئیچینگ یا وظیفه BIL تعیین شود، نه صرفاً بر اساس ولتاژ نامی.

    ۴.۳.۴.۵ فاصله بین اجزای بدون عایق و برقدار سیستم الکتریکی و هر بخش از سیستم دی‌اکسید کربن نباید کمتر از حداقل فاصله‌ای باشد که برای ایزولاسیون سیستم الکتریکی در نظر گرفته شده است.

    Z

    Z

    4.3.4.6 زمانی که BIL طراحی در دسترس نباشد و زمانی که ولتاژ نامی برای معیار طراحی استفاده شود، بالاترین حداقل فاصله مشخص شده برای این گروه باید استفاده شود.

    4.3.5* مدت زمان حفاظت. برای سیستم‌های سیلاب کامل، غلظت مؤثر عامل اطفاء حریق باید به مدت زمانی حفظ شود که اقدامات اضطراری مؤثر توسط پرسنل آموزش دیده امکان‌پذیر باشد.

    4.3.6* آلارم‌های قابل مشاهده پیش از تخلیه باید مطابق با موارد زیر باشند: (1) آنها باید در تمام فضای محافظت‌شده قابل مشاهده باشند. (2) آنها باید از سیگنال آلارم حریق ساختمان و سایر سیگنال‌های آلارم متمایز باشند. (3) دستگاه‌های قابل مشاهده، به جز پوشش‌ها، نیازی به هم‌زمانی با یکدیگر یا با آلارم‌های حریق ساختمان ندارند.

    4.4 مشخصات، نقشه‌ها و تأییدیه‌ها.

    4.4.1 مشخصات. 4.4.1.1 مشخصات برای سیستم‌های اطفاء حریق دی‌اکسید کربن باید تحت نظارت شخصی با تجربه و صلاحیت کامل در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن و با مشاوره مقام مسئول تهیه شوند. 4.4.1.2 مشخصات باید شامل تمام موارد ضروری برای طراحی سیستم مانند تعیین مقام مسئول، انحرافات از استاندارد که توسط مقام مسئول مجاز است، و نوع و میزان آزمایش‌های تأییدیه‌ای که پس از نصب سیستم انجام خواهد شد، باشد. 4.4.1.3 آزمایش‌های سیستم حفاظت آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شوند.

    4.4.2 نقشه‌ها. 4.4.2.1 نقشه‌ها و محاسبات باید قبل از آغاز نصب به تأیید مقام مسئول ارسال شوند. 4.4.2.2 نقشه‌ها و محاسبات باید توسط افراد کاملاً واجد شرایط در طراحی سیستم‌های اطفاء حریق دی‌اکسید کربن تهیه شوند. 4.4.2.3 این نقشه‌ها باید به مقیاس مشخص یا با ابعاد دقیق ترسیم شوند. 4.4.2.4 نقشه‌ها باید به‌گونه‌ای تهیه شوند که به راحتی قابل تکثیر باشند. 4.4.2.5 این نقشه‌ها باید جزئیات کافی برای ارزیابی خطر یا خطرات و ارزیابی اثربخشی سیستم توسط مقام مسئول را فراهم کنند. 4.4.2.6 جزئیات نقشه‌ها باید شامل موارد زیر باشد: (1) مواد موجود در خطرات محافظت‌شده (2) محل خطرات (3) محصورسازی یا محدودیت و جداسازی خطرات (4) نواحی اطراف که می‌توانند بر خطرات محافظت‌شده تأثیر بگذارند

    4.4.2.7 جزئیات سیستم باید شامل موارد زیر باشد: (1) اطلاعات و محاسبات در مورد مقدار دی‌اکسید کربن (2) محل و نرخ جریان هر نازل، شامل شماره کد دهانه و قطر واقعی دهانه.

    (3) محل، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ
    (4) محل و اندازه تأسیسات ذخیره‌سازی دی‌اکسید کربن

    4.4.2.8 جزئیات روش کاهش اندازه لوله (کوپلینگ کاهنده یا بوشینگ) و جهت‌گیری سه‌راهی‌ها باید به‌وضوح مشخص شوند.
    4.4.2.9 اطلاعات مربوط به محل و عملکرد دستگاه‌های آشکارساز، دستگاه‌های عملیاتی، تجهیزات کمکی و مدارهای الکتریکی (در صورت استفاده) باید ارائه شوند.
    4.4.2.10 اطلاعاتی باید ارائه شود که دستگاه‌ها و تجهیزات مورد استفاده را شناسایی کند.
    4.4.2.11 هر ویژگی خاص باید به‌طور کافی توضیح داده شود.
    4.4.2.12 زمانی که شرایط در محل اجرای پروژه نیازمند تغییرات قابل توجه از نقشه‌های تأییدشده باشد، تغییرات باید برای تأیید به مقام مسئول ارائه شوند.
    4.4.2.13 اگر نصب نهایی با نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدیدی که نصب واقعی (as-built) را نشان می‌دهند باید تهیه شوند.
    4.4.2.13.1 نقشه‌های as-built باید ارتباط بین خاموش‌سازی تجهیزات موردنیاز و قطع سوخت با سیستم اطفاء حریق را نشان دهند.
    4.4.2.14 مالک سیستم باید دفترچه راهنمای دستورالعمل و نگهداری شامل توالی کامل عملکرد را نگهداری کرده و مجموعه کامل نقشه‌ها و محاسبات سیستم را در یک محفظه محافظت‌شده حفظ کند.

    4.4.3* تأیید نصب‌ها
    4.4.3.1* سیستم کامل‌شده باید توسط پرسنل واجد شرایط بازرسی، آزمایش و مستندسازی شده و به تأیید مقام مسئول برسد.
    4.4.3.1.1 آزمایش پذیرش مورد نیاز در بند 4.4.3.1 باید در قالب یک گزارش آزمایش مستندسازی شود.
    4.4.3.1.2 گزارش آزمایش پذیرش باید تا پایان عمر سیستم توسط مالک سیستم نگهداری شود.
    4.4.3.2* فقط تجهیزات و دستگاه‌های فهرست‌شده یا تأییدشده باید در سیستم استفاده شوند.
    4.4.3.3 برای اطمینان از نصب صحیح سیستم و عملکرد آن مطابق مشخصات، مراحل 4.4.3.3.1 تا 4.4.3.3.4.2 باید انجام شوند.

    4.4.3.3.1 بازرسی بصری. یک بازرسی بصری کامل از سیستم نصب‌شده و ناحیه دارای خطر باید انجام شود.
    4.4.3.3.1.1 لوله‌کشی، تجهیزات عملیاتی و نازل‌های تخلیه باید از نظر اندازه و محل مناسب بررسی شوند.
    4.4.3.3.1.2 محل آلارم‌ها و مکانیزم‌های دستی اضطراری باید تأیید شوند.
    4.4.3.3.1.3 پیکربندی ناحیه خطر باید با مشخصات اولیه خطر مقایسه شود.
    4.4.3.3.1.4 ناحیه خطر باید از نظر وجود بازشوهای غیرقابل بسته‌شدن و منابع نشت عامل اطفاء که ممکن است در مشخصات اولیه نادیده گرفته شده باشند، با دقت بررسی شود.

    4.4.3.3.2 برچسب‌گذاری.
    4.4.3.3.2.1 بررسی برچسب‌گذاری تجهیزات برای اطمینان از تطابق با نام‌گذاری و دستورالعمل‌های صحیح باید انجام شود.

    4.4.3.3.2.2 اطلاعات پلاک شناسایی روی مخازن ذخیره‌سازی باید با مشخصات تطبیق داده شود.
    4.4.3.3.3 آزمایش‌های عملکردی. آزمایش‌های عملکردی غیرمخرب بر روی تمام دستگاه‌های لازم برای عملکرد سیستم، از جمله دستگاه‌های کشف، فعال‌سازی و هشداردهنده، باید انجام شود.
    4.4.3.3.4* آزمایش تخلیه کامل.
    4.4.3.3.4.1 یک آزمایش تخلیه کامل باید بر روی هر سیستم نصب‌شده انجام شود.
    4.4.3.3.4.2 در مواردی که چند خطر از یک منبع مشترک محافظت می‌شوند، یک آزمایش تخلیه کامل برای هر خطر باید انجام شود.
    4.4.3.4 پیش از انجام آزمایش، رویه‌های ایمنی باید مرور شوند. (رجوع شود به بخش 4.4)

    4.4.4 آزمایش سیستم‌ها. سیستم‌ها باید طبق بندهای 4.4.4.1 تا 4.4.4.3 آزمایش شوند.
    4.4.4.1 کاربرد موضعی. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن به طور مؤثر خطر را برای مدت زمان مورد نیاز بر اساس مشخصات طراحی پوشش می‌دهد و تمام تجهیزات فشاری عملکرد صحیح دارند.
    4.4.4.2 سیلاب کامل. تخلیه کامل مقدار طراحی‌شده دی‌اکسید کربن از طریق لوله‌کشی سیستم باید انجام شود تا اطمینان حاصل شود که دی‌اکسید کربن در ناحیه خطر تخلیه می‌شود، غلظت مورد نظر حاصل شده و به مدت زمان مشخص‌شده در طراحی حفظ می‌شود، و تمام تجهیزات فشاری به درستی عمل می‌کنند.
    4.4.4.3 شیلنگ‌های دستی.
    4.4.4.3.1 یک آزمایش تخلیه کامل بر روی سیستم‌های شیلنگ دستی باید انجام شود.
    4.4.4.3.2 ارائه شواهدی از جریان مایع از هر نازل با الگوی پوشش‌دهی مناسب الزامی است.

    4.5 کشف، فعال‌سازی و کنترل.
    4.5.1 طبقه‌بندی. سیستم‌ها باید بر اساس روش‌های فعال‌سازی شرح‌داده‌شده در بندهای 4.5.1.1 تا 4.5.1.3.2 به صورت خودکار یا دستی طبقه‌بندی شوند.
    4.5.1.1 عملکرد خودکار. عملکردی که به هیچ اقدام انسانی نیاز ندارد به عنوان عملکرد خودکار در نظر گرفته می‌شود.
    4.5.1.2 عملکرد عادی دستی.
    4.5.1.2.1 عملکرد سیستم که نیاز به اقدام انسانی دارد و محل دستگاه فعال‌کننده به گونه‌ای است که در همه زمان‌ها به راحتی در دسترس خطر قرار دارد، عملکرد عادی دستی تلقی می‌شود. (رجوع شود به 4.5.4.5)
    4.5.1.2.2 عملکرد یک کنترل باید تمام موارد لازم برای راه‌اندازی کامل سیستم را انجام دهد.
    4.5.1.3* عملکرد اضطراری دستی.
    4.5.1.3.1 عملکرد سیستم توسط انسان که دستگاه فعال‌کننده کاملاً مکانیکی بوده و در محل یا نزدیک دستگاه کنترل‌شونده قرار دارد، عملکرد اضطراری دستی تلقی می‌شود.

    4.5.1.3.2 استفاده از فشار سیستم برای تکمیل عملکرد دستگاه کاملاً مکانیکی مجاز است. (رجوع شود به 4.5.4.6)

    4.5.2* کشف خودکار و فعال‌سازی خودکار. کشف خودکار و فعال‌سازی خودکار باید استفاده شود، مگر در شرایط زیر:

    1. فعال‌سازی فقط دستی در صورتی که مورد تأیید مرجع ذی‌صلاح باشد و آزادسازی خودکار باعث افزایش خطر شود، مجاز است.
    2. کشف خودکار و فعال‌سازی خودکار برای سیستم‌های شیلنگ دستی و رایزر ثابت (standpipe) کاربرد ندارد.
    3. کشف خودکار و فعال‌سازی خودکار در سیستم‌های دریایی اعمال نمی‌شود، مگر طبق بند 9.3.3 مجاز باشد.

    4.5.2.1* کنترل‌های فعال‌سازی خودکار باید به گونه‌ای تنظیم شوند که نیازمند دریافت سیگنال مداوم هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه باشند و فعال‌سازی هرگونه تأخیر زمانی برقی پیش از تخلیه و هشدارهای برقی پیش از تخلیه را پیش از فعال‌سازی دستگاه‌های آزادسازی الزامی کنند.

    4.5.3* کشف خودکار. کشف خودکار باید با هر روش یا دستگاه فهرست‌شده یا مورد تأیید که توانایی کشف و اعلام گرما، شعله، دود، بخارات قابل اشتعال یا شرایط غیرعادی در ناحیه خطر مانند مشکلات فرآیندی که احتمال آتش‌سوزی دارد را داشته باشد، انجام گیرد.

    4.5.4 دستگاه‌های عملکردی. دستگاه‌های عملکردی باید شامل دستگاه‌ها یا شیرهای آزادسازی دی‌اکسید کربن، کنترل‌های تخلیه، و دستگاه‌های خاموشی تجهیزات باشند که برای عملکرد موفق سیستم لازم هستند.

    4.5.4.1 فهرست‌شده و مورد تأیید. 4.5.4.1.1 عملکرد باید از طریق روش‌های مکانیکی، برقی یا پنوماتیکی فهرست‌شده یا مورد تأیید انجام شود. 4.5.4.1.2 تجهیزات کنترلی باید به‌طور خاص برای تعداد و نوع دستگاه‌های فعال‌سازی به‌کاررفته فهرست‌شده یا مورد تأیید باشند، و سازگاری آن‌ها نیز باید فهرست‌شده یا مورد تأیید باشد.

    4.5.4.2 طراحی دستگاه. 4.5.4.2.1 تمامی دستگاه‌ها باید برای شرایط کاری مورد انتظار طراحی شده باشند و نباید به راحتی غیرفعال شوند یا مستعد عملکرد تصادفی باشند. 4.5.4.2.2 دستگاه‌ها باید به‌طور معمول برای عملکرد در بازه دمایی °F 20- تا °F 150 (°C 29- تا °C 66) طراحی شده باشند یا محدودیت دمایی آن‌ها به‌طور واضح روی آن‌ها درج شده باشد.

    4.5.4.3 تمامی دستگاه‌ها باید به گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌هایی که می‌توانند باعث از کار افتادن آن‌ها شوند، قرار نگیرند.

    4.5.4.4 دستگاه‌هایی که از اتصالات خاص تولیدکننده برای کنترل آزادسازی دی‌اکسید کربن استفاده می‌کنند باید دارای اتصالاتی باشند که مشخص یا به وضوح نشانه‌گذاری شده باشند، در مواردی که احتمال نصب نادرست وجود دارد.

    4.5.4.4.1 دستگاه‌های جدید معرفی‌شده پس از ۱ ژانویه ۲۰۰۸باید با این الزامات مطابقت داشته باشند.

    4.5.4.5* کنترل‌های دستی معمول برای فعال‌سازی باید در تمامی زمان‌ها از جمله هنگام آتش‌سوزی به راحتی در دسترس باشند.

    4.5.4.5.1 کنترل(های) دستی باید ظاهر مشخص و قابل تشخیص برای هدف مورد نظر داشته باشند.

    ۴.۵.۴.۵.۲ کنترل(های) دستی باید باعث عملکرد کامل سیستم به صورت عادی شود.

    ۴.۵.۴.۵.۳ عملکرد این کنترل دستی نباید باعث بازتنظیم تأخیر زمانی شود. (رجوع شود به ۴.۵.۶.۲.۲)

    ۴.۵.۴.۶* همه شیرهایی که کنترل آزادسازی و توزیع دی‌اکسید کربن را بر عهده دارند باید مجهز به کنترل دستی اضطراری باشند.

    ۴.۵.۴.۶.۱ کنترل دستی اضطراری برای سیلندرهای تحت فشار تبعی الزامی نیست.

    ۴.۵.۴.۶.۲ وسیله اضطراری باید به آسانی در دسترس بوده و در نزدیکی شیرهای مربوطه قرار داشته باشد.

    ۴.۵.۴.۶.۳ این دستگاه‌ها باید با یک پلاک هشدار مشخص نشانه‌گذاری شوند تا مفهوم بند ۴.۵.۴.۶.۲ را بیان کنند.

    ۴.۵.۴.۷* سیلندرها

    ۴.۵.۴.۷.۱ در مواردی که برای آزادسازی سیلندرهای تبعی از فشار گاز سیلندرهای پیلوت استفاده می‌شود که از طریق منیفولد تخلیه سیستم (یعنی با استفاده از فشار برگشتی به جای خط پیلوت جداگانه) تغذیه می‌شوند و تعداد کل سیلندرها کمتر از سه عدد است، باید حداقل یک سیلندر برای این عملیات اختصاص یابد.

    ۴.۵.۴.۷.۲ در مواردی که فشار گاز از سیلندرهای پیلوت از طریق منیفولد تخلیه سیستم برای آزادسازی سیلندرهای تبعی استفاده می‌شود و تعداد کل سیلندرها سه یا بیشتر است، باید حداقل یک سیلندر پیلوت بیشتر از حداقل مورد نیاز برای فعال‌سازی سیستم در نظر گرفته شود.

    ۴.۵.۴.۷.۳ در طول تست پذیرش تخلیه کامل، سیلندر پیلوت اضافی باید به‌گونه‌ای تنظیم شود که مانند یک سیلندر تبعی عمل کند.

    ۴.۵.۴.۷.۴* کنترل‌های فعال‌سازی خودکار باید به صورت زیر تنظیم شوند: ۱) نیاز به یک سیگنال پیوسته هشدار حریق پیش از فعال‌سازی هشدارهای پیش از تخلیه داشته باشند.
    ۲) فعال‌سازی هرگونه تأخیر زمانی یا هشدارهای برقی پیش از تخلیه باید پیش از فعال‌سازی دستگاه‌های آزادسازی انجام شود.

    ۴.۵.۴.۸ کنترل‌های دستی

    ۴.۵.۴.۸.۱ کنترل‌های دستی نباید نیاز به نیروی کششی بیش از ۴۰ پوند (۱۷۸ نیوتن) یا حرکتی بیش از ۱۴ اینچ (۳۵۶ میلی‌متر) برای عملکرد داشته باشند.

    ۴.۵.۴.۸.۲ حداقل یک کنترل دستی برای فعال‌سازی باید در ارتفاعی حداکثر ۴ فوت (۱.۲ متر) از سطح زمین نصب شود.

    ۴.۵.۴.۹ در مواردی که ادامه عملکرد تجهیزات مرتبط با خطری که در حال اطفاء آن است می‌تواند به تداوم آتش‌سوزی کمک کند، منبع برق یا سوخت آن تجهیزات باید به صورت خودکار قطع شود.

    ۴.۵.۴.۹.۱ همه دستگاه‌های خاموش‌کننده باید به عنوان اجزای جدایی‌ناپذیر سیستم در نظر گرفته شده و همراه با عملکرد سیستم فعال شوند.

    ۴.۵.۴.۹.۲ الزامات بند ۴.۵.۴.۹ در مورد سیستم‌های روغن‌کاری مرتبط با تجهیزات دوار بزرگ که در آن‌ها سیستم تخلیه ممتد برای دوره کاهش سرعت یا خنک‌سازی طراحی شده باشد، اعمال نمی‌شود.

    ۴.۵.۴.۱۰ همه دستگاه‌های دستی باید به گونه‌ای شناسایی شوند که خطر مربوطه، عملکرد مورد انتظار و روش استفاده آن‌ها مشخص باشد.

    ۴.۵.۴.۱۱ استفاده از کلید قطع اضطراری (Abort switches) در سیستم‌های دی‌اکسید کربن مجاز نیست.

    ۴.۵.۴.۱۲ در سیستم‌هایی که به‌صورت الکتریکی عمل می‌کنند، باید یک کلید قطع سرویس تعبیه شود تا امکان آزمایش سیستم بدون فعال‌سازی سیستم اطفاء حریق فراهم شود. هنگام استفاده از این کلید، مدار آزادسازی سیستم اطفاء حریق قطع شده و سیگنال نظارتی در پنل آزادسازی سیستم اطفاء ایجاد می‌شود.

    ۴.۵.۴.۱۳ کلید فشار تخلیه

    ۴.۵.۴.۱۳.۱ یک کلید فشار تخلیه باید بین منبع دی‌اکسید کربن و شیر قفل‌کن نصب شود.

    ۴.۵.۴.۱۳.۲ در سیستم‌های دی‌اکسید کربن با فشار پایین، در صورتی که شیر قطع اصلی دستی و نظارت‌شده به عنوان شیر قفل‌کن در نظر گرفته شود (یعنی الزامات بندهای ۴.۳.۳.۴ تا ۴.۳.۳.۴.۵ را داشته باشد)، کلید فشار باید در پایین‌دست شیر خودکار (شیر انتخاب‌گر اصلی یا شیر انتخاب‌گر) که به اتاق سرور یا اتاق‌های سرور تغذیه می‌کند، نصب شود.

    ۴.۵.۴.۱۳.۳ کلید فشار تخلیه باید سیگنالی برای شروع هشدار به پنل آزادسازی ارسال کند تا دستگاه‌های هشدار برقی/الکترونیکی را فعال نماید.

    ۴.۵.۵ نظارت و شیرهای قفل‌کن

    ۴.۵.۵.۱ نظارت بر سیستم‌های خودکار و شیرهای قفل‌کن دستی باید فراهم باشد مگر اینکه توسط مرجع ذیصلاح به‌طور خاص مستثنا شود.

    ۴.۵.۵.۲* ارتباطات بین اجزای ضروری برای کنترل سیستم و ایمنی جانی باید تحت نظارت باشد.

    ۴.۵.۵.۳ ارتباطات لوله و لوله‌کشی که به‌طور معمول تحت فشار نیستند، ملزم به رعایت بند ۴.۵.۵.۲ نیستند.

    ۴.۵.۵.۴ در صورت وجود مدار باز، اتصال زمین ناخواسته یا از دست رفتن یکپارچگی در خطوط کنترل پنوماتیکی که موجب اختلال در عملکرد کامل سیستم می‌شود، باید سیگنال اشکال (trouble) ارسال گردد.

    ۴.۵.۵.۵ سیگنال‌های هشدار و اشکال باید از طریق یکی از روش‌های تعریف‌شده در استاندارد NFPA 72 ارسال شوند.

    ۴.۵.۵.۶ اتصالات سیلندرهای تبعی که با پنوماتیک فشار بالا کار می‌کنند و در مجاورت مستقیم با سیلندرهای پیلوت قرار دارند، الزامی به نظارت ندارند.

    ۴.۵.۵.۷ در مواردی که بای‌پس دستی وجود دارد و این بای‌پس می‌تواند در حالت باز باقی بماند، این بای‌پس‌ها باید تحت نظارت باشند.

    ۴.۵.۶* هشدارها. هشدارهای دیداری و شنیداری باید برای مقاصد زیر فراهم شوند:

    ۱) هشدار به افراد برای عدم ورود به فضایی که ممکن است به دلیل حضور غلظت بالای دی‌اکسید کربن، خطرناک باشد.
    ۲) فراهم‌کردن فرصت برای خروج افراد از فضاهایی که با تخلیه سیستم دی‌اکسید کربن ممکن است ناایمن شوند.

    ۴.۵.۶.۱ هشدارهای شنیداری و دیداری سیستم دی‌اکسید کربن باید از سایر هشدارها از جمله سیستم اعلام حریق ساختمان متمایز باشند.

    ۴.۵.۶.۲ هشدار پیش از تخلیه و تأخیر زمانی. یک هشدار پیش‌تخلیه پنوماتیکی، تأخیر زمانی پنوماتیکی و هشدار دیداری پیش‌تخلیه باید برای اتاق‌های سرور زیر فراهم شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تحت پوشش سیستم‌های غرقاب کامل هستند، به جز موارد بیان‌شده در بند ۴.۵.۶.۲.۳
    ۲) سیستم‌های اعمال موضعی که از خطراتی محافظت می‌کنند و تخلیه آن‌ها باعث قرار گرفتن افراد در معرض غلظت‌هایی از دی‌اکسید کربن بیش از ۷.۵ درصد حجمی در هوا به مدت بیش از ۵ دقیقه می‌شود

    ۴.۵.۶.۲.۱ هشدارهای پیش‌تخلیه، در صورت نیاز، باید در داخل فضای محافظت‌شده نصب شوند.

    ۴.۵.۶.۲.۲ تأخیر زمانی پیش‌تخلیه باید مدت زمانی کافی را برای هشدار پیش‌تخلیه فراهم کند تا امکان تخلیه افراد از دورترین نقاط فضا نسبت به خروجی‌ها فراهم باشد.

    ۴.۵.۶.۲.۳* حذف تأخیر زمانی برای فضاهای قابل اشغال مجاز است، در صورتی که فراهم کردن تأخیر زمانی باعث ایجاد خطر غیرقابل‌قبول برای افراد یا آسیب غیرقابل‌قبول به تجهیزات حیاتی شود.

    ۴.۵.۶.۲.۴ در مواردی که تأخیر زمانی حذف می‌شود، باید تدابیری اتخاذ گردد تا در زمانی که افراد در فضای محافظت‌شده حضور دارند، سیستم دی‌اکسید کربن در وضعیت قفل باشد و فعال نشود.

    ۴.۵.۶.۲.۵ آزمایش‌های خشک (Dry Runs) باید انجام شود تا حداقل زمان مورد نیاز برای تخلیه افراد از منطقه خطر به‌دست آید، با در نظر گرفتن زمان لازم برای تشخیص سیگنال هشدار.

    ۴.۵.۶.۲.۶ دستگاه‌های هشدار شنیداری باید یا سطح صدا مطابق با بندهای ۴.۵.۶.۲.۶.۱ و ۴.۵.۶.۲.۶.۲ داشته باشند یا ویژگی‌های صوتی مطابق با بند ۱۸.۴.۶ استاندارد NFPA 72 را دارا باشند.

    ۴.۵.۶.۲.۶.۱ هشدارهای پیش‌تخلیه شنیداری باید حداقل ۱۵دسی‌بل بالاتر از سطح نویز محیط یا ۵ دسی‌بل بالاتر از حداکثر سطح صدا، هرکدام که بیشتر است، باشند؛ این اندازه‌گیری باید در ارتفاع ۱.۵ متری از کف فضای قابل اشغال انجام شود.

    ۴.۵.۶.۲.۶.۲ دستگاه‌های هشدار شنیداری نباید صدایی بیش از ۱۲۰ دسی‌بل در حداقل فاصله شنوایی از دستگاه هشدار داشته باشند.

    ۴.۵.۶.۲.۶.۳ هشدار پیش‌تخلیه باید دارای حداقل قدرت صدای ۹۰ دسی‌بل در فاصله ۳ متری باشد.

    ۴.۵.۶.۳ هشدارهای دیداری و شنیداری باید در بیرون از هر ورودی به فضاهای زیر نصب شوند:

    ۱) فضاهای معمولاً اشغال‌شده یا قابل اشغال که توسط سیستم غرقاب کامل دی‌اکسید کربن محافظت می‌شوند
    ۲) فضاهای معمولاً اشغال‌شده یا قابل اشغال که تخلیه از سیستم موضعی ممکن است افراد را در معرض غلظت‌های خطرناک دی‌اکسید کربن قرار دهد
    ۳) فضاهای معمولاً اشغال‌شده یا قابل اشغال که دی‌اکسید کربن ممکن است به آن‌ها نشت کرده و برای افراد خطر ایجاد کند

    ۴.۵.۶.۳.۱ این هشدارها باید قبل از تخلیه یا همزمان با شروع تخلیه فعال شوند.

    ۴.۵.۶.۳.۲* این هشدارها باید پس از تخلیه عامل ادامه یابند تا یکی از شرایط زیر حاصل شود:

    ۱) اقدام مثبت دیگری برای جلوگیری از ورود افراد به فضایی که به دلیل تخلیه دی‌اکسید کربن ناایمن شده، انجام شود.
    ۲) فضا تهویه شده و ایمنی جو برای ورود افراد بدون تجهیزات حفاظتی تأیید گردد.

    ۴.۵.۶.۳.۳ پس از انجام اقدامات مندرج در بند ۴.۵.۶.۳.۲(۱)، قطع هشدار شنیداری در حالی که هشدار دیداری همچنان فعال باقی بماند، مجاز است.

    ۴.۵.۶.۳.۴ هشدارهای دیداری باید تا زمانی که تهویه فضا مطابق با بند ۴.۵.۶.۳.۲(۲) انجام نشده، فعال باقی بمانند.

    ۴.۵.۶.۴ باید یک هشدار یا نشانگر وجود داشته باشد که نشان دهد سیستم فعال شده و نیاز به شارژ مجدد دارد.

    ۴.۵.۶.۵* باید هشداری فراهم شود که فعال شدن سیستم‌های خودکار را اعلام کرده و نشان دهد که واکنش فوری کارکنان مورد نیاز است.

    ۴.۵.۶.۶ هشدارهای مربوط به خرابی تجهیزات یا دستگاه‌های تحت نظارت باید سریع و قطعی بوده و به‌طور واضح از هشدارهای مربوط به فعال شدن سیستم یا شرایط خطرناک متمایز باشند.

    ۴.۵.۷ منابع تغذیه

    ۴.۵.۷.۱ منبع اصلی انرژی برای عملکرد و کنترل سیستم باید ظرفیت لازم برای سرویس مورد نظر را داشته و قابل اطمینان باشد.

    ۴.۵.۷.۱.۱ در مواردی که از دست رفتن منبع اصلی انرژی باعث به خطر افتادن حفاظت از خطر یا ایمنی جان افراد (یا هر دو) می‌شود، یک منبع تغذیه ثانویه (اضطراری) مستقل باید در صورت قطع کامل یا افت ولتاژ (کمتر از ۸۵ درصد ولتاژ اسمی) منبع اصلی، انرژی مورد نیاز سیستم را تأمین کند.

    ۴.۵.۷.۱.۲ منبع تغذیه ثانویه (اضطراری) باید بتواند سیستم را تحت حداکثر بار معمولی به مدت ۲۴ ساعت فعال نگه دارد و سپس به مدت کامل دوره تخلیه طراحی‌شده به‌طور مداوم عمل کند.

    ۴.۵.۷.۱.۳ منبع تغذیه اضطراری باید به‌طور خودکار در مدت ۳۰ثانیه پس از از دست رفتن منبع تغذیه اصلی به سیستم متصل شده و آن را فعال کند.

    ۴.۵.۷.۲ تمامی تجهیزات الکتریکی باید قادر به کارکرد در بازه ۸۵ تا ۱۰۵ درصد ولتاژ نامی باشند.

    ۴.۶ تأمین دی‌اکسید کربن

    ۴.۶.۱* مقدار: مقدار تأمین اصلی دی‌اکسید کربن در سیستم باید حداقل به اندازه کافی برای بزرگ‌ترین خطر منفرد یا گروهی از خطرات که به‌صورت همزمان محافظت می‌شوند، باشد.

    ۴.۶.۱.۱ در صورتی که شیلنگ‌های دستی برای استفاده در یک خطر تحت حفاظت سیستم ثابت فراهم شده باشند، باید تأمین جداگانه‌ای برای آن‌ها وجود داشته باشد، مگر اینکه مقدار کافی از دی‌اکسید کربن موجود باشد تا اطمینان حاصل شود که حفاظت ثابت برای بزرگ‌ترین خطر مربوط به شیلنگ دستی به خطر نیفتد. (به بخش ۷.۴ و A.7.1.1 مراجعه شود.)

    ۴.۶.۱.۲ در صورتی که مرجع صلاحیت‌دار تشخیص دهد که حفاظت مداوم مورد نیاز است، مقدار ذخیره باید مضربی از مقادیر مورد نیاز در بندهای ۴.۶.۱ و ۴.۶.۱.۱ باشد، بسته به نظر مرجع مربوطه.

    ۴.۶.۱.۳ تأمین اصلی و ذخیره برای سیستم‌های ثابت باید به‌صورت دائم به لوله‌کشی متصل بوده و به‌گونه‌ای تنظیم شده باشد که تعویض آن‌ها به‌راحتی انجام شود، مگر آنکه مرجع صلاحیت‌دار اجازه ذخیره جداگانه بدون اتصال را صادر کند.

    ۴.۶.۲ تأمین مجدد: مدت زمان مورد نیاز برای تهیه دی‌اکسید کربن جهت شارژ مجدد سیستم‌ها به وضعیت عملیاتی، باید به عنوان یک عامل مهم در تعیین مقدار ذخیره در نظر گرفته شود.

    ۴.۶.۳* کیفیت: دی‌اکسید کربن باید دارای ویژگی‌های حداقلی زیر باشد:
    ۱) فاز بخار باید حداقل ۹۹.۵٪ دی‌اکسید کربن باشد، بدون هرگونه بوی نامطبوع یا طعم قابل تشخیص.
    ۲) میزان آب در فاز مایع باید مطابق با استاندارد CGA G-6.2 باشد.
    ۳) میزان روغن نباید بیشتر از ۱۰ پی‌پی‌ام (قسمت در میلیون) وزنی باشد.

    ۴.۶.۴ ظروف ذخیره‌سازی

    ۴.۶.۴.۱ ظروف ذخیره‌سازی و تجهیزات جانبی باید به‌گونه‌ای قرار داده و تنظیم شوند که بازرسی، نگهداری و شارژ مجدد به‌راحتی انجام شود.
    ۴.۶.۴.۲ اختلال در عملکرد حفاظت باید به حداقل برسد.
    ۴.۶.۴.۳ ظروف ذخیره‌سازی باید تا حد امکان به نزدیک‌ترین محل نسبت به خطرات تحت حفاظت نصب شوند، اما نباید در جایی قرار گیرند که در معرض آتش‌سوزی یا انفجار ناشی از همان خطر قرار بگیرند.
    ۴.۶.۴.۴ ظروف نباید در محل‌هایی قرار گیرند که در معرض شرایط آب و هوایی شدید، یا آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌ها باشند.
    ۴.۶.۴.۵ در صورت پیش‌بینی شرایط محیطی یا مکانیکی شدید، محافظ یا محفظه‌هایی باید برای محافظت فراهم شود.

    ۴.۶.۵ سیلندرهای پرفشار*

    مقدار دی‌اکسید کربن باید در سیلندرهای قابل شارژ نگهداری شود که برای نگهداری دی‌اکسید کربن به‌صورت مایع در دمای محیط طراحی شده‌اند.

    ۴.۶.۵.۱ ظروف مورد استفاده باید مطابق با الزامات وزارت حمل‌ونقل ایالات متحده (DOT)، کمیسیون حمل‌ونقل کانادا، یا مرجع معادل آن طراحی شده باشند.
    ۴.۶.۵.۲* سیلندرهای پرفشار استفاده شده در سیستم‌های اطفا حریق نباید بدون انجام تست هیدرواستاتیک و برچسب‌گذاری مجدد، در صورتی که بیش از ۵ سال از تاریخ آخرین تست گذشته باشد، مجدداً شارژ شوند.
    ۴.۶.۵.۲.۱ سیلندرهایی که به‌طور پیوسته در سرویس بوده‌اند بدون تخلیه، می‌توانند حداکثر تا ۱۲ سال پس از آخرین تست هیدرواستاتیک در سرویس باقی بمانند.
    ۴.۶.۵.۲.۲ در پایان ۱۲ سال، سیلندرهایی که بدون تخلیه در سرویس مانده‌اند، باید تخلیه شده، تست مجدد انجام شده و سپس دوباره وارد سرویس شوند.

    ۴.۶.۵.۳ دستگاه اطمینان فشار (Pressure Relief Device)
    ۴.۶.۵.۳.۱ هر سیلندر باید دارای یک دستگاه اطمینان فشار از نوع دیسک شکستنی (rupture disk) باشد.
    ۴.۶.۵.۳.۲ این دستگاه باید مطابق با الزامات بخش‌های ۴۹CFR 171 تا ۱۹۰ مقررات DOT، اندازه‌گذاری و نصب شود.

    ۴.۶.۵.۴ سیلندرهای منیفولد شده

    ۴.۶.۵.۴.۱ هنگامی که سیلندرها به صورت منیفولد نصب می‌شوند، باید در قفسه‌ای که مخصوص این کار طراحی شده نصب و نگهداری شوند و امکان سرویس‌دهی و وزن‌کشی جداگانه سیلندرها فراهم باشد.
    ۴.۶.۵.۴.۲ باید تمهیدات خودکاری در نظر گرفته شود که در صورت راه‌اندازی سیستم زمانی که یکی از سیلندرها برای نگهداری جدا شده است، از نشت دی‌اکسید کربن از منیفولد جلوگیری کند.

    ۴.۶.۵.۴.۳ در سیستم‌هایی با چند سیلندر، تمامی سیلندرهایی که به یک خروجی منیفولد مشترک برای توزیع عامل متصل هستند، باید قابل تعویض بوده و از یک سایز انتخاب‌شده و مشخص باشند.

    ۴.۶.۵.۵ دمای نگهداری محیطی

    ۴.۶.۵.۵. سیستم‌های محلی (local application) نباید در دمایی بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) یا پایین‌تر از ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) نگهداری شوند.
    ۴.۶.۵.۵.۱ در سیستم‌های غرقابی کلی (total flooding)، دمای نگهداری نباید از ۱۳۰ درجه فارنهایت (۵۴ درجه سانتی‌گراد) بیشتر و از ۰ درجه فارنهایت (۱۸- درجه سانتی‌گراد) کمتر باشد، مگر اینکه طراحی سیستم برای کار در دماهای خارج از این محدوده انجام شده باشد.
    ۴.۶.۵.۵.۲ استفاده از گرمایش یا سرمایش خارجی برای نگه‌داشتن دما در محدوده مشخص‌شده در ۴.۶.۵.۵.۱ مجاز است.
    ۴.۶.۵.۵.۳ در مواردی که از بارگذاری‌های خاص سیلندر برای جبران دماهای خارج از محدوده‌های اعلام‌شده در ۴.۶.۵.۵ و ۴.۶.۵.۵.۱ استفاده می‌شود، سیلندرها باید به‌صورت دائم و قابل‌اطمینان علامت‌گذاری شوند.

    ۴.۶.۶ ظروف ذخیره‌سازی کم‌فشار*

    ظروف ذخیره‌سازی کم‌فشار باید برای نگهداری دی‌اکسید کربن در فشار اسمی ۳۰۰ psi (2068 kPa)، معادل با دمای تقریبی ۰°F (۱۸-°C) طراحی شده باشند.

    ۴.۶.۶.۱ الزامات ظروف

    ۴.۶.۶.۱.۱ ظرف تحت فشار باید مطابق با مشخصات فعلی کدAPI-ASME برای مخازن بدون شعله مخصوص مایعات و گازهای نفتی ساخته، تست، تأیید، تجهیز و علامت‌گذاری شود. در مورد ظروف تأمین سیار، در صورت لزوم، الزامات 49CFR 171-190 وزارت حمل‌ونقل آمریکا (DOT) نیز باید رعایت شود.
    ۴.۶.۶.۱.۲ فشار طراحی ظرف باید حداقل ۳۲۵ psi (2241 kPa) باشد.

    ۴.۶.۶.۲ تجهیزات مورد نیاز اضافی*

    علاوه بر الزامات کدهای ASME و DOT، هر ظرف تحت فشار باید مجهز به موارد زیر باشد:

    گیج سطح مایع
    گیج فشار
    آلارم نظارتی فشار بالا/پایین که باید در فشار حداکثر ۹۰٪از حداکثر فشار کاری مجاز طراحی‌شده (MAWP) و حداقل ۲۵۰ psi (1724 kPa) فعال شود.

    ۴.۶.۶.۳ عایق و سیستم کنترل دما

    ظرف تحت فشار باید عایق‌بندی شده و در صورت لزوم مجهز به سیستم‌های سرمایشی یا گرمایشی کنترل‌شده خودکار(یا هر دو) باشد.

    ۴.۶.۶.۴ سیستم سرمایش

    سیستم سرمایش باید توانایی حفظ فشار ۳۰۰ psi (2068 kPa) در دمای بالاترین حد پیش‌بینی‌شده محیطی را داشته باشد.

    ۴.۶.۶.۵ سیستم گرمایش

    ۴.۶.۶.۵.۱ در صورت نیاز، سیستم گرمایش باید توانایی حفظ دمای ۰°F (۱۸-°C) در ظرف تحت فشار را در پایین‌ترین دمای محیطی مورد انتظار داشته باشد.
    ۴.۶.۶.۵.۲ سیستم گرمایش فقط در صورتی لازم است که داده‌های هواشناسی، احتمال وقوع دماهایی را نشان دهند که ممکن است محتویات مخزن را به دمایی برسانند که فشار به کمتر از ۲۵۰ psi (1724 kPa) کاهش یابد (تقریباً برابر با ۱۰-°F یا ۲۳-°C).

    ۴.۷* سیستم‌های توزیع
    ۴.۷.۱* لوله‌کشی باید از مواد فلزی غیرقابل احتراق باشد که ویژگی‌های فیزیکی و شیمیایی آن به‌گونه‌ای باشد که تغییرات آن تحت فشار با اطمینان قابل پیش‌بینی باشد.
    ۴.۷.۱.۱ در محل‌هایی که لوله‌کشی در معرض محیط‌های بسیار خورنده نصب می‌شود، باید از مواد یا پوشش‌های مقاوم به خوردگی ویژه استفاده گردد.
    ۴.۷.۱.۲ مواد مورد استفاده در لوله‌کشی و استانداردهای مربوط به آن‌ها باید مطابق با بندهای ۴.۷.۱.۲.۱ تا ۴.۷.۱.۲.۵ باشند.
    ۴.۷.۱.۲.۱ لوله‌های فولادی سیاه یا گالوانیزه باید از نوع بدون درز یا جوش الکتریکی طبق ASTM A53، گرید A یا B، یا طبقASTM A106، گرید A، B یا C باشند.
    ۴.۷.۱.۲.۱.۱ لوله‌های ASTM A120 و لوله‌های چدنی معمولی نباید استفاده شوند.
    ۴.۷.۱.۲.۱.۲ فولاد ضدزنگ برای اتصالات پیچی باید TP304 یاTP316 و برای اتصالات جوشی باید TP304، TP316، TP304L یا TP316L باشد.
    ۴.۷.۱.۲.۲ در سیستم‌هایی با منبع پرفشار، لوله‌هایی به قطر ¾ اینچ (۲۰ میلی‌متر) و کمتر مجاز به استفاده از Schedule 40 می‌باشند.
    ۴.۷.۱.۲.۲.۱ لوله‌هایی با قطر ۱ تا ۴ اینچ (۲۵ تا ۱۰۰ میلی‌متر) باید حداقل Schedule 80 باشند.
    ۴.۷.۱.۲.۲.۲ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز نیست.
    ۴.۷.۱.۲.۳ در سیستم‌هایی با منبع کم‌فشار، لوله‌ها باید حداقلSchedule 40 باشند.
    ۴.۷.۱.۲.۳.۱ استفاده از لوله‌های جوشی کوره‌ای ASTM A53 مجاز است.
    ۴.۷.۱.۲.۴ در انتهای هر شاخه لوله‌کشی، باید یک تله‌گیرنده گرد و خاک که شامل یک سه‌راهی با یک نیپل درپوش‌دار به طول حداقل ۲ اینچ (۵۱ میلی‌متر) باشد نصب گردد.
    ۴.۷.۱.۲.۵ مقاطع لوله‌کشی که معمولاً در معرض اتمسفر قرار ندارند، نیاز به پوشش داخلی مقاوم به خوردگی ندارند.
    ۴.۷.۱.۳* اجزای انعطاف‌پذیر سیستم لوله‌کشی که به‌طور خاص در این استاندارد پوشش داده نشده‌اند، باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴,۴۷۴ kPa) برای سیستم‌های پرفشار یا ۱۸۰۰ psi (۱۲,۴۱۱ kPa) برای سیستم‌های کم‌فشار را داشته باشند.
    ۴.۷.۱.۴ اتصالات Class 150 و اتصالات چدنی نباید استفاده شوند.
    ۴.۷.۱.۵ اتصالات برای سیستم‌های پرفشار و کم‌فشار باید طبق بندهای ۴.۷.۱.۵.۱ و ۴.۷.۱.۵.۲ باشند.
    ۴.۷.۱.۵.۱ سیستم‌های پرفشار:
    ۴.۷.۱.۵.۱.۱ برای سایزهای اسمی تا ۲ اینچ، باید از اتصالات چکش‌خوار Class 300 و برای سایزهای بزرگ‌تر، از اتصالات فولادی فورج‌شده استفاده شود.
    ۴.۷.۱.۵.۱.۲ فلنج‌هایی که قبل از هر شیر قطع نصب می‌شوند، باید Class 600 باشند.
    ۴.۷.۱.۵.۱.۳ فلنج‌هایی که بعد از شیر قطع یا در سیستم‌هایی بدون شیر قطع نصب می‌شوند، مجاز به استفاده از Class 300 هستند.
    ۴.۷.۱.۵.۱.۴ یونیون‌های پیچی باید حداقل معادل اتصالات فولاد فورج‌شده Class 2000 باشند.

    ۴.۷.۱.۵.۱.۵ اتصالات فولاد ضدزنگ باید از نوع ۳۰۴ یا ۳۱۶، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۵.۲ سیستم‌های کم‌فشار:
    ۴.۷.۱.۵.۲.۱ اتصالات چکش‌خوار یا داکتیل آهنی کلاس ۳۰۰باید برای لوله‌هایی تا سایز اسمی ۳ اینچ (۸۰ میلی‌متر) و اتصالات فولادی فورج‌شده برای سایزهای بزرگ‌تر استفاده شوند.
    ۴.۷.۱.۵.۲.۲ اتصالات فلنجی باید از نوع کلاس ۳۰۰ باشند.
    ۴.۷.۱.۵.۲.۳ اتصالات فولاد ضدزنگ باید برای اتصالات پیچی از نوع ۳۰۴ یا ۳۱۶ و برای اتصالات جوشی از نوع ۳۰۴، ۳۱۶، ۳۰۴L یا ۳۱۶L، ساخته‌شده یا فورج‌شده مطابق با ASTM A182، کلاس ۲۰۰۰، با اتصال پیچی یا جوشی سوکتی، برای تمامی سایزها از ⅛ اینچ (۳ میلی‌متر) تا ۴ اینچ (۱۰۰ میلی‌متر) باشند.

    ۴.۷.۱.۶ اتصالات لوله:
    ۴.۷.۱.۶.۱ اتصالات جوشی، پیچی یا فلنجی (چکش‌خوار یا داکتیل آهنی) مجاز به استفاده هستند.
    ۴.۷.۱.۶.۲ استفاده از کوپلینگ‌ها و اتصالات مکانیکی شیار‌دار مجاز است، مشروط بر اینکه مخصوص سرویس دی‌اکسیدکربن باشند.
    ۴.۷.۱.۶.۳ استفاده از بوشینگ‌های هم‌سطح مجاز نیست.
    ۴.۷.۱.۶.۴ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش یک سایز استفاده می‌شود، باید از بوشینگ فولادی کلاس ۳۰۰۰جهت حفظ استحکام کافی استفاده گردد.
    ۴.۷.۱.۶.۵ در مواردی که از بوشینگ‌های شش‌ضلعی برای کاهش بیش از یک سایز استفاده می‌شود، باید مطابق بند ۴.۷.۱.۵ عمل شود.
    ۴.۷.۱.۶.۶ اتصالات فلر، نوع فشاری یا لحیم‌شده باید با لوله‌های سازگار استفاده شوند.
    ۴.۷.۱.۶.۷ در مواردی که از اتصالات لحیم‌شده استفاده می‌شود، آلیاژ لحیم باید نقطه ذوبی برابر یا بالاتر از ۱۰۰۰ درجه فارنهایت (۵۳۸ درجه سانتی‌گراد) داشته باشد.

    ۴.۷.۱.۷ منبع پرفشار:
    ۴.۷.۱.۷.۱* در سیستم‌هایی که از منبع پرفشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۷.۲ فشار داخلی برای این محاسبه باید ۲۸۰۰ psi (۱۹,۳۰۶ kPa) در نظر گرفته شود.

    ۴.۷.۱.۸ منبع کم‌فشار:
    ۴.۷.۱.۸.۱* در سیستم‌هایی که از منبع کم‌فشار استفاده می‌کنند و از لوله‌ای غیر از آنچه در بند ۴.۷.۱ مشخص شده استفاده شده، ضخامت لوله باید بر اساس ASME B31.1 محاسبه گردد.
    ۴.۷.۱.۸.۲ فشار داخلی برای این محاسبه باید ۴۵۰ psi (۳۱۰۳kPa) در نظر گرفته شود.

    ۴.۷.۲ سیستم لوله‌کشی نباید در معرض آسیب قرار گیرد.
    ۴.۷.۲.۱ لوله‌ها باید قبل از مونتاژ، پخ‌زده و تمیز شوند و پس از مونتاژ، کل سیستم لوله‌کشی باید پیش از نصب نازل‌ها یا تجهیزات تخلیه، کاملاً پاک‌سازی گردد.
    ۴.۷.۲.۲ در سیستم‌هایی که آرایش شیرآلات باعث ایجاد بخش‌هایی از لوله‌کشی بسته می‌شود، این بخش‌ها باید به تجهیزات تخلیه فشار مجهز شوند یا شیرها باید به گونه‌ای طراحی شده باشند که از محبوس شدن دی‌اکسیدکربن مایع جلوگیری کنند.

    ۴.۷.۲.۲.۱ برای سیستم‌های پرفشار، تجهیزات تخلیه فشار باید در فشاری نه کمتر از ۲۴۰۰ psi (۱۶٬۵۴۷ kPa) و نه بیشتر از ۳۰۰۰ psi (۲۰٬۶۸۴ kPa) عمل کنند.

    ۴.۷.۲.۲.۲ برای سیستم‌های کم‌فشار، تجهیزات تخلیه فشار باید در فشاری حداکثر ۴۵۰ psi (۳۱۰۳ kPa) عمل کنند.

    ۴.۷.۲.۲.۳ در مواردی که از شیر سیلندر با عملکرد فشاری استفاده می‌شود، باید تمهیدی برای تخلیه نشتی گاز سیلندر از منیفولد در نظر گرفته شود، به‌گونه‌ای که همزمان از اتلاف گاز در هنگام عملکرد سیستم جلوگیری شود.

    ۴.۷.۲.۳ کلیه تجهیزات تخلیه فشار باید به‌گونه‌ای طراحی و نصب شوند که تخلیه دی‌اکسیدکربن از آن‌ها به پرسنل آسیب نرساند.

    ۴.۷.۳ شیرآلات:

    ۴.۷.۳.۱ کلیه شیرآلات باید برای کاربرد موردنظر، خصوصاً از نظر ظرفیت جریان و عملکرد، مناسب باشند.

    ۴.۷.۳.۲ کلیه شیرآلات فقط باید در دماها و شرایطی استفاده شوند که برای آن‌ها فهرست‌شده یا مورد تأیید قرار گرفته‌اند.

    ۴.۷.۳.۳ شیرهایی که در سیستم‌هایی با ذخیره‌سازی پرفشار و فشار دائمی استفاده می‌شوند، باید حداقل فشار ترکیدگی ۶۰۰۰psi (۴۱٬۳۶۹ kPa) را تحمل کنند، درحالی‌که شیرهایی که تحت فشار دائمی نیستند باید حداقل فشار ترکیدگی ۵۰۰۰ psi (۳۴٬۴۷۴ kPa) را داشته باشند.

    ۴.۷.۳.۴ شیرهایی که در سیستم‌هایی با ذخیره‌سازی کم‌فشار استفاده می‌شوند، باید بدون ایجاد تغییر شکل دائمی، آزمایش هیدرواستاتیکی تا ۱۸۰۰ psi (۱۲٬۴۱۱ kPa) را تحمل کنند.

    ۴.۷.۳.۵ برای شیرهای فلنجی، باید از کلاس و نوع فلنج متناسب با اتصال فلنجی شیر استفاده شود.

    ۴.۷.۳.۶ شیرها باید به‌گونه‌ای مکان‌یابی، نصب یا محافظت شوند که در معرض آسیب مکانیکی، شیمیایی یا سایر آسیب‌هایی که عملکرد آن‌ها را مختل می‌کند، قرار نگیرند.

    ۴.۷.۳.۷ شیرها باید برای طول معادل با لوله یا لوله‌کشی‌ای که قرار است در آن استفاده شوند، رتبه‌بندی شوند.

    ۴.۷.۳.۸ طول معادل شیر سیلندر باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۴.۷.۴* نازل‌های تخلیه: نازل‌های تخلیه باید برای کاربرد موردنظر طراحی شده و برای ویژگی‌های تخلیه، فهرست‌شده یا تأییدشده باشند.

    ۴.۷.۴.۱ نازل‌های تخلیه باید دارای استحکام کافی برای کار در فشار کاری مورد انتظار بوده، در برابر ضربات مکانیکی معمول مقاوم باشند و بتوانند دماهای مورد انتظار را بدون تغییر شکل تحمل کنند.

    ۴.۷.۴.۲ دهانه‌های تخلیه باید از فلز مقاوم در برابر خوردگی ساخته شوند.

    ۴.۷.۴.۳ نازل‌های تخلیه مورد استفاده در سیستم‌های کاربرد موضعی باید به‌گونه‌ای متصل و نگهداری شوند که به‌راحتی از تنظیم خارج نشوند.

    ۴.۷.۴.۴* نازل‌های تخلیه باید به‌طور دائم علامت‌گذاری شوند تا نازل را شناسایی کرده و قطر معادل دهانه تک‌سوراخی را بدون توجه به شکل و تعداد سوراخ‌ها نشان دهند.

    ۴.۷.۴.۴.۱ این قطر معادل باید به قطر دهانه نازل نوع تک‌سوراخ استاندارد با همان نرخ جریان اشاره داشته باشد.

    ۴.۷.۴.۴.۲ این علامت‌گذاری باید پس از نصب نیز به‌راحتی قابل مشاهده باشد.

    ۴.۷.۴.۴.۳* دهانه استاندارد باید دهانه‌ای با ورودی مخروطی و ضریب تخلیه‌ای نه کمتر از ۰.۹۸ باشد و دارای مشخصات جریان مطابق با جدول ۴.۷.۵.۲.۱ و جدول ۴.۷.۵.۳.۱ باشد.

    ۴.۷.۴.۴.۴ اندازه‌های دهانه‌ای غیر از آنچه در جدولA.4.7.4.4.3 نشان داده شده‌اند، مجاز به استفاده هستند و می‌توانند به‌صورت تجهیزاتی با دهانه اعشاری علامت‌گذاری شوند.

    ۴.۷.۴.۵ تجهیزات تخلیه:

    ۴.۷.۴.۵.۱ نازل‌های تخلیه باید در مواردی که احتمال انسداد توسط مواد خارجی وجود دارد، به دیسک‌های شکننده یا درپوش‌های قابل‌انفجار مجهز شوند.

    ۴.۷.۴.۵.۲ این تجهیزات باید در زمان عملکرد سیستم، دهانه‌ای بدون مانع را فراهم کنند.

    ۴.۷.۵ تعیین اندازه لوله و دهانه: اندازه لوله‌ها و مساحت دهانه‌ها باید بر اساس محاسباتی انتخاب شوند که نرخ جریان مورد نیاز در هر نازل را تأمین کند.

    ۴.۷.۵.۱* معادله زیر یا منحنی‌های حاصل از آن باید برای تعیین افت فشار در لوله‌کشی استفاده شود:

    8B1Wpg4ugRDmYAAAAASUVORK5CYII=

    که در آن:

    Q = نرخ جریان [پوند/دقیقه (کیلوگرم/دقیقه)]
    D = قطر داخلی واقعی لوله [اینچ (میلی‌متر)]
    L = طول معادل خط لوله [فوت (متر)]
    [۴.۷.۵.۱]
    Y و Z = ضرایبی وابسته به فشار ذخیره‌سازی و فشار خط لوله

    ۴.۷.۵.۲ در سامانه‌هایی با ذخیره‌سازی فشار پایین، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۳۰۰ psi (۲۰۶۸ kPa) در طول تخلیه انجام شود.
    ۴.۷.۵.۲.۱ نرخ تخلیه برای اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۲.۱ باشد.
    ۴.۷.۵.۲.۲ فشار طراحی اسپرینکلر نباید کمتر از ۱۵۰ psi (۱۰۳۴ kPa) باشد.

    ۴.۷.۵.۳ در سامانه‌هایی با ذخیره‌سازی فشار بالا، محاسبه جریان باید بر اساس فشار متوسط ذخیره‌سازی برابر با ۷۵۰ psi (۵۱۷۱ kPa) در طول تخلیه در دمای عادی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) انجام شود.
    ۴.۷.۵.۳.۱ نرخ تخلیه از طریق اوریفیس‌های معادل باید بر اساس مقادیر ارائه‌شده در جدول ۴.۷.۵.۳.۱ باشد.
    ۴.۷.۵.۳.۲ فشار طراحی اسپرینکلر در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) باید برابر یا بیشتر از ۳۰۰ psi (۲۰۶۸kPa) باشد.

    ۴.۷.۶* آویزها و تکیه‌گاه‌های لوله باید مطابق با استانداردهای شناخته‌شده صنعتی و دستورالعمل‌های سازنده طراحی و نصب شوند.
    ۴.۷.۶.۱ تمام آویزها و تکیه‌گاه‌های لوله باید مستقیماً به یک سازه سخت و ثابت متصل شوند.
    ۴.۷.۶.۲ تمام آویزها و اجزا باید از جنس فولاد باشند.
    ۴.۷.۶.۳ استفاده از آویزها/تکیه‌گاه‌های چدنی معمولی، بست‌های کانال یا بست‌های “C” مجاز نیست.
    ۴.۷.۶.۴ تمامی تکیه‌گاه‌های لوله باید به گونه‌ای طراحی و نصب شوند که از حرکت جانبی لوله در هنگام تخلیه سیستم جلوگیری کرده و همزمان امکان حرکت طولی برای جبران انبساط و انقباض ناشی از تغییرات دما را فراهم کنند.
    ۴.۷.۶.۴.۱ آویزهای صلب باید در هر نقطه‌ای که تغییر ارتفاع یا جهت وجود دارد، نصب شوند.
    ۴.۷.۶.۴.۲ اسپرینکلرها باید به نحوی پشتیبانی شوند که در هنگام تخلیه حرکت نکنند.
    ۴.۷.۶.۵ در مواردی که مهاربندی لرزه‌ای مورد نیاز باشد، این مهاربندی باید مطابق با کدهای محلی و الزامات مرجع ذی‌صلاح انجام شود.

    Z

    9k=

    ۴.۸* بازرسی، نگهداری و دستورالعمل
    ۴.۸.۱* بازرسی: حداقل هر ۳۰ روز یک‌بار باید بازرسی برای ارزیابی وضعیت عملکردی سیستم انجام شود.

    ۴.۸.۲ آزمون شیلنگ
    ۴.۸.۲.۱ تمام شیلنگ‌های سیستم، از جمله آنهایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید برای سامانه‌های فشار بالا در فشار ۲۵۰۰ psi (۱۷٬۲۳۹ kPa) و برای سامانه‌های فشار پایین در فشار ۹۰۰ psi (۶٬۲۰۵ kPa) آزمایش شوند.
    ۴.۸.۲.۲ شیلنگ باید به صورت زیر آزمایش شود:
    (۱) شیلنگ باید از هرگونه اتصال جدا شود.
    (۲) شیلنگ‌های مورد استفاده در خطوط دستی باید از نظر پیوستگی الکتریکی بین کوپلینگ‌ها بررسی شوند.
    (۳) مجموعه شیلنگ باید در محفظه محافظی قرار گیرد که امکان مشاهده مستقیم آزمون را فراهم کند.
    (۴) شیلنگ باید پیش از آزمایش به طور کامل از آب پر شود.
    (۵) فشار باید به گونه‌ای اعمال شود که ظرف یک دقیقه به فشار آزمایش برسد.
    (۶) فشار آزمایش باید به مدت یک دقیقه کامل حفظ شود.
    (۷) سپس باید هرگونه تغییر شکل یا نشتی مورد مشاهده قرار گیرد.
    (۸) در صورتی که فشار کاهش نیافته و کوپلینگ‌ها جابه‌جا نشده باشند، فشار آزاد می‌شود.
    (۹) در صورتی که هیچ‌گونه تغییر شکل دائمی رخ نداده باشد، مجموعه شیلنگ، آزمون هیدرواستاتیک را با موفقیت گذرانده تلقی می‌شود.
    (۱۰) شیلنگی که آزمون را با موفقیت پشت سر گذاشته، باید به طور کامل از داخل خشک شود.
    (۱۱) در صورت استفاده از گرما برای خشک‌کردن، دما نباید از ۱۵۰ درجه فارنهایت (۶۶ درجه سانتی‌گراد) تجاوز کند.
    (۱۲) شیلنگ‌هایی که در این آزمون مردود شوند، باید علامت‌گذاری، نابود و با شیلنگ‌های جدید جایگزین شوند.
    (۱۳) شیلنگ‌هایی که آزمون را با موفقیت پشت سر می‌گذارند، باید با تاریخ آزمون بر روی خود علامت‌گذاری شوند.

    ۴.۸.۲.۳ تمام شیلنگ‌های سیستم، از جمله آن‌هایی که به عنوان رابط انعطاف‌پذیر استفاده می‌شوند، باید هر پنج سال یک‌بار مطابق با بند ۴.۸.۲ مورد آزمون قرار گیرند.

    ۴.۸.۳* نگهداری
    ۴.۸.۳.۱ رویه‌های آزمون و نگهداری: یک رویه آزمون و نگهداری از طرف سازنده باید به مالک ارائه شود تا آزمون و نگهداری سیستم طبق آن انجام شود. این رویه باید شامل آزمون اولیه تجهیزات و نیز بازرسی‌های دوره‌ای و نگهداری سیستم باشد. فعال‌سازی، اختلال و بازیابی این سامانه اطفاء حریق باید بلافاصله به مرجع ذی‌صلاح گزارش شود.

    ۴.۸.۳.۲ موارد زیر باید حداقل سالی یک‌بار توسط افراد متخصص و با استفاده از مستندات موجود طبق بند ۴.۴.۲.۱۴تأیید شوند:
    (۱) بررسی و آزمون عملکرد سیستم دی‌اکسید کربن
    (۲) بررسی اینکه هیچ تغییری در اندازه، نوع یا پیکربندی خطر و سیستم ایجاد نشده باشد
    (۳) بررسی و آزمون عملکرد تمام تاخیرهای زمانی
    (۴) بررسی و آزمون عملکرد تمام هشدارهای صوتی
    (۵) بررسی و آزمون عملکرد تمام سیگنال‌های دیداری
    (۶) بررسی اینکه تمام تابلوهای هشدار مطابق با الزامات نصب شده‌اند

    (۷) بررسی شود که رویه‌های مندرج در بند ۴.۵.۶ مناسب بوده و تجهیزات اشاره‌شده در بند ۴.۵.۶ قابل بهره‌برداری باشند.
    (۸) هر آشکارساز باید طبق روش‌های مشخص‌شده در NFPA 72 بررسی و آزمایش شود.

    ۴.۸.۳.۲.۱ هدف از انجام عملیات نگهداری و آزمون، تنها اطمینان از عملکرد کامل سیستم نیست، بلکه باید نشان دهد که این وضعیت تا زمان بازرسی بعدی نیز به احتمال زیاد حفظ خواهد شد.

    ۴.۸.۳.۲.۲ آزمون‌های تخلیه باید در صورت لزوم و در مواقعی که نگهداری سیستم آن را ضروری نشان می‌دهد، انجام شوند.

    ۴.۸.۳.۲.۳ پیش از انجام آزمون‌ها، رویه‌های ایمنی باید مورد بازبینی قرار گیرند. (به بند ۴.۳ و پیوست A.4.3 مراجعه شود.)

    ۴.۸.۳.۳ گزارش نگهداری همراه با پیشنهادات لازم باید به مالک ارائه شود.

    ۴.۸.۳.۴ هرگونه نفوذ یا سوراخ‌کاری در محفظه‌ای که توسط سیستم غرقه‌سازی کلی دی‌اکسید کربن محافظت می‌شود، باید بلافاصله مهر و موم شود. روش مهر و موم باید مقاومت در برابر حریق اولیه محفظه را بازگرداند.

    ۴.۸.۳.۵ وزن سیلندرهای پرفشار
    ۴.۸.۳.۵.۱ حداقل هر شش ماه یک‌بار، تمامی سیلندرهای پرفشار باید وزن شوند و تاریخ آخرین آزمون هیدرواستاتیک یادداشت شود. (به بند ۴.۶.۵.۲ مراجعه شود.)
    ۴.۸.۳.۵.۲ اگر در هر زمان، کاهش بیش از ۱۰ درصد در میزان خالص محتویات یک سیلندر مشاهده شود، آن سیلندر باید دوباره پر یا تعویض گردد.

    ۴.۸.۳.۶ سطح مایع مخازن کم‌فشار
    ۴.۸.۳.۶.۱ سطح مایع در مخازن کم‌فشار باید حداقل به‌صورت هفتگی از طریق گیج‌های سطح مایع بررسی شود.
    ۴.۸.۳.۶.۲ اگر در هر زمان کاهش بیش از ۱۰ درصد در محتویات مشاهده شود، مخزن باید پر شود، مگر اینکه هنوز حداقل مقدار گاز موردنیاز فراهم باشد.

    ۴.۸.۴ آموزش
    افرادی که وظیفه بازرسی، آزمون، نگهداری یا بهره‌برداری از سیستم‌های اطفاء حریق دی‌اکسید کربن را بر عهده دارند، باید در عملکردهای مربوطه آموزش کامل دیده باشند.

  • دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

    A.17.8.2 اصول عملکرد دتکتورهای شعله

    (1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

    9k=

    این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

    یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

    9k=

    (2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

    A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

    Z

    تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

    Z

    انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

    بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

    تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

    Z

    محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

    A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

    A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

    Z

    که در آن:

    S = توان تابشی که به حسگر می‌رسد
    k = ثابت تناسب برای حسگر
    P = توان تابشی ساطع‌شده توسط آتش
    e = پایه لگاریتم نپر (۲.۷۱۸۳)
    ζ = ضریب تضعیف هوا
    d = فاصله بین آتش و حسگر

    2Q==

    حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
    این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.

  • تشخیص گاز در سردخانه ها

    مقدمه
    تشخیص گاز و نشت‌یابی دو فعالیت مجزا هستند که به موضوعی یکسان می‌پردازند، اما روش‌های آن‌ها بسیار متفاوت است.
    تشخیص گاز شامل آنالیز نمونه‌های هوا برای تعیین وجود گاز مبرد است.
    نشت‌یابی، بازرسی نظام‌مند یک سیستم تبرید به‌منظور مشخص کردن وجود نشتی است.
    اصطلاحات تشخیص گاز و نشت‌یابی قابل جایگزینی با یکدیگر نیستند و نباید با هم اشتباه گرفته شوند.

    دتکتورهای نشت معمولاً تجهیزات دستی هستند که توسط افراد حمل می‌شوند و برای شناسایی نشتی‌ها در سیستم‌های تبرید مورد استفاده قرار می‌گیرند.
    انواع مختلفی از دتکتورهای نشت در دسترس است، از روش‌های ساده‌ای مانند آب صابون گرفته تا ابزارهای الکتریکی پیشرفته.

    دتکتورهای گاز معمولاً در نصب‌های ثابت به کار می‌روند و شامل تعدادی دتکتور هستند که در مکان‌هایی قرار می‌گیرند که در صورت نشت از تأسیسات، احتمال تجمع گاز مبرد وجود دارد.
    این مکان‌ها به چیدمان اتاق ماشین‌آلات و فضاهای مجاور، پیکربندی سیستم و نوع مبرد بستگی دارند.

    پیش از انتخاب دتکتور مناسب تشخیص گاز، باید به چند پرسش پاسخ داده شود:

    • کدام گازها باید اندازه‌گیری شوند و در چه مقادیری؟
      – کدام اصل عملکرد دتکتور برای این کار مناسب‌تر است؟
      – چه تعداد دتکتور مورد نیاز است؟
      – دتکتورها در کجا و چگونه باید نصب و کالیبره شوند؟
    • حدود هشدار مناسب کدام است؟
      – چند سطح هشدار لازم است؟
      – اطلاعات هشدار چگونه باید پردازش شود؟

    این راهنمای کاربردی به این پرسش‌ها پاسخ خواهد داد.

     

    فناوری دتکتور

    انتخاب فناوری دتکتور برای تشخیص گاز مبرد به نوع گاز هدف و محدوده ppm مورد نیاز بستگی دارد.
    دتکتورهای مختلفی وجود دارند که با گازهای رایج، محدوده‌های ppm مناسب و الزامات ایمنی برای سیستم‌های تبرید سازگارند.

    EC – دتکتور الکتروشیمیایی
    دتکتورهای الکتروشیمیایی عمدتاً برای گازهای سمی استفاده می‌شوند و برای آمونیاک مناسب هستند.
    این دتکتورها شامل دو الکترود هستند که در یک محیط الکترولیت غوطه‌ور شده‌اند.
    واکنش اکسایش/کاهش جریان الکتریکی تولید می‌کند که با غلظت گاز متناسب است.
    این دتکتورها بسیار دقیق هستند (±۲٪) و عمدتاً برای گازهای سمی که به روش دیگری قابل شناسایی نیستند یا در مواردی که دقت بالا نیاز است، استفاده می‌شوند.
    دتکتورهای EC مخصوص آمونیاک با محدوده تا ۰ تا ۵۰۰۰ ppm عرضه می‌شوند و طول عمر مورد انتظار آن‌ها حدود ۲ سال است که بستگی به میزان تماس با گاز هدف دارد.
    تماس با نشت‌های بزرگ آمونیاک یا وجود دائمی آمونیاک در پس‌زمینه، طول عمر دتکتور را کاهش می‌دهد.
    دتکتورهای EC تا زمانی که حساسیت آن‌ها بالای ۳۰٪ باشد، قابل کالیبراسیون مجدد هستند.
    این دتکتورها بسیار انتخاب‌پذیر هستند و به ندرت دچار تداخل متقابل می‌شوند. ممکن است به تغییرات ناگهانی رطوبت واکنش نشان دهند اما به سرعت پایدار می‌شوند.

    SC – دتکتور نیمه‌رسانا (حالت جامد)
    عملکرد دتکتور نیمه‌رسانا بر پایه اندازه‌گیری تغییر مقاومت است (متناسب با غلظت)، زمانی که گاز روی سطح یک نیمه‌رسانا که معمولاً از اکسیدهای فلز ساخته شده، جذب می‌شود.
    این دتکتورها برای طیف گسترده‌ای از گازها از جمله گازهای قابل اشتعال، سمی و گازهای مبرد قابل استفاده هستند.

    ادعا می‌شود که این نوع دتکتورها در تشخیص گازهای قابل احتراق در غلظت‌های پایین تا ۱۰۰۰ ppm عملکرد بهتری نسبت به نوع کاتالیستی دارند. این دتکتورها کم‌هزینه، با طول عمر بالا، حساس هستند و می‌توان از آن‌ها برای تشخیص طیف گسترده‌ای از گازها از جمله تمامی مبردهای HCFC، HFC، آمونیاک و هیدروکربن‌ها استفاده کرد.

    با این حال، این دتکتورها انتخاب‌پذیر نیستند و برای تشخیص یک گاز خاص در مخلوط یا در مواردی که احتمال وجود غلظت بالایی از گازهای تداخل‌زا وجود دارد، مناسب نیستند.

    تداخل ناشی از منابع کوتاه‌مدت (مانند گاز اگزوز کامیون) که منجر به هشدارهای اشتباه می‌شود، را می‌توان با فعال کردن تأخیر در آلارم برطرف کرد.

    دتکتورهای نیمه‌رسانا برای هالوکربن‌ها می‌توانند بیش از یک گاز یا یک مخلوط را به طور هم‌زمان تشخیص دهند. این ویژگی به‌ویژه در نظارت بر اتاق ماشین‌آلات با چندین مبرد مختلف مفید است.

    P – دتکتور پلستور
    پلستورها (که گاهی مهره یا کاتالیتیکی نیز نامیده می‌شوند) عمدتاً برای گازهای قابل احتراق از جمله آمونیاک استفاده می‌شوند و در سطوح بالای تشخیص، محبوب‌ترین دتکتورها برای این کاربرد هستند. عملکرد این دتکتور بر اساس سوزاندن گاز در سطح مهره و اندازه‌گیری تغییر مقاومت حاصل‌شده در مهره (که متناسب با غلظت است) می‌باشد.

    این دتکتورها نسبتاً کم‌هزینه، جاافتاده و قابل‌فهم هستند و طول عمر خوبی دارند (عمر مورد انتظار ۳ تا ۵ سال). زمان پاسخ‌دهی معمولاً کمتر از ۱۰ ثانیه است.

    در برخی کاربردها ممکن است دچار مسمومیت شوند.
    مسمومیت به کاهش واکنش دتکتور نسبت به گاز هدف در اثر وجود (آلودگی) یک ماده دیگر در سطح کاتالیست گفته می‌شود که یا با آن واکنش می‌دهد یا لایه‌ای روی آن تشکیل می‌دهد که ظرفیت واکنش با گاز هدف را کاهش می‌دهد. رایج‌ترین مواد مسموم‌کننده ترکیبات سیلیکونی هستند.

    پلستورها عمدتاً برای گازهای قابل احتراق استفاده می‌شوند و بنابراین برای آمونیاک و مبردهای هیدروکربنی در غلظت‌های بالا مناسب هستند. این دتکتورها تمامی گازهای قابل احتراق را تشخیص می‌دهند اما با نرخ‌های مختلف، و بنابراین می‌توان آن‌ها را برای گازهای خاص کالیبره کرد. نسخه‌های خاصی برای آمونیاک وجود دارد.

    IR – مادون قرمز
    فناوری مادون قرمز از این واقعیت بهره می‌برد که بیشتر گازها دارای باند جذب مشخصی در ناحیه مادون قرمز طیف هستند و از این ویژگی برای تشخیص آن‌ها استفاده می‌شود. مقایسه با پرتو مرجع امکان تعیین غلظت را فراهم می‌سازد.

    اگرچه نسبت به دتکتورهای دیگر نسبتاً گران‌قیمت هستند، اما طول عمر بالایی تا ۱۵ سال، دقت زیاد و حساسیت متقابل پایین دارند.

    به دلیل اصل اندازه‌گیری، دتکتورهای مادون قرمز ممکن است در محیط‌های دارای گرد و غبار دچار مشکل شوند، زیرا حضور ذرات زیاد در هوا ممکن است خوانش را مختل کند.

    این دتکتورها برای تشخیص دی‌اکسید کربن توصیه می‌شوند و رایج هستند. اگرچه فناوری آن برای گازهای دیگر نیز وجود دارد، اما معمولاً در راه‌حل‌های تجاری مشاهده نمی‌شود.

    کدام دتکتور برای مبرد خاص مناسب است؟
    بر اساس گاز مبرد هدف و محدوده ppm مورد نظر، جدول زیر نمای کلی از مناسب‌بودن فناوری‌های مختلف دتکتورهای ارائه‌شده توسط دانفوس را ارائه می‌دهد.

    زمان پاسخ‌دهی دتکتور
    زمان پاسخ‌دهی، مدت‌زمان لازم برای خواندن درصد مشخصی از مقدار واقعی در اثر تغییر ناگهانی غلظت گاز هدف توسط دتکتور است.
    زمان پاسخ‌دهی برای اغلب دتکتورها به صورت t90 بیان می‌شود، به این معنا که مدت‌زمانی که طول می‌کشد دتکتور ۹۰ درصد از غلظت واقعی را بخواند. شکل ۴ نمونه‌ای از دتکتوری با زمان پاسخ‌دهی t90 برابر با ۹۰ ثانیه را نشان می‌دهد.

    همان‌طور که در نمودار مشخص است، واکنش دتکتور پس از عبور از ۹۰ درصد کندتر شده و مدت‌زمان بیشتری برای رسیدن به ۱۰۰ درصد نیاز دارد.

    نیاز به تشخیص گاز
    دلایل متعددی برای نیاز به تشخیص گاز وجود دارد. دو دلیل آشکار، محافظت از افراد، تولید و تجهیزات در برابر تأثیر نشت احتمالی گاز و رعایت مقررات است. دلایل مهم دیگر عبارتند از:

    • کاهش هزینه خدمات (هزینه گاز جایگزین و مراجعه تعمیرکار)
      • کاهش هزینه مصرف انرژی به دلیل فقدان مبرد
      • خطر آسیب به محصولات ذخیره‌شده در اثر نشت گسترده
    • امکان کاهش هزینه‌های بیمه
      • مالیات یا سهمیه مربوط به مبردهای ناسازگار با محیط زیست
      کاربردهای مختلف سامانه‌های تبرید به دلایل متفاوتی نیازمند تشخیص گاز هستند.

    آمونیاک به عنوان ماده‌ای سمی با بوی بسیار خاص طبقه‌بندی می‌شود، بنابراین به‌طور طبیعی «هشداردهنده» است. با این حال، استفاده از دتکتورهای گاز برای صدور هشدار اولیه و پایش نواحی‌ای که همواره افراد حضور ندارند (مانند اتاق‌های ماشین‌آلات) الزامی است. باید توجه داشت که آمونیاک تنها مبرد رایج است که از هوا سبک‌تر می‌باشد. در بسیاری از موارد، این ویژگی باعث می‌شود آمونیاک به بالای ناحیه تنفسی صعود کرده و شناسایی نشتی برای افراد دشوار شود. استفاده از دتکتور گاز در نواحی مناسب، هشدارهای اولیه در صورت نشتی آمونیاک را تضمین می‌کند.

    هیدروکربن‌ها به‌عنوان مواد قابل اشتعال طبقه‌بندی می‌شوند. بنابراین، ضروری است که غلظت آن‌ها در اطراف سامانه تبرید از حد اشتعال فراتر نرود.

    مبردهای فلوئوردار همگی دارای اثرات منفی خاصی بر محیط زیست هستند و به همین دلیل باید از هرگونه نشتی آن‌ها جلوگیری کرد.

    دی‌اکسید کربن (CO₂) مستقیماً در فرآیند تنفس دخیل است و باید متناسب با آن با آن برخورد شود. حدود ۰٫۰۴٪ دی‌اکسید کربن به‌طور طبیعی در هوا وجود دارد. در غلظت‌های بالاتر، برخی واکنش‌های منفی مشاهده شده است که با افزایش نرخ تنفس (حدود ۱۰۰٪ در غلظت ۳٪) آغاز شده و به از دست دادن هوشیاری و مرگ در غلظت‌های بالاتر از ۱۰٪ منجر می‌شود.

    مقررات و استانداردها
    الزامات مربوط به تشخیص گاز در کشورهای مختلف جهان متفاوت است. در صفحات بعد نمایی کلی از قوانین و مقررات رایج ارائه شده است.

    اروپا
    استاندارد ایمنی فعلی برای سامانه‌های تبرید در اروپا، EN 378:2016 است.

    سطوح هشدار مشخص‌شده در EN 378:2016 به‌گونه‌ای تعیین شده‌اند که امکان تخلیه ایمن ناحیه را فراهم کنند. این سطوح بازتابی از اثرات ناشی از مواجهه بلندمدت با مبردهای نشت‌یافته نیستند. به‌عبارت‌دیگر، در EN 378 وظیفه دتکتور گاز، هشدار در هنگام وقوع نشتی ناگهانی و زیاد است، در حالی که تهویه اتاق ماشین و اقدامات کیفی سامانه باید اطمینان حاصل کنند که نشتی‌های کوچک تأثیرات منفی برای سلامتی ایجاد نکنند.

    توجه
    الزامات مربوط به دتکتور گاز در اروپا تحت پوشش قوانین ملی کشورهای مختلف قرار دارد و ممکن است با الزامات مندرج در EN 378 تفاوت داشته باشد.

    با چند استثناء، دتکتور گاز مطابق با استانداردهای EN 378:2016 و ISO 5149:2014 برای تمام نصب‌هایی که احتمال دارد غلظت گاز در اتاق از حد عملی فراتر رود، الزامی است.

    در مورد مبردهای سمی و قابل اشتعال، این موضوع تقریباً شامل تمام سامانه‌های صنعتی و تجاری می‌شود. در مورد مبردهای گروه A1، امکان طراحی سامانه‌های کوچکی وجود دارد که نیازی به دتکتور گاز ندارند. اما در بیشتر تأسیسات بزرگ، در صورت بروز نشتی عمده، احتمالاً غلظت مبرد از حد عملی فراتر خواهد رفت و در نتیجه استفاده از دتکتور گاز الزامی می‌گردد.

    راهنمایی‌هایی در بخش ۳ استاندارد EN 378:2016 یا بخش ۳ استاندارد ISO 5149:2014 ارائه شده‌اند. الزامات این دو استاندارد بسیار مشابه بوده و در شکل ۵ خلاصه شده‌اند.

    در صورتی که با انجام محاسبات مشخص شود غلظت مبرد در یک اتاق هرگز به حد عملی نمی‌رسد، دیگر نیازی به استفاده از دتکتور گاز ثابت نیست، به‌جز در مورد خاصی در استاندارد EN 378 که سیستم در زیرزمین نصب شده و بار مبرد آن از مقدار m2 فراتر رود (تقریباً معادل ۱ کیلوگرم پروپان). ISO 5149 چنین استثنایی را ندارد.

    مقدار m2 برابر است با ۲۶ مترمکعب ضرب در LFL (حد پایین اشتعال‌پذیری). برای پروپان، این مقدار برابر است با:
    ۲۶ m³ × ۰٫۰۳۸ kg/m³ = ۰٫۹۸۸ kg
    یا اگر LFL برحسب گرم اندازه‌گیری شود:
    ۲۶ m³ × ۳۸ g/m³ = ۹۸۸ g
    در نتیجه، m2 دارای واحد نیست، چرا که واحد نهایی آن به واحد انتخاب‌شده برای LFL بستگی دارد.

    بیشتر هیدروکربن‌ها دارای مقدار LFL مشابه هستند، بنابراین مقدار m2 معمولاً در حدود ۱ کیلوگرم است.

    با این حال، اگر غلظت بتواند به حد عملی برسد، حتی برای مبردهای گروه A1، نصب دتکتور ثابت الزامی است – البته با چند استثناء جزئی.
    حدود عملی برای مبردهای مختلف در پیوست II که از بخش ۱ استاندارد EN 378-2016 استخراج شده، ارائه شده است. در این جداول، حد عملی آمونیاک بر اساس سمیت آن تعیین شده است. حدود عملی هیدروکربن‌ها بر اساس قابلیت اشتعال آن‌ها و معادل ۲۰ درصد از حد پایین اشتعال‌پذیری تعیین شده‌اند. حدود عملی برای تمامی مبردهای گروه A1 بر اساس حد مواجهه با سمیت حاد (ATEL) تعیین شده است.
    اگر کل بار مبرد در یک اتاق تقسیم بر حجم خالص اتاق بیشتر از «حد عملی» (مطابق پیوست II) باشد، به‌طور منطقی می‌توان نتیجه گرفت که باید سامانه دتکتور گاز ثابت نصب شود.
    هر دو استاندارد EN378:2016 و ISO 5149:2014 الزام می‌کنند که دستگاه نمایشگری برای نشان دادن فعال شدن شیر اطمینان در سامانه‌هایی با مبرد ۳۰۰ کیلوگرم یا بیشتر نصب شود. یکی از روش‌ها، نصب دتکتور گاز در خط تخلیه است.

    مقررات F-Gas
    مقررات F-Gas (EC) شماره ۵۱۷/۲۰۱۴
    یکی از اهداف مقررات F-Gas محدود کردن، جلوگیری و کاهش انتشار گازهای گلخانه‌ای فلوئوردار تحت پوشش پروتکل کیوتو است. این دستورالعمل برای همه کشورهای عضو اتحادیه اروپا و همچنین سه کشور منطقه اقتصادی اروپا (EEA) شامل ایسلند، لیختن‌اشتاین و نروژ اجباری است.
    این مقررات موضوعات متعددی از جمله واردات، صادرات و استفاده از گازهای سنتی HFC و PFC در تمام کاربردهایشان را پوشش می‌دهد. این مقررات از اول ژانویه ۲۰۱۵ لازم‌الاجرا شده است.

    الزامات بازرسی نشتی به منظور پیشگیری از نشت و تعمیر هرگونه نشتی کشف‌شده، بر اساس معادل‌های دی‌اکسید کربن مبرد در هر مدار محاسبه می‌شود. معادل دی‌اکسید کربن برابر است با مقدار شارژ (کیلوگرم) ضرب در پتانسیل گرمایش جهانی (GWP) مبرد.

    بازرسی دوره‌ای نشتی توسط افراد مجاز با فرکانس زیر لازم است که بستگی به مقدار مبرد مصرفی دارد:
    • معادل ۵ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۱۲ ماه – به استثناء سیستم‌های کاملاً بسته که کمتر از ۱۰ تن معادل CO2 دارند
    • معادل ۵۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه (۱۲ ماه در صورت وجود سامانه مناسب تشخیص نشتی)
    • معادل ۵۰۰ تن CO2 یا بیشتر: حداقل یک‌بار در هر ۶ ماه. سامانه مناسب تشخیص نشتی الزامی است. سامانه تشخیص نشتی باید حداقل هر ۱۲ ماه یک‌بار بررسی شود.

     

  • راهکارهای سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی سیستم اطفاء آتش

    این مقاله به بررسی راهکارهای کاربرد سیستم‌های دتکتور شعله‌ای نوری فوق‌سریع و آزادسازی در کارخانه‌های تولید مهمات و سایر تأسیساتی که نیاز به سیستم مهار آتش آبپاشی (Deluge) با سرعت بالا دارند می‌پردازد. همچنین فناوری دتکتور شعله‌ای نوری و پیشرفت‌های اخیر در سیستمی که به کاربران در دستیابی به انطباق با کدها و استانداردهای صنعتی کمک می‌کند، مرور خواهد شد.

    ۱.۰ مقدمه
    برای برآورده‌کردن الزامات زمانی پاسخ‌دهی کل سیستم طبق کدها و استانداردهای صنعتی فوق‌سریع، سیستم دتکتور شعله‌ای و آزادسازی باید قادر باشد رویداد را شناسایی کرده و سیگنالی به سیستم آبپاشی ارسال کند که این سیستم باید ظرف ۱۰۰ میلی‌ثانیه یا کمتر از لحظه حضور منبع انرژی در مقابل دتکتور تا شروع جریان آب از نازل آبپاش واکنش نشان دهد.

    WhatsApp Image 2025 09 16 at 5.25.44 AM

    برای اینکه یک سیستم به‌عنوان «سریع» شناخته شود، باید ظرف ۵۰۰ میلی‌ثانیه یا کمتر عمل کند (ارجاع به استاندارد NFPA 15)در کاربردهایی که به این سیستم‌ها نیاز دارند، آتش بسیار سریع‌تر از آن رشد می‌کند که بتوان از دتکتورهای حرارتی یا دتکتورهای دود استفاده کرد، زیرا این دتکتورها ممکن است چندین ثانیه طول بکشند تا آتش را شناسایی کنند.

    WhatsApp Image 2025 09 16 at 5.25.45 AMWhatsApp Image 2025 09 16 at 5.25.45 AM1

    برای درک روش‌های به‌کارگیری دتکتور شعله‌ای نوری فوق‌سریع در کارخانه‌های پردازش مهمات، مرور مختصری بر اصول پایه عملکرد فناوری دتکتور شعله‌ای ضروری است.

    ۲.۰ مروری بر دتکتور شعله‌ای نوری
    دتکتورهای شعله‌ای تشخیص انرژی تابشی، آتش را از طریق حس و تحلیل تابش الکترومغناطیسی منتشر شده از آتش شناسایی می‌کنند. انواع مختلف آتش طیف‌های نوری متفاوتی منتشر می‌کنند که امکان شناسایی آن‌ها را فراهم می‌کند.
    بازه طیفی انتشار که دتکتور به آن حساس است باید به‌طور دقیق کنترل شود تا اثر تابش طیفی ناشی از نور خورشید، نور محیط، ماشین‌آلات و تجهیزات پردازش به حداقل برسد. شکل ۱ نمای کلی از طیف الکترومغناطیسی و نواحی فروسرخ (IR) و فرابنفش (UV) مطلوب برای تشخیص شعله را نشان می‌دهد.
    در ادامه شرح مختصری از هر فناوری مناسب برای تشخیص شعله فوق‌سریع (UV، IR و UV/IR) آمده است.

    ۲.۱ فناوری‌های دتکتور شعله‌ای نوری

    ۲.۱.۱ فرابنفش (UV)

    دتکتورهای شعله‌ای UV از یک دتکتور تشکیل شده‌اند که شامل لوله خلأ از نوع Geiger-Mueller است. این دتکتور معمولاً به‌گونه‌ای طراحی می‌شود که به یک باند بسیار باریک از انرژی نوری در محدوده ۱۸۵۰ تا ۲۴۵۰ آنگستروم (Å) پاسخ دهد و مدل‌های خاصی نیز وجود دارند که این محدوده را تا ۲۶۵۰Å گسترش می‌دهند. همان‌طور که در شکل ۲ نشان داده شده، محدوده حساسیت UV خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد.

    وقتی تابش UV منتشر شده از آتش با دتکتور تماس پیدا می‌کند، پالس‌های ولتاژی تولید می‌شود که فرکانس آن‌ها متناسب با شدت تابش UV است. این پالس‌ها توسط یک میکروپروسسور پردازش شده و با پارامترهای برنامه‌ریزی‌شده مقایسه می‌شوند. اگر میزان پالس‌های پردازش‌شده از آستانه تعیین‌شده فراتر رود، آلارم فعال می‌شود.

    WhatsApp Image 2025 09 16 at 5.25.45 AM2WhatsApp Image 2025 09 16 at 5.25.46 AM

    این دتکتورها قادر به تشخیص هر نوع آتش بوده و در شرایط ایده‌آل می‌توانند زمان پاسخ کمتر از ۱۵ میلی‌ثانیه داشته باشند.

    از آنجا که دتکتورهای UV می‌توانند به‌صورت ضدنور خورشید طراحی شوند و تحت تأثیر تابش حرارتی قرار نگیرند، می‌توان آن‌ها را در بسیاری از کاربردها با موفقیت به‌کار برد.

    همانند هر فناوری دتکتور دیگری، مزایا و معایبی وجود دارد. دتکتورهای شعله‌ای UV نسبت به رعد و برق، جوشکاری و پرتوهای ایکس حساس هستند. انسداد فیزیکی جزئی شعله یا وجود دود و/یا بخارات جاذب UV ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی شود. شکل ۴ را ببینید.

    WhatsApp Image 2025 09 16 at 5.25.46 AM1

    ۲.۱.۲ فروسرخ (IR)

    WhatsApp Image 2025 09 16 at 5.25.46 AM2

    دتکتورهای شعله‌ای IR از یک دتکتور پیرولکتریک تشکیل شده‌اند. درون دتکتور پیرولکتریک، یک فیلتر تداخلی نوری استفاده می‌شود تا یک ناحیه عبور باند ایجاد کند که برای تشخیص اختصاصی آتش مناسب باشد. این فیلترها بر اساس طول موج مورد نظر انتخاب می‌شوند که معمولاً بین ۴٫۲ تا ۴٫۸ میکرومتر (μm) در باند انتشار CO₂ قرار دارد. همان‌طور که در شکل ۵ نشان داده شده، محدوده حساسیت IR خارج از محدوده دید انسان است و تحت تأثیر نور خورشید قرار نمی‌گیرد

    .WhatsApp Image 2025 09 16 at 5.25.47 AM3

    WhatsApp Image 2025 09 16 at 5.25.47 AM1WhatsApp Image 2025 09 16 at 5.25.47 AM2WhatsApp Image 2025 09 16 at 5.25.48 AM

    دتکتورهای شعله‌ای IR (شکل ۶) می‌توانند آتش‌هایی را که پیش از آن دود ایجاد می‌کنند یا حاوی بخارات هستند، راحت‌تر از دتکتورهای مبتنی بر فناوری UV شناسایی کنند. زمان پاسخ در شرایط ایده‌آل می‌تواند کمتر از ۱۵ میلی‌ثانیه باشد. از آنجا که دتکتورهای IR می‌توانند مقاوم در برابر نور خورشید ساخته شوند و تحت تأثیر تابش UV قرار نمی‌گیرند، می‌توان آن‌ها را در بسیاری از کاربردهایی که برای دتکتورهای UV چالش‌برانگیز است، با موفقیت به کار برد.

     

    اگر انرژی الکترومغناطیسی منتشرشده شامل طول موج‌هایی باشد که از فیلتر تداخلی عبور می‌کنند، نور با یک عنصر تک‌بلوری برخورد می‌کند. این عنصر سیگنال کوچکی تولید می‌کند که دامنه و فرکانس آن متناسب با تابش الکترومغناطیسی منتشرشده از آتش است. این سیگنال سپس توسط یک میکروپروسسور پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه می‌شود و در صورت احراز شرایط، آلارم آتش فعال می‌گردد.
    دتکتورهای شعله‌ای IR ممکن است به اجسام داغ مدوله‌شده و منابع نوری حساس باشند. وجود آب، برف یا یخ بر روی لنز دتکتور نیز ممکن است باعث تأخیر یا حتی جلوگیری از شناسایی آتش شود (شکل ۷ را ببینید).

    ۲.۱.۳ فرابنفش-فروسرخ (UVIR)
    دتکتورهای شعله‌ای UVIR ترکیبی از فناوری‌های UV و IR را در یک دتکتور شعله‌ای به کار می‌گیرند (شکل ۸). برای فعال‌شدن آلارم آتش، هر دو دتکتور UV و IR باید تابش الکترومغناطیسی منتشرشده را شناسایی کرده و هر دو سیگنال پردازش شده و با آستانه‌های از پیش تعیین‌شده مقایسه شوند. شکل ۹ نواحی حساسیت الکترومغناطیسی یک دتکتور UVIR را نشان می‌دهد.
    فناوری UVIR می‌تواند عملکرد مناسب در تشخیص آتش را در حالی فراهم کند که در مقایسه با فناوری UV یا IR به‌تنهایی مقاومت بیشتری در برابر فعال‌سازی کاذب دارد. تمام مزایا و محدودیت‌های فناوری‌های UV و IR در مورد یک دتکتور شعله‌ای UVIR نیز صدق می‌کند. این ویژگی‌ها باعث شده که فناوری UVIR به‌طور گسترده پذیرفته شود.
    علاوه بر رله آلارم آتش که زمانی عمل می‌کند که هر دو دتکتور UV و IR آتش را تشخیص دهند، دتکتورهای شعله‌ای UVIR شرکتهای معتبر تولیدی  دارای یک رله کمکی قابل برنامه‌ریزی داخلی نیز هستند. این رله کمکی می‌تواند طوری پیکربندی شود که در شرایط آلارم فقط UV، فقط IR یا پیش‌آلارم UVIR تغییر وضعیت دهد و انعطاف‌پذیری بیشتری را برای دتکتور شعله‌ای در مکان‌هایی که ویژگی‌های طیفی ماده مورد نظر ممکن است متغیر باشد، فراهم کند.

    ۲.۲ حفظ عملکرد تشخیص
    در اکثر کاربردها، این احتمال وجود دارد که لنز دتکتور به‌وسیله مواد خارجی مسدود شود. آلودگی لنز دتکتور ممکن است باعث تأخیر یا حتی جلوگیری از رسیدن تابش طیفی آتش به دتکتور(های) موجود در دتکتور شعله‌ای گردد. بنابراین بسیار مهم است که دتکتور قادر به بررسی خودکار تمام سطوح نوری، دتکتورها و مدارهای داخلی خود باشد.
    دتکتور باید قادر باشد به‌طور خودکار اپراتور را در صورت تأثیر بر عملکرد آن آگاه سازد. در صورت بروز این وضعیت خطا، می‌توان یک فرآیند مشخص را متوقف کرد یا اقدامات دیگری را بر اساس نیاز انجام داد.

    WhatsApp Image 2025 09 16 at 5.25.49 AM

    برخی دتکتورهای شعله‌ای نوری دارای قابلیت یکپارچگی نوری خودکار (oiR) هستند که یک تست عملکرد کالیبره‌شده را هر یک دقیقه یک‌بار برای اطمینان از توانایی عملیاتی کامل دتکتور انجام می‌دهند (شکل ۱۰). برای انجام تست یکپارچگی نوری، منابع داخلی IR و UV کالیبره‌شده و کنترل‌شده توسط میکروپروسسور برای هر سنسور موجود در دتکتور، سیگنال‌های تست را فراهم می‌کنند. اگر دتکتور دچار آلودگی نوری یا هرگونه مشکل عملکرد داخلی شود، زمانی که کمتر از نصف محدوده تشخیص اولیه باقی مانده باشد، وضعیت خطای یکپارچگی نوری را گزارش خواهد کرد. معمولاً این خطا ناشی از کثیف بودن لنز است و با تمیز کردن، عملکرد کامل دتکتور بازگردانده می‌شود.

    برخی نواحی کارخانه مستعد گرد و غبار و آلاینده‌های معلق در هوا هستند که ممکن است باعث تجمع رسوبات روی لنز دتکتور شوند. برای این محیط‌ها، شرکت شرکت های تولیدی پیشرفته شیلدهای هوایی ارائه می‌دهد که با ایجاد جریان مداوم هوای پاک بر سطح بیرونی لنز دتکتور، تجمع آلاینده‌ها را کاهش داده و به افزایش فاصله زمانی بین سرویس‌های نگهداری کمک می‌کنند. این شیلدهای هوایی هیچ‌گونه اختلالی در نصب دتکتور، زاویه دید آن یا تست یکپارچگی نوری ایجاد نمی‌کنند.

    ۲.۳ ثبت رویدادها
    هنگام وقوع یک رویداد یا وضعیت خطا، ضروری است که اطلاعات دقیق به‌سرعت گردآوری شود. واحد کنترل اعلام حریق سرویس اطفاء، باید توانایی ارائه اطلاعات سطح بالا شامل ورودی‌های فعال‌شده یا نوع خطای رخ‌داده را داشته باشد. علاوه بر این، برای بررسی رویدادها، به‌دست آوردن جزئیات بیشتر مفید است. هر دتکتور شعله‌ای شرکت های تولیدی پیشرفته دارای قابلیت ثبت رویداد داخلی است که به‌طور خودکار برای هر رویداد یا خطای رخ‌داده، زمان و تاریخ را ثبت می‌کند. رویدادهایی مانند روشن یا خاموش شدن دستگاه، شرایط خطا، پیش‌آلارم و آلارم آتش به همراه دمای محیط و ولتاژ ورودی در زمان وقوع رویداد ذخیره می‌شوند.

    ۲.۴ انتخاب فناوری
    هنگام انتخاب فناوری برای حفاظت از افراد، فرآیندها، دارایی‌ها و ساختمان‌ها، باید نهایت دقت در طراحی سیستم به‌کار گرفته شود تا در شرایط پیش‌بینی‌شده به‌درستی عمل کند. نوع فناوری دتکتور شعله‌ای انتخابی برای یک ناحیه باید بر اساس یک ارزیابی طراحی مبتنی بر عملکرد انتخاب شود. لازم است درک کامل از اهداف عملکردی مورد انتظار برای هر دتکتور در سیستم به‌دست آید.

    برخی موارد قابل بررسی در ارزیابی طراحی مبتنی بر عملکرد شامل:

    • ترکیب آتش
    • ویژگی‌های آتش (نرخ رشد، ویژگی‌های سوختن، طیف انتشار)
    • حداقل اندازه آتشی که نیاز به تشخیص دارد
    • بخارات کاهنده UV یا گرد و غبار کاهنده IR
    • منابع غیرآتش

    دتکتورهای شعله‌ای نوری ممکن است بسته به مدل و سازنده عملکرد متفاوتی داشته باشند. تنها روش قابل اعتماد برای سنجش حساسیت دتکتور شعله‌ای نسبت به یک ماده خاص، قرار دادن آن در معرض یک رویداد کنترل‌شده واقعی است. با این حال، تولید آتش‌های آزمایشی تکرارپذیر و کاملاً یکسان دشوار است. بنابراین، معمولاً لازم است چندین بار یک ماده خاص در معرض دتکتور قرار گیرد تا داده‌های آزمایشی معتبر به‌دست آید.

    علاوه بر این، باید بین حساسیت مطلوب دتکتور به ماده مورد نظر و حساسیت آن به منابع تابش غیردر اثر آتش، تعادل برقرار شود. دتکتوری که بیش از حد به محیط اطراف حساس باشد و باعث آلارم‌های مزاحم شود، قطعاً نامطلوب است. بنابراین، دتکتور باید در معرض منابع رایج موجود در ناحیه مورد پایش قرار گیرد تا ارزیابی دقیقی از عملکرد کلی دتکتور شعله‌ای انجام شود.

    این جنبه‌ها ممکن است چالش‌های متعددی را برای مهندس مسئول اجرای ارزیابی مبتنی بر عملکرد ایجاد کنند. برنامه‌ریزی و کنترل مؤثر توسط مهندس آزمون، دقت هر اندازه‌گیری مبتنی بر عملکرد را به حداکثر می‌رساند.

    ۲.۵ ملاحظات برای ارزیابی طراحی مبتنی بر عملکرد آشکارسازی شعله نوری

    ۲.۵.۱ محل آزمون

    WhatsApp Image 2025 09 16 at 5.25.49 AM1

    • محلی برای آزمون شناسایی کنید که دسترسی، مشاهده و امکان خروج ایمن برای همه افراد درگیر را فراهم کند. امکان کنترل دسترسی به محل آزمون مطلوب است.
    • آزمون‌های آتش در محیط‌های داخلی ممکن است تحت تأثیر تجمع مواد معلق کاهنده مانند دود، گرد و غبار و بخارات حلال قرار گیرند که همگی می‌توانند عملکرد آشکارسازی شعله را منفی تحت تأثیر قرار دهند. برای دستیابی به نتایج آزمون و عملکرد آشکارسازی شعله ثابت، باید قبل و بین تمام آزمون‌های داخلی، تبادل هوای پاک فراهم شود.
    • اطمینان حاصل کنید که روش مناسبی برای خاموش کردن آتش آزمون در محل موجود باشد یا اگر ماده به راحتی خاموش نمی‌شود، تدابیری برای کنترل سوختن آن اتخاذ شده باشد.
    • اطمینان حاصل کنید که تمام مواد سوخته به طور کامل خاموش شده و تمام مواد باقی‌مانده سوخته به‌درستی دفع شوند.
    • بهتر است شرایطی که در کاربرد واقعی محل نصب دتکتورهای شعله‌ای پیش خواهد آمد، شبیه‌سازی شود. موانع احتمالی دید دتکتورهای شعله‌ای نسبت به منطقه را در نظر بگیرید.
    • در صورت امکان، دمای محیط، رطوبت، جهت و سرعت باد را کنترل کنید.

    ۲.۵.۲ فرآیند آزمون

    • پیش از شروع آزمون، دمای محیط، رطوبت، جهت و سرعت باد را ثبت کنید.
    • بسته به شرایط محیطی، آزمون‌های آتش که در فضای باز انجام می‌شوند ممکن است تحت تأثیر تغییرات در ویژگی‌های انتشار شعله قرار گیرند. فیلم‌برداری از آزمون‌های آتش در فضای باز می‌تواند برای تعیین اثرات احتمالی تغییرات جهت و سرعت باد ارزشمند باشد.
    • نوع یا انواع سوخت، اندازه‌های موردنظر آتش، فاصله‌ها و نیازمندی‌های زمانی که دتکتورهای شعله‌ای باید در کاربرد واقعی به آن‌ها پاسخ دهند را شناسایی کنید. از این داده‌ها برای تعیین شاخص‌های عملکرد مورد نظر برای کاربرد و روش ارزیابی استفاده کنید.
    • حداقل سه آزمون تکراری از هر نوع سوخت در هر فاصله انجام دهید تا داده‌های معتبر به دست آید.
    • روشی که برای اشتعال ماده استفاده می‌شود نباید باعث واکنش دتکتورهای شعله‌ای شود. اگر دتکتورها به منبع اشتعال واکنش نشان دهند، این امر ممکن است دقت اندازه‌گیری زمان را تحت تأثیر قرار دهد.
    • منابع اشتعال آتش مانند کبریت‌های برقی توصیه نمی‌شوند، زیرا ممکن است ماده قابل اشتعالی را وارد ماده مورد نظر کنند که به طور معمول وجود ندارد. این ماده ممکن است طیف گسیلی متفاوتی نسبت به طیف ماده مورد نظر تولید کند.
    • روش پذیرفته‌شده‌ای را برای تعیین سرعت واکنش دتکتور مشخص کنید. نمونه‌های معمول شامل استفاده از تایمر دیجیتال یا سیستم فیلم‌برداری با سرعت بالا هستند.
    • تمام فناوری‌ها/انواع دتکتور، شماره سریال‌ها و موقعیت‌ها (فاصله و زاویه) نسبت به آتش، همچنین تمام تنظیمات آستانه آتش دتکتورها و/یا تنظیمات تأخیر زمانی را ثبت کنید.
    • اطمینان حاصل کنید که تمام دتکتورها به‌درستی تراز شده و لنزها تمیز باشند.

    ۲.۵.۳ سوخت‌های آزمون

    • آزمون‌های آتش برای جامدات قابل اشتعال، مهمات و پیشرانه‌ها به دلیل تنوع زیاد در قابلیت اشتعال و نرخ انتشار آتش، نیازمند ملاحظات ویژه هستند. اندازه آتش ایجاد شده توسط این مواد با تعیین وزن ماده نسوخته، حجم و آرایش قبل از اشتعال مشخص می‌شود.
    • پودرها و پیشرانه‌های قابل اشتعال با نرخ‌های مختلفی می‌سوزند که به آرایش ماده بستگی دارد (مثال: ۳۰ گرم باروت به‌صورت انباشته به‌طور متفاوتی نسبت به ۳۰ گرم گسترده‌شده روی سطح ۵ سانتی‌متر مربع می‌سوزد). روش چیدمان پودرها یا پیشرانه‌های قابل اشتعال را استاندارد کرده و برای هر آزمون تکرار کنید.
    • اگر منطقه تحت نظارت شامل پردازش چندین ماده آتش‌بازی باشد، سیستم باید طوری طراحی شود که امکان آشکارسازی بدترین حالت، یعنی کندترین ماده در حال سوختن را فراهم کند.

     

    هر آزمون باید با استفاده از مواد جدید انجام شود و هرگز سوخت‌ها بیش از یک بار سوزانده نشوند، زیرا احتمال دارد ماده در صورت اشتعال مجدد ویژگی‌های متفاوتی نشان دهد.

    ۲.۶ توصیه‌های آزمون منابع هشدار مزاحم
    منابع معمول هشدار مزاحم دتکتور شعله‌ای در زیر فهرست شده‌اند. نباید هیچ واکنش هشدار حریق دتکتور شعله‌ای در اثر قرار گرفتن در معرض این منابع رخ دهد:

    • نور مستقیم خورشید
    • لامپ رشته‌ای ۳۰۰ وات در فاصله ۵ فوت
    • لامپ فلورسنت ۳۴ وات در فاصله ۱ فوت
    • لامپ هالوژن ۵۰۰ وات (با لنز پلاستیکی یا شیشه‌ای) در فاصله ۵ فوت
    • بخاری کوارتز مادون قرمز برقی (۱۵۰۰ وات) در فاصله ۱۰ فوت
    • بی‌سیم دستی دوطرفه (۵ وات) در حالت ارسال در فاصله ۳ فوت
    • مدوله کردن انرژی منبع هشدار مزاحم با نرخ تقریباً ۲ تا ۱۰ هرتز (با استفاده از یک چرخاننده بدون حرارت، نه دست) نیز نباید باعث واکنش هشدار حریق دتکتور شعله‌ای شود.
    • هر منبع هشدار مزاحم شناخته‌شده دیگر باید همان‌گونه که در کاربرد واقعی وجود دارد به دتکتورها ارائه شود تا درک مناسبی از اثر احتمالی آن‌ها به دست آید.
    • توانایی آشکارسازی شعله در حضور منابع انرژی تابشی رایج فوق. این منابع در بسیاری از کارخانه‌ها و محیط‌های تولیدی یافت می‌شوند.
      ممکن است نیازهایی وجود داشته باشد که برآورده یا کشف نشده‌اند. یک بررسی کامل که شامل بحث آزاد باشد، می‌تواند راهکارهای غیرمتعارف را آشکار کرده و به راه‌حل‌های آشکارسازی منجر شود.

    ۳.۰ رعایت کدها و استانداردها
    کدها و استانداردها، مانند آن‌هایی که توسط انجمن ملی حفاظت از آتش (NFPA) و دولت ایالات متحده تدوین شده‌اند، دانش و اطلاعات لازم برای به حداقل رساندن خطر و اثرات آتش را فراهم می‌کنند. کدهایی مانند NFPA 101 «کد ایمنی حیات»، NFPA 72 «کد ملی هشدار و اعلام حریق»، NFPA 15 «استاندارد سیستم‌های ثابت آب‌پاش برای حفاظت در برابر آتش» و معیارهای یکپارچه تسهیلات (UFC) UFC 3-600-01 از این نمونه‌ها هستند.
    همچنین مهم است که هر سیستمی که هدف آن آشکارسازی و اطفای حریق است، به‌طور کامل با تمام کدها و استانداردهای قابل اجرا مطابقت داشته باشد. بنابراین، انتخاب دتکتورهای شعله‌ای و سیستم‌های کنترلی که دارای تأییدیه از سازمان‌های شخص ثالث باشند، اهمیت دارد. انتخاب محصولات مناسب در نهایت به کاربر کمک می‌کند تا انطباق را به دست آورد.

    ۳.۱
    برای رعایت کدها و استانداردهای فعلی، خروجی‌های دتکتورهای شعله‌ای فوق‌سریع باید به یک واحد کنترل هشدار حریق خدمات آزادسازی که به‌طور خاص برای این خدمات فهرست شده باشد، متصل شوند و دتکتورها نیز باید برای استفاده با همان واحد کنترل فهرست شده باشند. این واحد کنترل عملکردهای مهمی مانند نظارت بر ورودی‌ها و خروجی‌ها را انجام می‌دهد تا اطمینان حاصل شود سیستم در زمان نیاز به‌درستی عمل می‌کند.
    HSDM برای داشتن زمان واکنش مستقل ۲ میلی‌ثانیه طراحی شده است و هنگامی که با دتکتور شعله‌ای UV، UV/IR یا IR شرکت Det-Tronics ترکیب می‌شود، سیستم ترکیبی می‌تواند در شرایط ایده‌آل پاسخی کمتر از ۱۵ میلی‌ثانیه ارائه دهد.
    HSDM با نظارت پیوسته بر تمام ورودی‌ها و خروجی‌ها، عملکرد سیستم را تضمین می‌کند و از یک شبکه محلی/مدار خط سیگنال (LON/SLC) استفاده می‌کند که نظارت کلاس X را برای اتصال بین HSDM و کنترلر سیستم ایمنی EQP فراهم می‌آورد.
    ماژول HSDM دارای شش کانال ورودی و شش کانال خروجی قابل پیکربندی است که می‌توان آن‌ها را برای عملکرد تحت نظارت یا بدون نظارت برنامه‌ریزی کرد. هر کانال ورودی، اتصالات بسته را از دستگاه‌های آشکارساز حریق مانند دتکتورهای شعله‌ای نوری، دتکتورهای حرارتی، دتکتورهای دود و شستی‌های دستی می‌پذیرد. کانال‌های خروجی برای فعال‌سازی سلونوئیدهای تأییدشده شخص ثالث که برای راه‌اندازی شیرهای سیلابی پایلوت‌دار استفاده می‌شوند، طراحی شده‌اند.
    دتکتورهای شعله‌ای نوری، ماژول سیلابی فوق‌سریع و کنترلر سیستم ایمنی به مشتریان این امکان را می‌دهند که سیستمی مطابق با الزامات UFC و NFPA طراحی کنند (شکل ۱۱).
    خروجی رله هشدار حریق از دتکتور شعله‌ای نوری UV، IR یا UV/IR به HSDM متصل می‌شود. دتکتور شعله‌ای همراه با HSDM قادر به ارائه زمان واکنش فوق‌سریع، کمتر از ۲۰ میلی‌ثانیه در شرایط ایده‌آل است.
    HSDM یک سیگنال اولویت‌دار روی کابل LON ارسال می‌کند که توسط کنترلر سیستم ایمنی EQP دریافت می‌شود. این ارتباط پرسرعت نیست. EQP از منطق از پیش برنامه‌ریزی‌شده برای تعیین اقدامات بعدی استفاده می‌کند که معمولاً شامل ارسال سیگنال به یک ماژول ورودی/خروجی مجزا و پیشرفته است که به نوبه خود برای فعال‌سازی تجهیزات اعلان هشدار استفاده می‌شود. همچنین ارتباط اضافی با نگهبانان، پلیس، آتش‌نشانی یا سایر بخش‌های مورد نیاز نیز امکان‌پذیر است.
    یک سیستم آشکارسازی شعله و آزادسازی که به‌خوبی طراحی و فهرست شده باشد، می‌تواند به کاربران کمک کند تا الزامات کدهای UFC و NFPA برای یک سیستم آب‌پاش فوق‌سریع را برآورده کنند.

    ۳.۲ رعایت نیاز زمان واکنش کمتر از ۱۰۰ میلی‌ثانیه (ms)
    در حالی که بحث سرعت واکنش دتکتورهای شعله‌ای مهم است، باید توجه داشت که اندازه‌گیری مهم‌تر، سرعت واکنش کل سیستم است که شامل دتکتور شعله‌ای، واحد کنترل هشدار حریق خدمات آزادسازی، شیرهای سلونوئیدی و یک بخش سیلابی است. یک دتکتور شعله‌ای فوق‌سریع می‌تواند آتش در حال گسترش سریع را در حدود ۲۰ میلی‌ثانیه و در شرایط ایده‌آل شناسایی کند. واحد کنترل هشدار حریق خدمات آزادسازی نیز ممکن است ظرف چند میلی‌ثانیه واکنش نشان دهد. شیر سلونوئیدی زمانی را برای تخلیه فشار پایلوت از شیر سیلابی نیاز دارد و در نهایت، آب نیز زمانی را برای عبور از لوله‌کشی تا نازل و از نازل تا آتش طی می‌کند. بنابراین، باید در نظر داشت که سرعت واکنش دتکتور و واحد کنترل تنها بخشی کوچک از کل زمان واکنش سیستم است.
    توجه دقیق باید به نصب دتکتورها در نزدیک‌ترین فاصله ممکن به خطر بالقوه و اطمینان از عدم وجود مانع بین دتکتور و منطقه تحت نظارت که می‌تواند خط دید دتکتور را مسدود کند، معطوف شود. تمام حباب‌های هوا باید از داخل لوله‌کشی سیستم هیدرولیک خارج شوند. علاوه بر این، باید سریع‌ترین سلونوئیدهای ممکن استفاده شوند و نازل‌های سیلابی نیز باید در نزدیک‌ترین فاصله ممکن به خطر بالقوه نصب شوند. رعایت دقیق این موارد، سرعت کل سیستم را به‌طور چشمگیری بهبود می‌بخشد (شکل ۱۲).

    ۴.۰ راهکارهایی برای آشکارسازی شعله نوری فوق‌سریع

    دتکتورهای شعله نوری مدرن به‌گونه‌ای طراحی شده‌اند که به کاربران در دستیابی به انطباق با کدها و استانداردهای UFC و NFPA کمک کنند. برخی شرکت‌ها مدل‌های X2200 UV، X9800 IR و X5200 UVIR از دتکتورهای شعله را ارائه می‌دهند که در صورت پیکربندی و نصب صحیح، قادر به ارائه زمان پاسخ‌دهی با سرعت بالا و فوق‌العاده سریع هستند.
    علاوه بر آزمون‌های حرارتی سختگیرانه، آزمون‌های آزمایشگاهی و شبیه‌سازی‌هایی که در کارخانه انجام می‌شود، تمامی دتکتورهای شعله پیش از ارسال به مشتریان، در مرکز آزمون مهندسی با استفاده از آتش واقعی آزمایش می‌شوند.

  • دتکتور شعله در استاندارد NFPA 86

    استاندارد NFPA 86 یکی از مهم‌ترین استانداردهای ایمنی صنعتی است که با هدف کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث در کوره‌ها و اجاق‌های صنعتی تدوین شده است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی اهمیت حیاتی دارد. با افزایش میزان تولید صنعتی و استفاده از فرآیندهای حرارتی در صنایع مختلف، رعایت این استانداردها برای تضمین ایمنی و بهینه‌سازی عملکرد تجهیزات ضروری است. این استاندارد نه‌تنها در ایمنی نقش دارد، بلکه موجب افزایش بهره‌وری و کاهش هزینه‌های تعمیرات و نگهداری نیز می‌شود.

    دتکتور شعله و عملکرد آن

    9k=

    دتکتور شعله، یکی از اصلی‌ترین تجهیزات ایمنی در فرآیندهای حرارتی صنعتی است که وظیفه شناسایی وجود شعله در محیط را بر عهده دارد. این تجهیزات به‌طور مستقیم در کاهش ریسک آتش‌سوزی و جلوگیری از انفجار نقش دارند. عدم استفاده از دتکتورهای مناسب یا نصب نادرست آن‌ها می‌تواند خسارات جبران‌ناپذیری به بار آورد.

    اهمیت دتکتور شعله

    دتکتورهای شعله برای تشخیص حضور آتش از فناوری‌های مختلفی استفاده می‌کنند که از جمله آن‌ها می‌توان به موارد زیر اشاره کرد:

    دتکتور فرابنفش (UV): این سنسورها برای شناسایی تابش فرابنفش ناشی از شعله‌های آتش به کار می‌روند.
    دتکتور مادون قرمز (IR): این سنسورها تغییرات انرژی مادون قرمز ساطع‌شده از شعله را شناسایی می‌کنند.
    دتکتور ترکیبی UV/IR: ترکیب این دو فناوری می‌تواند میزان تشخیص دقیق‌تر و کاهش هشدارهای کاذب را به همراه داشته باشد.
    دتکتور مرئی (VIS): برخی دتکتورها از حسگرهای نوری استفاده می‌کنند که در محدوده نور مرئی کار می‌کنند.

    استانداردهای نصب دتکتور شعله

    براساس بندهای 8.2.2 و 8.2.5 استاندارد NFPA 86، نصب دتکتورهای شعله باید مطابق دستورالعمل‌های سازنده و استانداردهای بین‌المللی باشد. در نظر گرفتن موارد زیر می‌تواند از بروز مشکلات جلوگیری کند:

    نصب در مکان مناسب: دتکتور باید در نقطه‌ای قرار گیرد که بیشترین میدان دید را نسبت به شعله‌های احتمالی داشته باشد.
    نگهداری و کالیبراسیون: تجهیزات باید به‌طور دوره‌ای بررسی و تنظیم شوند تا از دقت عملکرد آن‌ها اطمینان حاصل شود.
    پیشگیری از هشدارهای کاذب: برخی از منابع نوری، جرقه‌ها یا بازتاب‌های ناخواسته می‌توانند باعث هشدارهای اشتباه شوند، لذا باید محل نصب با دقت انتخاب شود.

    عملکرد سیستم‌های ایمنی احتراق

    2Q==

    علاوه بر دتکتورهای شعله، سیستم‌های ایمنی احتراق (Combustion Safeguard Systems) نیز نقش مهمی در حفاظت از فرآیندهای حرارتی دارند. این سیستم‌ها شامل مجموعه‌ای از تجهیزات نظارتی، شیرهای ایمنی و سیستم‌های کنترلی هستند که با تشخیص تغییرات غیرعادی در احتراق، عملکرد دستگاه را کنترل می‌کنند.

    اجزای کلیدی سیستم‌های ایمنی احتراق

    کنترلر احتراق: وظیفه دارد وضعیت شعله و عملکرد سوخت را بررسی کند.
    شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را متوقف می‌کنند.
    حسگرهای فشار و دما: برای اطمینان از تعادل مناسب فشار و دمای گاز یا مایع سوختی استفاده می‌شوند.

    نقش سنسورهای فرابنفش در تشخیص شعله

    سنسورهای فرابنفش (UV Sensors) یکی از ابزارهای مهم در تشخیص شعله‌های آتش هستند، اما ممکن است در اثر خرابی، دیگر قادر به تشخیص خاموش شدن شعله نباشند. به همین دلیل، استاندارد NFPA 86 توصیه می‌کند که این سنسورها دارای قابلیت خودبررسی‌کننده (Self-Checking UV Detectors) باشند یا به‌صورت دوره‌ای آزمایش شوند.

    تنظیمات دمایی و تهویه ایمنی در کوره‌ها

    Z

    کنترل دمای سوخت

    در فرآیندهای صنعتی که از سوخت‌های مایع مانند نفت یا گازوئیل استفاده می‌شود، کنترل دمای سوخت برای جلوگیری از مشکلاتی نظیر افزایش ویسکوزیته یا تبخیر ناگهانی، ضروری است.
    دمای سوخت باید در محدوده‌ای باشد که موجب احتراق یکنواخت و جلوگیری از خاموش شدن ناگهانی شعله شود.

    تنظیم محدودیت دمای اضافی

    نقطه تنظیم دمای اضافی باید بر اساس توصیه‌های سازنده تنظیم شود تا از رسیدن مواد قابل احتراق به دمای خوداشتعالی جلوگیری شود.
    این دما نباید از محدوده‌ای که می‌تواند باعث خرابی تجهیزات شود، فراتر رود.

    اهمیت تهویه ایمنی

    در صورت افزایش دمای کوره، جریان هوای خروجی کاهش یافته و احتمال تجمع گازهای اشتعال‌پذیر افزایش می‌یابد.
    کاهش تهویه مناسب می‌تواند موجب انفجار گازهای فرار شده و باعث بروز حوادث جدی شود.

    Z

    استفاده از PLC در نظارت بر دمای کوره‌ها

    امروزه استفاده از PLC (Programmable Logic Controller) برای نظارت بر دما و عملکرد تجهیزات صنعتی به‌شدت رایج شده است. این سیستم‌ها می‌توانند به‌صورت خودکار وضعیت سنسورها و تجهیزات ایمنی را تحلیل کرده و در صورت بروز هرگونه ناهنجاری، اقدامات لازم را انجام دهند. مزایای استفاده از PLC شامل:

    پایش دائمی و ارسال هشدارهای زودهنگام
    کاهش خطای انسانی در نظارت بر تجهیزات
    امکان کنترل و تنظیم خودکار دما و فشار

    نکات ایمنی در زمان قطع برق

    استاندارد NFPA 86 تأکید دارد که مدارهای الکتریکی مرتبط با فرآیندهای احتراقی، در شرایط اضطراری باید به‌صورت خودکار یا دستی قطع شوند. این موارد شامل:

    خرابی‌های سیستم که منجر به شرایط خطرناک شود.
    افزایش غیرقابل‌کنترل دما که تهدیدی برای ایمنی تجهیزات و محیط اطراف باشد.
    قطع ناگهانی برق که می‌تواند باعث از کار افتادن سیستم‌های ایمنی و احتراقی شود.

    9k=

    نتیجه‌گیری

    استاندارد NFPA 86 مجموعه‌ای از دستورالعمل‌های مهم برای ایمنی فرآیندهای صنعتی ارائه می‌دهد. استفاده صحیح از دتکتورهای شعله، سیستم‌های ایمنی احتراق، کنترل دمای کوره و تهویه مناسبمی‌تواند خطرات ناشی از آتش‌سوزی و انفجار را کاهش دهد. علاوه بر این، نظارت هوشمند با استفاده از PLC و رعایت الزامات نصب و نگهداری، نقش مهمی در بهبود عملکرد تجهیزات و افزایش طول عمر آن‌ها دارد.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    توصیه‌های نهایی:

    دتکتورهای شعله باید در مکان‌های مناسب نصب شوند تا دید کافی نسبت به شعله داشته باشند.
    سنسورهای فرابنفش باید دارای قابلیت خودبررسی باشند یا به‌صورت دوره‌ای تست شوند.
    سیستم‌های تهویه ایمنی باید همواره عملکرد مناسبی داشته باشند تا از تجمع گازهای خطرناک جلوگیری شود.
    در موارد افزایش دمای غیرمجاز، سیستم‌های کنترلی باید به‌صورت خودکار عمل کنند تا از خرابی یا حوادث ناگوار جلوگیری شود.
    نظارت مستمر بر عملکرد تجهیزات با استفاده از PLC باعث افزایش بهره‌وری و کاهش هزینه‌های نگهداری می‌شود.

    با رعایت این موارد، می‌توان ایمنی در محیط‌های صنعتی را بهبود بخشید و از وقوع حوادث جلوگیری کرد.