طراحی سیستم اطفاء حریق با گاز دی اکسیدکربن

IMG 1594

اثرات بازشوها بر طراحی و عملکرد سیستم اطفاء حریق با گاز دی اکسیدکربن

NFPA12 ANNEX-E

ضمیمه E – آتش‌سوزی‌های سطحی
این ضمیمه بخشی از الزامات این سند NFPA نیست، بلکه صرفاً برای اهداف اطلاعاتی ارائه شده است.

E.1 الزامات ارائه‌شده در بخش 5.3 عوامل مختلفی را که می‌توانند بر عملکرد سامانه دی‌اکسید کربن تأثیر بگذارند، در نظر گرفته‌اند. پرسش در مورد محدودیت بازشوهایی که قابل‌بسته شدن نیستند، اغلب مطرح می‌شود و پاسخ دقیق به آن دشوار است.
از آنجا که آتش‌سوزی‌های سطحی معمولاً از نوعی هستند که می‌توان آن‌ها را با روش‌های اطفاء موضعی خاموش کرد، انتخاب بین روش غرقاب کامل و روش کاربرد موضعی را می‌توان بر اساس مقدار دی‌اکسید کربن مورد نیاز انجام داد.

این انتخاب در مثال‌های زیر برای فضای محصور نمایش‌داده‌شده در شکلE.1(a) نشان داده شده است.

9k=

عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۱۷ پوند بر دقیقه بر فوت مربع برای غلظت ۳۴ درصد در ارتفاع ۷ فوت خواهد بود.
دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):

17 X 5= 85 lb

مجموع دی‌اکسید کربن مورد نیاز:

111 + 85= 196 lb

9k=

عامل تبدیل ماده (به بخش ۵.۳.۴ مراجعه شود): از آنجا که غلظت طراحی بیش از ۳۴ درصد نیست، نیازی به تبدیل وجود ندارد.
شرایط ویژه (به بخش ۵.۳.۵ مراجعه شود): دی‌اکسید کربن از طریق بازشدگی پایینی خارج خواهد شد، در حالی که هوا از طریق بازشدگی بالایی وارد می‌شود. بر اساس شکل E.1 (b)، نرخ خروجی برابر با ۸۵کیلوگرم بر دقیقه بر متر مربع برای غلظت ۳۴ درصد در ارتفاع ۲.۱ متر خواهد بود.
دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۸۵ × ۰.۵ = ۴۲.۵ کیلوگرم
مجموع دی‌اکسید کربن مورد نیاز:
۴۸.۶ + ۴۲.۵ = ۹۱.۱ کیلوگرم

9k=

دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۱۷ × ۱۰ = ۱۷۰ پوند
مجموع دی‌اکسید کربن مورد نیاز:
۱۱۱ + ۱۷۰ = ۲۸۱ پوند
از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۰.۲۵ پوند بر دقیقه بر فوت مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
مساحت کل بازشدگی‌ها: ۲۰ فوت مربع
مساحت کل دیوارها: (۱۰ + ۱۰ + ۲۰ + ۲۰) × ۱۰ = ۶۰۰ فوت مربع
نرخ تخلیه:
(۲۰ ÷ ۶۰۰) × (۱۰.۲۵) + ۰.۲۵ = ۰.۲۷ پوند بر دقیقه بر فوت مکعب
نرخ کل تخلیه:
۰.۲۷ × ۲۰۰۰ = ۵۴۰ پوند بر دقیقه
مقدار دی‌اکسید کربن:
۵۴۰ ÷ ۲ = ۲۷۰ پوند

کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
زمانی که بازشدگی‌ها به ۲۰ فوت مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

2Q==

دی‌اکسید کربن اضافی برای بازشدگی‌ها (به بخش ۵.۳.۵.۱ مراجعه شود):
۸۵ × ۱.۰ = ۸۵ کیلوگرم
مجموع دی‌اکسید کربن مورد نیاز:
۴۸.۶ + ۸۵ = ۱۳۳.۶ کیلوگرم
از آنجا که میزان جبران خسارت از مقدار اولیه اطفاء حریق فراتر رفته است (به بخش ۵.۲.۱.۱ مراجعه شود)، به فصل ۶ ارجاع داده می‌شود. بر اساس روش نرخ بر حجم، بخش ۶.۵.۳.۲ بیان می‌کند که نرخ تخلیه می‌تواند تا حداقل ۴ کیلوگرم بر دقیقه بر متر مکعب برای دیوارهای واقعی که به طور کامل اتاق سرور را محصور کرده‌اند کاهش یابد. بازشدگی‌ها می‌توانند به عنوان درصدی از محصورسازی دیوار محاسبه شوند تا نرخ تخلیه مناسب تعیین شود.
مساحت کل بازشدگی‌ها: ۲.۰ متر مربع
مساحت کل دیوارها: (۳ + ۳ + ۶ + ۶) × ۳ = ۵۴ متر مربع
نرخ تخلیه:
(۲ ÷ ۵۴) × (۱۶۴) + ۴ = ۴.۴ کیلوگرم بر دقیقه بر متر مکعب
نرخ کل تخلیه:
۴.۴ × ۵۴ = ۲۳۷.۶ کیلوگرم بر دقیقه بر متر مکعب
مقدار دی‌اکسید کربن:
۲۳۷.۶ ÷ ۲ = ۱۱۸.۸ کیلوگرم
کاربرد موضعی نیاز به تخلیه مایع به مدت ۳۰ ثانیه دارد.
در حالت ذخیره‌سازی پرفشار، مقدار دی‌اکسید کربن باید ۴۰ درصد افزایش یابد (به بخش ۶.۳.۱.۱ مراجعه شود) تا تخلیه مایع به مدت ۳۰ ثانیه تضمین شود.
زمانی که بازشدگی‌ها به ۲.۰ متر مربع برای هر کدام افزایش یابد، تکنیک‌های کاربرد موضعی نسبت به اطفاء حریق کلی، دی‌اکسید کربن کمتری برای هر دو نوع ذخیره‌سازی کم‌فشار و پرفشار نیاز خواهند داشت.

9k=

p

نوشته‌های مشابه

  • الزامات طراحی سیستم اطفاء حریق به روش غرقه سازی کلی یا TOTAL FLOODING با گاز دی اکسید کربن

    1. فصل ۵ – سیستم‌های غرقه‌سازی کلی

    ۵.۱ اطلاعات عمومی (همچنین به پیوست D مراجعه شود)
    ۵.۱.۱ توصیف: یک سیستم غرقه‌سازی کلی باید شامل منبع ثابت دی‌اکسید کربن باشد که به صورت دائم به لوله‌کشی ثابت متصل شده و دارای نازل‌های ثابت برای تخلیه دی‌اکسید کربن به داخل فضای بسته یا اتاق سرور پیرامون خطر باشد.

    ۵.۱.۲ کاربردها: سیستم غرقه‌سازی کلی باید در مواردی استفاده شود که یک محفظه دائمی اطراف خطر وجود دارد و امکان ایجاد و حفظ غلظت لازم دی‌اکسید کربن برای مدت زمان مورد نیاز را فراهم می‌کند.

    ۵.۱.۳ الزامات کلی: سیستم‌های غرقه‌سازی کلی باید طبق الزامات مربوطه در فصل ۴ و همچنین الزامات اضافی ذکرشده در این فصل طراحی، نصب، آزمون و نگهداری شوند.

    ۵.۱.۴ الزامات ایمنی: به بندهای ۴.۳ و ۴.۵.۶ مراجعه شود.

    ۵.۲ مشخصات خطر

    ۵.۲.۱ محفظه

    ۵.۲.۱.۱ برای آتش‌های سطحی یا شعله‌ای، مانند آتش‌هایی که در مایعات قابل اشتعال رخ می‌دهند، هرگونه بازشدگی غیرقابل‌بسته شدن باید طبق بند ۵.۳.۵.۱ با مقدار بیشتری دی‌اکسید کربن جبران شود.

    ۵.۲.۱.۲ اگر مقدار دی‌اکسید کربن موردنیاز برای جبران بازشدگی‌ها از مقدار پایه موردنیاز برای غرقه‌سازی بدون نشت بیشتر باشد، طراحی سیستم به‌صورت کاربرد موضعی طبق فصل ۶ مجاز است.

    ۵.۲.۱.۳ برای آتش‌های عمیق‌ریشه مانند آنچه در جامدات رخ می‌دهد، بازشدگی‌های غیرقابل‌بسته شدن باید به آن‌هایی محدود شوند که در سقف یا مجاور سقف قرار دارند، در صورتی که اندازه این بازشدگی‌ها از الزامات تهویه فشار تعیین‌شده در بند ۵.۶.۲ بیشتر باشد.

    ۵.۲.۱.۴ برای جلوگیری از گسترش آتش از طریق بازشدگی‌ها به خطرات مجاور یا مناطق کاری که ممکن است منابع دوباره اشتعال باشند، این بازشدگی‌ها باید دارای بسته‌شونده‌های خودکار یا نازل‌های کاربرد موضعی باشند.

    ۵.۲.۱.۴.۱ گاز موردنیاز برای چنین حفاظت‌هایی باید علاوه بر مقدار معمول برای غرقه‌سازی کلی فراهم شود. (به بند ۶.۴.۳.۶مراجعه شود)

    ۵.۲.۱.۴.۲ اگر هیچ‌کدام از روش‌های ذکرشده در بندهای ۵.۲.۱.۴و ۵.۲.۱.۴.۱ عملی نباشد، حفاظت باید به خطرات یا مناطق کاری مجاور نیز گسترش یابد.

    ۵.۲.۱.۵ در مورد مخازن فرآیندی و ذخیره‌سازی که تهویه ایمن بخارات و گازهای قابل اشتعال امکان‌پذیر نیست، استفاده از سیستم‌های کاربرد موضعی بیرونی طبق بند ۶.۴.۳.۶ الزامی است.

    ۵.۲.۲ نشت و تهویه

    از آنجا که کارایی سیستم‌های دی‌اکسید کربن به حفظ غلظت خاموش‌کننده گاز بستگی دارد، نشت گاز از فضای موردنظر باید به حداقل رسیده و با افزودن گاز اضافی جبران شود.

    ۵.۲.۲.۱ در صورت امکان، بازشدگی‌هایی مانند درها، پنجره‌ها و … باید طوری طراحی شوند که پیش از تخلیه دی‌اکسید کربن یا همزمان با آن به‌طور خودکار بسته شوند یا الزامات بندهای ۵.۳.۵.۱ و ۵.۴.۴.۱ رعایت شوند. (برای ایمنی افراد، به بند ۴.۳مراجعه شود)

    ۵.۲.۲.۲ در مواردی که سیستم تهویه با هوای فشرده درگیر باشد، این سیستم‌ها ترجیحاً باید پیش از تخلیه دی‌اکسید کربن یا همزمان با آن خاموش یا بسته شوند، یا گاز جبرانی اضافی فراهم گردد. (به بند ۵.۳.۵.۲ مراجعه شود)

    ۵.۲.۳ انواع آتش

    آتش‌هایی که با روش غرقه‌سازی کلی قابل خاموش‌سازی هستند، به دو دسته زیر تقسیم می‌شوند:

    ۱. آتش‌های سطحی شامل مایعات، گازها و جامدات قابل اشتعال
    ۲. آتش‌های عمیق‌ریشه شامل جامداتی که قابلیت دودزایی و شعله‌ور شدن دارند

    ۵.۲.۳.۱ آتش‌های سطحی

    برای آتش‌های سطحی، دی‌اکسید کربن باید به‌سرعت در محفظه تزریق شود تا نشت جبران شده و غلظت خاموش‌کننده برای مواد خاص ایجاد گردد.

    ۵.۲.۳.۲ آتش‌های عمیق‌ریشه

    برای آتش‌های عمیق‌ریشه، غلظت طراحی‌شده باید برای مدت زمانی حفظ شود تا دودزایی خاموش و مواد تا نقطه‌ای خنک شوند که پس از از بین رفتن جو بی‌اثر، مجدداً مشتعل نشوند.

    ۵.۳ نیازمندی‌های دی‌اکسید کربن برای آتش‌های سطحی

    ۵.۳.۱ کلیات

    ۵.۳.۱.۱ مقدار دی‌اکسید کربن برای آتش‌های سطحی باید بر اساس شرایط متوسط و با فرض خاموش شدن نسبتاً سریع در نظر گرفته شود.

    ۵.۳.۱.۲ اگرچه یک حاشیه ایمن برای نشت معمولی در عوامل حجمی پایه لحاظ شده است، اما باید اصلاحاتی بر اساس نوع ماده درگیر و سایر شرایط خاص صورت گیرد.

    ۵.۳.۲ مواد قابل اشتعال

    ۵.۳.۲.۱ باید مقدار غلظت طراحی‌شده دی‌اکسید کربن متناسب با نوع ماده قابل اشتعال موجود در خطر تعیین گردد.

    ۵.۳.۲.۱.۱ این غلظت باید با افزودن ضریب ۲۰ درصد به حداقل غلظت مؤثر محاسبه شود.

    ۵.۳.۲.۱.۲ در هیچ حالتی نباید از غلظتی کمتر از ۳۴ درصد استفاده شود.

    ۵.۳.۲.۲ جدول ۵.۳.۲.۲ باید برای تعیین حداقل غلظت‌های دی‌اکسید کربن برای مایعات و گازهای مندرج در جدول استفاده شود.

    ۵.۳.۲.۳ برای موادی که در جدول ۵.۳.۲.۲ ذکر نشده‌اند، غلظت تئوریک حداقل دی‌اکسید کربن باید از منبعی معتبر به‌دست آید یا با آزمون مشخص گردد.

    ۵.۳.۲.۴ در صورت وجود اطلاعاتی از مقادیر اکسیژن باقی‌مانده مجاز، غلظت تئوریک دی‌اکسید کربن باید با استفاده از فرمول زیر محاسبه شود:

    ۵.۳.۳ ضریب حجم

    ضریب حجمی که برای تعیین مقدار پایه دی‌اکسید کربن جهت حفاظت از یک محفظه حاوی ماده‌ای با نیاز به غلظت طراحی‌شده ۳۴ درصد استفاده می‌شود، باید مطابق جدول‌های ۵.۳.۳(a) و ۵.۳.۳(b) باشد.

    ۵.۳.۳.۱ در محاسبه ظرفیت خالص مکعبی که باید محافظت شود، اجازه داده می‌شود که برای ساختارهای دائمی، غیرقابل جابجایی و نفوذناپذیر که حجم را به‌طور قابل توجهی کاهش می‌دهند، کسر حجمی در نظر گرفته شود.

    ۵.۳.۳.۲ حجم‌های به‌هم‌پیوسته

    ۵.۳.۳.۲.۱ در دو یا چند حجم به‌هم‌پیوسته که جریان آزاد دی‌اکسید کربن بین آن‌ها ممکن است، مقدار دی‌اکسید کربن باید برابر با مجموع مقادیر محاسبه‌شده برای هر حجم، با استفاده از ضریب حجم متناظر از جدول‌های ۵.۳.۳(a) یا ۵.۳.۳(b) باشد.

    ۵.۳.۳.۲.۲ اگر یکی از حجم‌ها به غلظت بیشتری از مقدار نرمال نیاز داشته باشد (به بند ۵.۳.۴ مراجعه شود)، باید همان غلظت بالاتر برای تمام حجم‌های به‌هم‌پیوسته استفاده شود.

    p

  • سیستم‌های تشخیص، راه‌اندازی، هشدار و کنترل تخلیه گاز تمیز برای سیستم اطفاء حریق

    9.1.1 پنل کنترل برای سرویس تخلیه
    سیستم‌های تشخیص، راه‌اندازی، هشدار و کنترل باید مطابق با استانداردNFPA 72 طراحی، نصب، آزمایش و نگهداری شوند.

    9.1.1.1 سیستم‌هایی که فقط از طریق راه‌اندازی دستی مکانیکی عمل می‌کنند، در صورتی که مقامات مسئول اجازه دهند، مجاز هستند.

    9.1.1.2 یک منبع تأمین قدرت اصلی اختصاصی و یک منبع برق پشتیبان با حداقل 24 ساعت و حداقل 5 دقیقه جریان هشدار باید برای عملیات تشخیص، سیگنال‌دهی، کنترل و راه‌اندازی سیستم مورد استفاده قرار گیرد.

    9.1.1.3 سیستم اعلام حریق ساختمان‌های محافظت‌شده باید فقط برای کنترل پنل تخلیه سیستم اطفاء حریق گاز تمیز استفاده شود، در صورتی که برای تخلیه با دستگاه خاص سیستم اطفاء حریق گاز تمیز فهرست شده باشد، طبق بندهای 9.4.8 و 9.4.9.

    9.1.1.4 اگر پنل کنترل تخلیه سیستم اطفاء حریق گاز تمیز در یک ساختمان محافظت‌شده که سیستم اعلام حریق جداگانه‌ای دارد، قرار گیرد، باید توسط سیستم اعلام حریق ساختمان برای سیگنال‌های هشدار، نظارتی و مشکل‌دار نظارت شود.

    9.1.1.5 اگر واحد کنترل سیستم اعلام حریق تخلیه در یک ساختمان محافظت‌شده که سیستم اعلام حریق جداگانه‌ای دارد، قرار گیرد، باید برای سیگنال‌های هشدار، نظارتی و مشکل‌دار نظارت شود، اما نباید به عملیات یا خرابی سیستم اعلام حریق ساختمان وابسته باشد یا تحت تأثیر قرار گیرد.

    9.1.2 شروع و راه‌اندازی
    تشخیص خودکار و راه‌اندازی خودکار باید استفاده شوند.

    9.1.3 روش‌های سیم‌کشی*
    سیم‌کشی مدارهای شروع و تخلیه باید در کانال‌های خاص نصب شوند.

    9.1.3.1 به جز موارد مجاز در 9.1.3.2، سیم‌کشی جریان متناوب (ac) و جریان مستقیم (dc) نباید در یک کانال یا مسیر مشترک ترکیب شوند.

    9.1.3.2 ترکیب سیم‌کشی ac و dc در یک کانال یا مسیر مشترک مجاز است، در صورتی که شیلد شده و به زمین متصل باشد.

    9.2 تشخیص خودکار

    9.2.1 تشخیص خودکار باید توسط هر روش یا دستگاه فهرست‌شده‌ای باشد که قادر به تشخیص و نشان دادن حرارت، شعله، دود، بخارات قابل اشتعال یا شرایط غیرعادی در خطر باشد، مانند مشکلات فرآیند که احتمالاً باعث آتش‌سوزی شوند.

    9.2.2 در جایی که یک سیستم عامل جدید در فضایی که سیستم تشخیص موجود دارد نصب می‌شود، باید تحلیلی از دستگاه‌های تشخیص انجام شود تا اطمینان حاصل شود که سیستم تشخیص در شرایط عملیاتی خوبی قرار دارد و به موقعیت آتش‌سوزی طبق اهداف طراحی سیستم پاسخ خواهد داد.

    9.3 راه‌اندازی دستی

    یک وسیله راه‌اندازی دستی باید برای سیستم فراهم شود، مگر در مواردی که بر اساس 9.3.4 اجازه حذف آن داده شده باشد.

    9.3.1 راه‌اندازی دستی باید باعث عملکرد همزمان شیرهای خودکار کنترل‌کننده تخلیه گاز و توزیع آن شود.

    9.3.2 یک سوئیچ فشار تخلیه که سیگنال هشدار را به پنل تخلیه ارسال می‌کند، در جایی که از راه‌اندازی دستی مکانیکی استفاده می‌شود و امکان عملکرد مکانیکی سیستم وجود دارد، الزامی است.

    9.3.3 در جایی که از پنل تخلیه استفاده نمی‌شود، سوئیچ فشار تخلیه باید عملکردهای الکتریکی مورد نیاز هنگام راه‌اندازی سیستم را آغاز کند، از جمله اطلاع‌رسانی.

    9.3.4 برای سیستم‌های خودکار، وسیله راه‌اندازی دستی لازم نیست، زمانی که خطر محافظت‌شده غیرقابل سکونت باشد و خطر در مکانی دورافتاده قرار داشته باشد که پرسنل به‌طور معمول در آنجا حضور ندارند.

    9.3.5 وسیله‌های راه‌اندازی دستی باید همیشه در دسترس باشند، حتی در زمان وقوع آتش‌سوزی.

    9.3.6 وسیله‌های راه‌اندازی دستی باید برای هدف مورد نظر قابل شناسایی باشند.

    9.3.7 عملیات هر وسیله دستی باید باعث عملکرد کامل سیستم به‌طور طراحی‌شده شود.

    9.3.8 کنترل‌های دستی نباید به نیرویی بیشتر از 40 پوند (178 نیوتن) یا حرکت بیشتر از 14 اینچ (356 میلی‌متر) برای راه‌اندازی نیاز داشته باشند.

    9.3.9 حداقل یک وسیله کنترل دستی برای فعال‌سازی باید در فاصله‌ای بیشتر از 4 فوت (1.2 متر) از کف قرار گیرد.

    9.3.10 تمام وسایل عملیاتی دستی باید با نام خطراتی که از آن‌ها محافظت می‌کنند شناسایی شوند.

    9.4 دستگاه‌های عملیاتی و تجهیزات کنترل برای تخلیه گاز، کنترل تخلیه و خاموش کردن تجهیزات

    9.4.1 عملیات دستگاه‌های تخلیه گاز یا شیرها، کنترل تخلیه‌ها و تجهیزات خاموش کردن که برای عملکرد موفقیت‌آمیز سیستم ضروری هستند، باید از طریق وسایل مکانیکی، الکتریکی یا پنوماتیکی فهرست‌شده انجام شود.

    9.4.2 دستگاه‌های عملیاتی باید برای کاربرد در محیطی که در آن به کار می‌روند، مناسب باشند.

    9.4.3 تجهیزات عملیاتی نباید به راحتی از کار بیافتند یا در معرض عملیات تصادفی قرار گیرند.

    9.4.4 دستگاه‌ها معمولاً باید طوری طراحی شوند که به درستی از -20°F تا 130°F (-29°C تا 54°C) عمل کنند یا به گونه‌ای علامت‌گذاری شوند که محدودیت‌های دمایی آن‌ها را نشان دهند.

    9.4.5 دستگاه‌های عملیاتی باید به‌گونه‌ای قرار گیرند، نصب شوند یا محافظت شوند که در برابر آسیب‌های مکانیکی، شیمیایی یا دیگر آسیب‌ها که می‌تواند باعث از کار افتادن آن‌ها شود، مقاوم باشند.

    9.4.6 در صورتی که فشار گاز از سیستم یا مخازن پیلوت به عنوان وسیله‌ای برای تخلیه مخازن ذخیره‌سازی عامل استفاده شود، نرخ تأمین و تخلیه باید برای تخلیه تمام مخازن باقی‌مانده طراحی شود.

    9.4.7 تمام دستگاه‌ها برای خاموش کردن تجهیزات کمکی باید با عملکرد سیستم به عنوان بخش‌های یکپارچه از سیستم عمل کنند.

    9.4.8 تجهیزات کنترل باید به طور خاص برای تعداد و نوع دستگاه‌های فعال‌کننده مورد استفاده فهرست شده باشند.

    9.4.9 تجهیزات کنترل و دستگاه‌های فعال‌کننده باید برای سازگاری با یکدیگر فهرست شده باشند.

    9.4.10 نظارت بر حذف عملگر الکتریکی

    9.4.10.1 حذف عملگر الکتریکی از شیر تخلیه مخزن ذخیره‌سازی عامل یا شیر انتخاب‌کننده‌ای که کنترل می‌کند، باید باعث ایجاد هشدار صوتی و بصری از نقص سیستم در پنل کنترل تخلیه سیستم شود.

    9.4.10.2 بند 9.4.10.1 شامل سیستم‌های تحت پوشش فصل 13 این استاندارد نمی‌شود، به جز سیستم‌هایی که در بخش 13.6 گنجانده شده‌اند.

    9.4.11 تجهیزات کنترل باید دستگاه‌های فعال‌کننده و سیم‌کشی‌های مرتبط را نظارت کرده و در صورت نیاز باعث راه‌اندازی آنها شود.

    9.4.12 حذف دستگاه فعال‌کننده مخزن اصلی عامل از شیر تخلیه یا شیر انتخاب‌کننده باید باعث ایجاد سیگنال مشکل یا نظارتی در واحد کنترل تخلیه شود.

    9.4.13 در جایی که از تجهیزات کنترل پنوماتیک استفاده می‌شود، خطوط باید در برابر از دست دادن یکپارچگی محافظت شوند.

    9.5 دستگاه‌های هشدار، وسایل اطلاع‌رسانی و نشانگرها

    9.5.1 دستگاه‌های اطلاع‌رسانی یا نشانگرهای پنل کنترل باید برای نشان دادن عملکرد سیستم، خطرات برای پرسنل یا خرابی هر دستگاه تحت نظارت استفاده شوند.

    9.5.2 نوع (مانند صوتی، بصری)، تعداد و محل قرارگیری دستگاه‌های اطلاع‌رسانی و نشانگرها باید به گونه‌ای باشد که هدف آن‌ها برآورده شود و تمام الزامات را تأمین کند.

    9.5.3 دستگاه‌های اطلاع‌رسانی باید به گونه‌ای طراحی شوند که طبق الزامات برنامه واکنش اضطراری ساختمان عمل کنند.

    9.5.4 هشدار صوتی و بصری قبل از تخلیه باید در داخل منطقه محافظت‌شده فضاهای قابل سکونت فراهم شود تا هشدار قوی برای تخلیه قریب‌الوقوع داده شود.

    9.5.5 عملکرد دستگاه‌های اطلاع‌رسانی باید پس از تخلیه عامل ادامه یابد تا زمانی که اقدام مثبت برای شناسایی هشدار انجام شده و اقدام مناسب انجام شود.

    9.6 کلیدهای لغو

    کلیدهای لغو برای سیستم‌های تخلیه گاز تمیز مجاز هستند.

    9.6.1 در صورتی که کلیدهای لغو نصب شوند، باید در داخل منطقه محافظت‌شده و نزدیک به راه‌ خروج منطقه قرار گیرند.

    9.6.2 کلید لغو باید از نوعی باشد که برای لغو نیاز به فشار دستی دائمی داشته باشد.

    9.6.3 راه‌اندازی دستی باید عملکرد لغو را لغو کند.

    9.6.4 عملکرد تابع لغو باید باعث ایجاد هشدار صوتی و بصری مشخص از نقص سیستم شود.

    9.6.5 کلیدهای لغو باید به‌طور واضح برای هدف مورد نظر قابل شناسایی باشند.

    9.7 تأخیرهای زمانی

    9.7.1 باید یک هشدار پیش‌تخلیه و تأخیر زمانی کافی برای اجازه به تخلیه پرسنل قبل از تخلیه فراهم شود.

    9.7.2 برای نواحی خطرناک که در معرض آتش‌های رشد سریع هستند، جایی که فراهم کردن تأخیر زمانی تهدیدی برای جان و مال ایجاد کند، مجاز است که تأخیر زمانی حذف شود.

    9.7.3 تأخیرهای زمانی باید تنها برای تخلیه پرسنل یا آماده‌سازی منطقه خطر برای تخلیه استفاده شوند.

    9.7.4 تأخیرهای زمانی نباید به عنوان روشی برای تأیید عملکرد دستگاه شناسایی قبل از وقوع فعال‌سازی خودکار استفاده شوند.

    9.8 کلید قطع‌کننده

    9.8.1 برای جلوگیری از تخلیه ناخواسته سیستم عامل تمیز الکتریکی، باید یک کلید قطع‌کننده تحت نظارت فراهم شود.

    9.8.2 کلید قطع‌کننده باید در برابر استفاده غیرمجاز با یکی از روش‌های زیر محافظت شود:

    1. در داخل پنل کنترل قفل‌شونده قرار گیرد.
    2. در داخل یک محفظه قفل‌شونده قرار گیرد.
    3. برای فعال‌سازی کلید به کلید نیاز داشته باشد.

    9.8.3 زمانی که کلید قطع‌کننده برای فعال‌سازی نیاز به کلید دارد، کلید دسترسی نباید زمانی که مدار قطع‌کننده قطع است، قابل جدا شدن باشد.

    9.8.4 غیر فعال کردن توالی آزادسازی سیستم سرکوب از طریق برنامه‌نویسی نرم‌افزاری نباید به‌عنوان جایگزینی برای استفاده از یک کلید قطع‌کننده فیزیکی قابل قبول باشد.

    9.8.5 کلید قطع‌کننده باید فهرست شده باشد.

    9.9 شیرهای قفل‌شونده

    اگر شیر قفل‌شونده نصب شده باشد، پنل آزادسازی باید یک سیگنال نظارتی را هنگامی که شیر قفل‌شونده در وضعیت کاملاً باز نباشد، اعلام کند.

  • مکان‌های مناسب برای نصب دتکتور گاز

    مکان نصب دتکتور گاز بسته به ویژگی‌های خاص گاز مورد پایش متفاوت است. توضیحات زیر برای هر نوع دتکتور، با در نظر گرفتن این ویژگی‌ها، راهنمایی ارائه می‌دهد.

    گاز طبیعی / متان (CH₄) و هیدروژن (H₂)
    دتکتورهای گاز طبیعی (متان، CH₄) و هیدروژن (H₂) باید در ارتفاع بالا، تقریباً ۱۵۰ میلی‌متر از سقف نصب شوند. باید از گوشه‌ها و نقاطی که ممکن است هوای ساکن داشته باشند، اجتناب شود.

    WhatsApp Image 2025 09 22 at 1.05.30 AM
    نکات کلیدی:

    • ارتفاع نصب: دتکتور گاز طبیعی نباید پایین‌تر از ارتفاع بالای در نصب شود. چون گاز طبیعی کمی از هوا سبک‌تر است، به سمت بالا حرکت کرده و از سقف به پایین پخش می‌شود. در نتیجه، ممکن است از قسمت بالای در به اتاق‌های مجاور نشت کند.
    • زمان پاسخ: اگر دتکتورها پایین‌تر از این ارتفاع نصب شوند، زمان بیشتری طول می‌کشد تا گاز به دتکتور برسد که می‌تواند زمان واکنش در صورت نشت گاز را به تأخیر بیندازد. جانمایی صحیح باعث می‌شود دتکتور سریع‌تر غلظت گاز در حال افزایش را شناسایی کند.
    • نکات نصب: دتکتورها باید دور از سامانه‌های تهویه و موانعی که ممکن است جریان گاز را مختل کنند، نصب شوند. نگهداری و آزمون منظم دتکتورها نیز برای اطمینان از عملکرد مناسب توصیه می‌شود.

    ال‌پی‌جی / پروپان (C₃H₈)
    دتکتورهای LPG (پروپان، C₃H₈) باید به دلیل سنگینی بیشتر نسبت به هوا، در ارتفاع پایین نصب شوند. دتکتورها باید حدود ۱۵۰ میلی‌متر (با حداکثر ارتفاع ۴۰۰ میلی‌متر) از کف زمین فاصله داشته باشند.

    WhatsApp Image 2025 09 22 at 1.05.30 AM1
    نکات کلیدی:

    • ارتفاع نصب: به دلیل چگالی بیشتر، LPG تمایل دارد در نزدیکی زمین تجمع یابد. جانمایی در ارتفاع مناسب باعث می‌شود دتکتور سریعاً نشت احتمالی گاز را شناسایی کند.
    • عوامل محیطی: در هنگام تعیین ارتفاع نصب، باید شرایط مرطوب مانند زمین خیس شده توسط طی‌کشی یا ریختگی‌ها در نظر گرفته شود. در این موارد، دتکتورها باید بالاتر از ارتفاع تجمع احتمالی آب نصب شوند تا از هشدارهای کاذب جلوگیری شود.
    • نکات نصب: دتکتورها نباید در مجاورت جریان‌های قوی هوا مانند درها، پنجره‌ها یا سامانه‌های تهویه نصب شوند. آزمون و نگهداری منظم برای اطمینان از عملکرد بهینه ضروری است.

    منوکسید کربن (CO)، دی‌اکسید کربن (CO₂)

    منوکسید کربن (CO):
    چون وزن منوکسید کربن تقریباً با هوا برابر است، دتکتورها باید در ارتفاع بین ۱.۶ تا ۱.۸ متر از سطح زمین نصب شوند، ترجیحاً در ناحیه تنفسی.

    • ارتفاع نصب: این ارتفاع امکان شناسایی مؤثر CO در جایی که افراد تنفس می‌کنند را فراهم می‌کند.

    WhatsApp Image 2025 09 22 at 1.05.31 AM

    • نکات نصب: از نصب دتکتورها در نزدیکی سامانه‌های تهویه یا مناطق دارای جریان هوا اجتناب شود، چون ممکن است غلظت گاز را رقیق کرده و قرائت‌ها را نادقیق کند.

    دی‌اکسید کربن (CO₂):

    • دتکتورهای کلاس درس: بر اساس راهنمای IGEM/UP11، دتکتورها باید در ارتفاع سر نشسته نصب شوند. اما تجربه میدانی نشان می‌دهد که این موقعیت ممکن است باعث قرائت‌های نادرست ناشی از بازدم مستقیم شود.
    • یک گزینه: برای کاهش احتمال هشدارهای کاذب، پیروی از روش نصب دتکتورهای CO₂ مشابه آشپزخانه‌های صنعتی، یعنی بالاتر از سر ایستاده، توصیه می‌شود.
    • دتکتورهای آشپزخانه صنعتی: باید غلظت کلی CO₂ در مناطق کاری کارکنان را پایش کنند.
    • ارتفاع و موقعیت: دتکتورها باید بین ۱ تا ۳ متر از خط پخت، بالاتر از سر ایستاده نصب شوند. نباید نزدیک لبه هود یا در مسیر مستقیم جریان تهویه نصب شوند.
    • دتکتورهای آزمایشگاهی (CO₂ لوله‌کشی یا کپسولی): باید در نزدیک‌ترین نقاط نشت احتمالی مانند شیرهای گاز، رگولاتورها و محل ذخیره کپسول نصب شوند.
    • ارتفاع نصب: چون CO₂ سنگین‌تر از هوا است، دتکتورها باید در ارتفاع پایین نصب شوند.
    • نکات کلیدی: بازرسی و آزمون منظم این دتکتورها برای حفظ ایمنی و پایش مؤثر نشت‌ها حیاتی است.

    WhatsApp Image 2025 09 22 at 1.05.31 AM1

    کاهش اکسیژن (O₂):
    پایش کاهش اکسیژن یک اقدام ایمنی حیاتی برای شناسایی حضور گازهای خنثی یا نجیب است که می‌توانند جای اکسیژن را بگیرند و منجر به خفگی شوند. گازهایی مانند نیتروژن (N₂) و آرگون (Ar) در محیط‌های آزمایشگاهی رایج هستند.

    نیتروژن (N₂):
    نیتروژن یک گاز بی‌اثر، بی‌رنگ و بی‌بو است که کمی از هوا سبک‌تر بوده و به عنوان یک گاز خفه‌کننده عمل می‌کند. نیتروژن به‌طور گسترده در آزمایشگاه‌ها به عنوان گاز حامل استفاده می‌شود و از طریق کپسول‌های قابل حمل یا لوله‌کشی تأمین می‌شود.

    آرگون (Ar):
    آرگون گازی بی‌اثر، بی‌رنگ، بی‌بو و بدون طعم است. غیرسمی بوده و از احتراق پشتیبانی نمی‌کند. حدود ۰.۹۳٪ از جو زمین را تشکیل می‌دهد و در کاربردهایی نیازمند اتمسفر بی‌اثر استفاده می‌شود.

    • فرآیندهای صنعتی: در جوشکاری و فلزکاری برای جلوگیری از اکسیداسیون و واکنش‌های شیمیایی استفاده می‌شود.
    • نگهداری مواد غذایی: برای حذف اکسیژن در بسته‌بندی و افزایش ماندگاری کاربرد دارد.
    • روشنایی: در لامپ‌های فلورسنت و رشته‌ای برای جلوگیری از اکسیداسیون رشته استفاده می‌شود.

    خطر خفگی: مشابه نیتروژن، آرگون با جایگزینی اکسیژن باعث کاهش سطح اکسیژن قابل تنفس می‌شود و در غلظت‌های بالا بسیار خطرناک است.

    نصب دتکتور:

    • نیاز به پایش: چون آرگون سنگین‌تر از هوا است، دتکتورهای پایش کاهش اکسیژن باید در ارتفاع پایین نصب شوند.
    • زمان پاسخ: نصب صحیح برای هشدار زودهنگام در صورت نشت ضروری است. اگر دتکتورها خیلی بالا نصب شوند، ممکن است افراد فرصت کافی برای واکنش نداشته باشند.
    • تهویه: تهویه مناسب در محیط‌هایی که از آرگون استفاده می‌شود برای کاهش خطرات حیاتی است.
    • غنی‌سازی اکسیژن (O₂)
      غنی‌سازی اکسیژن به افزایش سطح اکسیژن فراتر از غلظت معمول جو، که حدود ۲۱ درصد است، اطلاق می‌شود. این پدیده می‌تواند تأثیر قابل‌توجهی بر پویایی آتش و ایمنی کلی در محیط‌های مختلف داشته باشد.
    • نکات کلیدی:
      خطر آتش‌سوزی: افزایش سطح اکسیژن می‌تواند فرآیند احتراق را تسریع کند و منجر به افزایش خطر آتش‌سوزی شود. موادی که در شرایط عادی ایمن یا غیرقابل اشتعال در نظر گرفته می‌شوند، ممکن است در جوهای غنی از اکسیژن بسیار قابل اشتعال شوند.
      اهمیت شناسایی: شناسایی نشتی اکسیژن برای پیشگیری از خطرات احتمالی آتش‌سوزی ضروری است. پایش منظم سطح اکسیژن در محیط‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد، مانند آزمایشگاه‌ها، مراکز درمانی و کاربردهای صنعتی که از اکسیژن خالص یا با غلظت بالا استفاده می‌کنند، ضروری است.
    • راهبردهای تشخیص:
      نصب دتکتور اکسیژن: دتکتورهای اکسیژن باید به‌صورت راهبردی در محل‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد نصب شوند؛ مانند نزدیک مخازن ذخیره‌سازی اکسیژن، سامانه‌های لوله‌کشی یا تجهیزاتی که از اکسیژن خالص استفاده می‌کنند.
      اقدامات تهویه: تأمین تهویه مناسب در نواحی با پتانسیل غنی‌سازی اکسیژن می‌تواند خطر آتش‌سوزی را کاهش دهد. جریان مناسب هوا می‌تواند غلظت اضافی اکسیژن را رقیق کرده و احتمال وقوع آتش‌سوزی را کاهش دهد.
    • غنی‌سازی اکسیژن خطرات قابل‌توجهی ایجاد می‌کند که باید از طریق پایش مستمر، نصب راهبردی دتکتورها و اجرای پروتکل‌های اضطراری مناسب، مدیریت شوند. با مدیریت فعالانه سطح اکسیژن، سازمان‌ها می‌توانند احتمال وقوع حوادث ناشی از آتش‌سوزی را به‌طور چشمگیری کاهش دهند.

     

    • پوشش منطقه‌ای: ملاحظات
      تعداد دتکتورهای گاز موردنیاز در یک منطقه مشخص، به چند عامل کلیدی بستگی دارد که شامل موارد زیر است:
    • ۱. ابعاد منطقه مورد پوشش:
      ابعاد کلی فضا تعیین می‌کند که برای پوشش کافی و تشخیص به‌موقع نشت گاز به چند دتکتور نیاز است.
    • ۲. ارتفاع اتاق:
      ارتفاع اتاق می‌تواند بر پراکندگی گاز تأثیر بگذارد. دتکتورها باید در ارتفاع مناسب بسته به نوع گاز پایش‌شده نصب شوند (برای گازهای سنگین مانند LPG در ارتفاع پایین و برای گازهای سبک مانند متان در ارتفاع بالا).
    • ۳. تجهیزات نصب‌شده:
      وجود و نوع تجهیزات موجود در منطقه، مانند دیگ‌های گازی، اجاق‌ها یا آب‌گرم‌کن‌ها، می‌توانند ریسک‌های خاصی ایجاد کنند و نیاز به دتکتورهای اضافی داشته باشند.
    • ۴. میزان لوله‌کشی:
      پیچیدگی و گستردگی لوله‌کشی گاز در منطقه می‌تواند احتمال نشتی را افزایش دهد. در نزدیکی اتصالات حیاتی یا مسیرهای طولانی لوله، ممکن است به دتکتورهای بیشتری نیاز باشد.
    • ۵. نوع گاز هدف و کاربری فضا:
      هر گاز ویژگی‌ها و رفتار خاصی دارد. درک نوع گاز هدف، چگالی آن و رفتار آن در محیط برای تعیین محل نصب دتکتور ضروری است. همچنین، نوع کاربری فضا (مثلاً فضای آموزشی در برابر آشپزخانه تجاری) الزامات پایش متفاوتی را ایجاب می‌کند.

     

    • راهنمایی درباره پوشش دتکتورها:
    • برد پوشش معمول:
      برای دتکتورهای گاز طبیعی، برد پوشش معمول ممکن است تا شعاع ۵ متر در صورت نصب روی دیوار باشد. برای دتکتورهای مونوکسید کربن، این برد می‌تواند تا ۱۰ متر افزایش یابد.
    • پایش دی‌اکسید کربن:
      در محیط‌های آموزشی و آشپزخانه‌های تجاری، دتکتورهای CO₂ باید به‌گونه‌ای راهبردی نصب شوند که شرایط محیطی نماینده را، به‌ویژه در ناحیه تنفسی، پایش کنند.
    • نوع پوشش:
      باید نوع پوشش موردنیاز نیز بررسی شود. این شامل ارزیابی این است که آیا پایش پیوسته (“پوشش گسترده”) لازم است یا بررسی نقطه‌ای (“پوشش هدفمند”) کافی است، بسته به خطرات خاص موجود در منطقه.

     

    • پوشش مؤثر منطقه‌ای برای تضمین ایمنی و قابلیت اطمینان سامانه دتکتور گاز ضروری است. با ارزیابی دقیق عوامل فوق، سازمان‌ها می‌توانند راهبردهای پایش گاز خود را بهینه کرده و از خطرات ناشی از نشت گاز و پیامدهای آن جلوگیری کنند.
    • پوشش گسترده (Blanket Coverage)
    • پوشش گسترده به استقرار راهبردی چندین دتکتور گاز به‌صورت یکنواخت در سراسر یک ناحیه مشخص، مانند یک اتاق تجهیزات صنعتی، برای اطمینان از پایش کامل و ایمنی اطلاق می‌شود.
    • 🔹 نکات کلیدی در مورد پوشش گسترده:
      توزیع یکنواخت:
      دتکتورها باید به‌صورت یکنواخت در سراسر فضا توزیع شوند تا از ایجاد هرگونه خلأ در پوشش جلوگیری شود. این امر تضمین می‌کند که هرگونه نشت گاز بدون توجه به محل وقوع آن، به‌سرعت شناسایی شود.
    • هم‌پوشانی در نواحی آشکارسازی:
      چیدمان دتکتورها به‌گونه‌ای که نواحی پوشش آن‌ها کمی هم‌پوشانی داشته باشند مفید است. این افزونگی تضمین می‌کند که در صورت خرابی یا انسداد یک دتکتور، دتکتور دیگری بتواند آن ناحیه را پوشش دهد.
    • طرح و چیدمان اتاق:
      چیدمان فیزیکی اتاق، از جمله نحوه قرارگیری تجهیزات، نواحی انبارش، و سامانه‌های تهویه باید در هنگام تعیین محل نصب دتکتورها در نظر گرفته شود. از نصب دتکتور در مکان‌هایی که ممکن است مسدود شده یا تحت تأثیر جریان هوا از فن‌ها یا کانال‌های تهویه قرار گیرند، باید اجتناب شود.
    • نوع دتکتورها:
      گازهای مختلف ممکن است به دتکتورهای خاصی نیاز داشته باشند. باید اطمینان حاصل شود که دتکتور متناسب با گاز موجود در فضا و ویژگی‌های آن (مانند سنگین‌تر یا سبک‌تر بودن از هوا) انتخاب شده باشد.
    • نگهداری و آزمون منظم:
      سامانه‌ای متشکل از چندین دتکتور نیازمند برنامه‌ نگهداری دقیق برای اطمینان از عملکرد مناسب تمامی واحدهاست. باید آزمون‌ها و کالیبراسیون منظم به‌منظور تضمین دقت و قابلیت اطمینان انجام شود.
    • ❗ همچنین، تعداد دتکتورها نیز باید مورد توجه قرار گیرد. خرابی یا برداشتن یک دتکتور برای تعمیرات نباید ایمنی ناحیه تحت پوشش را به خطر اندازد. ممکن است برای پایش پیوسته و جلوگیری از آلارم‌های کاذب، تکرار (یا سه‌برابر کردن) دتکتورها و تجهیزات کنترلی الزامی باشد.
    • اجرای رویکرد پوشش گسترده با دتکتورهایی که به‌طور یکنواخت مستقر شده‌اند، راهکاری ایمن و قوی برای پایش نشت گاز در نواحی حیاتی مانند اتاق تجهیزات فراهم می‌آورد. این کار با تضمین پوشش کامل، توان واکنش سازمان را در برابر خطرات احتمالی گاز بهبود می‌بخشد.

     

    • پوشش هدفمند (Targeted Coverage)
    • پوشش هدفمند شامل نصب راهبردی دتکتورهای گاز در مکان‌های خاصی است که احتمال نشت گاز در آن‌ها بیشتر است. این رویکرد تضمین می‌کند که پایش بر نواحی بحرانی که بیشترین احتمال نشت گاز را دارند متمرکز باشد و از این طریق ایمنی و اثربخشی واکنش را افزایش می‌دهد.
    • 🔹 نکات کلیدی در مورد پوشش هدفمند:
    • شناسایی نقاط احتمالی نشت:
      یک ارزیابی ریسک جامع باید انجام شود تا نقاط احتمالی نشت در تأسیسات شناسایی شود. نواحی رایج شامل موارد زیر هستند:
      ▪ دیگ‌های بخار: به‌عنوان تجهیزات اصلی مصرف‌کننده گاز، نقاط بحرانی برای نشت محسوب می‌شوند.
      ▪ لوله‌کشی‌ها: هرگونه اتصال، خم، یا اتصال در سامانه‌های لوله‌کشی گاز ممکن است در معرض نشت باشد.
      ▪ شیرها: عملکرد شیرها، به‌ویژه در سامانه‌های پرفشار، می‌تواند منجر به نشت احتمالی شود.
      ▪ دودکش‌ها و خروجی‌ها: در صورت وجود انسداد یا خرابی، گاز ممکن است از این مسیرها نشت کند.
    • نزدیکی به منابع گاز:
      دتکتورها باید تا حد امکان نزدیک به نقاط شناسایی‌شده نشت نصب شوند، بدون اینکه دسترسی برای تعمیر یا بهره‌برداری محدود شود. این نوع استقرار امکان شناسایی و واکنش سریع‌تر را فراهم می‌کند.
    • نوع دتکتورها:
      باید اطمینان حاصل شود که نوع دتکتور متناسب با گاز خاص مورد پایش انتخاب شود. برای مثال، از دتکتورهای گاز قابل اشتعال در نزدیکی دیگ‌ها و خطوط گاز طبیعی، و از دتکتورهای CO در نزدیکی تجهیزات احتراقی استفاده شود.
    • عوامل محیطی:
      شرایط محیطی پیرامون نقاط نشت احتمالی باید در نظر گرفته شود. عواملی مانند جریان هوا، دما و رطوبت می‌توانند بر پراکندگی گاز و اثربخشی دتکتورها تأثیر بگذارند. باید اطمینان حاصل شود که دتکتورها در موقعیتی قرار گیرند که کمترین تداخل از این عوامل را داشته باشند.
    • نگهداری و کالیبراسیون منظم:
      دتکتورهایی که در نقاط هدفمند نصب می‌شوند باید در قالب برنامه نگهداری منظم بررسی شوند، شامل آزمون‌های مکرر برای عملکرد و کالیبراسیون مجدد به‌منظور تضمین دقت اندازه‌گیری.
    • اجرای پوشش هدفمند با نصب دتکتورها در نقاط بحرانی نشت، توانایی پایش گاز را به‌طور چشمگیری افزایش می‌دهد. با تمرکز منابع در نواحی پُرخطر، سازمان‌ها می‌توانند واکنشی سریع‌تر نسبت به خطرات احتمالی گاز ارائه دهند و ایمنی کلی را بهبود ببخشند.
    • ❗ همچنین می‌توان از ترکیب هر دو تکنیک پایش برای افزایش سطح نظارت استفاده کرد.
  • معرفی دتکتورهای تاندا

    WhatsApp Image 2025 09 28 at 3.15.10 PM

    بیم دتکتورهای دودی اعلام حریق ساخت تاندا به دو مدل تقریبا مشابه هم به بازار عرضه می شوند. مدل TX-7130 و مدل TX-3703 هردو از تکنولوژی مادون قرمز برای تشخخیص دود به کار میروند و دارای توانایی و پوشش یکسان می باشند.

    مدل های TX-7130 دارای تائیدیه LPCB,CE و CCC میباشد در حالی که مدل های TX-3703 دارای تائیدیه CCC و CE  میباشند.

    WhatsApp Image 2025 09 28 at 3.15.10 PM1

    در مدل های TX-7130 میتوان حساسیت بیم دتکتور را با استفاده از دیپ سوئیچ روی بیم دتکتور و همچنین با استفاده از پروگرامر دستی تنظیم کرد.

    در مدل های TX-3703 به علت فقدان دیپ سوئیچ روی بیم دتکتور، فقط از طریق پروگرامر دستی میتوان حساسیت بیم دتکتور را تنظیم کرد. در مدل های TX-3703، بصورت پیشفرض کارخانه، بیم دتکتور روی حالت بسیار حساس تنظیم شده است.

    در واقع تنظیم حساسیت بیم دتکتورها در جایی بکار می آید که محیط تحت پوشش، محل رفت و آمد وسایل دیزلی مثل لیفتراک یا تراکتور باشد و یا به هر دلیلی بصورت دائمی در فضای تحت پوشش بیم دتکتور مقدار کمی دود وجود داشته باشد.

    از آنجا که این روزها اغلب وسایل حمل بکار رفته در سوله ها از گاز یا باطری استفاده می کنند و فضای تحت پوشش ( سوله ها ) را دچار دود گرفتگی نمی کنند، احتیاج به کم کردن حساسیت بیم دتکتور نخواهد بود و در نتیجه اعلام آتش کاذب توسط بیم دتکتور صورت نمی گیرد.

    WhatsApp Image 2025 09 28 at 3.15.10 PM2

    هر دو مدل بیم دتکتورهای تاندا می توانند یک محیط با قطر 15 متر ( شعاع 7.5 متر از چپ و راست ) و طول حداقل 8 و حداکثر 100 متر را به راحتی پوشش دهند.

    از نظر کیفیت عملکرد بین این دو مدل هیچ گونه تفاوتی وجود ندارد و هر دو به خوبی هم هستند.

    بیم دتکتور مدل TX-7130 توسط آزمایشگاه خصوصی LPCB انگلستان تائید شده است و قابل فروش در اتحادیه اروپا و انگلستان می باشد.

    WhatsApp Image 2025 09 28 at 3.15.11 PM

    بیم دتکتور تاندا مدل TX-3703 توسط آزمایشگاه دولتی کشور چین تائید شده است و قابل فروش در کشور چین می باشد.

    اخذ تائیدیه های معتبر بین المللی نظیر LPCB بسیار گران قیمت هستند و به همین دلیل بیم دتکتورهای تاندا مدل TX-7130 بسیار گران تر از بیم دتکتورهای تاندا مدل TX-3703 هستند.

    WhatsApp Image 2025 09 28 at 3.15.11 PM1

    از آنجا که کارخانه تولید کننده بیم دتکتور تاندا در کشور چین است و برای مصارف داخل چین احتیاج به تائیدیه های آزمایشگاه های اروپایی نخواهد بود، این کارخانه بیم دتکتور مدل TX-3703 را به بازار داخلی چین معرفی نمود. این مدل سال ها در کشور چین امتحان خود را به خوبی پس داده است.

    برای مدل TX-3703 میتوان یک پروگرامر دستی تهیه کرد که قیمت آن در حدود 200 دلار می باشد.

    قیمت بیم دتکتور تاندا مدل TX-7130 در بازار ایران در حدود 200 دلار و توسط شرکت اسپین الکتریک در حدود 150 دلار عرضه می شوند و بیم دتکتورهای تاندا مدل TX-3703 در بازار در حدود 190 دلار و در شرکت اسپین در حدود 145 دلار به فروش میرسند.

    برای هر دو مدل چهار عدد رفلکتور یا آینه داخل جعبه قرار داده شده که برای از 8 تا 40 متر، یک عدد آینه و برای از 40 تا 100 متر احتیاج به استفاده از هر چهار آینه خواهد بود.

    تنظیم و راه اندازی و همچنین اتصال صحیح بیم دتکتور ها به پنل کنترل مرکزی نیاز به یک متخصص دارد و خارج از توانائی نصاب های معمولی یا برقکارهای ساختمانی است.علی الخصوص اتصال بیم دتکتورها به پنل های اعلام حریق آدرس پذیر و برنامه نویسی آنها نیاز به دانش مهندسی دارد. به یاد داشته باشید که عملکرد صحیح بیم دتکتورها با طریق نصب و راه اندازی آنها رابطه مستقیم دارد.

    وارد کننده عمده محصولات بیم دتکتور تاندا در ایران شرکت خصوصی اسپین الکتریک می باشد.

     

     

  • الزامات طراحی سیستم اطفاء حریق بصورت کاربرد محلی با گاز دی اکسیدکربن

    1 شرح. سیستم کاربرد محلی باید شامل یک منبع ثابت دی‌اکسید کربن باشد که به‌طور دائم به یک سیستم لوله‌کشی ثابت متصل شده و نازل‌ها به‌گونه‌ای چیده شده باشند که مستقیماً به درون آتش تخلیه شوند.

    6.1.2 کاربردها. سیستم‌های کاربرد محلی باید برای اطفاء حریق‌های سطحی در مایعات قابل اشتعال، گازها و جامدات کم‌عمق استفاده شوند، در شرایطی که خطر محصور نشده باشد یا محفظه با الزامات سیلاب کامل مطابقت نداشته باشد.

    6.1.3 الزامات عمومی. سیستم‌های کاربرد محلی باید مطابق با الزامات مربوطه در فصل‌های قبلی و همچنین الزامات اضافی مشخص‌شده در این فصل، طراحی، نصب، آزمایش و نگهداری شوند.

    6.1.4 الزامات ایمنی.

    6.2 مشخصات خطر.

    6.2.1 گستره خطر. خطر باید به‌گونه‌ای از سایر خطرات یا مواد قابل اشتعال جدا شده باشد که آتش به بیرون از ناحیه محافظت‌شده گسترش نیابد.

    6.2.1.1 کل ناحیه خطر باید تحت حفاظت قرار گیرد.

    6.2.1.2 ناحیه خطر باید شامل تمام مناطقی باشد که با مایعات قابل اشتعال یا پوشش‌های جامد کم‌عمق پوشیده شده‌اند یا ممکن است پوشیده شوند، مانند مناطقی که در معرض نشت، تراوش، چکه کردن، پاشیدن یا میعان هستند.

    6.2.1.3 ناحیه خطر همچنین باید شامل تمام مواد یا تجهیزات مرتبط مانند قطعات تازه پوشش‌داده‌شده، صفحات تخلیه، هودها، کانال‌ها و غیره باشد که می‌توانند باعث گسترش آتش به بیرون یا هدایت آن به داخل ناحیه محافظت‌شده شوند.

    6.2.1.4 مجموعه‌ای از خطرات مرتبط به یکدیگر می‌تواند با تأیید مرجع صلاحیت‌دار به گروه‌ها یا بخش‌های کوچکتری تقسیم شود.

    6.2.1.5 سیستم‌های مربوط به چنین خطراتی باید به گونه‌ای طراحی شوند که در صورت نیاز، حفاظت مستقل و فوری برای گروه‌ها یا بخش‌های مجاور فراهم کنند.

    6.2.2 محل خطر.

    6.2.2.1 خطر می‌تواند در داخل اتاق سرور، به‌صورت نیمه‌پوشیده یا کاملاً در فضای باز قرار داشته باشد.

    6.2.2.2 ضروری است که تخلیه دی‌اکسید کربن به گونه‌ای انجام شود که باد یا جریان‌های شدید هوا موجب کاهش اثربخشی حفاظت نشوند.

    6.3 الزامات مربوط به دی‌اکسید کربن.

    6.3.1 کلیات. مقدار دی‌اکسید کربن مورد نیاز برای سیستم‌های کاربرد محلی باید بر اساس نرخ کلی تخلیه مورد نیاز برای پوشش‌دهی ناحیه یا حجم محافظت‌شده و مدت زمانی که باید تخلیه حفظ شود تا اطفاء کامل انجام گیرد، تعیین شود.

    6.3.1.1 ذخیره‌سازی پرفشار.

    6.3.1.1.1 برای سیستم‌هایی با ذخیره‌سازی پرفشار، مقدار محاسبه‌شده دی‌اکسید کربن باید ۴۰ درصد افزایش یابد تا ظرفیت نامی سیلندرهای ذخیره‌سازی تعیین شود، زیرا تنها بخش مایع در فرآیند تخلیه مؤثر است.

    6.3.1.1.2 این افزایش ظرفیت ذخیره‌سازی سیلندر برای بخش سیلاب کامل در سیستم‌های ترکیبی کاربرد محلی سیلاب کاملالزامی نیست.

    6.3.1.2 مقدار دی‌اکسید کربن موجود در ذخیره باید به اندازه‌ای افزایش یابد که بخار شدن مایع در حین خنک‌سازی لوله‌ها را جبران کند.

    6.3.2 نرخ تخلیه. نرخ تخلیه نازل‌ها باید با استفاده از روش سطحی طبق بخش 6.4 یا روش حجمی طبق بخش 6.5 تعیین شود.

    6.3.2.1 نرخ کلی تخلیه سیستم باید برابر با مجموع نرخ‌های تخلیه تک‌تک نازل‌ها یا تجهیزات تخلیه استفاده‌شده در سیستم باشد.

    6.3.2.2 برای سیستم‌های کم‌فشار، اگر بخشی از ناحیه خطر قرار است با سیلاب کامل محافظت شود، نرخ تخلیه آن بخش باید به‌گونه‌ای باشد که غلظت مورد نیاز را در مدت‌زمانی برابر یا کمتر از زمان تخلیه بخش کاربرد محلی تأمین کند.

    6.3.2.3 برای سیستم‌های پرفشار، اگر بخشی از ناحیه خطر قرار است با سیلاب کامل محافظت شود، نرخ تخلیه برای آن بخش باید با تقسیم مقدار مورد نیاز برای سیلاب کامل بر ضریب 1.4 و مدت‌زمان تخلیه کاربرد محلی به دقیقه، طبق معادله زیر، محاسبه شود:

    AAAAAElFTkSuQmCC

    جایی که:

    Qₜₒₜ = نرخ جریان برای بخش سیلاب کامل [پوند/دقیقه (کیلوگرم/دقیقه)]
    Wₜₒₜ = مقدار کل دی‌اکسید کربن برای بخش سیلاب کامل [پوند (کیلوگرم)]
    t = زمان تخلیه مایع برای بخش کاربرد محلی (دقیقه)

    6.3.3 مدت‌زمان تخلیه.

    6.3.3.1 حداقل زمان تخلیه مایع از تمام نازل‌ها باید ۳۰ ثانیه باشد.

    6.3.3.2 تمام نازل‌های کاربرد محلی که یک خطر واحد را محافظت می‌کنند باید به‌صورت همزمان برای مدتی که کمتر از حداقل زمان تخلیه مایع نباشد، مایع را تخلیه کنند.

    6.3.3.3 زمان حداقل باید برای جبران شرایط خطری که به دوره خنک‌سازی طولانی‌تری برای اطمینان از اطفاء کامل نیاز دارد، افزایش یابد.

    6.3.3.4 در صورتی که احتمال دارد فلز یا مواد دیگر به دمایی بالاتر از دمای اشتعال سوخت برسند، زمان مؤثر تخلیه باید افزایش یابد تا مدت زمان کافی برای خنک‌سازی فراهم شود.

    6.3.3.5 اگر سوخت دارای نقطه خوداشتغالی پایین‌تر از نقطه جوش باشد، مانند موم پارافین و روغن‌های پخت‌وپز، زمان مؤثر تخلیه باید افزایش یابد تا امکان خنک‌سازی سوخت و جلوگیری از آتش‌گیری مجدد فراهم شود.

    6.3.3.5.1 حداقل زمان تخلیه مایع باید ۳ دقیقه باشد.

    6.4 روش نرخ به‌ازای مساحت.

    6.4.1 کلیات. روش طراحی سیستم بر اساس مساحت باید در مواردی استفاده شود که خطر آتش‌سوزی عمدتاً شامل سطوح صاف یا اشیاء کم‌ارتفاع مرتبط با سطوح افقی باشد.

    6.4.1.1 طراحی سیستم باید بر اساس داده‌های فهرست‌شده یا مورد تأیید برای نازل‌های منفرد باشد.

    6.4.1.2 استفاده از این داده‌ها در مقادیر بالاتر یا پایین‌تر از حدود تعیین‌شده مجاز نیست.

    6.4.2 نرخ تخلیه نازل. نرخ طراحی تخلیه از طریق نازل‌های منفرد باید بر اساس موقعیت یا فاصله پاشش مطابق با تأییدیه‌ها یا فهرست‌های مشخص تعیین شود.

    6.4.2.1 نرخ تخلیه برای نازل‌های نوع سقفی باید صرفاً بر اساس فاصله از سطحی که هر نازل از آن محافظت می‌کند، تعیین شود.

    6.4.2.2 نرخ تخلیه برای نازل‌های کنار مخزن باید صرفاً بر اساس پرتاب یا فاصله مورد نیاز برای پوشش سطح مورد محافظت توسط هر نازل تعیین شود.

    6.4.3 مساحت به‌ازای هر نازل. حداکثر مساحتی که توسط هر نازل محافظت می‌شود باید بر اساس موقعیت یا فاصله پاشش و نرخ طراحی تخلیه، مطابق با تأییدیه‌ها یا فهرست‌های مشخص تعیین شود.

    6.4.3.1 همان عواملی که برای تعیین نرخ طراحی تخلیه استفاده شده‌اند باید برای تعیین حداکثر مساحت محافظت‌شده توسط هر نازل نیز استفاده شوند.

    6.4.3.2 بخش خطر تحت حفاظت نازل‌های نوع سقفی منفرد باید به‌عنوان یک ناحیه مربعی در نظر گرفته شود.

    6.4.3.3 بخش خطر تحت حفاظت نازل‌های کنار مخزن یا خطی منفرد باید مطابق با محدودیت‌های فاصله‌گذاری و تخلیه در تأییدیه‌ها یا فهرست‌های مشخص، به‌صورت ناحیه‌ای مستطیلی یا مربعی در نظر گرفته شود.

    6.4.3.4 هنگامی که غلتک‌های پوشش‌داده‌شده یا اشکال نامنظم مشابه قرار است محافظت شوند، مساحت خیس‌شده پیش‌بینی‌شده باید برای تعیین پوشش نازل استفاده شود.

    6.4.3.5 در مواردی که سطوح پوشش‌داده‌شده باید محافظت شوند، مساحت به‌ازای هر نازل می‌تواند تا حداکثر ۴۰ درصد بیشتر از مقادیر مشخص‌شده در تأییدیه‌ها یا فهرست‌ها افزایش یابد.

    6.4.3.5.1 سطوح پوشش‌داده‌شده به سطوحی اطلاق می‌شود که برای تخلیه طراحی شده‌اند و به‌گونه‌ای ساخته و نگهداری می‌شوند که تجمع مایع در سطحی بیش از ۱۰ درصد از ناحیه محافظت‌شده رخ ندهد.

    6.4.3.5.2 بند 6.4.3.5 در مواردی که باقیمانده مواد به‌صورت سنگین تجمع یافته باشد، اعمال نمی‌شود. (به 6.1.2 مراجعه شود.)

    6.4.3.6 در مواردی که نازل‌های کاربرد محلی برای محافظت از عرض دهانه‌هایی استفاده می‌شوند که در بندهای 5.2.1.4 و 5.2.1.5 تعریف شده‌اند، مساحت به‌ازای هر نازل طبق تأییدیه خاص می‌تواند تا حداکثر ۲۰ درصد افزایش یابد.

    6.4.3.7 در مواردی که آتش‌سوزی‌های مایعات قابل اشتعال با لایه عمیق قرار است محافظت شوند، باید حداقل فضای آزاد(freeboard) به اندازه 6 اینچ (152 میلی‌متر) در نظر گرفته شود، مگر اینکه در تأییدیه یا فهرست نازل به شکل دیگری ذکر شده باشد.

    6.4.4 موقعیت و تعداد نازل‌ها. تعداد کافی از نازل‌ها باید برای پوشش کامل ناحیه خطر بر اساس واحدهای سطحی محافظت‌شده توسط هر نازل استفاده شود.

    6.4.4.1 نازل‌های کنار مخزن یا خطی باید مطابق با محدودیت‌های فاصله‌گذاری و نرخ تخلیه مشخص‌شده در تأییدیه‌ها یا فهرست‌های خاص نصب شوند.

    6.4.4.2 نازل‌های نوع سقفی باید عمود بر ناحیه خطر نصب شده و در مرکز ناحیه تحت حفاظت آن نازل قرار گیرند.

    6.4.4.2.1 نصب نازل‌های نوع سقفی با زاویه‌ای بین ۴۵ درجه تا ۹۰ درجه نسبت به سطح ناحیه خطر، مطابق با بند 6.4.4.3 نیز مجاز است.

    6.4.4.2.2 ارتفاعی که برای تعیین نرخ جریان مورد نیاز و پوشش سطح استفاده می‌شود باید فاصله از نقطه هدف روی سطح محافظت‌شده تا سطح جلویی نازل، در امتداد محور نازل، باشد.

    6.4.4.3 نصب نازل با زاویه.

    6.4.4.3.1 زمانی که نازل‌ها با زاویه نصب می‌شوند، باید به نقطه‌ای هدف‌گیری شوند که از سمت نزدیک ناحیه تحت حفاظت توسط نازل اندازه‌گیری شده باشد.

    6.4.4.3.2 این موقعیت باید با ضرب عامل هدف‌گیری کسری موجود در جدول 6.4.4.3.2 در عرض ناحیه تحت حفاظت توسط نازل، محاسبه شود.

    2Q==

    6.4.4.4 اسپرینکلرها باید به‌گونه‌ای نصب شوند که از هرگونه مانعی که ممکن است باعث اختلال در پاشش دی‌اکسید کربن شود، دور باشند.

    6.4.4.5* اسپرینکلرها باید به‌گونه‌ای نصب شوند که اتمسفر اطفاء حریق را بر روی مواد پوشش‌داده‌شده‌ای که بالاتر از سطح محافظت‌شده قرار دارند، ایجاد کنند.

    6.4.4.6 تأثیرات احتمالی جریان هوا، باد و جریان‌های اجباری باید با محل قرارگیری اسپرینکلرها یا افزودن اسپرینکلرهای اضافی برای محافظت از نواحی بیرونی خطر جبران شود.

    6.5 روش بر اساس حجم

    6.5.1* کلیات. روش طراحی سامانه بر اساس حجم زمانی استفاده می‌شود که خطر آتش‌سوزی شامل اشیای سه‌بعدی و نامنظمی باشد که به‌راحتی قابل تبدیل به سطوح معادل نیستند.

    6.5.2 محفظه فرضی. نرخ کل تخلیه سامانه باید بر اساس حجم یک محفظه فرضی که به‌طور کامل خطر را در بر می‌گیرد، تعیین شود.

    6.5.2.1 این محفظه فرضی باید بر پایه یک کف بسته واقعی باشد، مگر اینکه تمهیدات خاصی برای شرایط کف در نظر گرفته شده باشد.

    6.5.2.2 دیواره‌ها و سقف محفظه فرضی باید حداقل ۲ فوت (۰٫۶متر) از خطر اصلی فاصله داشته باشند، مگر اینکه دیواره‌های واقعی وجود داشته باشند، و این محفظه باید تمام نواحی احتمال نشت، پاشش یا ریختن مواد را پوشش دهد.

    6.5.2.3 هیچ‌گونه کاهشی در محاسبه حجم برای اشیای جامد موجود در داخل این فضا نباید اعمال شود.

    6.5.2.4 حداقل بُعد ۴ فوت (۱٫۲ متر) باید در محاسبه حجم محفظه فرضی لحاظ شود.

    6.5.2.5 اگر خطر در معرض باد یا جریان‌های اجباری قرار دارد، حجم فرضی باید به اندازه‌ای افزایش یابد که زیان‌های سمت بادگیر جبران شود.

    6.5.3 نرخ تخلیه سامانه

    6.5.3.1 نرخ کل تخلیه برای سامانه پایه باید معادل ۱ پوند در دقیقه بر فوت مکعب (۱۶ کیلوگرم در دقیقه بر متر مکعب) از حجم فرضی باشد.

    6.5.3.2* اگر محفظه فرضی دارای کف بسته بوده و بخشی از آن با دیواره‌های دائمی و پیوسته‌ای که حداقل ۲ فوت (۰٫۶ متر) بالاتر از خطر قرار دارند (در شرایطی که دیواره‌ها به‌طور معمول بخشی از خطر نباشند) تعریف شده باشد، نرخ تخلیه می‌تواند به‌صورت متناسب کاهش یابد، به شرطی که این کاهش از ۰٫۲۵پوند در دقیقه بر فوت مکعب (۴ کیلوگرم در دقیقه بر متر مکعب) برای دیواره‌های واقعی که محفظه را کاملاً احاطه کرده‌اند، کمتر نباشد.

    6.5.4 محل و تعداد اسپرینکلرها. تعداد کافی از اسپرینکلرها باید بر اساس نرخ تخلیه سامانه و حجم فرضی برای پوشش کامل حجم خطر استفاده شود.

    6.5.4.1 اسپرینکلرها باید به‌گونه‌ای قرار داده و هدایت شوند که با همکاری بین اسپرینکلرها و اشیای داخل حجم خطر، گاز دی‌اکسید کربن در داخل فضای خطر باقی بماند.

    6.5.4.2 اسپرینکلرها باید به‌گونه‌ای نصب شوند که تأثیرات احتمالی جریان هوا، باد یا جریان‌های اجباری جبران شود.

    6.5.4.3 نرخ طراحی تخلیه از طریق اسپرینکلرهای منفرد باید بر اساس محل نصب یا فاصله پرتاب، مطابق با تأییدیه‌ها یا فهرست‌های خاص مربوط به آتش‌سوزی‌های سطحی تعیین شود.

    6.6 سیستم توزیع
    6.6.1 کلیات. سامانه باید به‌گونه‌ای طراحی شود که تخلیه مؤثر دی‌اکسید کربن را به‌سرعت و پیش از آنکه مقادیر زیادی گرما توسط مواد داخل اتاق سرور جذب شود، فراهم کند.
    6.6.1.1 منبع دی‌اکسید کربن باید تا حد ممکن نزدیک به اتاق سرور قرار گیرد، اما در معرض آتش نباشد، و مسیر لوله‌کشی نیز باید تا حد امکان مستقیم و با حداقل پیچ‌وخم باشد تا دی‌اکسید کربن به‌سرعت به محل آتش برسد.
    6.6.1.2 سامانه باید برای عملکرد خودکار طراحی شود، مگر اینکه مقامات ذی‌صلاح اجازه عملکرد دستی را صادر کرده باشند.

    6.6.2* سامانه‌های لوله‌کشی. لوله‌کشی باید طبق بند 4.7.5 طراحی شود تا نرخ مورد نیاز تخلیه را در هر اسپرینکلر تأمین کند.

    6.6.3 اسپرینکلرهای تخلیه. اسپرینکلرهای مورد استفاده باید برای نرخ تخلیه، برد مؤثر، و الگوی یا محدوده پوشش تأیید شده یا دارای لیست معتبر باشند.
    6.6.3.1 اندازه معادل اوریفیس استفاده شده در هر اسپرینکلر باید مطابق با بند 4.7.5 برای تطابق با نرخ طراحی تخلیه تعیین شود.
    6.6.3.2 اسپرینکلرها باید با دقت و طبق نیازهای طراحی سامانه، مطابق با بخش‌های 6.4 و 6.5، نصب و جهت‌دهی شوند.

  • بررسی جامع بیم دتکتورها بر اساس استاندارد ISO 7240-12

    سازمان بین‌المللی استانداردسازی (ISO) یک نهاد مستقل و غیردولتی است که استانداردهای بین‌المللی را برای تضمین کیفیت، ایمنی و کارایی در صنایع مختلف تدوین می‌کند. استانداردهایISO در سطح جهانی پذیرفته شده و به بهبود عملکرد سیستم‌های مختلف، از جمله سیستم‌های اعلام حریق، کمک می‌کنند. یکی از مهم‌ترین استانداردهای مرتبط با اعلام حریق، ISO 7240-12است که به بیم دتکتورهای دودی اختصاص دارد. این استاندارد دستورالعمل‌های دقیقی را برای طراحی، عملکرد، نصب و آزمون این تجهیزات ارائه می‌دهد تا عملکرد صحیح و دقت بالای آن‌ها تضمین شود.

    بیم دتکتور تجهیزاتی است که با استفاده از پرتو نوری مادون قرمز یا لیزری کاهش شفافیت هوا ناشی از دود را تشخیص می‌دهند. این دتکتورها به‌طور کلی در دو نوع اصلی طبقه‌بندی می‌شوند:

    1. بیم دتکتور نوع فرستنده-گیرنده جدا  

    2Q==

    (Projected Beam Smoke Detector)

    در این نوع، فرستنده و گیرنده در دو نقطه جداگانه قرار دارند و پرتو نوری از فرستنده به گیرنده ارسال می‌شود. در صورت کاهش شدت نور به دلیل وجود دود، آلارم فعال می‌شود.

    2. بیم دتکتور نوع انعکاسی

    2Q==

    (Reflective Beam Smoke Detector)

    در این مدل، فرستنده و گیرنده در یک واحد قرار دارند و یک بازتابنده در سمت مقابل نصب می‌شود. پرتو پس از برخورد به بازتابنده، به گیرنده بازمی‌گردد و کاهش شدت آن نشانه وجود دود است.

    الزامات بیم دتکتورها در استاندارد ISO 7240-12

    استاندارد ISO 7240-12 دستورالعمل‌هایی برای طراحی، نصب، آزمایش و نگهداری بیم دتکتورها ارائه می‌دهد. برخی از مهم‌ترین الزامات این استاندارد عبارت‌اند از:

    1. معیارهای عملکردی

    بیم دتکتورها باید توانایی تشخیص تغییرات شفافیت هوا را با دقت بالا داشته باشند.
    محدوده تشخیص بیم دتکتورها باید بین 10 تا 100 متر باشد.
    حساسیت دستگاه باید قابل تنظیم بوده و نسبت به تغییرات غیرعادی محیطی مقاوم باشد.

    2. شرایط محیطی و محدودیت‌ها

    بیم دتکتورها نباید تحت تأثیر نور مستقیم خورشید، گرد و غبار، رطوبت بالا یا تغییرات دمایی شدید قرار گیرند.
    در محیط‌هایی که دود به‌صورت یکنواخت منتشر نمی‌شود یا در نزدیکی سقف باقی نمی‌ماند، کارایی بیم دتکتورها کاهش می‌یابد.
    در مناطقی که دارای لرزش زیاد یا جریان هوا شدیدهستند، نیاز به کالیبراسیون و بررسی‌های مکرر وجود دارد.

    3. الزامات نصب

    بیم دتکتورها باید در فضاهای بزرگ مانند انبارها، سالن‌های تولید، آشیانه‌های هواپیما، فرودگاه‌ها و مراکز خرید نصب شوند.
    ارتفاع نصب باید متناسب با ارتفاع سقف باشد و معمولاً در محدوده 4 تا 25 متر قرار گیرد.
    در صورت وجود مانع در مسیر پرتو نوری، باید از چندین بیم دتکتور به‌صورت مکمل استفاده شود.
    فاصله بین بیم دتکتورها و دیوارها باید حداقل 0.5 متر باشد.

    4. الزامات نگهداری و آزمون‌های دوره‌ای

    بیم دتکتورها باید به‌صورت دوره‌ای آزمایش و کالیبره شوند تا عملکرد صحیح آن‌ها تضمین شود.
    گرد و غبار و آلودگی‌های محیطی باید به‌طور منظم از سطح فرستنده، گیرنده و بازتابنده پاک شوند.
    زاویه و تنظیمات نوری باید بررسی شده و در صورت لزوم، مجدداً تنظیم شوند.
    دتکتورها باید دارای سیستم خودآزمایی (Self-Testing) و قابلیت تشخیص خرابی (Fault Detection) باشند.

    روش‌های آزمون بیم دتکتورها بر اساس ISO 7240-12

    ISO 7240-12 شامل مجموعه‌ای از آزمون‌های عملکردی و محیطی است که دقت و قابلیت اطمینان بیم دتکتورها را تأیید می‌کند. برخی از این آزمون‌ها عبارت‌اند از:

    1. آزمون حساسیت به دود: بررسی میزان کاهش نور لازم برای فعال شدن هشدار.
    2. آزمون محیطی: بررسی عملکرد دستگاه در دمای بالا، دمای پایین، رطوبت زیاد و شرایط گرد و غبار.
    3. آزمون تأخیر هشدار: بررسی مدت‌زمان لازم برای فعال شدن هشدار جهت کاهش هشدارهای کاذب.
    4. آزمون مقاومت در برابر نور خارجی: ارزیابی تأثیر منابع نوری خارجی مانند نور خورشید بر عملکرد دتکتور.
    5. آزمون لرزش و ضربه: بررسی مقاومت بیم دتکتور در برابر لرزش‌های مکانیکی و ضربات احتمالی.

    مقاومت در برابر عوامل مزاحم و هشدارهای کاذب

    بیم دتکتورها باید دارای فیلترهای نوری و الگوریتم‌های پردازش هوشمند باشند تا در برابر عوامل مزاحم مقاوم باشند. مهم‌ترین عوامل مزاحم که بیم دتکتورها باید در برابر آن‌ها ایمن باشند عبارت‌اند از:

    نور مستقیم خورشید یا نورهای مصنوعی قوی.
    گرد و غبار، دودهای غیرحریق (مانند دود اگزوز ماشین‌آلات صنعتی).
    حرکت اشیاء در مسیر بیم دتکتور (مانند پرندگان یا وسایل متحرک در انبارها).

    نتیجه‌گیری

    استاندارد ISO 7240-12 مجموعه‌ای از الزامات فنی، نصب، آزمایش و نگهداری برای بیم دتکتورها ارائه می‌دهد که رعایت آن‌ها باعث افزایش دقت و کاهش هشدارهای کاذب می‌شود. انتخاب مناسب، نصب اصولی و نگهداری منظم این تجهیزات مطابق با استاندارد ISO نقش مهمی در بهبود عملکرد سیستم‌های اعلام حریق دارد. این استاندارد باعث می‌شود بیم دتکتورها در شرایط مختلف محیطی و عملکردی بهینه عمل کنند و ایمنی ساختمان‌ها و تأسیسات حساس را تضمین نمایند.