نحوه اتصال بیم دتکتور به سیستم اعلام حریق آدرس پذیر

alford electrical services ltd automatic fire alarm installation

 

انواع بیم دتکتور از نظر نوع اتصال

  1. ساده (Conventional Beam Detector):
    • فقط دو خروجی رله دارد (Alarm / Fault)
    • آدرس‌پذیر نیست و نیاز به واسط دارد
  2. آدرس‌پذیر (Addressable Beam Detector):
    • مستقیماً قابل اتصال به لوپ آدرس‌پذیر است
    • آدرس مختص به خود دارد

 

 اتصال بیم دتکتور متعارف به سیستم آدرس‌پذیر توسط ماژول ورودی

با استفاده از یک ماژول آدرس پذیر که با پنل مرکزی آدرس پذیر دارای پروتکل ارتباطی یکسان می باشد ( هر دو یک برند باشند ) میتوان یک بیم دتکتور متعارف را به پنل آدرس پذیر متصل نمود.

ماژول های ورودی یا ماژول مانیتور ها دو دسته هستند. دسته اول ماژول های ورودی آدرس پذیر 4 سیمه هستند که تامین برق آنها توسط تابلوی اعلام حریق آدرس پذیر تامین می شود. ماژول های ورودی آدرس پذیر 4 سیمه، همانطور که از اسم آن پیداست از 4 سیم استفاده میکنند که دو سیم آن برق 24 ولت و دو سیم دیگر جهت اتصال به لوپ یا حلقه یا مدار سیستم اعلام حریق آدرس پذیر است.

نوع دوم ماژول های ورودی آدرس پذیر 2 سیمه هستند و برق آنها توسط برق لوپ، پنل اعلام حریق آدرس پذیر تامین میشود. این ماژول ها بخاطر صرفه جویی در هزینه کابل کشی بسیار به صرفه تر هستند و همچنین نصب آنها راحت تر است.

حالت 1: تشخیص ورودی معمولاً باز:

WhatsApp Image 2025 09 29 at 11.39.02 PM


مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 3 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد، ماژول می‌تواند سه حالت را در ترمینال‌های ورودی تشخیص دهد: عادی، مدار باز و هشدار (اتصال کوتاه)

حالت 2: تشخیص ورودی معمولاً بسته:

WhatsApp Image 2025 09 29 at 11.39.02 PM1


مقاومت انتهای خط 47 کیلو اهم باید در انتهای خط ورودی و تا حد امکان نزدیک به دستگاه تحت نظارت قرار گیرد، همان‌طور که در شکل 4 نشان داده شده است. تنها در صورتی که اتصال به‌درستی انجام شده باشد..

 

نحوه اتصال بیم دتکتور متعارف به تابلوی اعلام حریق آدرس پذیر توسط ماژول ورودی 2 سیمه

WhatsApp Image 2025 09 29 at 11.39.03 PM

در شکل بالا از یک ماژول ورودی آدرس پذیر 2 سیمه جهت اتصال بیم دتکتور متعارف به پنل کنترل اعلام حریق آدرس پذیر استفاده شده است. تنها تفاوت ماژول های ورودی 2 سیمه و 4 سیمه فقط در نحوه تغذیه ماژول می باشد. در سیستم 4 سیمه ، احتیاج به 2 سیم اضافه جهت اتصال به ترمینال 24 ولت کمکی تابلوی اعلام حریق آدرس پذیر می باشد ولی در سیستم 2 سیمه ،به علت مصرف الکتریکی کم، برق خود را از طریق برق لوپ یا حلقه تابلوی اعلام حریق آدرس پذیر تامین می کند.

 

نکات مهم:

  • حتماً باید بین منبع تغذیه و بیم دتکتور، ایزولاسیون مناسب رعایت شود.
  • بهتر است از ماژول‌هایی استفاده شود که قابلیت نظارت بر مدار باز یا اتصال کوتاه را دارند.

 

  1. استفاده از بیم دتکتور آدرس‌پذیر اختصاصی

در این روش، از بیم دتکتورهای تولید شده توسط برند سازنده‌ی سیستم اعلام حریق استفاده می‌شود که مستقیماً قابل اتصال به لوپ هستند و بدون نیاز به ماژول واسط، قادر به اتصال به پنل آدرس‌پذیر هستند.

در این مورد کافی است تا بیم دتکتور در حال نصب را نیز همانند بقیه آیتم های اعلام حریق در حال نصب،( مانند دتکتور ها و شستی ها و آژیرها) آدرس دهی شود . آدرس دهی معمولا از توسط پروگرامر دستی یا بصورت اتوماتیک از طریق پنل انجام می پذیرد.

کافیست بیم دتکتور را آدرس دهی کرده و به عنوان آدرس یک ورودی، به پنل اعلام حریق معرفی کنیم. در سیستم های اعلام حریق آدرس پذیر قابلیت تنظیم ورودی ها و خروجی ها بصورت علت و معلول نیز وجود دارد و میتوان توسط پنل کنترل سیستم اعلام حریق آدرس پذیر طوری برنامه نویسی کرد که با شروع عمل بیم دتکتور، عملیات های مربوطه مثل بستن پرده های دودبند یا باز کردن درب های اضطراری یا حتی عملیات خودکار اطفاء آتش بصورت خودکار شروع به کار کند.

 

 

مزایا:

  • کاهش خطاهای اتصال
  • یکپارچگی بیشتر با پنل اعلام حریق
  • نمایش دقیق وضعیت آلارم و خطا در مانیتور پنل

معایب:

  • قیمت بالاتر
  • وابستگی به برند خاص
  • محدودیت در تأمین یا تعمیر در پروژه‌های بلندمدت

WhatsApp Image 2025 09 29 at 11.39.03 PM1

نوشته‌های مشابه

  • الزامات طراحی سیستم اطفاء حریق به روش غرقه سازی کلی یا TOTAL FLOODING با گاز دی اکسید کربن

    1. فصل ۵ – سیستم‌های غرقه‌سازی کلی

    ۵.۱ اطلاعات عمومی (همچنین به پیوست D مراجعه شود)
    ۵.۱.۱ توصیف: یک سیستم غرقه‌سازی کلی باید شامل منبع ثابت دی‌اکسید کربن باشد که به صورت دائم به لوله‌کشی ثابت متصل شده و دارای نازل‌های ثابت برای تخلیه دی‌اکسید کربن به داخل فضای بسته یا اتاق سرور پیرامون خطر باشد.

    ۵.۱.۲ کاربردها: سیستم غرقه‌سازی کلی باید در مواردی استفاده شود که یک محفظه دائمی اطراف خطر وجود دارد و امکان ایجاد و حفظ غلظت لازم دی‌اکسید کربن برای مدت زمان مورد نیاز را فراهم می‌کند.

    ۵.۱.۳ الزامات کلی: سیستم‌های غرقه‌سازی کلی باید طبق الزامات مربوطه در فصل ۴ و همچنین الزامات اضافی ذکرشده در این فصل طراحی، نصب، آزمون و نگهداری شوند.

    ۵.۱.۴ الزامات ایمنی: به بندهای ۴.۳ و ۴.۵.۶ مراجعه شود.

    ۵.۲ مشخصات خطر

    ۵.۲.۱ محفظه

    ۵.۲.۱.۱ برای آتش‌های سطحی یا شعله‌ای، مانند آتش‌هایی که در مایعات قابل اشتعال رخ می‌دهند، هرگونه بازشدگی غیرقابل‌بسته شدن باید طبق بند ۵.۳.۵.۱ با مقدار بیشتری دی‌اکسید کربن جبران شود.

    ۵.۲.۱.۲ اگر مقدار دی‌اکسید کربن موردنیاز برای جبران بازشدگی‌ها از مقدار پایه موردنیاز برای غرقه‌سازی بدون نشت بیشتر باشد، طراحی سیستم به‌صورت کاربرد موضعی طبق فصل ۶ مجاز است.

    ۵.۲.۱.۳ برای آتش‌های عمیق‌ریشه مانند آنچه در جامدات رخ می‌دهد، بازشدگی‌های غیرقابل‌بسته شدن باید به آن‌هایی محدود شوند که در سقف یا مجاور سقف قرار دارند، در صورتی که اندازه این بازشدگی‌ها از الزامات تهویه فشار تعیین‌شده در بند ۵.۶.۲ بیشتر باشد.

    ۵.۲.۱.۴ برای جلوگیری از گسترش آتش از طریق بازشدگی‌ها به خطرات مجاور یا مناطق کاری که ممکن است منابع دوباره اشتعال باشند، این بازشدگی‌ها باید دارای بسته‌شونده‌های خودکار یا نازل‌های کاربرد موضعی باشند.

    ۵.۲.۱.۴.۱ گاز موردنیاز برای چنین حفاظت‌هایی باید علاوه بر مقدار معمول برای غرقه‌سازی کلی فراهم شود. (به بند ۶.۴.۳.۶مراجعه شود)

    ۵.۲.۱.۴.۲ اگر هیچ‌کدام از روش‌های ذکرشده در بندهای ۵.۲.۱.۴و ۵.۲.۱.۴.۱ عملی نباشد، حفاظت باید به خطرات یا مناطق کاری مجاور نیز گسترش یابد.

    ۵.۲.۱.۵ در مورد مخازن فرآیندی و ذخیره‌سازی که تهویه ایمن بخارات و گازهای قابل اشتعال امکان‌پذیر نیست، استفاده از سیستم‌های کاربرد موضعی بیرونی طبق بند ۶.۴.۳.۶ الزامی است.

    ۵.۲.۲ نشت و تهویه

    از آنجا که کارایی سیستم‌های دی‌اکسید کربن به حفظ غلظت خاموش‌کننده گاز بستگی دارد، نشت گاز از فضای موردنظر باید به حداقل رسیده و با افزودن گاز اضافی جبران شود.

    ۵.۲.۲.۱ در صورت امکان، بازشدگی‌هایی مانند درها، پنجره‌ها و … باید طوری طراحی شوند که پیش از تخلیه دی‌اکسید کربن یا همزمان با آن به‌طور خودکار بسته شوند یا الزامات بندهای ۵.۳.۵.۱ و ۵.۴.۴.۱ رعایت شوند. (برای ایمنی افراد، به بند ۴.۳مراجعه شود)

    ۵.۲.۲.۲ در مواردی که سیستم تهویه با هوای فشرده درگیر باشد، این سیستم‌ها ترجیحاً باید پیش از تخلیه دی‌اکسید کربن یا همزمان با آن خاموش یا بسته شوند، یا گاز جبرانی اضافی فراهم گردد. (به بند ۵.۳.۵.۲ مراجعه شود)

    ۵.۲.۳ انواع آتش

    آتش‌هایی که با روش غرقه‌سازی کلی قابل خاموش‌سازی هستند، به دو دسته زیر تقسیم می‌شوند:

    ۱. آتش‌های سطحی شامل مایعات، گازها و جامدات قابل اشتعال
    ۲. آتش‌های عمیق‌ریشه شامل جامداتی که قابلیت دودزایی و شعله‌ور شدن دارند

    ۵.۲.۳.۱ آتش‌های سطحی

    برای آتش‌های سطحی، دی‌اکسید کربن باید به‌سرعت در محفظه تزریق شود تا نشت جبران شده و غلظت خاموش‌کننده برای مواد خاص ایجاد گردد.

    ۵.۲.۳.۲ آتش‌های عمیق‌ریشه

    برای آتش‌های عمیق‌ریشه، غلظت طراحی‌شده باید برای مدت زمانی حفظ شود تا دودزایی خاموش و مواد تا نقطه‌ای خنک شوند که پس از از بین رفتن جو بی‌اثر، مجدداً مشتعل نشوند.

    ۵.۳ نیازمندی‌های دی‌اکسید کربن برای آتش‌های سطحی

    ۵.۳.۱ کلیات

    ۵.۳.۱.۱ مقدار دی‌اکسید کربن برای آتش‌های سطحی باید بر اساس شرایط متوسط و با فرض خاموش شدن نسبتاً سریع در نظر گرفته شود.

    ۵.۳.۱.۲ اگرچه یک حاشیه ایمن برای نشت معمولی در عوامل حجمی پایه لحاظ شده است، اما باید اصلاحاتی بر اساس نوع ماده درگیر و سایر شرایط خاص صورت گیرد.

    ۵.۳.۲ مواد قابل اشتعال

    ۵.۳.۲.۱ باید مقدار غلظت طراحی‌شده دی‌اکسید کربن متناسب با نوع ماده قابل اشتعال موجود در خطر تعیین گردد.

    ۵.۳.۲.۱.۱ این غلظت باید با افزودن ضریب ۲۰ درصد به حداقل غلظت مؤثر محاسبه شود.

    ۵.۳.۲.۱.۲ در هیچ حالتی نباید از غلظتی کمتر از ۳۴ درصد استفاده شود.

    ۵.۳.۲.۲ جدول ۵.۳.۲.۲ باید برای تعیین حداقل غلظت‌های دی‌اکسید کربن برای مایعات و گازهای مندرج در جدول استفاده شود.

    ۵.۳.۲.۳ برای موادی که در جدول ۵.۳.۲.۲ ذکر نشده‌اند، غلظت تئوریک حداقل دی‌اکسید کربن باید از منبعی معتبر به‌دست آید یا با آزمون مشخص گردد.

    ۵.۳.۲.۴ در صورت وجود اطلاعاتی از مقادیر اکسیژن باقی‌مانده مجاز، غلظت تئوریک دی‌اکسید کربن باید با استفاده از فرمول زیر محاسبه شود:

    ۵.۳.۳ ضریب حجم

    ضریب حجمی که برای تعیین مقدار پایه دی‌اکسید کربن جهت حفاظت از یک محفظه حاوی ماده‌ای با نیاز به غلظت طراحی‌شده ۳۴ درصد استفاده می‌شود، باید مطابق جدول‌های ۵.۳.۳(a) و ۵.۳.۳(b) باشد.

    ۵.۳.۳.۱ در محاسبه ظرفیت خالص مکعبی که باید محافظت شود، اجازه داده می‌شود که برای ساختارهای دائمی، غیرقابل جابجایی و نفوذناپذیر که حجم را به‌طور قابل توجهی کاهش می‌دهند، کسر حجمی در نظر گرفته شود.

    ۵.۳.۳.۲ حجم‌های به‌هم‌پیوسته

    ۵.۳.۳.۲.۱ در دو یا چند حجم به‌هم‌پیوسته که جریان آزاد دی‌اکسید کربن بین آن‌ها ممکن است، مقدار دی‌اکسید کربن باید برابر با مجموع مقادیر محاسبه‌شده برای هر حجم، با استفاده از ضریب حجم متناظر از جدول‌های ۵.۳.۳(a) یا ۵.۳.۳(b) باشد.

    ۵.۳.۳.۲.۲ اگر یکی از حجم‌ها به غلظت بیشتری از مقدار نرمال نیاز داشته باشد (به بند ۵.۳.۴ مراجعه شود)، باید همان غلظت بالاتر برای تمام حجم‌های به‌هم‌پیوسته استفاده شود.

    p

  • اصول عملکرد بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی اعلام حریق پروجکتوری از یک فرستنده تشکیل شده است که یک پرتو مادون قرمز را در سراسر ناحیه محافظت‌شده به سمت یک گیرنده که شامل یک سلول حساس به نور است ارسال می‌کند، سلولی که قدرت سیگنال پرتو نوری را پایش می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.31 AM

    این دتکتور بر اساس اswsصل انسداد نور عمل می‌کند. عنصر حساس به نور در بیم دتکتور دودی اعلام حریق در شرایط عادی نوری را که توسط گیرنده تولید می‌شود مشاهده می‌کند. گیرنده بر اساس درصدی از انسداد کلی به یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول بیم (فاصله بین فرستنده و گیرنده) مشخص می‌شود. معمولاً بیش از یک تنظیم برای انتخاب توسط نصاب بر اساس طول بیم در کاربرد موردنظر وجود دارد. برای دتکتورهایی که لیست UL دارند، تنظیم حساسیت باید مطابق با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» باشد.

    فرستنده در برخی واحدها ممکن است مستقل از گیرنده تغذیه شود که می‌تواند به میزان زیادی سیم‌کشی و در نتیجه هزینه نصب را کاهش دهد. از آنجا که پشتیبان باتری برای سیستم‌های اعلام حریق الزامی است، پشتیبان باتری برای فرستنده نیز موردنیاز خواهد بود، چه از پنل تغذیه شود و چه به صورت مستقل.

    بر خلاف دتکتورهای دودی فوتوالکترونیک نقطه‌ای، بیم دتکتور دودی اعلام حریق به طور کلی نسبت به رنگ دود حساسیت کمتری دارد. بنابراین، بیم دتکتور دودی اعلام حریق ممکن است برای کاربردهایی که مناسب دتکتورهای فوتوالکترونیک نقطه‌ای نیستند، مناسب باشد، مانند کاربردهایی که انتظار می‌رود آتش دود سیاه تولید کند. بیم دتکتور دودی اعلام حریق نیاز به دود قابل مشاهده دارد و بنابراین ممکن است در برخی کاربردها به اندازه دتکتورهای یونی حساس نباشد.

    WhatsApp Image 2025 09 14 at 9.19.31 AM1

    بیم دتکتور دودی اعلام حریق نسبت به انسداد تجمعی ایجادشده توسط یک میدان دود حساس است. این انسداد تجمعی توسط ترکیبی از چگالی دود و فاصله خطی میدان دود در طول پرتو نوری پروجکت‌شده ایجاد می‌شود. انسداد تجمعی در واقع اندازه‌گیری درصد انسداد نور است.

    از آنجا که انسداد ناگهانی و کامل پرتو نور یک نشانه معمول دود نیست، دتکتور این حالت را به عنوان وضعیت خطا در نظر می‌گیرد، نه هشدار. این آستانه معمولاً توسط سازنده در سطح حساسیتی که بیش از ۹۰ تا ۹۵ درصد انسداد کلی است تنظیم می‌شود. این موضوع احتمال هشدار ناخواسته ناشی از انسداد پرتو توسط یک جسم جامد، مانند یک تابلو یا نردبان که به طور تصادفی در مسیر پرتو قرار گرفته، را به حداقل می‌رساند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM

    تغییرات بسیار کوچک و آهسته در کیفیت منبع نور نیز یک نشانه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گردوغبار و آلودگی روی مجموعه‌های نوری فرستنده و/یا گیرنده ایجاد شوند. این تغییرات معمولاً توسط یک کنترل خودکار بهره (AGC) جبران می‌شوند. زمانی که دتکتور برای اولین بار روشن شده و وارد برنامه راه‌اندازی خود می‌شود، سطح سیگنال نوری آن زمان را به عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، مثلاً به دلیل گردوغبار، AGC این تغییر را جبران می‌کند. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان نسبت به آتش‌های آهسته یا دودزا حساس باقی بماند. هنگامی که AGC دیگر نتواند کاهش سیگنال را جبران کند (مانند تجمع بیش از حد آلودگی) دتکتور وضعیت خطا را اعلام خواهد کرد.

    لوازم جانبی  بیم دتکتور دودی اعلام حریق

    لوازم جانبی برای بیم دتکتور دودی اعلام حریق ممکن است شامل پنل‌های اعلام از راه دور، ایستگاه‌های تست از راه دور که امکان آزمایش الکترونیکی دوره‌ای دتکتور را فراهم می‌کنند، و فیلترهایی باشند که به‌عنوان تست «مجاز/غیرمجاز» برای کالیبراسیون صحیح دتکتور استفاده می‌شوند. برخی سازندگان استفاده از آینه برای هدایت پرتو را فراهم می‌کنند. سیستم‌های اعلام حریق هوشمند می‌توانند یک آدرس مجزا به بیم دتکتور دودی اعلام حریق اختصاص دهند تا اعلام محل آتش بهتر صورت گیرد. سیستم‌های متعارف نیز ممکن است از طریق رله‌ها اعلام از راه دور داشته باشند.

    ویژگی تشخیص حرارت بیم دتکتور دودی اعلام حریق

    برخی بیم دتکتور دودی اعلام حریق یک عنصر حساس به حرارت را در گیرنده خود جای داده‌اند که فرکانس پالس پرتو را پایش می‌کند. حرارت پرتو پالسی را تضعیف یا منحرف می‌کند که می‌تواند توسط گیرنده دریافت شود و باعث ایجاد هشدار گردد. این انحراف معمولاً زمانی بیشتر است که آتش به فرستنده نزدیک‌تر باشد تا به گیرنده. باید توجه داشت که مدولاسیون فرکانسی ناشی از چراغ‌های فلورسنت با این ویژگی تشخیص حرارت تداخل نداشته باشد. توصیه‌های سازنده باید دنبال شوند.

    کاربرد صحیح بیم دتکتور دودی اعلام حریق

    مانند دتکتورهای دودی نقطه‌ای، بیم دتکتور دودی اعلام حریق برای کاربردهای فضای باز نامناسب هستند. شرایط محیطی مانند دماهای بسیار بالا یا پایین، باران، برف، یخ، مه و شبنم می‌توانند با عملکرد صحیح دتکتور تداخل داشته باشند. شرایط محیط بیرونی رفتار دود را غیرقابل پیش‌بینی می‌سازد.

    اگرچه بیم دتکتور دودی اعلام حریق و دتکتورهای دودی نقطه‌ای تحت استانداردهای یکسان UL و NFPA قرار دارند، الزامات این استانداردها متفاوت است زیرا اصل عملکرد آن‌ها با یکدیگر فرق دارد. مهم است که طراح این تفاوت‌ها را درک کرده و هنگام انتخاب و به‌کارگیری دتکتورهای دود در سیستم‌های اعلام حریق به‌طور کامل در نظر بگیرد.

    دتکتورهای دودی نقطه‌ای حداکثر پوششی معادل ۹۰۰ فوت مربع یا ۳۰×۳۰ فوت دارند. حداکثر فاصله بین دتکتورها ۴۱ فوت است زمانی که عرض ناحیه تحت حفاظت از ۱۰ فوت تجاوز نکند، مانند یک راهرو.

    بیم دتکتور دودی اعلام حریق به طور معمول دارای حداکثر برد ۳۳۰ فوت و حداکثر فاصله بین دتکتورها ۶۰ فوت است. این به بیم دتکتور دودی اعلام حریق پوشش نظری معادل ۱۹,۸۰۰ فوت مربع می‌دهد. توصیه‌های سازنده و عوامل دیگر مانند هندسه اتاق می‌توانند باعث کاهش عملی این پوشش حداکثری شوند. حتی با وجود این کاهش‌ها، بیم دتکتور دودی اعلام حریق می‌تواند ناحیه‌ای را پوشش دهد که نیازمند چندین دتکتور نقطه‌ای خواهد بود. تعداد کمتر دستگاه‌ها به معنای هزینه نصب و نگهداری پایین‌تر است.

    ارتفاع سقف در بیم دتکتور دودی اعلام حریق

    حساسیت پاسخ دتکتور دودی نقطه‌ای معمولاً با افزایش فاصله آن از آتش کاهش می‌یابد. هنگامی که ارتفاع سقف بیش از ۱۶ فوت باشد، طراح باید در نظر بگیرد که آیا فاصله‌گذاری دتکتورهای نقطه‌ای باید کاهش یابد یا خیر. این موضوع الزاماً در مورد بیم دتکتور دودی اعلام حریق صدق نمی‌کند، چرا که آن‌ها برای کاربردهای با سقف‌های بلند ایده‌آل هستند. برخی سازندگان اجازه افزایش پوشش با افزایش ارتفاع سقف را می‌دهند. این امر به دلیل رفتار مورد انتظار ستون دود است.

    اگرچه همه آتش‌ها از پایین‌ترین نقاط خطر یا نزدیک سطح زمین شروع نمی‌شوند، این یک سناریوی معمولی آتش است. در چنین حالتی دود تولیدشده توسط آتش به سمت سقف بالا می‌رود. معمولاً ستون دود هنگام حرکت از نقطه آغاز به سمت بالا شروع به گسترش می‌کند و یک میدان دود به شکل مخروط وارونه تشکیل می‌دهد. چگالی این میدان دود می‌تواند تحت تأثیر نرخ رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند چگالی یکنواخت‌تری در سراسر میدان دود تولید کنند در حالی که در آتش‌های کندتر ممکن است در بخش‌های بالاتر میدان دود رقیق‌سازی رخ دهد.

    در برخی کاربردها، به‌ویژه در مکان‌هایی با سقف‌های بلند، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های آهسته یا دودزا پاسخ‌دهی بیشتری داشته باشد زیرا پرتو از میان کل میدان دود عبور می‌کند. دتکتورهای نقطه‌ای تنها می‌توانند دود را در نقطه خود نمونه‌برداری کنند. دودی که وارد محفظه آن‌ها می‌شود ممکن است به زیر آستانه هشدار (سطح دود موردنیاز برای آلارم) رقیق شده باشد.

    محدودیت اصلی بیم دتکتور دودی اعلام حریق این است که یک دستگاه خط دید است و بنابراین در معرض تداخل ناشی از هر جسم یا فردی قرار دارد که ممکن است وارد مسیر پرتو شود. این موضوع استفاده از آن را در بیشتر فضاهای اشغال‌شده با سقف‌های معمولی غیرعملی می‌سازد.

    با این حال، بسیاری از تأسیسات دارای فضاهایی هستند که بیم دتکتور دودی اعلام حریق نه تنها قابل قبول، بلکه دتکتور منتخب محسوب می‌شود. فضاهایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، شبستان کلیساها، همچنین کارخانه‌ها و انبارها می‌توانند گزینه‌های مناسبی برای بیم دتکتور دودی اعلام حریق باشند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و مشکلات بیشتری را برای نگهداری صحیح آن‌ها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این فضاها می‌تواند این مشکلات را کاهش دهد زیرا به دستگاه‌های کمتری نیاز خواهد بود و این دستگاه‌ها می‌توانند روی دیوارها نصب شوند که دسترسی به آن‌ها آسان‌تر از سقف‌ها است.

    تاثیر سرعت بالای جریان هوا بر عملکرد بیم دتکتور دودی اعلام حریق

    مناطق با حرکت زیاد هوا یک مشکل خاص برای تشخیص دود توسط هر دو نوع دتکتور دودی نقطه‌ای و بیم دتکتور دودی اعلام حریق ایجاد می‌کنند، زیرا انتشار دود که تحت شرایط عادی اتفاق می‌افتد ممکن است رخ ندهد. سرعت بالای هوا ممکن است دود را از محفظه آشکارسازی دتکتور دودی نقطه‌ای خارج کند. باید به عملکرد دتکتور دودی نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۳۰۰ فوت در دقیقه (fpm) است یا زمانی که تغییرات هوا در ناحیه تحت حفاظت بیش از ۷.۵ بار در ساعت است توجه ویژه‌ای شود. (رجوع شود به NFPA 72-1999, 2-3.6.6.3)

    بیم دتکتور دودی اعلام حریق برای پایداری در جریان‌های هوای زیاد به منظور درج در فهرست آزمایش نمی‌شود، زیرا حرکت زیاد هوا تأثیر زیادی بر بیم دتکتور دودی اعلام حریق ندارد. محدوده آشکارسازی بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (برد حداکثری بیم معمولاً ۳۳۰ فوت است) نه یک یا دو اینچ مانند محفظه آشکارسازی دتکتور نقطه‌ای. بنابراین احتمال اینکه دود از محدوده آشکارسازی بیم دتکتور دودی اعلام حریق خارج شود بسیار کمتر است. هرچند کاهش فاصله‌گذاری در مناطق با جریان هوای زیاد الزامی نیست، اما باید به رفتار مورد انتظار دود در این کاربردها توجه شود.

    استراتیفیکیشن در بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.32 AM1
    استراتیفیکیشن زمانی رخ می‌دهد که دود ناشی از سوختن یا مواد در حال سوختن توسط حرارت گرم شده و از هوای خنک اطراف رقیق‌تر می‌شود. دود تا زمانی بالا می‌رود که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد. (رجوع شود به NFPA 72-1999, A-2-3.6.1.4) بنابراین، استراتیفیکیشن ممکن است در مناطقی که دمای هوا در سطح سقف بالا است رخ دهد، به‌ویژه در مکان‌هایی که تهویه وجود ندارد. بر روی سقف‌های صاف (جایی که تیرها یا بیم‌ها کمتر از ۴ اینچ عمق دارند) بیم دتکتور دودی اعلام حریق معمولاً یک فوت پایین‌تر از سقف‌هایی تا ارتفاع ۳۰ فوت و ۱.۵ فوت پایین‌تر از سقف‌هایی تا ارتفاع ۶۰ فوت نصب می‌شود. این موقعیت‌یابی به جبران احتمال استراتیفیکیشن کمک می‌کند.

    WhatsApp Image 2025 09 14 at 9.19.32 AM2

    محیط‌های نامساعد برای نصب بیم دتکتور دودی اعلام حریق

    یکی از محدودیت‌های اصلی دتکتورهای دودی نقطه‌ای ناتوانی آن‌ها در دوام آوردن در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد. از آنجا که بیم دتکتور دودی اعلام حریق می‌تواند در برخی کاربردها پشت پنجره‌های شیشه‌ای شفاف و خارج از محیط خطر نصب شود، می‌تواند بر این اثرات غلبه کند. با این حال، پنجره‌ها باید تمیز و عاری از هرگونه مانع نگه داشته شوند. این ویژگی همچنین می‌تواند اجازه دهد از آن‌ها در کاربردهایی که حفاظت در برابر انفجار موردنیاز است استفاده شود.

    WhatsApp Image 2025 09 14 at 9.19.33 AM

    اصطبل‌ها و مکان‌های نگهداری دام یا تجهیزات نمونه‌های خوبی هستند که در آن‌ها هشدار زودهنگام موردنیاز است، اما دتکتورهای دودی نقطه‌ای به دلیل دماهای متغیر و شرایط پرگردوغبار و آلوده مناسب نیستند. بیم دتکتور دودی اعلام حریق می‌تواند جایگزین مناسبی باشد، زیرا اپتیک آن‌ها می‌تواند پشت پنجره‌هایی قرار گیرد که به راحتی و به صورت منظم تمیز می‌شوند. آن‌ها همچنین ممکن است محدوده دمای کاری بسیار وسیع‌تری نسبت به دتکتورهای دودی نقطه‌ای داشته باشند.

    WhatsApp Image 2025 09 14 at 9.19.33 AM1

    عوامل بسیاری بر عملکرد انواع دتکتورهای دود تأثیر می‌گذارند. نوع و مقدار مواد قابل‌احتراق، نرخ رشد آتش، نزدیکی دتکتور به آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق لیست شده توسط UL با استفاده از استاندارد 268 «دتکتورهای دود برای سیستم‌های اعلام حریق حفاظتی» آزمایش می‌شوند و باید مطابق با NFPA 72، کد ملی اعلام حریق نصب و نگهداری گردند.

    حساسیت (Sensitivity) بیم دتکتور دودی اعلام حریق

    WhatsApp Image 2025 09 14 at 9.19.34 AM

    هر تولیدکننده الزام می‌کند که حساسیت دتکتور بر اساس طول بیم در هر کاربرد تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول بیم تعیین‌شده در دستورالعمل‌های سازنده نصب گردد؛ این مقادیر محدود به الزامات لیستینگ UL هستند.

    مکان و فاصله‌گذاری (Location and Spacing) بیم دتکتور دودی اعلام حریق

    استاندارد NFPA 72 مرجع اصلی در تعیین مکان و فاصله‌گذاری دتکتورها است. برخی معیارهای طراحی طبق این استاندارد:

    • «برای مکان و فاصله‌گذاری بیم دتکتورهای دودی، باید دستورالعمل‌های نصب سازنده دنبال شود.»
      (NFPA 72-1999, 2-3.4.5.2)
    • «بیم دتکتورهای دودی باید طوری نصب شوند که بیم آن‌ها موازی با سقف باشد و طبق دستورالعمل‌های مستند سازنده قرار گیرند. در مکان‌یابی دتکتورها باید اثرات استراتیفیکیشن نیز در نظر گرفته شود.»
      (NFPA 72-1999, 2-3.4.4)
    • «استثنا: بیم‌ها می‌توانند به صورت عمودی یا در هر زاویه‌ای که برای حفاظت از خطر مورد نظر لازم باشد نصب شوند (مانند بیم عمودی در چاهک باز یک راه‌پله).»
      (NFPA 72-1999, 2-3.4.4)
    • در سازه‌های دارای تیر یا بیم صلب (با عمق کمتر از ۱ فوت و ارتفاع سقف حداکثر ۱۲ فوت)، در صورتی که بیم عمود بر تیرها نصب شود، کاهش فاصله‌گذاری الزامی نیست. (NFPA 72-1999, 2-3.4.6.1)
    • «برای تیرهایی با عمق بیش از ۱ فوت یا سقف‌هایی بالاتر از ۱۲ فوت، دتکتورها باید در هر جیب تیر نصب شوند.»
      (NFPA 72-1999, 2-3.4.6.1)

    نصب  بیم دتکتور دودی اعلام حریق

    بیم دتکتور دودی باید روی سطوح ثابت و پایدار نصب شود تا از حرکت و در نتیجه خارج شدن از هم‌ترازی جلوگیری گردد.

    از آنجا که بیم دتکتور دودی دستگاهی line-of-sight است و در صورت از دست رفتن ناگهانی یا کامل سیگنال وارد حالت خطا می‌شود، باید اطمینان حاصل کرد که هیچ مانع کدر در مسیر بیم وجود نداشته باشد. (NFPA 72-1999, 2-3.6.3)

    این الزام می‌تواند کاربرد بیم دتکتور دودی را در محیط‌هایی مانند کارخانه‌ها (با وجود جرثقیل‌های سقفی) یا انبارها (با لیفتراک‌های مرتفع) غیرعملی کند. این موضوع همچنین در فضاهای اشغال‌شده با سقف‌های معمولی باید مورد توجه قرار گیرد.

    فاصله‌گذاری روی سقف صاف  در بیم دتکتور دودی اعلام حریق

    • حداکثر فاصله بین بیم‌ها: ۶۰ فوت (۱۸.۳ متر)
    • حداکثر فاصله بیم تا دیوار جانبی موازی با مسیر بیم: نصف فاصله بالا

    با این حال، بسته به ارتفاع سقف، ویژگی‌های جریان هوا و نیاز به سرعت واکنش، فاصله‌گذاری می‌تواند تغییر کند.

    در برخی موارد، پروژکتور بیم روی یک دیوار انتهایی و گیرنده روی دیوار مقابل نصب می‌شود. همچنین می‌توان هر دو دستگاه را از سقف آویزان کرد، به شرطی که فاصله آن‌ها از دیوار انتهایی حداکثر یک‌چهارم فاصله انتخابی باشد. (NFPA 72-1999, A-2-3.4.5.2)

    توجه: دود تولیدشده در پشت فرستنده یا گیرنده تا زمانی که وارد مسیر بیم نشود، قابل آشکارسازی نیست. بنابراین باید این فاصله به حداقل ممکن کاهش یابد.

    سایر ملاحظات طراحی بیم دتکتور دودی اعلام حریق

    • اگرچه فاصله ۶۰ فوت طبق NFPA مجاز است، دستورالعمل‌های سازنده ممکن است محدودیت‌های بیشتری اعمال کنند.
    • در کاربردهایی که نیاز به واکنش سریع به‌دلیل ایمنی جانی یا ارزش بالای دارایی‌ها وجود دارد، فاصله‌گذاری باید کاهش یابد.
    • در آتریوم‌های مرتفع (مثلاً هتل‌ها)، ممکن است نیاز به نصب دتکتورهای اضافی در ارتفاعات پایین‌تر باشد.
    • در نصب چند بیم موازی، فاصله آن‌ها باید به‌گونه‌ای باشد که گیرنده یک دتکتور، منبع نور دتکتور دیگر را نبیند.
    • در صورت نصب بیم‌ها با زاویه، باید دقت شود که هر گیرنده تنها نور فرستنده خودش را دریافت کند.
    • برخی سازندگان امکان استفاده از آینه برای تغییر مسیر بیم را فراهم می‌کنند. در این حالت ممکن است طول برد بیم محدودتر شود. نصب آینه باید طبق دستورالعمل سازنده باشد و توجه ویژه به پایداری مکان نصب آن‌ها صورت گیرد.
    • فرستنده و گیرنده بیم دتکتور دودی می‌توانند پشت شیشه شفاف نصب شوند (با کاهش حدود ۱۰٪ در برد مؤثر برای هر شیشه). استفاده از پلاستیک توصیه نمی‌شود.

    در نتیجه: اگرچه بیم دتکتور دودی برای همه کاربردها مناسب نیست، اما در بسیاری از فضاها که دتکتور نقطه‌ای کارایی ندارد، می‌تواند انتخابی ایده‌آل باشد. شناخت دقیق توانایی‌ها و محدودیت‌های همه انواع دتکتور دودی برای طراحی صحیح سیستم اعلام حریق خودکار حیاتی است.

  • بررسی انواع دتکتورهای گاز

    1. گاز چیست؟

    2-1. ترکیب هوا

    هوا تقریباً از 78٪ نیتروژن، 21٪ اکسیژن و 1٪ گازهای دیگر (مانند آرگون و دی‌اکسید کربن) تشکیل شده است. نیتروژن، که بزرگ‌ترین جزء هواست، پایه‌ی پروتئین‌های ساخته‌شده از اسیدهای آمینه را تشکیل می‌دهد و در بسیاری از موجودات زنده یافت می‌شود. نیتروژن برای تقریباً تمام حیات روی این سیاره ضروری است. با این حال، نیتروژن مستقیماً از هوا به بدن جذب نمی‌شود. نیتروژنی که ما استنشاق می‌کنیم، صرفاً هنگام بازدم خارج می‌شود. اکسیژن، که برای حیات ضروری است و مستقیماً به بدن ما جذب می‌شود، 21٪ از هوا را تشکیل می‌دهد. دی‌اکسید کربن، که برای فتوسنتز گیاهان حیاتی است، کمتر از 1٪ است. جانوران اکسیژن جذب می‌کنند و دی‌اکسید کربن دفع می‌کنند و گیاهان دی‌اکسید کربن جذب می‌کنند و اکسیژن دفع می‌کنند، که این امر تعادل ثابتی در ترکیب کلی هوا و فرآیندهای حیاتی روی این سیاره حفظ می‌کند.

    2-2. خطرات گاز

    به طور کلی، خطرات گاز به سه دسته زیر تقسیم می‌شوند:

     

    گازهای قابل اشتعال

    گازهایی که در صورت ترکیب با هوا، محدوده انفجاری (محدوده اشتعال) دارند.

    بر اساس سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی (GHS*)، این مواد در حالت گازی در فشار استاندارد اتمسفر (101.3 کیلوپاسکال) و دمای 20 درجه سانتی‌گراد تعریف می‌شوند.

    * GHS: سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی

     

    گازهای سمی

    گازهایی که عملکرد بیولوژیکی انسان را مختل می‌کنند.

    گازهای سمی بر اساس مقادیر آستانه‌ای تنظیم می‌شوند که برای محافظت از اثرات مضر سلامتی کارگرانی که در محل کار روزانه 8 ساعت و هفته‌ای 40 ساعت در معرض این مواد قرار می‌گیرند، تعیین شده‌اند.

     

    کمبود اکسیژن

    بدن انسان می‌تواند در غلظت اکسیژن جو حدود 21% به طور طبیعی عمل کند.

    اگر اکسیژن مصرف شود و غلظت آن کاهش یابد (مثلاً در اثر اکسیداسیون فلزات یا فعالیت میکروارگانیسم‌ها) یا اگر اکسیژن توسط گازهای دیگر (مانند N₂ و Ar) جایگزین شود، اثرات آن بر بدن انسان زمانی آشکار می‌شود که غلظت اکسیژن به زیر حدود 18% برسد. در غلظت‌های 6% تا 8% خطر مرگ وجود دارد.

    1. خطرات گازهای قابل اشتعال

    3-1. سه عنصر لازم برای احتراق

     

    احتراق به طور کلی به واکنش اکسیداسیونی گفته می‌شود (که در آن مواد با اکسیژن ترکیب می‌شوند) که همراه با تولید گرما و نور است.

    ماده سوختنی

    گاز حامی احتراق

    منبع اشتعال

    در صورت نبود هر یک از این عناصر، احتراق امکان‌پذیر نیست. برای جلوگیری از احتراق گاز، ضروری است که غلظت گاز را زیر حدی که بتواند مشتعل شود تنظیم و حفظ کرد (با فرض وجود گاز حامی احتراق و منبع اشتعال).

    WhatsApp Image 2025 09 26 at 9.39.48 AM

    3-2. محدوده انفجاری

    اگر یک گاز قابل اشتعال یا بخار ناشی از یک مایع قابل اشتعال با هوا یا اکسیژن مخلوط شود، در صورت وجود منبع احتراق و قرار گرفتن غلظت در محدوده خاصی، منفجر خواهد شد. این محدوده غلظت، محدوده انفجاری نامیده می‌شود. حد پایینی غلظت، حد انفجاری پایین (LEL) و حد بالایی غلظت، حد انفجاری بالا (UEL) نام دارد.

    WhatsApp Image 2025 09 26 at 9.39.48 AM1

    مثال: هیدروژن

    حد انفجاری پایین مقداری است که به صورت تجربی تعیین می‌شود، اما نتایج به‌دست‌آمده ممکن است بسته به شرایط و روش‌های آزمایش متفاوت باشد. بنابراین احتیاط لازم است و مقادیر ذکرشده ممکن است بسته به منبع مرجع متغیر باشند.

     

    رایج است که آشکارسازهای گاز، غلظت گاز را بر اساس حد انفجاری پایین پایش می‌کنند. دلیل این امر آن است که حتی اگر غلظت گاز از حد انفجاری بالا بیشتر باشد، در صورت نشت گاز به اتمسفر، گاز بلافاصله رقیق شده و پخش می‌شود و غلظت آن به محدوده انفجاری می‌رسد. واحد %LEL معمولاً برای بیان غلظت نسبت به حد انفجاری پایین استفاده می‌شود (100%LEL).

     

    3-3. بخار قابل اشتعال

    اگرچه هر دو در حالت گازی هستند، اما گاز و بخار به طور کلی به دو چیز متفاوت اشاره دارند. بخار به ماده‌ای گفته می‌شود که در دمای معمولی به حالت مایع (یا جامد) وجود دارد، اما تحت شرایط خاصی از فاز مایع به فاز گازی تبخیر می‌شود. ویژگی‌های فیزیکی زیر، که بر اساس تغییرات دما تعیین می‌شوند، مشخص می‌کنند که آیا بخار قابل اشتعال می‌تواند به یک خطر تبدیل شود یا خیر.

     

    1. فشار بخار اشباع

    این فشار به فشاری اشاره دارد که در آن یک ماده در دمای خاصی از مایع به گاز تبخیر می‌شود. فشار بخار معمولاً با افزایش دما بالا می‌رود. دمایی که در آن فشار برابر با فشار اتمسفر (101.3 کیلوپاسکال ≈ 760 میلی‌متر جیوه) می‌شود، نقطه جوش نامیده می‌شود. غلظت (غلظت حجمی) گازی که در دمای خاصی تبخیر می‌شود را می‌توان با محاسبه درصد فشار بخار نسبت به فشار اتمسفر تعیین کرد.

    WhatsApp Image 2025 09 26 at 9.39.49 AM

    شکل بالا، منحنی‌های فشار بخار اشباع برای اتانول و آب را نشان می‌دهد. از آنجا که نقطه جوش آب ۱۰۰ درجه سانتی‌گراد است، مشاهده می‌شود که منحنی فشار بخار در فشار ۱۰۱.۳ کیلوپاسکال، دمای ۱۰۰ درجه سانتی‌گراد را نشان می‌دهد. به عبارت دیگر، غلظت بخار آب اشباع در این نقطه ۱۰۰ درصد حجمی است.

     

    از طرف دیگر، اتانول مایعی فرّارتر از آب است (یعنی فشار بخار بالاتری دارد)، همانطور که هر کسی که قبل از تزریق در بیمارستان با اتانول ضدعفونی شده باشد، به راحتی درک می‌کند. در عمل، نقطه جوش اتانول ۷۸ درجه سانتی‌گراد است. این داده نیز نشان می‌دهد که اتانول فرّارتر از آب است.

     

    می‌توانیم غلظت گاز اتانول را در دمای خاصی بر اساس فشار بخار آن دما محاسبه کنیم. به عنوان مثال، از منحنی فشار بخار اشباع می‌توان دریافت که فشار بخار اتانول در ۲۰ درجه سانتی‌گراد تقریباً ۵.۸ کیلوپاسکال است. این مقدار را می‌توان در معادله زیر قرار داد تا غلظت گاز محاسبه شود:

     

    =غلظت گاز (درصد حجمی) = (فشار بخار در دمای مشخص) ÷ (فشار اتمسفر) × ۱۰۰

    = ۵.۸ (kPa) ÷ ۱۰۱.۳ (kPa) × ۱۰۰

    = ۵.۷ درصد حجمی

     

    این محاسبه ارزش به خاطر سپردن دارد. حتی اگر منحنی فشار بخار مانند شکل بالا در دسترس نباشد، معمولاً برگه اطلاعات ایمنی (SDS) ارائه‌شده توسط تولیدکننده مواد شیمیایی، داده‌های فشار بخار را برای دماهای معمولی (۲۰ تا ۳۰ درجه سانتی‌گراد) شامل می‌شود که می‌توان از آنها برای محاسبه غلظت گاز استفاده کرد.

     

    ۲. نقطه اشتعال (Flash Point)

    نقطه اشتعال به کمترین دمایی اشاره دارد که در آن، غلظت بخار یک ماده در هوا به حدی می‌رسد که در صورت وجود منبع احتراق، قابلیت اشتعال پیدا می‌کند. این دما را می‌توان به عنوان دمایی تفسیر کرد که در آن، غلظت بخار قابل اشتعال به حد انفجاری پایین (LEL) می‌رسد. اگر نقطه اشتعال مایعی که بخار قابل اشتعال تولید می‌کند، پایین‌تر از دمای محیطی باشد که مایع در آن استفاده می‌شود، به دلیل خطر بالای آتش‌سوزی و انفجار، احتیاط زیادی در ارزیابی خطر اشتعال لازم است.

     

    ۳. نقطه خودسوزی (Ignition Point)

    این دما به کمترین دمایی اشاره دارد که یک ماده قابل اشتعال در هوا، به دلیل افزایش دمای خود ماده (و نه تماس موضعی با یک جسم داغ مانند جرقه الکتریکی، شعله یا سیم فلزی گداخته) به صورت خودبه‌خود مشتعل می‌شود. تولیدکنندگان تجهیزات الکتریکی ضد انفجار باید دستگاه‌ها را به گونه‌ای طراحی و تولید کنند که دمای سطحی تجهیزات که احتمال تماس با گاز یا بخار قابل اشتعال را دارد، از نقطه خودسوزی گاز یا بخار مربوطه تجاوز نکند.

    ۴-۱. خطرات گازهای سمی

    گازهای مورد استفاده یا تولیدشده به عنوان گازهای فرآیندی در صنایع مختلف، شامل گازهای سمی هستند که حتی در غلظت‌های بسیار کم می‌توانند آسیب‌های جدی به سلامت انسان وارد کنند یا حتی منجر به مرگ شوند.

     

    برخی گازها مانند **سولفید هیدروژن (H₂S)** و **آمونیاک (NH₃)** بوی مشخصی دارند که انسان می‌تواند حضور آن‌ها را تشخیص دهد. با این حال، حس بویایی انسان قادر نیست تعیین کند که آیا غلظت این گازها به سطوح خطرناک رسیده است یا خیر (به عنوان مثال، حد آستانه مجاز مواجهه شغلی برای H₂S موسوم به **TLV-TWA: 1 ppm** طبق استاندارد ACGIH 2018).

     

    **۱ ppm** معادل غلظتی است که با اضافه کردن تنها **یک قطره (۱ میلی‌لیتر = ۱ گرم یا ۱ سی‌سی)** از یک مایع سمی به یک مخزن بزرگ **۱۰۰۰ لیتری (۱ تن یا ۱ مترمکعب)** آب و مخلوط کردن کامل آن به دست می‌آید. فرض کنید این یک قطره (۱ ppm) سس سویا باشد. نه تنها تشخیص آن پس از مخلوط شدن به صورت بصری غیرممکن است، بلکه حتی با چشیدن نیز قابل تشخیص نخواهد بود. هرچند گازها با مایعات متفاوت هستند، بسیاری از گازهای سمی هم **بی‌رنگ** و هم **بی‌بو** هستند.

     

    یک نمونه از چنین گاز سمی، **مونوکسید کربن (CO)** است که گازی بالقوه کشنده بوده و می‌تواند در اثر احتراق ناقص بخاری‌های گازی در منازل تولید شود. این گاز گاهی اوقات به عنوان **قاتل خاموش** شناخته می‌شود، زیرا می‌تواند بدون آنکه تشخیص داده شود، باعث مسمومیت یا مرگ شود.

    ### **۵-۱. خطرات کمبود اکسیژن**

     

    اکسیژن ماده‌ای ضروری برای حفظ عملکرد بیولوژیکی انسان است. **کمبود اکسیژن (هیپوکسی)** تأثیرات جدی بر بدن، به‌ویژه مغز، می‌گذارد و وضعیتی بسیار خطرناک با نرخ مرگ‌ومیر بالا در محیط‌های کاری محسوب می‌شود.

    WhatsApp Image 2025 09 26 at 9.39.53 AM

    بررسی حوادث صنعتی مرتبط با کمبود اکسیژن در ژاپن نشان می‌دهد که بیشتر این موارد در بخش‌های **تولیدی و ساختمانی** رخ داده و سالانه منجر به تلفات متعددی می‌شود.

     

    **طبق آیین‌نامه پیشگیری از کمبود اکسیژن در قانون ایمنی و بهداشت صنعتی ژاپن:**

    – **شرایط کمبود اکسیژن** زمانی است که غلظت اکسیژن در هوا کمتر از ۱۸٪ باشد.

    – از دتکتورهای گاز برای اطمینان از حفظ غلظت اکسیژن بالاتر از ۱۸٪ استفاده می‌شود.

     

    ### **علائم کمبود اکسیژن:**

    – **۱۸٪ – ۱۶٪ اکسیژن:** افزایش تنفس، ضربان قلب سریع‌تر، اختلال در قضاوت و هماهنگی حرکتی.

    – **۱۶٪ – ۱۲٪ اکسیژن:** تنفس سنگین، گیجی، سردرد، خواب‌آلودگی، کاهش قدرت تفکر و حرکت.

    – **۱۲٪ – ۱۰٪ اکسیژن:** حالت تهوع، استفراغ، بیهوشی جزئی، کبودی لب‌ها و پوست.

    – **زیر ۱۰٪ اکسیژن:** بیهوشی، تشنج، آسیب مغزی، ایست تنفسی و مرگ در مدت‌زمان کوتاه.

     

    **هشدار:** در محیط‌های بسته یا فضاهای محدود (مانند مخازن، تونل‌ها، چاه‌ها) احتمال کاهش اکسیژن به‌دلیل واکنش‌های شیمیایی، جابجایی با گازهای دیگر یا مصرف اکسیژن وجود دارد. نظارت مستمر با دستگاه‌های سنجش اکسیژن و استفاده از تجهیزات تنفسی مناسب الزامی است.**

    البته، در ادامه ترجمه‌ی دقیق و روان متن موردنظر بدون هیچگونه افزودنی ارائه شده است:

     

    5-2. سه علت اصلی کمبود اکسیژن

    1. مصرف اکسیژن موجود در هوا
      علل اصلی مصرف اکسیژن:
      اکسیداسیون آهن و فلزات دیگر (ماسه آهن، لوله‌های فلزی، مخازن فلزی)،
      اکسیداسیون رنگ، مصرف زیستی اکسیژن (تنفس انسان‌ها و میکروارگانیسم‌ها)
    2. تخلیه یا ورود هوای کم‌اکسیژن
      هوای کم‌اکسیژن که به دلایل مختلفی ایجاد می‌شود، در صورتی که به‌دلیل شرایط کاری، روش‌های ساخت‌وساز یا شرایط آب‌وهوایی، تخلیه یا وارد مکان‌هایی با کمبود اکسیژن شود، می‌تواند موجب بی‌اکسیژنی گردد.
    3. تولید متان یا ورود گاز بی‌اثر
      کمبود اکسیژن می‌تواند ناشی از انتشار متان (که در طبیعت وجود دارد) یا نشت گازهای بی‌اثر (مانند نیتروژن، دی‌اکسید کربن، آرگون) از مخازن یا لوله‌ها در صنایع تولیدی باشد.

     

    5-3. اکسیژن بیش‌ازحد
    اگرچه اکسیژن برای عملکرد زیستی انسان ضروری است، اما قرارگیری مداوم در معرض غلظت‌ها یا فشارهای جزئی بالای اکسیژن می‌تواند منجر به مسمومیت با اکسیژن شود.
    مسمومیت با اکسیژن باعث تشنج عمومی و از دست دادن هوشیاری می‌شود و در بدترین حالت، منجر به مرگ می‌گردد.
    در محیط‌هایی که امکان بروز اکسیژن بیش‌ازحد وجود دارد، باید غلظت گازها نه‌فقط برای کمبود اکسیژن (کمتر از ۱۸٪)، بلکه برای جلوگیری از غلظت‌های بیش‌ازحد نیز پایش شود.

    البته، در ادامه ترجمه‌ی دقیق و روان متن خواسته‌شده بدون هیچ‌گونه افزودنی آورده شده است:

     

    مناطق معمولی که نیاز به تشخیص گاز دارند
    6-1. بازار دستگاه‌های گازسنج
    بازار دستگاه‌های گازسنج شامل تمامی بازارهایی است که در آن‌ها از گاز استفاده می‌شود.

    1. آزمایشگاه‌ها، دانشگاه‌ها، بیمارستان‌ها
      مراکز تحقیقاتی که از طیف گسترده‌ای از گازها، از جمله گازهای قابل اشتعال و سمی استفاده می‌کنند، تدابیری برای ایمنی کارکنان تحقیقاتی اتخاذ می‌کنند؛ مانند تشخیص سریع نشت گاز از طریق پایش محیط با استفاده از گازسنج‌های ثابت شرکت Riken Keiki.
      علاوه بر گازسنج‌ها، سیستم‌های تحلیلی که قادر به انجام هم‌زمان تحلیل پراش اشعه ایکس (XRD) و فلورسانس اشعه ایکس (XRF) در محل هستند نیز برای کاربردهایی مانند تحقیقات روی آثار فرهنگی غیرقابل‌انتقال مورد استفاده قرار می‌گیرند.
    2. صنعت الکترونیک
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD از گازهایی موسوم به گازهای مواد ویژه (گازهای بسیار سمی و قابل اشتعال) مانند سیلان، آرسین و فسفین استفاده می‌کنند.
      در مورد این گازها، نشت در غلظت‌های بسیار پایین (چند ppm تا چند ده ppm) نیز غیرقابل‌قبول است.
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD ممکن است صدها تا هزاران دستگاه گازسنج Riken Keiki برای محافظت از کارکنان در برابر نشت گاز نصب کرده باشند.
      این دستگاه‌ها مجهز به حسگرهای روش الکترولیز پتانسیواستاتیکی هستند که قادر به تشخیص نشت گاز در حد چند ppm می‌باشند.

     

    1. صنعت فولاد
      گازهایی که به‌عنوان محصولات جانبی در فرآیندهای تولید فولاد (گاز کک، گاز کوره بلند، گاز مبدل) تولید می‌شوند، دارای مقادیر زیادی هیدروژن و مونوکسید کربن هستند.
      این گازها به‌عنوان سوخت برای تولید برق در کارخانه‌های فولاد مجدداً مورد استفاده قرار می‌گیرند.
      گازسنج‌های قابل‌حمل Riken Keiki کارکنان داخل کارخانه‌های فولاد را در برابر خطرات انفجار و مسمومیت محافظت می‌کنند.

     

    1. صنعت پالایش نفت و پتروشیمی
      صنعت پالایش نفت و پتروشیمی در فرآیندهای تولید خود با طیف گسترده‌ای از گازهای قابل اشتعال و سمی سروکار دارد.
      گازسنج‌های ثابت و قابل‌حمل Riken Keiki در کاربردهایی مانند تشخیص نشت گازهای سمی و قابل اشتعال از تجهیزات و لوله‌ها، مدیریت فرآیند و اندازه‌گیری محیط کار مورد استفاده قرار می‌گیرند.
      پایشگرهای ثابت گازهای سمی برای مدیریت گازهای سمی در مرزهای کارخانه نیز به‌طور فزاینده‌ای مورد استفاده قرار می‌گیرند
    2. مناطق آتشفشانی و چشمه‌های آب گرم
      گازهای آتشفشانی در نزدیکی دهانه‌های آتشفشان و در مناطقی که چشمه‌های آب گرم تخلیه می‌شوند، تولید می‌گردند.
      این گازهای آتشفشانی حاوی گازهای سمی مانند دی‌اکسید گوگرد و سولفید هیدروژن هستند که در صورت استنشاق برای انسان مضرند.
      غلظت این گازها به‌طور مداوم به‌دلیل فعالیت‌های آتشفشانی و عوامل دیگر تغییر می‌کند.
      دستگاه‌های گازسنج تخصصی برای پایش شبانه‌روزی غلظت دی‌اکسید گوگرد و سولفید هیدروژن به کار می‌روند تا از کارکنان و گردشگران محافظت شود.

     

    1. صنعت مواد غذایی
      در صنعت مواد غذایی، نیتروژن و دی‌اکسید کربن در فرآیند بسته‌بندی برای جلوگیری از اکسید شدن غذا مورد استفاده قرار می‌گیرند.
      از آنجا که این گازها خفه‌کننده هستند، گازسنج‌های اکسیژن تخصصی در کارخانه‌های مواد غذایی نصب می‌شوند تا از کارکنان در برابر بی‌اکسیژنی محافظت کنند.

     

    1. صنعت ساخت‌وساز
      کار در حفاری‌های زیرزمینی برای ساخت تونل‌ها و همچنین کار درون منهول‌ها می‌تواند کارکنان را در معرض تولید سولفید هیدروژن و شرایط کمبود اکسیژن قرار دهد؛ این وضعیت ناشی از باکتری‌های مصرف‌کننده اکسیژن موجود در لایه‌های زیرزمینی است.
      گازسنج‌های قابل‌حمل اکسیژن و سولفید هیدروژن از کارکنان در برابر خطرات ناشی از کمبود اکسیژن و مسمومیت با سولفید هیدروژن محافظت می‌کنند.
    2. آتش‌نشانی و امداد و نجات
      صحنه‌های آتش‌سوزی و حوادث، کارکنان را در معرض خطرات مختلفی قرار می‌دهند؛ از جمله انفجار ناشی از گازهای قابل اشتعال، کمبود اکسیژن، مسمومیت با مونوکسید کربن در اثر احتراق ناقص، و گازهای سمی مانند سولفید هیدروژن.
      گازسنج‌های شخصی چهارگازه برای پایش هم‌زمان چهار گاز مختلف استفاده می‌شوند. این دستگاه‌ها برای موقعیت‌هایی که نوع دقیق گازهای خطرناک ناشناخته است، بسیار مناسب هستند.

     

    1. حمل‌ونقل دریایی و کشتی‌سازی
      کشتی‌هایی که مقادیر زیادی نفت خام، LNG یا LPG حمل می‌کنند، با خطر نشت گازهای قابل اشتعال از مخازن بار مواجه هستند.
      گازسنج‌های ثابت تخصصی برای پایش نشت گاز در این کشتی‌ها به‌کار می‌روند. این دستگاه‌ها امکان شناسایی سریع نشت‌ها را فراهم کرده و از وقوع انفجار و آلودگی دریایی جلوگیری می‌کنند.
      همچنین، گازسنج‌های قابل‌حمل توسط کارکنان در حین انجام عملیات ساخت‌وساز پوشیده می‌شوند تا آن‌ها را در برابر کمبود خطرناک اکسیژن و مسمومیت با گازهای سمی محافظت کنند.

     

    1. هوافضا
      سوخت موشک‌ها حاوی هیدروژن (گاز قابل اشتعال و بسیار انفجاری) و هیدرازین (گاز سمی برای انسان) است.
      پایش این گازها برای ایمنی کاملاً ضروری است.
      گازسنج‌های ضدانفجار در مکان‌هایی که خطر انفجار بالا وجود دارد، مانند مناطقی که سوخت موشک با آن‌ها سروکار دارد، برای اطمینان از ایمنی استفاده می‌شوند.

    فناوری‌های تشخیص گاز
    7-1. فناوری‌های حسگر گاز
    برای مواجهه با محیط‌ها و انواع گازهای متنوع در طیف گسترده‌ای از صنایع، فناوری‌های مختلف حسگر گاز توسعه یافته‌اند.
    در این بخش، ۱۳ نوع از رایج‌ترین فناوری‌هایی که معمولاً در صنعت استفاده می‌شوند معرفی می‌گردند:

    1. روش احتراق کاتالیستی
    2. روش جدید کاتالیستی سرامیکی
    3. روش نیمه‌رسانا
    4. روش نیمه‌رسانای سیم داغ
    5. روش رسانش گرمایی
    6. روش الکترولیز پتانسیواستاتیکی
    7. روش الکترود با غشای جداکننده
    8. روش سلول گالوانیکی با غشای نفوذپذیر
    9. روش مادون قرمز غیرپراکنشی (NDIR)
    10. روش تداخل‌سنجی
    11. روش نوار شیمیایی
    12. آشکارساز یونش نوری (PID)
    13. روش آشکارسازی ذرات ناشی از پیرولیز

    7-2. روش احتراق کاتالیستی

    1. توضیح مختصر

    این حسگر بر پایه گرمای تولیدشده از سوزاندن گاز قابل اشتعال روی کاتالیست اکسیداسیون، گاز را شناسایی می‌کند. این حسگر رایج‌ترین حسگر گاز است که به‌طور خاص برای گازهای قابل اشتعال طراحی شده است.

    WhatsApp Image 2025 09 26 at 9.39.54 AM

    1. ساختار و اصول عملکرد

    [ساختار]
    این حسگر از یک المان آشکارساز و یک المان جبرانی تشکیل شده است.
    المان آشکارساز شامل سیم پیچ فلز گران‌بها (مانند پلاتین) و کاتالیست اکسیدکننده – ماده‌ای فعال در برابر گاز قابل اشتعال – است که همراه با یک پایه آلومینا روی سیم پخته (سینتر) شده‌اند. این المان در واکنش با هر گاز قابل شناسایی می‌سوزد.
    المان جبرانی شامل سیم پیچ فلز گران‌بها و شیشه – ماده‌ای غیرفعال در برابر گاز قابل اشتعال – است که همراه با پایه آلومینا روی سیم پخته شده‌اند. این المان اثرات محیط را تصحیح می‌کند.

    [اصول عملکرد]
    سیم پیچ فلز گران‌بها، المان آشکارساز را تا دمای ۳۰۰ تا ۴۵۰ درجه سانتی‌گراد گرم می‌کند. سپس گاز قابل اشتعال روی سطح المان آشکارساز می‌سوزد و دمای آن افزایش می‌یابد.
    با تغییر دما، مقاومت سیم پیچ فلز گران‌بها – که بخشی از المان است – تغییر می‌کند. این تغییر مقاومت تقریباً متناسب با غلظت گاز است.
    مدار پل نشان‌داده‌شده در شکل سمت راست به حسگر اجازه می‌دهد تغییر مقاومت را به ولتاژ تبدیل کرده و از آن برای تعیین غلظت گاز استفاده کند.

    حسگر ثابت –
    دسته: حالت جامد
    گاز قابل شناسایی: گازهای قابل اشتعال

     

     

    ویژگی‌ها

    O ویژگی‌های خروجی:
    سیم پیچ فلز گران‌بها که منبع حرارت است، ضریب مقاومت وابسته به دما را به‌صورت خطی تغییر می‌دهد.
    در محدوده غلظت کمتر از حد انفجار (LEL)، واکنش احتراقی متناسب با غلظت گاز است.
    در این محدوده، خروجی حسگر به‌آرامی متناسب با تغییرات غلظت گاز تغییر می‌کند.

    WhatsApp Image 2025 09 26 at 9.39.54 AM1

    پاسخ‌دهی:
    گرمای احتراق تولیدشده روی سطح المان آشکارساز به سیم پیچ فلز گران‌بها منتقل شده و مقاومت مدار پل را تغییر می‌دهد و سپس به سیگنال تبدیل می‌گردد.

    WhatsApp Image 2025 09 26 at 9.39.55 AM

    با نرخ واکنش بالا، این حسگر در پاسخ‌دهی، دقت و قابلیت تکرار عملکرد بسیار خوبی دارد.

    O ویژگی‌های دما و رطوبت:
    مواد به‌کاررفته در اجزای حسگر دارای مقاومت الکتریکی بالا هستند و کمتر تحت تأثیر دما و رطوبت محیط استفاده قرار می‌گیرند، بنابراین قرائت‌ها تقریباً ثابت باقی می‌مانند.

    WhatsApp Image 2025 09 26 at 9.39.55 AM1

    توسعه کاتالیست:
    المان آشکارساز از کاتالیستی استفاده می‌کند که واکنش احتراقی را تسهیل می‌کند.
    این کاتالیست به‌طور اختصاصی برای حسگرهای گاز توسعه یافته و با بهره‌گیری از دانش فنی خاص طراحی شده است، که پایداری بلندمدت را فراهم می‌کند.

     

    ۷–۴. تشخیص گاز با دتکتورهای گاز نیمه‌رسانا

    حسگر ثابت

    **۱. شرح مختصر دتکتورهای گاز نیمه‌رسانا

    این حسگر از یک نیمه‌رسانای اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. حسگر این تغییر مقاومت را به‌عنوان غلظت گاز تشخیص می‌دهد. این یک حسگر همه‌کاره است که انواع گازها از گازهای سمی تا گازهای قابل اشتعال را شناسایی می‌کند. 

     

    **۲. ساختار و اصول کار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی         تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا        در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند

    **[ساختار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی (SnO₂) تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا (Au) در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند. 

    WhatsApp Image 2025 09 26 at 9.39.55 AM2

     

    **[اصول کار دتکتورهای گاز نیمه‌رسانا

    سیم گرم‌کن، سطح نیمه‌رسانای اکسید فلزی را تا ۴۰۰–۳۵۰°C گرم می‌کند. با جذب اکسیژن هوا روی این سطح به‌صورت O و O₂، نیمه‌رسانا مقاومت ثابتی حفظ می‌کند. سپس، گاز متان یا مشابه آن با سطح تماس یافته و جذب شیمیایی می‌شود. این گاز توسط یون‌های O اکسید شده و تجزیه می‌شود. واکنش روی سطح حسگر به‌صورت زیر است: 

     

    CH₄ + ۴O⁻ → CO₂ + ۲H₂O + ۸e⁻ 

    WhatsApp Image 2025 09 26 at 9.39.56 AM

    به‌طور خلاصه، گاز متان روی سطح حسگر جذب شده و اکسیژن جذب‌شده را جدا می‌کند. این امر الکترون‌های آزاد درون حسگر را افزایش داده و مقاومت را کاهش می‌دهد. حسگر با اندازه‌گیری تغییر مقاومت، غلظت گاز را تعیین می‌کند. 

     

    **۳. ویژگی‌های دتکتورهای گاز نیمه‌رسانا 

    **ویژگی‌های خروجی دتکتورهای گاز نیمه‌رسانا

    حسگر تغییرات مقاومت نیمه‌رسانا را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (در سطح ppm) که توسط حسگرهای سرامیکی جدید قابل تشخیص نیستند را نیز شناسایی می‌کند. این حسگر برای غلظت‌های کم بسیار حساس بوده و سطح خروجی بالایی دارد. 

    WhatsApp Image 2025 09 26 at 9.39.56 AM1

    **تشخیص گازهای سمی در دتکتورهای گاز نیمه‌رسانا

    از آنجا که در اصل، مقاومت با تغییر تعداد الکترون‌ها و تحرک آن‌ها تغییر می‌کند، این حسگر طیف وسیعی از گازها از جمله گازهای سمی که گرمای احتراق کمتری تولید می‌کنند را تشخیص می‌دهد. 

     

    **ویژگی‌های پیری دتکتورهای گاز نیمه‌رسانا

    حسگر در بلندمدت پایداری خود را حفظ کرده و عمر طولانی دارد. در مقایسه با حسگرهای مبتنی بر احتراق کاتالیستی، این نوع حسگر مقاومت بالایی در برابر سمیت و شرایط سخت جوی دارد. 

     

    **انتخاب‌پذیری گاز در دتکتورهای گاز نیمه‌رسانا

    با افزودن ناخالصی به ماده نیمه‌رسانا، اثر تداخل تغییر می‌کند. این ویژگی به حسگر اجازه می‌دهد تا برخی گازها را به‌صورت انتخابی تشخیص دهد.

     

     

     

    ۷-۵.تشخیص گاز از طریق روش نیمه‌هادی نوع سیم داغ

     

    سنسور ثابت

    سنسور قابل حمل نیمه‌هادی نوع سیم داغ

     

    ۱. شرح مختصر از دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    این سنسور از یک نیمه‌هادی اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. سنسور این تغییر مقاومت را به عنوان غلظت گاز تشخیص می‌دهد. این یک سنسور گاز با حساسیت بالا برای غلظت‌های کم است.

     

    ۲. ساختار و اصول  دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    [ساختار]

    سنسور از یک المان تشخیصی تشکیل شده است که شامل یک سیم پیچ از جنس فلز گران‌بها (مثلاً پلاتین) و یک نیمه‌هادی اکسید فلزی پخته شده روی سیم پیچ است، و یک المان جبرانی که ماده‌ای غیرفعال در برابر گازهای قابل تشخیص روی آن پخته شده است.

    WhatsApp Image 2025 09 26 at 9.39.57 AM

    [اصول  عملکرد دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM1

    مقاومت (R) المان تشخیصی، ترکیبی از مقاومت (RS) نیمه‌هادی و مقاومت (RH) سیم پیچ فلز گران‌بها است. المان تشخیصی توسط سیم پیچ فلز گران‌بها تا ۳۰۰°C تا ۴۰۰°C گرم می‌شود و مقاومت ثابتی را حفظ می‌کند. سپس، گاز متان یا مشابه با المان تشخیصی تماس پیدا می‌کند و اکسیژن جذب شده روی سطح نیمه‌هادی اکسید فلزی را جدا می‌کند. این امر تعداد الکترون‌های آزاد در داخل نیمه‌هادی را افزایش داده و مقاومت نیمه‌هادی را کاهش می‌دهد. در نتیجه مقاومت کل المان تشخیصی کاهش می‌یابد. با تشخیص تغییر مقاومت توسط مدار پل، سنسور غلظت گاز را تعیین می‌کند.

     

    رده جامد

    گاز قابل تشخیص

     

    ۳. ویژگی‌های دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    ویژگی‌های خروجی  دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM2

    سنسور تغییرات مقاومت نیمه‌هادی را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (سطح ppm) که توسط سنسورهای سرامیکی جدید قابل تشخیص نیستند را نیز تشخیص می‌دهد.

     

     

     

    کوچک‌سازی و صرفه‌جویی در انرژی  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سیم پیچ فلز گران‌بها برای گرم‌کن را می‌توان کوچک‌تر کرد تا سنسوری کوچکتر با مصرف انرژی کمتر فراهم شود.

     

    ویژگی‌های پیری  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سنسور در بلندمدت پایداری خود را حفظ می‌کند و عمر طولانی دارد. در مقایسه با سنسورهای مبتنی بر احتراق کاتالیستی، این نوع سنسور مقاومت بالایی در برابر سمیت و جو شدید دارد.

     

    انتخاب‌پذیری گاز  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    با افزودن یک ناخالصی به نیمه‌هادی اکسید فلزی، اثر تداخل تغییر می‌کند. این ویژگی به سنسور اجازه می‌دهد تا برخی گازها را به صورت انتخابی تشخیص دهد.

     

     

    دتکتور گاز رسانائی گرمائی

    1. توضیح مختصر دتکتور گاز رسانائی گرمائی

     

    این دتکتور با تشخیص تفاوت در رسانایی گرمایی، غلظت گاز را تعیین می‌کند. این یک دتکتور اثبات‌شده برای گازهای قابل اشتعال است که به‌طور مؤثر گازهای با غلظت بالا را تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM

    [ساختار  دتکتور گاز رسانائی گرمائی

    این دتکتور از یک المان تشخیص و یک المان جبران تشکیل شده است. المان‌های تشخیص و جبران در دو نوع موجود هستند: یکی شامل یک سیم‌پیچ پلاتین و مخلوطی از شیشه (یک ماده غیرفعال در برابر گاز قابل اشتعال) و یک پایه آلومینا است که روی سیم‌پیچ پخته شده است، و دیگری شامل یک سیم‌پیچ و یک فلز غیرفعال یا مشابه است که روی سیم‌پیچ پوشش داده شده است. المان تشخیص به گونه‌ای طراحی شده است که گازهای قابل تشخیص با آن تماس پیدا کنند. المان جبران محصور شده است تا هیچ گاز قابل تشخیصی با آن تماس نداشته باشد.

     

    [اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM1

    سیم‌پیچ پلاتین، المان تشخیص را تا 200 تا 500 درجه سانتی‌گراد گرم می‌کند. سپس، یک گاز قابل تشخیص با المان تشخیص تماس پیدا می‌کند و به دلیل رسانایی گرمایی خاص گاز، شرایط اتلاف گرما را تغییر می‌دهد و دمای المان تشخیص را افزایش می‌دهد. با این تغییر دما، مقاومت سیم‌پیچ پلاتین، که بخشی از المان است، تغییر می‌کند. تغییر مقاومت تقریباً متناسب با غلظت گاز است.

     

    با تشخیص تغییر مقاومت توسط مدار پل، دتکتور غلظت گاز را تعیین می‌کند.

     

    1. ویژگی‌های دتکتور گاز رسانائی گرمائی

     

    ویژگی‌های خروجی  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور تغییرات مقاومت سیم‌پیچ پلاتین را تشخیص می‌دهد، خروجی تا رسیدن به صد درصد حجمی تقریباً متناسب با غلظت است. این دتکتور برای تشخیص گازهای با غلظت بالا مناسب است.

    WhatsApp Image 2025 09 26 at 9.39.59 AM

    تشخیص در شرایط بی‌اکسیژن  دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.59 AM1

    از آنجا که دتکتور تغییرات رسانایی گرمایی را تشخیص می‌دهد، می‌تواند گازها را حتی در جو بی‌اکسیژن نیز تشخیص دهد. اما گازهایی با تفاوت کوچک در رسانایی گرمایی با گاز مرجع را تشخیص نمی‌دهد.

     

    دتکتور به‌صورت فیزیکی تغییرات رسانایی گرمایی گاز را تشخیص می‌دهد و شامل واکنش شیمیایی مانند واکنش احتراق نیست. این بدان معناست که با تخریب یا مسمومیت کاتالیزور ارتباطی ندارد و پایداری بلندمدت را فراهم می‌کند.

     

    تشخیص گازهای غیرقابل اشتعال  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور از رسانایی گرمایی خاص گاز استفاده می‌کند، حتی گازهای غیرقابل اشتعال با تفاوت زیاد در رسانایی گرمایی، مانند آرگون، نیتروژن و دی‌اکسید کربن با غلظت بالا را نیز تشخیص می‌دهد.

     

     

     

     

     

    ۷-۷. روش الکترولیز پتانسیواستاتیک

     

     

    ۱. شرح مختصر دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.39.59 AM2

    این دتکتور گاز قابل تشخیص را با استفاده از یک الکترود در پتانسیل ثابت الکترولیز می‌کند تا جریان ایجاد شود و سپس با اندازه‌گیری جریان، غلظت گاز را تعیین می‌نماید. این دتکتور گاز برای تشخیص گازهای سمی بسیار مناسب است. می‌توان پتانسیل خاصی را برای تشخیص گاز خاصی تنظیم کرد.

     

    ۲. ساختار و اصول  دتکتور گاز الکترولیز پتانسیواستاتیک

    [ساختار دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک الکترود (الکترود عمل) همراه با یک غشاء نفوذپذیر گاز و کاتالیزور (مثل طلا یا پلاتین)، الکترود مرجع و الکترود مقابل تشکیل شده که درون محفظه‌ای پلاستیکی پر از محلول الکترولیت قرار گرفته‌اند.

     

    [اصول عملکرد دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک مدار پتانسیواستاتیک برای ثابت نگه داشتن پتانسیل بین الکترود عمل و الکترود مرجع استفاده می‌کند. الکترود عمل گاز قابل تشخیص را مستقیماً الکترولیز می‌کند. اگر گاز قابل تشخیص H2S باشد، واکنش‌های زیر رخ می‌دهد:

    الکترود عمل: H2S + 4H2O → H2SO4 + 8H+ + 8e

    الکترود مقابل: 2O2 + 8H+ + 8e → 4H2O

    جریان تولیدشده متناسب با غلظت گاز است. با اندازه‌گیری جریان بین الکترود عمل و الکترود مقابل، دتکتور غلظت گاز را تعیین می‌کند.

     

    ۳. ویژگی‌های دتکتور گاز الکترولیز پتانسیواستاتیک

    ویژگی‌های خروجی دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون تغییر خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

     

    واکنش‌دهی  دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM1

    منحنی پاسخ همانطور که در شکل سمت راست نشان داده شده است. دتکتور با استفاده از واکنش کاتالیزوری گاز را به جریان تبدیل می‌کند. از آنجا که H2S کاتالیزور الکترود را تغییر نمی‌دهد، دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

    ویژگی‌های پیری  دتکتور گاز الکترولیز پتانسیواستاتیک

    تقریباً تا دو سال، حساسیت دتکتور در سطح حدود ۸۰٪ حساسیت اولیه باقی می‌ماند. از آنجا که رطوبت تأثیر جزئی بر حساسیت دارد، ممکن است خوانش بسته به فصل تغییر کند.

     

    ویژگی‌های دمای دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.01 AM

    با خوانش تقریباً پایدار در دماهای بالا، حساسیت دتکتور با کاهش دما ممکن است کاهش یابد. حتی در ۰°C، حساسیت دتکتور کمتر از ۸۰٪ نخواهد شد. با انجام تصحیح دما، نوسانات خوانش به حداقل می‌رسد.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    ۷-۸. روش تشخیص گاز با دتکتور گاز با الکترود با غشای جداکننده

    ۱. شرح مختصر  دتکتور گاز با الکترود با غشای جداکننده

    بر اساس اصول دتکتور پایه‌گذاری شده بر الکترولیز پتانسیواستاتیک، این دتکتور با یک فیلم نفوذپذیر گاز (غشای جداکننده) و یک الکترود عمل کاملاً جدا از هم ساختار یافته است. این یک دتکتور گاز سمی با انتخاب‌پذیری عالی است.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    . ساختار و اصول  دتکتور گاز با الکترود با غشای جداکننده

    [ساختار دتکتور گاز با الکترود با غشای جداکننده

    دتکتور با یک الکترود عمل – یک الکترود فلزی با یک فیلم نفوذپذیر گاز که روی آن قرار گرفته – همراه با الکترودهای مرجع و مقابل ساختار یافته است. این الکترودها در یک محفظه پلاستیکی پر از محلول الکترولیت قرار دارند. بین الکترود عمل و فیلم، یک لایه بسیار نازک از محلول الکترولیت وجود دارد.

     

    [اصول دتکتور گاز با الکترود با غشای جداکننده

    یک گاز قابل تشخیص از طریق فیلم نفوذپذیر گاز عبور کرده و با یون‌های موجود در محلول الکترولیت واکنش می‌دهد که هالوژن تولید می‌کند. اگر گاز قابل تشخیص Cl باشد، واکنش زیر رخ می‌دهد:

    Cl2 + 2I- → 2Cl- + I2

    I2 تولید شده توسط این واکنش در الکترود عمل کاهش می‌یابد، باعث می‌شود جریانی از مدار عبور کند. از آنجا که این جریان متناسب با غلظت گاز است، دتکتور مقدار جریان را برای تعیین غلظت گاز اندازه می‌گیرد. گاز قابل تشخیص قبل از واکنش با الکترود عمل با محلول الکترولیت واکنش می‌دهد و بنابراین هیچ تداخلی با گازهایی که با محلول الکترولیت واکنش نمی‌دهند رخ نمی‌دهد. این ویژگی به دتکتور انتخاب‌پذیری عالی می‌بخشد.

     

     

    ۳. ویژگی‌ها ی دتکتور گاز با الکترود با غشای جداکننده

    ویژگی‌های خروجی  دتکتور گاز با الکترود با غشای جداکننده

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون هیچ تغییری خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM

    پاسخ‌دهی  دتکتور گاز با الکترود با غشای جداکننده

    دتکتور به سرعت پاسخ می‌دهد. از آنجا که الکترودها یا محلول الکترولیت به ندرت توسط گاز کلر خورده می‌شوند، دتکتور از دقت و تکرارپذیری عالی برخوردار است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM1

    ویژگی‌های پیری  دتکتور گاز با الکترود با غشای جداکننده

    عملکرد دتکتور با گذشت زمان کاهش نمی‌یابد و تقریباً هیچ تغییری در خروجی مشاهده نمی‌شود. با این حال، اگر فیلم نفوذپذیر گاز به دلیل چسبیدن ذرات خارجی، نفوذپذیری گاز را از دست بدهد، این ممکن است منجر به کاهش خروجی شود.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با الکترود با غشای جداکننده

    WhatsApp Image 2025 09 26 at 9.40.02 AM2

    دماهای بالا تقریباً هیچ تأثیری بر خروجی ندارند در حالی که دماهای پایین احتمالاً خروجی را کاهش می‌دهند. حتی در دمای ۰ درجه سانتی‌گراد، دتکتور حساسیت خود را در سطحی نه کمتر از ۸۰٪ حفظ می‌کند. با انجام تصحیحات دما، نوسانات قرائت به حداقل می‌رسد. خروجی تحت تأثیر رطوبت قرار نمی‌گیرد.

     

    ۷-۹. روش تشخیص گاز با دتکتور گاز با سلول گالوانیک غشایی

     

    ۱. شرح مختصر  دتکتور گاز با سلول گالوانیک غشایی

     

     

    این دتکتور ساده و سنتی بر اساس اصول سلول‌ها عمل می‌کند. این دتکتور بدون نیاز به منبع تغذیه خارجی، پایداری بلندمدت دارد.

     

    ۲. ساختار و اصول  دتکتور گاز با سلول گالوانیک غشایی

     

     

    [ساختار دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.03 AM

    دتکتور از یک کاتد (فلز گران‌بها) و آند (سرب) قرارگرفته در یک محلول الکترولیتی تشکیل شده است. یک غشای جداساز به سطح خارجی کاتد چسبیده است. با اتصال کاتد و آند از طریق یک مقاومت ثابت، مقدار ولتاژ خروجی تولید می‌شود.

     

    [اصول دتکتور گاز با سلول گالوانیک غشایی

     

     

    اکسیژن از غشای جداساز عبور کرده و در کاتد کاهش می‌یابد. همزمان در آند، سرب در محلول الکترولیتی حل می‌شود (اکسید می‌شود). واکنش‌های زیر در الکترودها رخ می‌دهد:

    کاتد: O2 + 2H2O + 4e → 4OH

    آند: 2Pb → 2Pb2+ + 4e

     

    جریان ناشی از واکنش کاهش، توسط مقاومت به ولتاژ تبدیل شده و از ترمینال خروجی خارج می‌شود. خروجی دتکتور متناسب با غلظت اکسیژن (فشار جزئی) است.

     

    ۳. ویژگی‌های دتکتور گاز با سلول گالوانیک غشایی

     

     

    ویژگی‌های خروجی  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.04 AM

    غلظت اکسیژن با مقدار جریان متناسب است. دتکتور مقدار جریان را به ولتاژ تبدیل کرده و سپس آن را خروجی می‌دهد. بنابراین، خروجی دتکتور در محدوده ۰ تا ۱۰۰٪ با غلظت اکسیژن متناسب است.

     

    سرعت پاسخ  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM

    با سرعت پاسخ بالا، این دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

     

     

    ویژگی‌های پیری

    با عمر طولانی، این دتکتور می‌تواند به مدت دو تا سه سال مورد استفاده قرار گیرد.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM1

    دتکتور از یک ترمیستور داخلی برای جبران دمایی استفاده می‌کند، بنابراین خوانش تقریباً به دما وابسته نیست.

    ۷-۱۰.تشخیص گاز به  روش مادون قرمز غیرپاشنده

    ۱. شرح مختصر  دتکتور مادون قرمز غیرپاشنده

    بر اساس این واقعیت که بسیاری از گازها اشعه مادون قرمز را جذب می‌کنند، این دتکتور نور مادون قرمز را به سلول اندازه‌گیری اعمال می‌کند تا تغییرات نور مادون قرمز ناشی از جذب گاز قابل تشخیص را شناسایی کند. این روش تمام نور مادون قرمز در محدوده طول‌موج خاصی را بدون تفکیک (پاشش) نور مادون قرمز بر اساس طول‌موج، به‌صورت یکپارچه تشخیص می‌دهد. WhatsApp Image 2025 09 26 at 9.40.06 AM

    . ساختار و اصول  دتکتور مادون قرمز غیرپاشنده

    [ساختار دتکتور مادون قرمز غیرپاشنده

    این دتکتور از یک منبع نور مادون قرمز و یک سنسور مادون قرمز تشکیل شده است که بین آن‌ها یک سلول اندازه‌گیری و یک فیلتر نوری قرار گرفته است. منبع نور مادون قرمز، نور را ساطع می‌کند که از طریق سلول اندازه‌گیری و فیلتر نوری عبور کرده و توسط سنسور مادون قرمز تشخیص داده می‌شود. فیلتر نوری به طول‌موج‌های مادون قرمز که توسط گاز قابل تشخیص جذب می‌شوند، اجازه عبور انتخابی می‌دهد.

     

    [اصول عملکرد دتکتور مادون قرمز غیرپاشنده

    یک گاز قابل تشخیص وارد سلول اندازه‌گیری شده و نور مادون قرمز را جذب می‌کند. این امر باعث کاهش مقدار نور مادون قرمز تشخیص‌داده شده توسط سنسور مادون قرمز می‌شود. برخی از گازهای قابل تشخیص با غلظت‌های شناخته شده وارد می‌شوند تا رابطه (منحنی کالیبراسیون) بین کاهش مقدار نور مادون قرمز و غلظت هر گاز قابل تشخیص تعیین شود. هنگامی که یک گاز قابل تشخیص با غلظت ناشناخته وارد می‌شود، دتکتور از منحنی کالیبراسیون بر اساس کاهش اندازه‌گیری‌شده مقدار نور مادون قرمز برای تعیین غلظت گاز استفاده می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.06 AM1

    . ویژگی‌های دتکتور مادون قرمز غیرپاشنده

    ویژگی‌های خروجی  دتکتور مادون قرمز غیرپاشنده

    WhatsApp Image 2025 09 26 at 9.40.06 AM3

    غلظت گاز و خروجی دتکتور رابطه متناسب ندارند، بلکه رابطه آن‌ها مطابق منحنی نشان‌داده شده در شکل پائین است. (i-C4H10: ایزوبوتان)

     

    ویژگی‌های پاسخ‌دهی  دتکتور مادون قرمز غیرپاشنده

    هنگامی که گاز با دبی ثابت به دتکتور گاز تغذیه می‌شود، دتکتور پاسخ‌های قابل تکرار و دقیقی ارائه می‌دهد. WhatsApp Image 2025 09 26 at 9.40.07 AM2

    ویژگی‌های پیری  در دتکتور مادون قرمز غیرپاشنده

    در محیطی با تغییرات دمایی کم، دتکتور پایدار باقی می‌ماند و بدون کاهش دقت خوانش در طول زمان عمل می‌کند. بسته به محیط، ممکن است دتکتور با گذشت زمان به‌طور قابل توجهی تخریب شود. در این صورت، می‌توان با انجام کالیبراسیون گاز هر شش ماه یکبار، تخریب را به حداقل رساند.

     

    ویژگی‌های دما و رطوبت  در دتکتور مادون قرمز غیرپاشنده

    با انجام تصحیحات دمایی، می‌توان وابستگی خوانش‌ها به دما را در محدوده دمایی مشخص‌شده به حداقل رساند.

    WhatsApp Image 2025 09 26 at 9.40.07 AM3

    در صورت عدم تشکیل میعان (%LEL) در داخل سلول گاز، دتکتور تقریباً تحت تأثیر رطوبت قرار نمی‌گیرد.

    . روش تشخیص گاز با تداخل سنجی

    ۱. شرح کلی  دتکتور گاز تداخل سنجی

    این دتکتور گاز، که یکی از قدیمیترین حسگرهای گاز ماست، تغییرات در ضریب شکست گاز را تشخیص میدهد. با دقت بالا، پایداری بلندمدت را حفظ میکند. در گذشته، داخل معادن زغالسنگ برای اندازهگیری غلظت متان استفاده میشد و در سالهای اخیر، بهطور گسترده برای اندازهگیری غلظت حلالها یا مقادیر حرارتی گازهای سوختی مانند گاز طبیعی کاربرد دارد.

    ۲. ساختار و اصول  دتکتور گاز تداخل سنجی

    [ساختار دتکتور گاز تداخل سنجی

    WhatsApp Image 2025 09 26 at 9.40.08 AM

    منبع نور، نور را ساطع میکند که توسط آینه تخت موازی به دو پرتو نور (A و B) تقسیم و توسط منشور بازتاب میشود. پرتو A یک سفر رفت و برگشت در محفظه گاز D، که گاز قابل تشخیص جریان دارد، انجام میدهد و پرتو B یک سفر رفت و برگشت در محفظه گاز E، که گاز مرجع جریان دارد، انجام میدهد. دو پرتو نور A و B در نقطه C آینه تخت موازی به هم میرسند و یک الگوی تداخلی روی سنسور تصویر از طریق آینه و لنز تشکیل میدهند.

     

    [اصول عملکرد دتکتور گاز تداخل سنجی

    یک الگوی تداخلی به نسبت تفاوت در ضریب شکست بین گاز قابل تشخیص و گاز مرجع حرکت میکند. حسگر مبتنی بر تداخلسنج نوری، مسافت حرکت الگوی تداخلی را اندازهگیری میکند تا ضریب شکست گاز قابل تشخیص را تعیین و آن را به غلظت گاز یا مقدار حرارتی تبدیل کند.

     

    ۳. ویژگی های دتکتور گاز تداخل سنجی

    مسافت حرکت الگوی تداخلی AB که توسط این حسگر اندازهگیری میشود، با معادله زیر نشان داده میشود:

    ویژگیهای خروجی  دتکتور گاز تداخل سنجی

    الگوی تداخلی

    از آنجا که تغییر در ضریب شکست متناسب با تغییر در غلظت گاز است، حسگر خطیبودن بسیار بالایی ارائه میدهد.

     

    پاسخدهی  دتکتور گاز تداخل سنجی

    حسگر اندازهگیری را با تکمیل جایگزینی در محفظه گاز با حجم ۰.۵ تا ۵ میلیلیتر به پایان میرساند. برخی مدلها اندازهگیری را در ۵ تا ۱۰ ثانیه با پاسخ ۹۰٪ تکمیل میکنند.

     

    ویژگیهای پیری  دتکتور گاز تداخل سنجی

    بارزترین ویژگی این حسگر این است که حساسیت آن کاهش نمییابد. حساسیت حسگر فقط به طول محفظه گاز L و طول موج منبع نور λ بستگی دارد. از آنجا که هر دو این پارامترها ثابت هستند، حسگر حساسیت پایدار بلندمدت ارائه میدهد. حتی اگر عنصر نوری کثیف شود، تأثیری بر مسافت حرکت الگوی تداخلی ندارد؛ بنابراین، حسگر تا زمانی که بتواند الگو را تشخیص دهد، حساسیت آن کاهش نمییابد.

     

    ویژگیهای فشار و دما در دتکتور گاز تداخل سنجی

    اگرچه ضریب شکست گاز بسته به دما T و فشار P تغییر میکند، حسگر دما و فشار را اندازهگیری میکند تا آنها را تصحیح کند و بنابراین تحت تأثیر آنها قرار نمیگیرد.

     

     

     

     

     

     

    7-12.تشخیص گاز به روش نوار شیمیایی

    1. شرح کلی دتکتور گاز با نوار شیمیائی

    این حسگر از نوار سلولزی آغشته به ماده رنگزا استفاده می‌کند. با عبور یا نفوذ گاز قابل تشخیص به داخل این نوار، واکنشی شیمیایی رخ داده و رنگ نوار تغییر می‌کند. حسگر با اندازه‌گیری نور بازتاب‌شده از رنگ ایجادشده بر اثر واکنش بین ماده رنگزا و گاز، غلظت بسیار کم گازهای سمی را به صورت کمی تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز با نوار شیمیائی

    [ساختار دتکتور گاز با نوار شیمیائی

    حسگر دارای محفظه‌ای است که گاز قابل تشخیص وارد آن می‌شود. این محفظه یک ظرف ضد نور است که داخل آن منبع نور و بخش گیرنده نور برای تشخیص رنگ نوار قرار گرفته‌اند. حسگر شامل این محفظه گاز و اجزای دیگری مانند مکانیسم قرقره برای جمع‌آوری نوار پس از هر اندازه‌گیری است.

    WhatsApp Image 2025 09 26 at 9.40.08 AM1

    [اصول دتکتور گاز با نوار شیمیائی

    وقتی گاز قابل تشخیص با نوار آغشته به ماده رنگزا تماس پیدا می‌کند، واکنش شیمیایی رخ داده و نوار رنگ می‌گیرد. به عنوان مثال، اگر فسفین (PH3) با نوار تماس پیدا کند، کلوئید نقره طبق فرمول زیر تولید می‌شود و یک لکه رنگی روی نوار سفید ظاهر می‌شود:

    PH3 + AgCIO → Ag + H3PO4 + 1/2 Cl2

     

    حسگر نور را به نقطه رنگی‌شده نوار تابانده و تغییر شدت نور بازتاب‌شده قبل و بعد از ورود گاز را اندازه‌گیری می‌کند؛ بنابراین غلظت گاز را به دقت محاسبه می‌کند.

     

    1. ویژگی‌ها ی دتکتور گاز با نوار شیمیائی

    ویژگی‌های خروجی دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.08 AM2

    وقتی گاز قابل تشخیص وارد بخش تشخیص می‌شود، نوار شروع به رنگ‌گرفتن می‌کند و خروجی به تدریج افزایش می‌یابد. از آنجا که حسگر تغییرات رنگ را اندازه‌گیری می‌کند، خروجی به صورت منحنی نمایش داده می‌شود.

     

     

    ویژگی‌های دما و رطوبت در دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.09 AM

    برای فسفین (PH3)، حسگرهای نوار‌ای وابسته به دما نیستند. همچنین بدون وابستگی زیاد به رطوبت، این حسگر در محدوده دمایی و رطوبتی عملیاتی، قرائت دقیقی ارائه می‌دهد.

     

    ویژگی‌های پیری در دتکتور گاز با نوار شیمیائی

    آزمایش‌های مداوم روی حسگر نشان می‌دهد که بدون کاهش حساسیت به گاز، اندازه‌گیری پایدار انجام می‌دهد.

     

    ویژگی‌های دتکتور گاز با نوار شیمیائی

    – حساسیت بسیار بالا با انتخاب‌پذیری عالی

    – استفاده از نوار کاست که تعویض آن آسان است

    – تغذیه نوار برای هر اندازه‌گیری، که هیچ هیسترزیسی ایجاد نمی‌کند

    – رنگ‌گرفتن نوار بر اثر گاز قابل تشخیص تجمع می‌یابد، که امکان تشخیص غلظت‌های بسیار کم گاز را فراهم می‌کند.

     

     

     

     

     

     

     

     

    7-13. دتکتور یونیزاسیون نوری

    1. شرح کلی دتکتور یونیزاسیون نوری

    این حسگر گاز با اعمال نور فرابنفش به گاز قابل تشخیص، باعث یونیزه شدن آن می‌شود. این عمل جریان یونی ایجاد می‌کند. حسگر این جریان را اندازه‌گیری کرده و غلظت گاز را تعیین می‌نماید. این حسگر محدوده وسیعی از گازها را بدون توجه به آلی یا معدنی بودن آنها تشخیص می‌دهد. معمولاً برای اندازه‌گیری غلظت ترکیبات آلی فرار (VOCs) در محدوده ppb تا ppm استفاده می‌شود.

     

    1. ساختار و اصول دتکتور یونیزاسیون نوری

    [ساختار دتکتور یونیزاسیون نوری

    حسگر از یک محفظه یونیزاسیون برای ورود گاز قابل تشخیص، یک لامپ فرابنفش برای تابش نور و الکترودهای مثبت و منفی برای تشخیص جریان یونی تشکیل شده است.

     

    [اصول عملکرد دتکتور یونیزاسیون نوری

    گاز قابل تشخیص وارد محفظه یونیزاسیون شده و در معرض نور فرابنفش از منبع نور (لامپ فرابنفش) قرار می‌گیرد. این عمل باعث آزاد شدن الکترون‌ها و تولید کاتیون می‌شود. کاتیون‌ها و الکترون‌های تولید شده توسط الکترودهای مثبت و منفی جذب شده و جریان الکتریکی ایجاد می‌کنند. از آنجا که این جریان متناسب با غلظت گاز است، حسگر با اندازه‌گیری مقدار جریان، غلظت گاز قابل تشخیص را تعیین می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.09 AM1

    برای یونیزه کردن یک گاز، نیاز به اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص آن گاز است. انرژی فوتون با واحد الکترون ولت (eV) بیان می‌شود. این حسگر از لامپ‌هایی با انرژی فوتونی 10.6 eV و 11.7 eV استفاده می‌کند. هرچه انرژی فوتون بیشتر باشد، مقدار بیشتری از گاز قابل تشخیص یونیزه می‌شود.

     

    1. ویژگی‌های دتکتور یونیزاسیون نوری

    ویژگی‌های خروجی دتکتور یونیزاسیون نوری

    WhatsApp Image 2025 09 26 at 9.40.10 AM

    برای گازهایی با غلظت پایین (چند صد ppm)، خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد.

    برای گازهایی با غلظت پایین خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد

    لامپ فرابنفش:

    انرژی فوتونی (eV) لامپ فرابنفش توسط ترکیب گاز موجود در لامپ و جنس پنجره لامپ تعیین می‌شود.

     

     

    انرژی یونیزاسیون مواد معمول:

    با اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص هر گاز، حسگر گاز را یونیزه کرده و غلظت آن را تعیین می‌کند. این حسگر معمولاً از لامپ‌های 10.6 eV یا 11.7 eV استفاده می‌کند.

     

    جدول انرژی فوتونی:

    گاز داخل لامپ | جنس پنجره | انرژی فوتونی (eV)

    زنون | یاقوت کبود | 8.4

    کریپتون | فلورید منیزیم | 10.6

    آرگون | فلورید لیتیم | 11.7

     

     

    WhatsApp Image 2025 09 26 at 9.40.10 AM1

     

    7-14. روش تشخیص گاز با ذرات پیرولیز شده

    1. شرح کلی دتکتور گاز با ذرات پیرولیز شده

    این حسگر گاز، گاز قابل تشخیص را حرارت داده تا اکسید تولید کند و سپس ذرات اکسید را با استفاده از یک حسگر ذره سنجی می‌کند. این حسگر پایداری بلندمدت داشته و مقاومت عالی در برابر تداخل و پاسخگویی سریع دارد. حسگر ذره بر اساس اصول مشابه حسگرهای دود یونیزاسیونی که از پرتوها استفاده می‌کنند، کار می‌کند.

     

    1. ساختار و اصول دتکتور گاز با ذرات پیرولیز شده

    [ساختار دتکتور گاز با ذرات پیرولیز شده

    این حسگر معمولاً ترکیبی از یک تجزیه‌گر حرارتی و حسگر ذره است. در مرکز تجزیه‌گر حرارتی یک لوله کوارتزی پیچیده شده با عنصر گرمایشی قرار دارد.

    حسگر ذره شامل یک محفظه اندازه‌گیری (که به طور مداوم با استفاده از پرتوهای آلفا جریان یون تولید می‌کند) و یک محفظه جبران است. گاز قابل تشخیص فقط وارد محفظه اندازه‌گیری می‌شود، در حالی که محفظه جبران به اتمسفر باز است.

     

    [اصول دتکتور گاز با ذرات پیرولیز شده

    بسیاری از گازهای آلی فلزی مانند TEOS در اثر حرارت، اکسید ذره‌ای تولید می‌کنند. گاز قابل تشخیص از طریق تجزیه‌گر حرارتی اکسید شده و وارد حسگر ذره می‌شود.

    در محفظه اندازه‌گیری حسگر ذره، از یک منبع پرتو آلفا برای یونیزه کردن هوا استفاده می‌شود که باعث جریان یونی می‌شود. ذرات وارد محفظه اندازه‌گیری شده و یون‌ها را جذب می‌کنند؛ این امر جریان یونی را کاهش داده و در نتیجه خروجی حسگر کم می‌شود. بر اساس میزان کاهش خروجی، غلظت گاز تعیین می‌شود. محفظه جبران، نوسانات خروجی حسگر ناشی از دما، رطوبت و/یا فشار را جبران می‌کند.

     

     

    1. ویژگی‌های دتکتور گاز با ذرات پیرولیز شده

    ویژگی‌های خروجی دتکتور گاز با ذرات پیرولیز شده

    خروجی حسگر به غلظت ذرات تولید شده از طریق تجزیه حرارتی بستگی دارد. حسگر از یک منحنی کالیبراسیون استفاده می‌کند تا غلظت گاز نسبت به قرائت خطی باشد.

     

    پاسخگویی دتکتور گاز با ذرات پیرولیز شده

    از آنجا که گاز وارد شده به بخش تشخیص بلافاصله در تجزیه‌گر حرارتی اکسید می‌شود، حسگر از سرعت پاسخ بالا و تکرارپذیری عالی برخوردار است.

     

    ویژگی‌های پیری در دتکتور گاز با ذرات پیرولیز شده

    حسگر از Am-241 به عنوان منبع پرتو استفاده می‌کند که نیمه عمر بسیار طولانی (حدود 400 سال) دارد و در نتیجه عملکرد حسگر به مرور زمان به سختی کاهش می‌یابد.

     

    ویژگی‌های دمایی در دتکتور گاز با ذرات پیرولیز شده

    حسگر از محفظه جبران برای جبران اثرات دما استفاده می‌کند و بنابراین ویژگی‌های دمایی عالی از خود نشان می‌دهد.

     

  • طراحی سیستم اطفاء حریق گازپایه برای اتاق سرور

    ۶.۱ مشخصات، نقشه‌ها و تأییدیه‌ها

    ۶.۱.۱ مشخصات

    ۶.۱.۱.۱ مشخصات سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی، باید تحت نظارت فردی تهیه شود که دارای تجربه کامل و صلاحیت لازم در طراحی این‌گونه سیستم‌ها بوده و با مشورت مرجع ذی‌صلاح انجام گیرد.

    ۶.۱.۱.۲ مشخصات باید شامل تمام موارد مربوط و لازم برای طراحی صحیح سیستم باشد، از جمله تعیین مرجع ذی‌صلاح، تفاوت‌های مجاز نسبت به استاندارد به‌تأیید مرجع ذی‌صلاح، معیارهای طراحی، توالی عملکرد سیستم، نوع و گستره آزمون‌های تأییدی که پس از نصب سیستم باید انجام شود، و الزامات آموزش مالک.

    ۶.۱.۲ نقشه‌های اجرایی

    ۶.۱.۲.۱ نقشه‌های اجرایی و محاسبات باید پیش از شروع نصب یا بازسازی سیستم برای تأیید به مرجع ذی‌صلاح ارائه شوند.

    ۶.۱.۲.۲ نقشه‌های اجرایی و محاسبات باید فقط توسط افرادی تهیه شوند که دارای تجربه کامل و صلاحیت لازم در طراحی سیستم‌های اطفاء حریق با گاز پاک از نوع غرقاب کلی و کاربرد موضعی هستند.

    ۶.۱.۲.۳ هرگونه انحراف از نقشه‌های اجرایی نیاز به کسب اجازه از مرجع ذی‌صلاح دارد.

    ۶.۱.۲.۴ نقشه‌های اجرایی باید با مقیاس مشخص رسم شوند.

    ۶.۱.۲.۵ نقشه‌های اجرایی باید موارد زیر را که مرتبط با طراحی سیستم هستند نشان دهند:
    (۱) نام مالک و ساکن

    طراحی سیستم ۲۰۰۱-۱۹

    (۲) مکان، شامل آدرس خیابانی
    (۳) نقطه قطب‌نما و نمادهای توضیحی
    (۴) مکان و ساختار دیوارها و تقسیمات حفاظتی
    (۵) مکان دیوارهای آتش‌بر
    (۶) برش مقطع enclosure، به صورت دیاگرام کامل یا شماتیک، شامل مکان و ساختار مجموعه‌های کف-سقف ساختمان در بالا و پایین، کف‌های با دسترسی بلند، و سقف‌های معلق
    (۷) نوع عامل مورد استفاده
    (۸) غلظت عامل در کمترین و بالاترین دمایی که enclosure محافظت می‌شود
    (۹) شرح اشغال‌ها و خطراتی که محافظت می‌شوند، مشخص کردن اینکه آیاenclosure معمولاً اشغال شده است یا خیر
    (۱۰) برای enclosure محافظت شده با سیستم اطفاء حریق با گاز پاک، تخمین فشار مثبت حداکثر و فشار منفی حداکثر، نسبت به فشار محیطی، که انتظار می‌رود پس از تخلیه عامل توسعه یابد
    (۱۱) شرح مواجهات اطراف enclosure
    (۱۲) شرح ظروف ذخیره‌سازی عامل مورد استفاده، شامل حجم داخلی، فشار ذخیره‌سازی، و ظرفیت اسمی بیان شده بر اساس واحدهای جرم یا حجم عامل در شرایط استاندارد دما و فشار
    (۱۳) شرح نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، و مساحت معادل روزنه
    (۱۴) شرح لوله‌ها و اتصالات مورد استفاده، شامل مشخصات مواد، درجه، و رتبه فشار
    (۱۵) شرح سیم یا کابل مورد استفاده، شامل طبقه‌بندی، اندازه [آمریکاییAWG]، شیلدینگ، تعداد رشته‌ها در هادی، ماده هادی، و برنامه کدگذاری رنگ؛ الزامات جداسازی هادی‌های مختلف سیستم؛ و روش مورد نیاز برای ایجاد اتصال‌های سیم
    (۱۶) شرح روش نصب دتکتورها
    (۱۷) برنامه تجهیزات یا فهرست مواد برای هر دستگاه یا وسیله نشان‌دهنده نام دستگاه، سازنده، مدل یا شماره قطعه، تعداد و شرح
    (۱۸) نمای نقشه‌ای از منطقه محافظت‌شده نشان‌دهنده تقسیماتenclosure (تمام و جزئی ارتفاع)، سیستم توزیع عامل، شامل ظروف ذخیره‌سازی عامل، لوله‌ها و نازل‌ها؛ نوع آویز لوله‌ها و نگهدارنده‌های لوله‌های سخت؛ سیستم‌های شناسایی، هشدار و کنترل، شامل تمام دستگاه‌ها و شماتیک اتصالات سیمی بین آن‌ها؛ مکان‌های دستگاه‌های پایان خط؛ مکان دستگاه‌های کنترل‌شده مانند دمپرها و پرده‌ها؛ و مکان علائم آموزشی
    (۱۹) نمای ایزومتریک از سیستم توزیع عامل نشان‌دهنده طول و قطر هر بخش لوله؛ شماره‌های مرجع گره‌ها مربوط به محاسبات جریان؛ اتصالات، شامل کاهنده‌ها، تغییرات، و جهت‌گیری تکیه‌گاه‌ها؛ و نازل‌ها، شامل اندازه، پورت‌های روزنه‌ای، نرخ جریان، و مساحت معادل روزنه
    (۲۰) نقشه مقیاس‌دار از طرح گرافیکی پنل اعلان در صورتی که از سوی مرجع ذی‌صلاح درخواست شده باشد
    (۲۱) جزئیات هر پیکربندی منحصر به فرد از نگهدارنده لوله‌های سخت، نشان‌دهنده روش اتصال به لوله و ساختار ساختمان
    (۲۲) جزئیات روش اتصال ظروف، نشان‌دهنده روش اتصال به ظرف و ساختار ساختمان
    (۲۳) شرح کامل گام به گام توالی عملیات سیستم، شامل عملکرد سوئیچ‌های هشدار و نگهداری، تایمرهای تأخیر، و خاموشی اضطراری برق
    (۲۴) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به پنل کنترل سیستم و پنل گرافیکی اعلان
    (۲۵) دیاگرام‌های شماتیک سیم‌کشی نقطه به نقطه نشان‌دهنده تمامی اتصالات مدار به رله‌های خارجی یا اضافی
    (۲۶) محاسبات کامل برای تعیین حجم enclosure، مقدار عامل پاک، و اندازه باتری‌های پشتیبان؛ روش استفاده‌شده برای تعیین تعداد و مکان دستگاه‌های شناسایی صوتی و بصری؛ و تعداد و مکان دتکتورها
    (۲۷) جزئیات ویژگی‌های خاص
    (۲۸) منطقه شیر فشار اطمینان یا مساحت معادل نشت برای enclosure محافظت‌شده جهت جلوگیری از توسعه اختلاف فشار در مرزهای enclosure که بیش از حد مجاز فشار enclosure مشخص‌شده در هنگام تخلیه سیستم باشد

    ۶.۱.۲.۶ جزئیات سیستم باید شامل اطلاعات و محاسبات در مورد مقدار عامل؛ فشار ذخیره‌سازی ظرف؛ حجم داخلی ظرف؛ مکان، نوع، و نرخ جریان هر نازل، شامل مساحت معادل روزنه؛ مکان، اندازه و طول معادل لوله‌ها، اتصالات و شیلنگ‌ها؛ و مکان و اندازه تأسیسات ذخیره‌سازی باشد.
    ۶.۱.۲.۶.۱ کاهش اندازه لوله و جهت‌گیری تکیه‌گاه‌ها باید مشخص شود.
    ۶.۱.۲.۶.۲ اطلاعات مربوط به مکان و عملکرد دستگاه‌های شناسایی، دستگاه‌های عملیاتی، تجهیزات کمکی، و مدارهای الکتریکی، در صورت استفاده، باید ارائه شود.
    ۶.۱.۲.۶.۳ دستگاه‌ها و وسایل استفاده‌شده باید شناسایی شوند.
    ۶.۱.۲.۶.۴ هر ویژگی خاص باید توضیح داده شود.
    ۶.۱.۲.۶.۵ سیستم‌های پیش‌مهندسی شده نیازی به مشخص کردن حجم داخلی ظرف، نرخ‌های جریان نازل، طول معادل لوله‌ها، اتصالات و شیلنگ‌ها، یا محاسبات جریان ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده می‌شوند.
    ۶.۱.۲.۶.۶ برای سیستم‌های پیش‌مهندسی شده، اطلاعات مورد نیاز توسط دفترچه طراحی سیستم فهرست‌شده باید برای تأیید سیستم بر اساس محدودیت‌های فهرست‌شده به مرجع ذی‌صلاح ارائه شود.
    ۶.۱.۲.۷ یک دفترچه راهنمای “طبق ساخت” و نگهداری که شامل توالی کامل عملیات و مجموعه کاملی از نقشه‌ها و محاسبات باشد باید در سایت نگهداری شود.
    ۶.۱.۲.۸ محاسبات جریان
    ۶.۱.۲.۸.۱ محاسبات جریان همراه با نقشه‌های اجرایی باید برای تأیید به مرجع ذی‌صلاح ارائه شوند.
    ۶.۱.۲.۸.۲ نسخه برنامه محاسبات جریان باید در چاپ خروجی محاسبات کامپیوتری مشخص شود.
    ۶.۱.۲.۸.۳ زمانی که شرایط میدانی نیاز به تغییرات مادی از نقشه‌های تأیید شده داشته باشد، تغییر باید برای تأیید ارائه شود.
    ۶.۱.۲.۸.۴ زمانی که تغییرات مادی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اصلاح‌شده “طبق ساخت” باید ارائه شوند.

    ۶.۱.۳ تأیید نقشه‌ها

    ۶.۱.۳.۱ نقشه‌ها و محاسبات باید قبل از نصب تأیید شوند.

    ۶.۱.۳.۲ در صورتی که شرایط میدانی نیاز به هرگونه تغییر اساسی از نقشه‌های تأیید شده داشته باشد، تغییر باید قبل از اجرایی شدن برای تأیید ارسال شود.
    ۶.۱.۳.۳ زمانی که چنین تغییرات اساسی از نقشه‌های تأیید شده انجام می‌شود، نقشه‌های اجرایی باید به‌روزرسانی شوند تا سیستم نصب‌شده را به‌طور دقیق نشان دهند.

    ۶.۲ محاسبات جریان سیستم
    ۶.۲.۱ محاسبات جریان سیستم باید با استفاده از روش محاسباتی فهرست‌شده یا تأیید شده توسط مرجع ذی‌صلاح انجام شود.
    ۶.۲.۱.۱ طراحی سیستم باید در محدوده محدودیت‌های فهرست‌شده سازنده باشد.
    ۶.۲.۱.۲ طراحی‌هایی که شامل سیستم‌های پیش‌مهندسی شده هستند، نیازی به ارائه محاسبات جریان مطابق با بند ۶.۱.۲.۸ ندارند، زمانی که در محدوده‌های فهرست‌شده خود استفاده شوند.

    ۶.۲.۲ شیرها و اتصالات باید برای طول معادل بر اساس اندازه لوله یا لوله‌کشی که با آن‌ها استفاده خواهند شد، ارزیابی شوند.
    ۶.۲.۲.۱ طول معادل شیر ظرف باید فهرست شده باشد.
    ۶.۲.۲.۲ طول معادل شیر ظرف باید شامل لوله سیفون، شیر، سر تخلیه و اتصال انعطاف‌پذیر باشد.

    ۶.۲.۳ طول‌های لوله‌کشی و جهت‌گیری اتصالات و نازل‌ها باید مطابق با محدودیت‌های فهرست‌شده سازنده باشد.

    ۶.۲.۴ اگر نصب نهایی از نقشه‌ها و محاسبات تهیه‌شده متفاوت باشد، نقشه‌ها و محاسبات جدید که نصب “طبق ساخت” را نشان دهند باید تهیه شوند

  • سیستم اعلام حریق با توجه به بودجه

    IMG 1621

    مقدمه

    سیستم اعلام حریق، نخستین خط دفاعی در برابر آتش‌سوزی است. عملکرد سریع و دقیق این سیستم می‌تواند جان افراد و سرمایه‌های کلان را نجات دهد. اما انتخاب سیستم مناسب نیازمند درک درستی از بودجه، نیاز پروژه، و اعتبار برندهاست. بسیاری از پروژه‌ها با محدودیت بودجه روبرو هستند و در چنین شرایطی، مسئله “مقرون‌به‌صرفه بودن در مقابل قابل اطمینان بودن” مطرح می‌شود. در این مقاله به بررسی سیستم‌های اعلام حریق با توجه به این چالش‌ها می‌پردازیم.

    برندهای ایرانی: اقتصادی اما بدون تأییدیه جهانی

    برندهای ایرانی مانند سنس، آریاک، ماویگارد، افق، و زتا ایران بیشتر در پروژه‌های اقتصادی و مسکونی کوچک استفاده می‌شوند. مزیت اصلی این برندها، قیمت پایین، در دسترس بودن، و پشتیبانی نسبی در بازار داخلی است. اما در مقابل، این برندها هیچ‌گونه تأییدیه بین‌المللی نظیر UL، LPCB، VdS یا EN54ندارند و در آزمایشگاه های معتبر تحت تست قرار نگرفته اند و شرکت های بیمه ایرانی سخت گیری ویژه ای بر وجود یا عدم وجود تاییدیه های معتبر بین المللی برای محیط های حفاظت شده نشان داده اند و وجود تایدیه های معتبر مانند LPCB,Vds و UL باعث کمتر شدن هزینه بیمه مکان حفاظت شده خواهد شد.

    متاسفانه یا خوشبختانه مسائل مربوط به “حمایت از تولیدات داخل” باعث شده است تا پای بسیاری از مونتاژ کارهای ایرانی( به زعم خودشان تولید کننده داخلی) به بازار اعلام حریق ایران و در نتیجه به خانه های ایرانیان باز شود.

    از آنجا که درحال حاضر هیچ لابراتوار پیشرفته ای در کشور ما نیست و شرایط تست عملکرد دستگاه های اعلام حریق در داخل ایران وجود ندارد ولی در هنگام حریق، جان انسان ها بستگی به عملکرد درست سیستم اعلام حریق دارد، کارشناسان ما استفاده از این محصولات را به هیچ عنوان توصیه نمیکنند. بهتر است با صرف مبلغی بیشتر از سیستم های اعلام حریق دارای حداقل یکی از تاییدیه های ( آمریکا UL) یا ( انگلستان LPCB) یا ( آلمان Vds) استفاده کنید.

    در پروژه‌هایی که نیازمند رعایت استانداردهای جهانی هستند، مانند بیمارستان‌ها، فرودگاه‌ها، مراکز خرید بزرگ یا پروژه‌های صادراتی، این برندها به‌هیچ‌وجه قابل اعتماد نیستند. حتی برخی از مهندسین مشاور و سازمان‌های بیمه، استفاده از برندهای فاقد گواهی بین‌المللی را رد می‌کنند.

    در عمل، برندهای ایرانی بیشتر برای پروژه‌هایی با بودجه بسیار محدود، و حساسیت پایین به کار می‌روند. اما باید آگاه بود که سطح کیفی این سیستم‌ها به هیچ‌وجه با برندهای معتبر جهانی قابل مقایسه نیست، به‌خصوص در دقت در شناسایی حریق، پایداری در طول زمان، و مدیریت خطاهای سیستم.

    برندهای چینی: تنوع بالا، کیفیت متغیر

    بازار چین پر است از برندهای اعلام حریق، از برندهای بسیار ارزان و بی‌نام‌ونشان گرفته تا برندهایی با کیفیت قابل‌قبول نظیرTanda و TC, برخی از این برندها توانسته‌اند تأییدیه‌هایی مانند CE یا EN54 یا حتی LPCB را دریافت کنند، که اعتبار متوسطی در بازار جهانی دارند. با این حال، اغلب برندهای چینی فاقد گواهی‌های مهمی چون UL یا LPCB هستند و بیشتر برای پروژه‌های کم‌ریسک در کشورهای در حال توسعه مورد استفاده قرار می‌گیرند.

    برخی برندهای چینی نیز با استفاده از طراحی یا تکنولوژی اروپایی، محصولات نسبتاً بهتری تولید می‌کنند، اما همچنان کیفیت ساخت، دوام بلندمدت و خدمات پس از فروش آن‌ها چالش‌برانگیز است. استفاده از این برندها در پروژه‌های نیمه‌حرفه‌ای که نیاز به دقت بالا ندارند، می‌تواند راه‌حل اقتصادی مناسبی باشد. اما برای پروژه‌های حیاتی، انتخاب برند چینیبدون تاییدیه LPCB با ریسک همراه است. قبل از خرید جنس، آن رااز لحاظ تأییدیه‌ها به‌دقت بررسی شده کنید.

    برندهای اروپایی: تعادل میان کیفیت، قیمت و استاندارد

    برندهای اروپایی مانند Zeta (انگلستان)، Siemens، Bosch وEsser (آلمان)، Global Fire Equipment (پرتغال) از پیشگامان صنعت اعلام حریق هستند. این برندها معمولاً دارای تأییدیه‌های معتبر جهانی نظیر LPCB (انگلستان)، VdS(آلمان)، و EN54 (اتحادیه اروپا) هستند که نشانه انطباق آن‌ها با الزامات ایمنی بین‌المللی است.

    این برندها علاوه‌بر کیفیت بالا، پایداری و خدمات قابل اتکایی نیز ارائه می‌دهند. Zeta به‌عنوان یک برند میان‌رده، قیمت قابل‌قبولی دارد و در بسیاری از پروژه‌های داخل ایران نیز استفاده می‌شود. GFE پرتغالی نیز با وجود قیمت نسبتاً پایین‌تر، تأییدیه‌های معتبر دارد و یکی از گزینه‌های مناسب در پروژه‌های با بودجه متوسط است.

    در سمت دیگر، برندهایی چون Siemens و Bosch، بسیار حرفه‌ای و پیشرفته هستند. آن‌ها معمولاً در پروژه‌های بزرگ مانند بیمارستان‌ها، برج‌های بلند و مراکز صنعتی مورد استفاده قرار می‌گیرند. قیمت این برندها بالاست، اما برای پروژه‌هایی با حساسیت ایمنی بالا، ارزش سرمایه‌گذاری را دارند.

    برندهای آمریکایی: پیشرفته، دقیق و بسیار قابل اعتماد

    در صدر برندهای جهانی، برندهای آمریکایی مانند Notifier، Simplex، Fire-Lite و Edwards قرار دارند. این برندها معمولاً دارای تأییدیه‌های بسیار معتبر مانند UL (Underwriters Laboratories)، FM (Factory Mutual) و ULC (کانادا) هستند که استاندارد طلایی ایمنی در صنعت جهانی محسوب می‌شوند.

    این سیستم‌ها بسیار هوشمند، سریع، و قابل مدیریت هستند و در پروژه‌هایی مانند فرودگاه‌ها، پالایشگاه‌ها، مراکز داده و پروژه‌های بین‌المللی کاربرد دارند. البته قیمت این برندها بالا است و نصب و راه‌اندازی آن‌ها نیز نیازمند دانش فنی دقیق و تجربه بالاست. با این حال، برای پروژه‌هایی که هزینه حریق می‌تواند میلیاردی باشد، استفاده از برندهای آمریکایی یک الزام واقعی است.

    جمع‌بندی

    اگر پروژه‌ای با بودجه محدود دارید، استفاده از برندهای ایرانی مثل سنس یا آریاک می‌تواند راه‌حلی موقت باشد، ولی باید بدانید این برندها فاقد هرگونه تأییدیه معتبر بین‌المللیهستند و شرایط کارکرد صحیح آنها در آزمایشگاه های معتبر و مجهز جهانی تایید نشده است و فقط برای پروژه‌های کوچک بدون الزام قانونی کاربرد دارند.

    در صورتی‌که بودجه شما در سطح متوسط است و پروژه در کلاس مدارس، مراکز درمانی محلی یا ادارات قرار دارد، برندهای چینی با تأییدیه‌های حداقلی مانند Tandaیا برندهای اروپایی اقتصادی مثل GST، گزینه‌های مناسب‌تری خواهند بود.

    اما اگر پروژه شما حساس، بزرگ یا نیازمند اخذ تأییدیه بیمه، گواهی آتش‌نشانی یا صادراتی است، باید به سراغ برندهای معتبر اروپایی یا آمریکایی بروید. سیستم‌هایی مانندSiemens، Bosch، Notifier و Simplex تضمین امنیت و کیفیت هستند و دارای تأییدیه‌هایی هستند که در سراسر جهان شناخته‌شده و قابل استناد هستند.

  • دفترچه مهندسان برای بیم دتکتور دودی اعلام حریق

    بخش ۱ – اصول عملکرد
    بیم دتکتور دودی اعلام حریق با پرتو بازتابی شامل یک واحد فرستنده/گیرنده است که یک پرتو را به سمت ناحیه تحت حفاظت ارسال، پایش و دریافت می‌کند.WhatsApp Image 2025 09 16 at 1.20.16 AM

    بیم دتکتور بر اساس اصل تضعیف نور کار می‌کند. عنصر حساس به نور در شرایط عادی، نوری که توسط واحد فرستنده/گیرنده تولید می‌شود را دریافت می‌کند. واحد فرستنده/گیرنده بر اساس درصدی از تضعیف کل نور، روی یک سطح حساسیت از پیش تعیین‌شده کالیبره می‌شود. این سطح حساسیت توسط سازنده و بر اساس طول پرتو و فاصله بین واحد فرستنده/گیرنده و رفلکتور تعیین می‌گردد. برای بیم دتکتورهای دارای تأییدیه UL، تنظیم حساسیت باید با استاندارد UL 268 «دتکتورهای دود برای سیستم‌های اعلام حریق» مطابقت داشته باشد.
    بیم دتکتورهای دودی اعلام حریق بر اساس اصل تضعیف عمل می‌کنند. هنگامی که میدان دود تشکیل می‌شود، بیم دتکتور تضعیف تجمعی — درصد مسدود شدن نور ناشی از ترکیب غلظت دود و فاصله خطی میدان دود در طول پرتو — را تشخیص می‌دهد. آستانه معمولاً توسط سازنده و بر اساس شرایط نصب تعیین می‌شود.
    انتخاب حساسیت مناسب، احتمال آلارم‌های مزاحم ناشی از انسداد پرتو به‌وسیله یک جسم جامد که به‌طور ناخواسته در مسیر قرار گرفته را به حداقل می‌رساند. از آنجا که انسداد ناگهانی و کامل پرتو نوری مشخصه معمول دود نیست، بیم دتکتور این حالت را به‌عنوان وضعیت خطا تشخیص می‌دهد نه آلارم.
    همچنین تغییرات بسیار کوچک و آهسته در کیفیت منبع نور مشخصه معمول دود نیست. این تغییرات ممکن است به دلیل شرایط محیطی مانند تجمع گرد و غبار و آلودگی بر روی مجموعه اپتیکی واحد فرستنده/گیرنده یا سطح بازتابی رخ دهد.

    WhatsApp Image 2025 09 16 at 1.20.17 AM

    وقتی بیم دتکتور برای اولین بار روشن و برنامه راه‌اندازی آن اجرا می‌شود، سطح سیگنال نوری آن لحظه را به‌عنوان نقطه مرجع شرایط عادی در نظر می‌گیرد. با کاهش کیفیت سیگنال نوری در طول زمان، کنترل خودکار بهره (AGC) این تغییر را جبران می‌کند. با این حال، سرعت جبران محدود است تا اطمینان حاصل شود که بیم دتکتور همچنان به آتش‌سوزی‌های تدریجی یا دودکردن حساس می‌ماند. هنگامی که AGC دیگر قادر به جبران کاهش سیگنال نباشد، مثلاً به علت تجمع بیش از حد گرد و غبار، بیم دتکتور وضعیت خطا را اعلام می‌کند.

    WhatsApp Image 2025 09 16 at 1.20.17 AM1

    لوازم جانبی
    لوازم جانبی بیم دتکتور دودی اعلام حریق با پرتو بازتابی ممکن است شامل تابلوی اعلام از راه دور و ایستگاه‌های تست از راه دور باشد که امکان تست دوره‌ای الکترونیکی و/یا حساسیت بیم دتکتور را فراهم می‌کنند. سیستم‌های هوشمند اعلام حریق می‌توانند یک آدرس اختصاصی به بیم دتکتور بدهند تا مکان دقیق آتش بهتر مشخص شود.

    WhatsApp Image 2025 09 16 at 1.20.18 AM

    سایر لوازم جانبی قابل استفاده شامل کیت نصب سطحی، کیت نصب چندحالته، و کیت برد بلند هستند. کیت نصب سطحی برای زمانی است که سیم‌کشی به‌صورت روکار انجام شود. کیت نصب چندحالته امکان نصب بیم دتکتور و رفلکتور را بر روی دیوار یا سقف فراهم می‌کند و برای نصب این کیت بر روی بیم دتکتور باید از کیت نصب سطحی نیز استفاده شود. کیت برد بلند امکان نصب بیم دتکتور را در فاصله‌های بیشتر از رفلکتور، معمولاً بین ۷۰ تا ۱۰۰ متر (۲۳۰ تا ۳۲۸ فوت) فراهم می‌کند.
    هیترها باعث می‌شوند سطح اپتیکی بیم دتکتور و رفلکتور دمایی کمی بالاتر از دمای هوای اطراف داشته باشد، که به کاهش میعان در محیط‌هایی با تغییرات دمایی کمک می‌کند.

    بخش ۲ – مقایسه بیم دتکتور دودی اعلام حریق با دتکتورهای نقطه‌ای دود
    بیم دتکتورها تحت استاندارد UL و NFPA 72، 2013، بخش A.17.7.3.7 قرار دارند. لازم است طراحان این الزامات را به‌طور کامل در انتخاب و کاربرد بیم دتکتورها برای سیستم‌های اعلام حریق در نظر بگیرند.

    پوشش‌دهی
    بیم دتکتورهای دودی اعلام حریق می‌توانند سطحی را پوشش دهند که نیازمند بیش از یک دوجین دتکتور نقطه‌ای باشد. تعداد کمتر دستگاه به معنی هزینه نصب و نگهداری کمتر است.
    این دتکتورها معمولاً حداکثر برد ۱۰۰ متر (۳۳۰ فوت) و حداکثر فاصله بین دو دتکتور ۱۸ متر (۶۰ فوت) دارند، که پوشش تئوریک ۱۸۳۹ مترمربع (۱۹,۸۰۰ فوت مربع) ایجاد می‌کند. توصیه‌های سازنده و عواملی مانند شکل اتاق ممکن است این مقدار را در عمل کاهش دهند.
    دتکتورهای نقطه‌ای دود حداکثر پوشش ۸۳ مترمربع (۹۰۰ فوت مربع) دارند. حداکثر فاصله بین دو دتکتور ۱۲.۵ متر (۴۱ فوت) است، زمانی که عرض ناحیه تحت حفاظت بیش از ۳ متر (۱۰ فوت) نباشد، مانند یک راهرو.

    ارتفاع سقف
    اگرچه زمان پاسخ دتکتور نقطه‌ای دود معمولاً با افزایش فاصله آن از آتش/کف افزایش می‌یابد، این موضوع لزوماً در مورد بیم دتکتورهای دودی اعلام حریق صدق نمی‌کند، زیرا این دتکتورها برای سقف‌های بلند ایده‌آل هستند. با این حال، برخی سازندگان ممکن است با افزایش ارتفاع سقف، به دتکتورهای اضافی نیاز داشته باشند، که این امر به دلیل رفتار مورد انتظار ستون دود است.

    آتش‌سوزی‌ها معمولاً در نزدیکی یا در سطح کف آغاز می‌شوند. هنگامی که این اتفاق می‌افتد، دود به سمت بالا یا نزدیک سقف حرکت می‌کند. به طور معمول، ستون دود در مسیر حرکت از نقطه شروع خود، شروع به گسترش کرده و به شکل یک مخروط وارونه در می‌آید.

    WhatsApp Image 2025 09 16 at 1.20.18 AM1

    تراکم میدان دود می‌تواند تحت تأثیر سرعت رشد آتش قرار گیرد. آتش‌های سریع تمایل دارند تراکم یکنواخت‌تری ایجاد کنند نسبت به آتش‌های کندسوز، که در آن ممکن است در بخش‌های بالایی میدان دود رقیق‌سازی رخ دهد. در برخی کاربردها، به ویژه جایی که سقف‌های بلند وجود دارد، بیم دتکتور دودی اعلام حریق ممکن است نسبت به آتش‌های کند یا دودزا واکنش‌پذیرتر از دتکتورهای نقطه‌ای باشند، زیرا آنها کل میدان دود را در طول پرتو بررسی می‌کنند. دتکتورهای نقطه‌ای تنها دود را در «نقطه» خاص خود نمونه‌برداری می‌کنند. دودی که وارد محفظه می‌شود ممکن است آن‌قدر رقیق باشد که به سطح لازم برای فعال کردن آلارم نرسد.

    WhatsApp Image 2025 09 16 at 1.20.19 AM

    یکی از محدودیت‌های بیم دتکتور دودی اعلام حریق این است که به عنوان دستگاه‌های خط دید، در معرض تداخل هر جسم یا شخصی هستند که وارد مسیر پرتو شود. بنابراین، استفاده از آنها در بیشتر مناطق اشغال‌شده با ارتفاع سقف معمولی عملی نیست.

    با این حال، بیم دتکتور دودی اعلام حریق اغلب انتخاب اصلی در مکان‌هایی با سقف بلند، مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، آشیانه‌های هواپیما و تالارهای کلیسا، همچنین کارخانه‌ها و انبارها هستند. بسیاری از این کاربردها مشکلات ویژه‌ای را برای نصب دتکتورهای نقطه‌ای و حتی مشکلات بیشتری را برای نگهداری صحیح آنها ایجاد می‌کنند. استفاده از بیم دتکتور دودی اعلام حریق در بسیاری از این مناطق ممکن است مشکلات را کاهش دهد، زیرا به دستگاه‌های کمتری نیاز است و این دستگاه‌ها می‌توانند روی دیوارها که دسترسی به آنها آسان‌تر از سقف‌هاست، نصب شوند.

    کاربردها برای مناطق با سقف بلند در NFPA 92، راهنمای سیستم‌های کنترل دود توصیف شده‌اند. برای اطلاعات بیشتر به پیوست B این راهنما مراجعه کنید.
    بیم دتکتور: ۱۹٬۸۰۰ فوت مربع (۳۳۰ فوت × ۶۰ فوت)
    حداکثر پوشش تئوریک

    سرعت بالای جریان هوا
    مناطق با جریان هوای بالا مشکل ویژه‌ای برای دتکتورهای نقطه‌ای ایجاد می‌کنند، زیرا انتشار دود که در شرایط عادی رخ می‌دهد ممکن است اتفاق نیفتد. از آنجا که سرعت بالای هوا ممکن است دود را از محفظه تشخیص خارج کند، باید عملکرد دتکتور نقطه‌ای زمانی که سرعت هوا بیش از ۱٬۵۰۰ فوت در دقیقه یا زمانی که نرخ تعویض هوا در منطقه محافظت‌شده بیش از ۷٫۵ بار در ساعت است، به دقت بررسی شود. محدوده تشخیص بیم دتکتور دودی اعلام حریق می‌تواند به اندازه یک زمین فوتبال باشد (حداکثر محدوده پرتو معمولاً ۳۳۰ فوت است)، در مقایسه با ابعاد یک یا دو اینچی محفظه تشخیص دتکتور نقطه‌ای. بنابراین، احتمال اینکه دود از محدوده تشخیص بیم دتکتور دودی اعلام حریق خارج شود کمتر است. از آنجا که جریان هوای بالا تأثیر زیادی بر بیم دتکتور ندارد، معمولاً نیاز نیست که برای این نوع محیط‌ها فهرست‌شده باشند.

    لایه‌بندی (Stratification)

    WhatsApp Image 2025 09 16 at 1.20.19 AM1

    لایه‌بندی زمانی رخ می‌دهد که دود حاصل از مواد دودزا یا در حال سوختن گرم شده و از هوای خنک‌تر اطراف خود کمتر متراکم شود. دود بالا می‌رود تا زمانی که دیگر تفاوت دمایی بین دود و هوای اطراف وجود نداشته باشد (به NFPA 2013، A.17.7.1.10 مراجعه کنید). بنابراین، لایه‌بندی ممکن است در مکان‌هایی رخ دهد که دمای هوا در سطح سقف بالا باشد، به ویژه جایی که تهویه وجود ندارد.

    روی سقف‌های صاف، بیم دتکتور دودی اعلام حریق عموماً باید در محدوده فاصله مشخص‌شده نصب شوند. در برخی موارد، محل و حساسیت دتکتورها باید نتیجه یک ارزیابی مهندسی باشد که شامل موارد زیر است:

    • ویژگی‌های سازه‌ای
    • اندازه و شکل اتاق‌ها و دهانه‌ها
    • نوع استفاده و اشغال فضا
    • ارتفاع سقف
    • شکل سقف
    • سطح و موانع
    • تهویه
    • شرایط محیطی
    • ویژگی‌های سوختن مواد قابل احتراق موجود
    • چیدمان محتویات منطقه تحت حفاظت

    نتایج ارزیابی مهندسی ممکن است نیاز به نصب در فاصله بیشتری از سقف و در ارتفاع‌های متفاوت برای مقابله با اثرات لایه‌بندی یا موانع دیگر داشته باشد.

    پیش‌لایه‌بندی / نرخ آزادسازی حرارت
    پیش‌لایه‌بندی باید در نظر گرفته شود، زیرا این یک عامل غالب در آتریوم‌هایی با سقف شیشه‌ای است. در دوره‌های آفتابی، گرما می‌تواند در بالای آتریوم تجمع پیدا کند و پیش از آغاز آتش‌سوزی یک لایه لایه‌بندی‌شده در سطح سقف ایجاد کند. عمق این لایه هوای گرم بسته به دمای بیرون و شدت تابش خورشید بر سقف تغییر می‌کند. گرمای ناشی از آتش می‌تواند به این لایه هوای گرم اضافه شده و عمق آن را افزایش دهد (به شکل‌های ۵ تا ۷ مراجعه کنید).

    نرخ آزادسازی حرارت یک آتش تعیین می‌کند که دود تا چه ارتفاعی در آتریوم بالا می‌رود. نرخ آزادسازی حرارت بسته به ماده در حال سوختن، جرم آن و متغیرهای دیگر متفاوت است.

    هنگام تعیین ارتفاع نصب بیم دتکتور دودی اعلام حریق، باید سناریوهای مختلف آتش در نظر گرفته شوند. سناریوهای آتش باید نه تنها بر اساس اشیای معمول موجود در محل، بلکه بر اساس خطرات موقت مانند وسایل مورد استفاده در بازسازی یا در طول دوره جابه‌جایی مستأجران نیز باشند.

    کاربردهای ویژه
    یکی از مهم‌ترین محدودیت‌های دتکتورهای دودی نقطه‌ای، ناتوانی آنها در کارکرد در محیط‌های نامساعد مانند دماهای بسیار بالا یا پایین، آلودگی، رطوبت و گازهای خورنده است. هرچند بیم دتکتور دودی اعلام حریق نیز ممکن است در معرض برخی از این عوامل تضعیف‌کننده قرار گیرد، اما در بسیاری موارد یک جایگزین مناسب به شمار می‌رود، زیرا محدوده دمای کاری آنها ممکن است بسیار وسیع‌تر از دتکتورهای دودی نقطه‌ای باشد. کاربردهای احتمالی بیم دتکتور شامل فریزرها، انبارهای نگهداری مواد سرد، انبارهای حمل‌ونقل، پارکینگ‌های سرپوشیده، سالن‌های کنسرت و اصطبل‌ها می‌شود.

    WhatsApp Image 2025 09 16 at 1.31.00 AM

    با این حال، بیم دتکتور نباید در محیط‌هایی نصب شود که فاقد کنترل دما هستند و احتمال تشکیل میعان یا یخ‌زدگی وجود دارد. اگر در این مکان‌ها رطوبت بالا و تغییرات سریع دما پیش‌بینی شود، احتمال تشکیل میعان وجود دارد و این شرایط برای کاربرد بیم دتکتور مناسب نیست. همچنین، بیم دتکتور نباید در محل‌هایی نصب شود که واحد فرستنده-گیرنده، رفلکتور یا مسیر نوری بین آنها ممکن است در معرض شرایط جوی بیرونی مانند باران، برف، تگرگ یا مه قرار گیرد. این شرایط عملکرد صحیح دتکتور را مختل می‌کند.

     

    بخش ۳ – ملاحظات طراحی
    عوامل زیادی بر عملکرد دتکتورهای دودی تأثیر می‌گذارند. نوع و مقدار مواد قابل احتراق، سرعت رشد آتش، فاصله دتکتور از آتش و عوامل تهویه همگی ملاحظات مهمی هستند. بیم دتکتور دودی اعلام حریق دارای تأییدیه UL تحت استاندارد UL 268 (دتکتورهای دود برای سیستم‌های اعلان حریق حفاظتی) هستند و باید طبق NFPA 72 (کد ملی اعلان حریق) و دستورالعمل سازنده نصب و نگهداری شوند.

    حساسیت
    هر سازنده مشخص می‌کند که حساسیت دتکتور باید با توجه به طول پرتو مورد استفاده در یک کاربرد خاص تنظیم شود. دتکتور باید در محدوده حداقل و حداکثر طول پرتو مجاز طبق دستورالعمل سازنده نصب شود، که این مقادیر توسط فهرست UL محدود شده‌اند.

    محل و فاصله‌گذاری
    پارامترهای محل نصب و فاصله‌گذاری توسط سازندگان توصیه می‌شود. به‌عنوان مثال، در سقف‌های صاف، فاصله افقی بین پرتوهای پیش‌بینی‌شده نباید بیش از ۶۰ فوت (۱۸٫۳ متر) باشد و فاصله بین پرتو و دیوار کناری (دیوار موازی مسیر پرتو) می‌تواند حداکثر نصف این مقدار باشد. هرچند این مثال حداکثر فاصله ۶۰ فوت را مجاز می‌داند، برخی سازندگان ممکن است محدودیت بیشتری اعمال کنند.

    در سقف‌های صاف، بیم دتکتور دودی اعلام حریق باید حداقل ۱۲ اینچ (۰٫۳ متر) پایین‌تر از سطح سقف یا زیر موانع سازه‌ای مانند تیرها، خرپاها، کانال‌های هوا و غیره نصب شود. همچنین، بیم دتکتور باید حداقل ۱۰ فوت (۳٫۰ متر) بالاتر از کف نصب شود تا از موانع رایج ناشی از استفاده روزمره ساختمان دور باشد.

    ملاحظات نصب بیم دتکتور بازتابی
    برای عملکرد صحیح، بیم دتکتور به یک سطح نصب پایدار نیاز دارد. سطحی که حرکت کند، جابه‌جا شود، دچار لرزش یا تغییر شکل شود، باعث آلارم‌های کاذب یا بروز خطا خواهد شد. در فواصل طولانی، جابه‌جایی تنها ۰٫۵ درجه در فرستنده باعث می‌شود نقطه مرکزی پرتو تقریباً ۳ فوت (۰٫۹ متر) تغییر مکان دهد.

    دتکتور باید روی سطوح نصب پایدار مانند آجر، بتن، دیوار باربر محکم، ستون نگهدارنده، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود دچار لرزش یا جابه‌جایی شود، نصب شود. دتکتور نباید روی دیوار فلزی موج‌دار، دیوار فلزی نازک، پوشش خارجی ساختمان، نمای خارجی، سقف معلق، خرپای فلزی باز، تیرهای غیرباربر، الوار یا سطوح مشابه نصب شود. در مواردی که تنها یک سطح پایدار قابل استفاده است، واحد فرستنده-گیرنده باید روی سطح پایدار نصب شود و رفلکتور روی سطح کمتر پایدار قرار گیرد، زیرا رفلکتور نسبت به محل نصب ناپایدار تحمل بیشتری دارد.

    WhatsApp Image 2025 09 16 at 1.20.20 AM

    از آنجا که بیم دتکتور دودی اعلام حریق دستگاه خط دید است و در صورت قطع کامل و ناگهانی سیگنال وارد وضعیت خطا می‌شود، باید همیشه از وجود هرگونه مانع مات در مسیر پرتو جلوگیری کرد.

    «در برخی موارد، پروژکتور پرتو نوری (همان فرستنده/گیرنده) در یک دیوار انتهایی نصب می‌شود و گیرنده پرتو نوری (همان رفلکتور) در دیوار مقابل نصب می‌شود. با این حال، همچنین مجاز است که پروژکتور و گیرنده از سقف آویزان شوند، به شرطی که فاصله آنها از دیوارهای انتهایی بیش از یک‌چهارم فاصله انتخاب‌شده نباشد.» — NFPA 72-2013, A.17.7.3.7

    همچنین باید نیاز به واکنش سریع به دلیل عوامل ایمنی جانی یا ارزش بالای دارایی‌های محافظت‌شده در نظر گرفته شود. در این شرایط، فاصله‌گذاری باید کاهش یابد، یا زمانی که آتش پیش‌بینی‌شده دود کمی به‌ویژه در مراحل اولیه تولید می‌کند. برای مثال، دتکتورهای نصب‌شده روی سقف یک آتریوم بسیار بلند در یک هتل ممکن است نیاز به تکمیل با دتکتورهای اضافی در ارتفاعات پایین‌تر داشته باشند.

    در کاربردهایی که نیاز به کاهش فاصله‌گذاری است، باید دقت شود که دو پرتو موازی به حداقل فاصله از یکدیگر برسند تا گیرنده یک دتکتور نتواند منبع نور دتکتور دیگر را ببیند. در مواردی که دو یا چند دتکتور با پرتوهایی در زوایا نصب می‌شوند، باید اطمینان حاصل شود که گیرنده هر دتکتور تنها نور فرستنده خودش را تشخیص دهد. رعایت روش‌های آزمون ذکرشده در دفترچه راهنمای سازنده بسیار مهم است.

    ملاحظات تکمیلی نصب برای بیم دتکتور دودی اعلام حریق بازتابی

    WhatsApp Image 2025 09 16 at 1.20.20 AM1 1

    باید یک خط دید شفاف و دائمی بین دتکتور و رفلکتور وجود داشته باشد. اجسام بازتابنده نباید در نزدیکی خط دید بین دتکتور و رفلکتور قرار گیرند. اجسام بازتابنده‌ای که بیش از حد به خط دید نزدیک باشند می‌توانند پرتو نور را از فرستنده به گیرنده منعکس کنند. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. اجسام بازتابنده باید حداقل ۱۵ اینچ (۳۸٫۱ سانتی‌متر) از خط دید بین دتکتور و رفلکتور فاصله داشته باشند.

    منابع نوری با شدت بسیار زیاد، مانند نور خورشید و لامپ‌های هالوژن، اگر مستقیماً به سمت گیرنده هدایت شوند، می‌توانند تغییرات شدیدی در سیگنال ایجاد کرده و باعث بروز سیگنال خطا یا آلارم شوند. برای جلوگیری از این مشکل، باید از تابش مستقیم نور خورشید به واحد فرستنده-گیرنده اجتناب شود. حداقل زاویه ۱۰ درجه بین مسیر منبع نور (نور خورشید) و دتکتور، و خط دید بین دتکتور و رفلکتور باید رعایت شود.

    باید از عملکرد دتکتور از طریق شیشه اجتناب شود. از آنجا که بیم دتکتور تک‌سَر بر اساس اصل بازتاب عمل می‌کند، یک شیشه که به‌طور عمود بر خط دید بین دتکتور و رفلکتور قرار گرفته باشد، می‌تواند پرتو نور را از فرستنده به گیرنده بازتاب دهد. اگر این اتفاق رخ دهد، دتکتور قادر به تشخیص این بازتاب‌ها از بازتاب‌های رفلکتور نخواهد بود و فضای تحت حفاظت دچار اختلال می‌شود. شیشه همچنین مقداری از نور را هنگام عبور جذب می‌کند. این جذب نور فاصله مجاز نصب بین دتکتور و رفلکتور را کاهش می‌دهد.

    در مواردی که اجتناب از عبور پرتو از شیشه ممکن نیست، برخی شیوه‌های خاص نصب می‌توانند اثرات شیشه را به حداقل برسانند. این روش‌ها شامل خودداری از عبور پرتو از چندین لایه شیشه، قرار دادن شیشه به‌گونه‌ای که به‌طور عمود بر خط دید بین دتکتور و رفلکتور نباشد (حداقل ۱۰ درجه انحراف از حالت عمود توصیه می‌شود) و اطمینان از شفاف، صاف و محکم بودن شیشه است. آزمون مسدودسازی کامل رفلکتور می‌تواند برای تعیین قابل قبول بودن نصب استفاده شود.

    در مکان‌هایی که ارتفاع سقف بیش از ۳۰ فوت (۹٫۱ متر) است، ممکن است نیاز به نصب بیم دتکتور دودی اعلام حریق اضافی در ارتفاع‌های مختلف برای تشخیص دود در سطوح پایین‌تر باشد. برای اطلاعات بیشتر به بخش لایه‌بندی در این راهنما مراجعه کنید.

    پیوست A – واژه‌نامه اصطلاحات

    پنل اعلان (Annunciator)
    دستگاهی که وضعیت یا شرایطی مانند حالت عادی، خطا یا آلارم دتکتور دودی یا سیستم را به صورت دیداری یا شنیداری نمایش می‌دهد.

    کنترل خودکار بهره (Automatic Gain Control – AGC)
    قابلیت بیم دتکتور دودی اعلام حریق برای جبران افت سیگنال نوری ناشی از گردوغبار یا آلودگی. نرخ جبران محدود است تا اطمینان حاصل شود که دتکتور همچنان به آتش‌های کند و دودزا حساس باقی می‌ماند.

    بیم دتکتور دودی اعلام حریق (بازتابی)
    دستگاهی که با ارسال یک پرتو نور از واحد فرستنده-گیرنده به سمت یک رفلکتور که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند، وجود دود را تشخیص می‌دهد. ورود دود به مسیر پرتو باعث کاهش سیگنال نور شده و آلارم فعال می‌شود.

    برد بیم (Beam Range)
    فاصله بین فرستنده-گیرنده و رفلکتور.

    پوشش دتکتور (Detector Coverage)
    منطقه‌ای که یک دتکتور دود یا دتکتور حرارت قادر به تشخیص مؤثر دود و/یا حرارت است. این منطقه توسط فهرست‌ها و کدهای مربوطه محدود می‌شود.

    لیست‌شده (Listed)
    قرار گرفتن یک دستگاه در فهرست منتشرشده توسط یک سازمان آزمون معتبر که نشان می‌دهد دستگاه با موفقیت طبق استانداردهای پذیرفته‌شده آزمایش شده است.

    تیرگی (انسداد تجمعی) (Obscuration / Cumulative Obscuration)
    کاهش توانایی عبور نور از یک نقطه به نقطه دیگر به دلیل وجود مواد جامد، مایع، گاز یا ذرات معلق. انسداد تجمعی ترکیبی از چگالی این ذرات مانع نور به ازای هر فوت و فاصله خطی‌ای است که این ذرات اشغال می‌کنند، یعنی چگالی دود ضرب‌در فاصله خطی میدان دود. (معمولاً با واحدهایی مانند درصد بر فوت یا درصد بر متر بیان می‌شود).

    رفلکتور (Reflector)
    دستگاهی که سیگنال نوری را به واحد فرستنده-گیرنده بازمی‌گرداند.

    حساسیت (Sensitivity)
    توانایی یک دتکتور دود برای واکنش به یک سطح مشخص دود.

    دود (Smoke)
    محصولات جامد و گازی حاصل از احتراق که در هوا معلق هستند.

    رنگ دود (Smoke Color)
    روشنی یا تیرگی نسبی دود که از نامرئی تا سفید، خاکستری و سیاه متغیر است.

    چگالی دود (Smoke Density)
    مقدار نسبی محصولات جامد و گازی حاصل از احتراق در یک حجم معین.

    دتکتور نقطه‌ای (Spot-Type Detector)
    دستگاهی که تنها در محل نصب خود دود و/یا حرارت را تشخیص می‌دهد. دتکتورهای نقطه‌ای دارای یک محدوده تعریف‌شده پوشش هستند.

    لایه‌بندی (Stratification)
    اثری که زمانی رخ می‌دهد که دود، که از هوای اطراف خود گرم‌تر است، بالا می‌رود تا به دمای برابر با هوای اطراف برسد و در نتیجه، از بالا رفتن بازمی‌ایستد.

    فرستنده-گیرنده (Transceiver)
    دستگاهی در یک بیم دتکتور دودی اعلام حریق بازتابی که نور را به سمت فضای تحت حفاظت می‌تاباند و آن را پایش می‌کند.

    صفحات شفاف (فیلترها) (Transparencies / Filters)
    صفحه‌ای از شیشه یا پلاستیک با سطح مشخص تیرگی که می‌تواند برای آزمودن سطح حساسیت صحیح بیم دتکتور دودی اعلام حریق استفاده شود.

    وضعیت خطا (Trouble Condition)
    وضعیتی از یک دستگاه یا سیستم که عملکرد صحیح آن را مختل می‌کند، مانند مدار باز در حلقه شروع‌کننده. اعلان وضعیت خطا که روی پنل کنترل یا پنل اعلان نمایش داده می‌شود یک «سیگنال خطا» است.

     

    پیوست B – استاندارد NFPA 92 برای سیستم‌های کنترل دود (ویرایش ۲۰۱۲)

    A.6.4.4.1.5(1)
    هدف از استفاده از یک پرتو رو به بالا برای تشخیص لایه دود، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند پرتو باید با زاویه رو به بالا به گونه‌ای هدف‌گیری شوند که لایه دود را بدون توجه به سطح لایه‌بندی دود قطع کنند. باید از بیش از یک بیم دتکتور دودی اعلام حریق استفاده شود. هنگام استفاده از این دستگاه‌ها برای این کاربرد، باید توصیه‌های سازندگان بررسی شود. دستگاه‌هایی که به این روش نصب می‌شوند ممکن است نیازمند فعالیت نگهداری بیشتری باشند.

    A.6.4.4.1.5(2)
    هدف از استفاده از پرتوهای افقی برای تشخیص لایه دود در سطوح مختلف، شناسایی سریع تشکیل لایه دود در هر شرایط دمایی موجود است. یک یا چند بیم دتکتور در سقف نصب می‌شوند. دتکتورهای اضافی در سطوح پایین‌تر حجم فضا نصب می‌شوند. موقعیت دقیق پرتوها تابعی از طراحی خاص است، اما باید شامل پرتوهایی در پایین هر فضای بدون تهویه (هوای مرده) شناسایی‌شده و در محل یا نزدیک به ارتفاع طراحی لایه دود، به همراه موقعیت‌های میانی پرتوها در سایر سطوح باشد.