الزامات استفاده از دتکتور گاز در معادن

monitoring

پیش‌زمینه دتکتور گاز
مقررات ایمنی و سلامت کار (معدن‌ها و محل‌های نفت و گاز) ۲۰۲۲ شامل الزامات مربوط به کیفیت هوای تأمین‌شده درون معدن و حدود مجاز آلاینده‌ها در آن هوا است. برای رعایت این الزامات، بهره‌بردار معدن باید تجهیزات دتکتور گاز را در نقاط استراتژیک سراسر معدن فراهم کند. در انتخاب این تجهیزات، بهره‌بردار معدن باید از این موضوع اطمینان داشته باشد که دتکتور گاز انتخاب‌شده می‌تواند در شرایط محیطی متغیر داده‌های دقیقی ارائه دهد.

مطابق با بندهای ۱۸۷(۱)(e) و (f) مقررات، طراحی تجهیزات زیر (که در این برگه اطلاعات به آن‌ها «دتکتور گاز» گفته می‌شود) در صورتی که در یک معدن زغال‌سنگ زیرزمینی استفاده شوند، باید به ثبت برسد:
(e) تجهیزاتی دستی با نیروی برق که برای تعیین یا پایش حضور گاز به‌کار می‌روند.
(f) نصب‌های ثابت با نیروی برق و نصب‌شده بر روی تجهیزات متحرک که برای تعیین یا پایش حضور گاز به‌کار می‌روند، اما شامل سیستم‌های لوله‌ای نیست که آنالایزر آن‌ها در سطح نصب شده باشد.

اصطلاح «دتکتور گاز» به مجموعه کامل اجزایی اطلاق می‌شود که تجهیزات تشخیص گاز را تشکیل می‌دهند. اجزای یک دتکتور گاز شامل دتکتور گاز، محفظه محافظ، واسط‌های ارتباطی مانند کابل، فیبر نوری و ارتباطات رادیویی، و نیز واحدهای کنترل و فرستنده‌هایی هستند که امکان نمایش مقادیر گاز و نشان دادن خروجی را فراهم می‌کنند تا بهره‌بردار معدن بتواند سطح گاز را تعیین کند.

هدف از ثبت طراحی این است که تأیید شود تجهیزات دتکتور گاز به‌گونه‌ای طراحی شده‌اند که حداقل نتایج عملکردی مورد نظر را برآورده کنند. طراحی تحت شرایط آزمون تعیین‌شده توسط یک مرکز آزمون مستقل مورد آزمایش قرار می‌گیرد و نتایج مستند می‌شوند.

طراحی و نتایج آزمون توسط فردی که در طراحی تجهیزات مشارکت نداشته و خود در زمینه طراحی تجهیزات دتکتور گاز دارای صلاحیت است، به‌صورت همتا‌خوانی بازبینی می‌شود. تأییدکننده طراحی باید با طراح درباره اینکه طراحی و عملکرد دتکتور گاز تمام الزامات رسمی‌شده را برآورده می‌کند، از جمله هرگونه ادعای معادل‌بودن برای پیشبرد ثبت، توافق داشته باشد. هرگونه اختلاف نظر درباره طراحی و عملکرد ادعاشده باید به طراح ارجاع داده شود تا حل‌وفصل شود.

اسناد زیر اطلاعات بیشتری درباره فرآیند ثبت طراحی ارائه می‌دهند:
• راهنما: ثبت تجهیزات و اقلام برای معدن‌ها و محل‌های نفت و گاز
• مقاله موضع‌گیری – تناسب، فرم، عملکرد
• اطلاعیه عمومی – معیارهای صلاحیت برای تأییدکنندگان طراحی
• سیاست: ثبت طراحی‌ها

دستور طراحی دتکتور گاز
نهاد نظارتی یک دستور طراحی منتشر کرده است که برای دریافت ثبت طراحی دتکتور گاز، باید از آن تبعیت شود. این دستور حداقل الزامات عملکردی را که طراحی دتکتور گاز باید برآورده کند، مشخص می‌کند.

همچنین، این دستور طراحی شایستگی‌های مورد نیاز برای یک مرکز آزمون را نیز تعیین می‌کند.

طراحی دتکتورهای گاز
استانداردهای مربوط به طراحی دتکتور گاز در دستور طراحی مشخص شده‌اند. این دستور اجازه می‌دهد از استانداردهای جایگزین نیز در طراحی دتکتورهای گاز استفاده شود، اما طراح باید استانداردهای فنی منتشرشده یا اصول مهندسی مورد استفاده برای شناسایی کنترل‌هایی که سطح ایمنی معادل را فراهم می‌کنند، مستند کند.

این معادل‌سازی فقط به طراحی دتکتور گاز مربوط می‌شود و شامل نتایج عملکردی که دتکتور باید در حین آزمون نشان دهد، نمی‌شود.

عملکرد دتکتورهای گاز
دستور طراحی الزام می‌کند که دتکتور گاز تحت شرایط مشخص توسط یک مرکز آزمون مناسب مورد آزمایش قرار گیرد. مرکز آزمون عملکرد دتکتور گاز را تحت شرایط محیطی مختلف، از جمله تغییرات دما، رطوبت، فشار هوا، سرعت جریان هوا، قرارگیری مداوم در معرض سطح بالای گاز، و تأثیر گازهای دیگر بر دتکتور، ارزیابی خواهد کرد. تمام این عوامل در محیط معدن زیرزمینی اهمیت دارند.

آزمون‌های آزمایشگاهی همچنین مقدار پایه‌ای برای زمان‌های پاسخ‌گویی (t(50) و t(90)) دتکتور گاز در مواجهه با افزایش و کاهش سطح گاز را تعیین می‌کنند. این آزمون‌ها همچنین مشخص می‌کنند که عملکرد دتکتور گاز، از جمله نمایشگرها و سیگنال‌های خروجی، چگونه تحت تأثیر عواملی همچون موارد زیر قرار می‌گیرد:
• مدت‌زمان مورد نیاز پس از برق‌دار شدن تا آغاز تشخیص دقیق گاز
• انتشار امواج الکترومغناطیسی از تجهیزات برقی نزدیک به دتکتور و سایر اجزای دتکتور مانند کابل‌ها

دستور طراحی الزام می‌کند که دتکتورهای گاز مطابق با معیارهای مشخص‌شده برای گازهای قابل اشتعال، گازهای سمی و اکسیژن (در صورت لزوم) مورد آزمون قرار گیرند. این موضوع تضمین می‌کند که عملکرد دتکتور، شامل زمان پاسخ و تأثیر شرایط محیطی و سایر عوامل مانند برق‌دار شدن و انتشار امواج الکترومغناطیسی، به‌صورت یکنواخت ارزیابی شود.

نمایشگرها، سیگنال‌ها و نشانگرهای خروجی دتکتور گاز
دستور طراحی الزام می‌کند که دتکتورهای گاز به‌گونه‌ای طراحی شوند که دارای دتکتورهای داخلی، دتکتورهای از راه دور، یا ترکیبی از این دو باشند. دتکتورهایی که با این الزامات مطابقت دارند، نمایشگر وضعیت، عملکرد هشدار، کنتاکت‌های خروجی و/یا سیگنال‌های هشدار خروجی ارائه می‌دهند که تصمیم‌گیری در مورد مدیریت هوای تهویه، محیط و عملکرد تجهیزات را امکان‌پذیر می‌سازند.

دتکتورهای گاز همچنین باید به‌گونه‌ای طراحی شوند که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی فراهم کنند که بتوان از آن برای نمایش مقدار گاز در یک نمایشگر دور از دتکتور یا واحد کنترل، به‌عنوان ورودی برای سیستم هشدار یا قطع‌کننده جداگانه، یا به‌عنوان ورودی برای سیستم‌های برداشت و کنترل داده‌های معدن جهت نمایش و بررسی روند سطح گاز استفاده کرد.

دتکتورهای گاز ممکن است به‌گونه‌ای طراحی شوند که انتقال سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را در داخل واحد کنترل دتکتور گاز انجام دهند یا آن را به‌صورت یک واحد فرستنده جداگانه حفظ کنند.

سیگنال‌های استاندارد پذیرفته‌شده در صنعت
سیگنال‌های استاندارد پذیرفته‌شده در صنعت، سیگنال‌هایی هستند که کاربر نهایی می‌تواند بدون استفاده از قطعات خاص انحصاری برای رمزگشایی و بازفرمت‌کردن داده، آن‌ها را تفسیر کند.

بند ۳.۲.۱۱ از استاندارد AS/NZS 60079.29.1 یک سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را چیزی مانند حلقه جریان ۴ تا ۲۰ میلی‌آمپر تعریف می‌کند.
بند ۱.۳.۸.۱۰ از استاندارد AS/NZS 4641:2018 نیز سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی را به‌صورت مثال‌هایی مانند حلقه جریان ۴–۲۰ میلی‌آمپر یا سیگنال ۳–۱۵ psi بیان می‌کند.

سیگنال‌های آنالوگ دتکتور گاز
سیگنال آنالوگ، مانند حلقه جریان ۴–۲۰ میلی‌آمپر، یک سیگنال الکتریکی است که می‌توان آن را با تجهیزات تست الکتریکی اندازه‌گیری و نمایش داد. این سیگنال ممکن است به‌عنوان ورودی برای واحدهای کنترل دتکتور گاز مجزا یا سایر سیستم‌های کنترل و پایش، با استفاده از اجزای جانبی مانند واحد نمایشگر یا واحد هشدار و قطع‌کننده به‌کار رود. همچنین این سیگنال می‌تواند ورودی‌ای برای یک کنترل‌کننده قابل برنامه‌ریزی باشد تا عملکرد هشدار و قطع را آغاز کند یا داده را به سیستم‌های برداشت داده معدن منتقل نماید.

سیگنال‌های آنالوگ محدود به حلقه جریان ۴–۲۰ میلی‌آمپر نیستند.

سیگنال‌های دیجیتال دتکتور گاز
یک دتکتور گاز ممکن است سیگنال خروجی دیجیتال ارائه دهد، به‌جای سیگنال آنالوگ. برای اینکه سیگنال دیجیتال قابل استفاده توسط بهره‌بردار معدن باشد، ساختار سیگنال دیجیتال باید شناخته‌شده باشد. بدون داشتن پروتکل جریان داده دیجیتال، امکان تفسیر محتوای سیگنال ارسالی از سوی دتکتور، از جمله مقدار گاز شناسایی‌شده، وجود ندارد. معمولاً یک مبدل پروتکل برای رمزگشایی سیگنال و امکان استفاده از داده دتکتور گاز توسط بهره‌بردار معدن مورد نیاز است. این اجزای جانبی بخشی از تجهیزات ثبت‌شده طراحی‌شده تلقی می‌شوند.

آزمایش دتکتور گاز
برای دستیابی به ثبت طراحی، باید گزارشی از آزمون ارائه شود که تأیید کند دتکتور گاز، شامل دتکتور و تمام اجزای لازم برای اینکه بهره‌بردار معدن بتواند محتوای گاز در جو معدن را تعیین کند، الزامات عملکردی مشخص‌شده در استانداردهای مربوطه را برآورده می‌سازد. اجزای اضافی شامل ماژول‌های نمایشگر، ماژول‌های فرستنده، ترکیب نمایشگر و فرستنده، یا رله‌های هشدار و قطع هستند. در صورتی که دتکتور به‌صورت از راه دور باشد، آزمون شامل کابل‌های ارتباطی‌ای خواهد بود که طراح آن‌ها را مناسب تشخیص داده است.

چنانچه یک دتکتور گاز شامل عملکرد یک فرستنده دتکتور گاز باشد و فرستنده دتکتور گاز سیگنال داده دیجیتال ارائه دهد، تمام ماژول‌های اختصاصی لازم برای اینکه بهره‌بردار معدن بتواند از سیگنال دیجیتال استفاده کند، باید همراه با دتکتور توسط مرکز آزمون مورد آزمایش قرار گیرند. این ماژول‌های اضافی به‌عنوان بخشی از طراحی ثبت‌شده دتکتور گاز محسوب می‌شوند.

این آزمون برای تأیید این موضوع لازم است که سیگنال الکترونیکی تنظیم‌شده یا نشانگر خروجی، به‌طور دقیق سطح گازی را که دتکتور در معرض آن قرار گرفته، تحت شرایط متغیر نشان دهد.

پروتکل هرگونه درایور نرم‌افزاری که توسط مرکز آزمون در زمان آزمون دتکتور گاز استفاده می‌شود، باید مستند شده و به‌عنوان بخشی از مستندات ثبت طراحی درج شود. این امر توسعه درایورهای نرم‌افزاری سازگار با رابط‌های ارتباطی موجود در آن معدن را ممکن می‌سازد.

نوشته‌های مشابه

  • فناوری های تشخیص گاز

    WhatsApp Image 2025 09 25 at 2.25.53 AM

    WhatsApp Image 2025 09 25 at 2.26.01 AM

    دسته‌بندی‌های پایش گاز:

    1. گازهای قابل احتراق / اشتعال‌پذیر
      • خطر انفجار.
      • برای جلوگیری از انفجار، باید سطح گاز در هوا کمتر از حد پایین انفجار (LEL) برای هر گاز نگه داشته شود یا اکسیژن از محیط حذف شود.
      • معمولاً در بازه ۰ تا ۱۰۰ درصد از حد پایین انفجار یا در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شود.
      • دتکتورهای گاز قابل احتراق به‌گونه‌ای طراحی شده‌اند که پیش از وقوع شرایط بالقوه انفجاری هشدار دهند.
    2. گازهای سمی / محرک
      • برای سلامت انسان خطرناک‌اند؛ باید میزان تماس کارکنان با این گازها پایش شود.
      • معمولاً در محدوده قسمت در میلیون (ppm) اندازه‌گیری می‌شوند.
      • دتکتورهای گاز سمی به‌گونه‌ای طراحی شده‌اند که پیش از رسیدن سطح گاز به غلظت زیان‌آور به کارکنان هشدار دهند.
      • برخی از دتکتورهای گاز سمی می‌توانند میانگین تماس در طول زمان را محاسبه کرده و مقادیر حد تماس کوتاه‌مدت (STEL) و میانگین وزنی زمان‌دار (TWA) را ارائه دهند.
    3. اکسیژن
      • محیط‌هایی با میزان کم اکسیژن (کمتر از ۱۹.۵ درصد حجمی اکسیژن) «کم‌اکسیژن» تلقی شده و تنفس طبیعی انسان را مختل می‌کنند.
      • محیط‌هایی با میزان زیاد اکسیژن (بیش از ۲۵ درصد حجمی اکسیژن) «غنی از اکسیژن» تلقی شده و خطر انفجار در آن‌ها افزایش می‌یابد.
      • در بازه درصد حجمی اندازه‌گیری می‌شود (درصد طبیعی اکسیژن در هوا در سطح دریا ۲۰.۸ درصد حجمی است).
      • دتکتورهای اکسیژن به‌طور کلی به‌گونه‌ای تنظیم می‌شوند که در صورت کم بودن یا زیاد بودن بیش از حد اکسیژن در محیط، هشدار دهند.

     

    فضاهای قابل احتراق

    برای ایجاد شعله، وجود سه شرط ضروری است:
    • یک منبع سوخت (مانند گاز متان یا بخارات بنزین)
    • مقدار کافی اکسیژن (بیش از ۱۰ تا ۱۵ درصد) برای اکسید شدن یا سوختن سوخت
    • یک منبع گرما (جرقه) برای شروع فرآیند

    نمونه‌هایی از منابع گرما و جرقه:
    • شعله‌های باز مانند شعله‌های فندک، مشعل، کبریت و مشعل‌های جوشکاری، رایج‌ترین منابع جرقه هستند.
    • تابش در قالب نور خورشید یا سطوح داغ
    • جرقه‌های ناشی از منابع مختلف مانند روشن یا خاموش کردن وسایل برقی، بیرون کشیدن دوشاخه‌ها، الکتریسیته ساکن یا کلیدهای الکتریکی

    فضاهای قابل احتراق
    عوامل مؤثر در فضاهای قابل احتراق

    بخار در برابر گاز
    اگرچه اصطلاحات «بخار» و «گاز» اغلب به‌جای یکدیگر استفاده می‌شوند، اما معانی یکسانی ندارند. واژه «بخار» به ماده‌ای اطلاق می‌شود که اگرچه در حالت گازی وجود دارد، اما به‌طور معمول در دمای اتاق به صورت مایع یا جامد است. وقتی می‌گوییم یک ماده مایع یا جامد در حال سوختن است، در واقع بخار آن ماده است که می‌سوزد. «گاز» به ماده‌ای گفته می‌شود که به‌طور طبیعی در دمای اتاق در حالت گازی است.

    فشار بخار و نقطه جوش
    فشار بخار، فشاری است که زمانی ایجاد می‌شود که یک جامد یا مایع با بخار خودش در حالت تعادل قرار دارد. این فشار به‌طور مستقیم با دما مرتبط است. مثالی از فشار بخار، فشاری است که توسط بخار یک مایع در یک ظرف بسته نیمه‌پر ایجاد می‌شود. بسته به دما، فشار بخار تا یک آستانه مشخص افزایش می‌یابد. وقتی این آستانه برسد، فضا «اشباع‌شده» در نظر گرفته می‌شود.

    فشار بخار و نقطه جوش یک ماده شیمیایی تعیین می‌کنند که چه میزان از آن احتمال دارد وارد هوا شود. فشار بخار پایین به معنای مولکول‌های کمتری از آن ماده در هواست که قابل اشتعال باشند، بنابراین به‌طور کلی خطر کمتری وجود دارد. این همچنین به این معناست که مولکول‌های کمتری برای آشکارسازی وجود دارد و ممکن است آشکارسازی دشوارتر شده و نیاز به تجهیزات با حساسیت بیشتر باشد. با افزایش فشار بخار و کاهش نقطه جوش، احتمال تبخیر افزایش می‌یابد. اگر ظروف حاوی این نوع مواد شیمیایی باز بمانند یا بر روی سطوح بزرگ پخش شوند، احتمال خطر بیشتری به‌وجود می‌آید.

    نقطه اشتعال (Flashpoint)
    یک ماده قابل اشتعال تا زمانی که به نقطه اشتعال خود نرسد، بخار یا گاز کافی برای شروع آتش تولید نمی‌کند. نقطه اشتعال، پایین‌ترین دمایی است که در آن یک مایع بخار کافی برای ایجاد شعله تولید می‌کند. اگر دما پایین‌تر از این مقدار باشد، مایع بخار کافی برای اشتعال تولید نمی‌کند. اگر نقطه اشتعال برسد و یک منبع خارجی اشتعال مانند جرقه وجود داشته باشد، ماده آتش خواهد گرفت. سند NFPA-325M از آژانس ملی حفاظت در برابر آتش (NFPA) تحت عنوان ویژگی‌های خطر آتش مواد قابل اشتعال، گازها و حلال‌های فرّار، نقطه اشتعال بسیاری از مواد رایج را فهرست کرده است.

    نقطه اشتعال اهمیت دارد زیرا نشان‌دهنده میزان خطر ناشی از یک مایع قابل اشتعال است. به‌طور کلی، هرچه نقطه اشتعال پایین‌تر باشد، تشکیل مخلوط‌های قابل اشتعال سوخت و هوا آسان‌تر بوده و در نتیجه خطر بیشتر است.

    دمای خوداشتعالی
    اگر ماده‌ای تا دمای مشخصی—یعنی دمای اشتعال خودبه‌خودی (یا «خوداشتعالی»)—گرم شود، بیشتر مواد شیمیایی قابل اشتعال می‌توانند بدون وجود منبع خارجی اشتعال، تنها با انرژی گرمایی خود، به‌طور خودبه‌خودی آتش بگیرند.

    چگالی بخار
    چگالی بخار نسبت وزن یک حجم از بخار قابل اشتعال به حجم مساوی از هوا است. بیشتر بخارهای قابل اشتعال سنگین‌تر از هوا هستند، بنابراین به سمت زمین حرکت کرده و در نواحی پایین‌تر تجمع می‌یابند. گاز یا بخاری که چگالی بخار آن بیشتر از ۱ باشد ممکن است در سطوح پایین حرکت کرده و به دنبال یک منبع اشتعال بگردد (برای مثال: هگزان با چگالی بخار ۳.۰). گاز یا بخاری که چگالی بخار آن کمتر از ۱ باشد تمایل دارد به سمت بالا حرکت کند (برای مثال: متان با چگالی بخار ۰.۶). چگالی بخار در تعیین محل بهینه نصب دتکتور اهمیت دارد، زیرا به پیش‌بینی محل احتمالی تجمع گاز یا بخار در یک اتاق یا فضا کمک می‌کند.

    حدود انفجار
    برای ایجاد شعله، مقدار کافی گاز یا بخار باید وجود داشته باشد؛ اما مقدار بیش‌ازحد گاز می‌تواند اکسیژن موجود در فضا را جابه‌جا کرده و مانع از احتراق شود. به همین دلیل، برای غلظت‌های پایین و بالا، حد مشخصی وجود دارد که در آن احتراق می‌تواند رخ دهد. این حدود به عنوان حد پایین انفجار (LEL) و حد بالای انفجار (UEL) شناخته می‌شوند. این‌ها همچنین به عنوان حد پایین اشتعال‌پذیری (LFL) و حد بالای اشتعال‌پذیری (UFL) نیز شناخته می‌شوند.

    برای حفظ احتراق، محیط باید ترکیب مناسبی از سوخت و اکسیژن (هوا) داشته باشد. LEL حداقل مقدار گاز مورد نیاز برای احتراق و UEL حداکثر مقدار آن را نشان می‌دهد. مقادیر دقیق LEL برای گازهای مختلف متفاوت است و به صورت درصد حجمی در هوا اندازه‌گیری می‌شوند. مقادیر LEL و UEL گازها در سند NFPA 325 درج شده‌اند.

    LEL معمولاً بین ۱.۴٪ تا ۵٪ حجمی است. با افزایش دما، انرژی کمتری برای ایجاد احتراق مورد نیاز است و درصد گاز لازم برای رسیدن به ۱۰۰٪ LEL کاهش یافته و در نتیجه خطر افزایش می‌یابد. محیطی با سطح اکسیژن بالاتر باعث افزایش UEL گاز، همچنین نرخ و شدت گسترش شعله می‌شود. از آنجا که مخلوطی از چندین گاز شرایط را پیچیده می‌کند، LEL دقیق آن‌ها باید از طریق آزمایش مشخص شود.

    بیشتر ابزارهای اندازه‌گیری گازهای قابل احتراق در محدوده LEL کار می‌کنند و قرائت گاز را به صورت درصدی از LEL نمایش می‌دهند. برای مثال: عدد ۵۰٪ LEL به این معناست که مخلوط گاز نمونه‌برداری‌شده شامل نیمی از مقدار گاز مورد نیاز برای حمایت از احتراق است.

    هر غلظتی از گاز یا بخار که بین این دو حد قرار گیرد، در محدوده قابل اشتعال (انفجاری) قرار دارد. مواد مختلف دارای پهنای متفاوتی از محدوده اشتعال‌پذیری هستند — برخی بسیار گسترده و برخی دیگر باریک‌تر هستند. موادی که محدوده اشتعال‌پذیری وسیع‌تری دارند، معمولاً خطرناک‌تر محسوب می‌شوند، زیرا سطوح بیشتری از غلظت آن‌ها می‌تواند دچار اشتعال شود.

    فضاهایی که در آن‌ها سطح غلظت گاز پایین‌تر از LEL است (سوخت کافی برای اشتعال وجود ندارد)، «لاغر» (lean) و غیرقابل اشتعال نامیده می‌شوند؛ و فضاهایی که سطح گاز بالاتر از UEL است (اکسیژن کافی برای اشتعال وجود ندارد)، «غلیظ» (rich) و غیرقابل اشتعال تلقی می‌شوند.

    فضاهای سمی

    پایش گازهای سمی
    گاز سمی به گازی گفته می‌شود که توانایی آسیب رساندن به بافت‌های زنده، اختلال در سیستم عصبی مرکزی، ایجاد بیماری‌های شدید یا—در موارد حاد—مرگ را دارد، زمانی که از طریق بلع، تنفس یا جذب از راه پوست یا چشم وارد بدن شود. میزان لازم برای ایجاد این اثرات به‌طور گسترده‌ای با توجه به ماهیت ماده و مدت زمان تماس متفاوت است. «سمیت حاد» به تماس کوتاه‌مدت مانند یک مواجهه‌ی لحظه‌ای اشاره دارد. «سمیت مزمن» به تماس بلندمدت مانند مواجهه‌های مکرر یا طولانی اشاره دارد.

    پایش گازهای سمی اهمیت دارد زیرا برخی از این مواد قابل مشاهده یا بوییدن نیستند و اثرات فوری ندارند. بنابراین شناسایی خطر گاز از طریق حواس فرد معمولاً خیلی دیر و پس از رسیدن غلظت به سطح زیان‌آور انجام می‌شود.

    اثرهای سمی گازها از بی‌ضرر تا بسیار سمی متغیر است. برخی در مواجهه‌های کوتاه و در سطح پایین نیز تهدیدکننده‌ی زندگی هستند، در حالی که برخی دیگر تنها در مواجهه‌های مکرر و با غلظت بالا خطرناک‌اند. میزان خطری که یک ماده برای یک کارگر ایجاد می‌کند، به عوامل مختلفی بستگی دارد که شامل سطح غلظت گاز و مدت زمان تماس است.

    حدود تماس مجاز
    کنفرانس آمریکایی متخصصان بهداشت صنعتی دولتی (ACGIH) فهرستی سالانه و بازبینی‌شده از حدود مجاز تماس با ترکیبات صنعتی رایج منتشر می‌کند که با عنوان «مقادیر حد آستانه (TLV) و شاخص‌های تماس زیستی (BEI) بر اساس مستندات حدود آستانه مواد شیمیایی و عوامل فیزیکی» شناخته می‌شود. (برای سفارش نسخه‌ای از آن به www.acgih.org مراجعه کنید).
    ACGIH مفهوم مقدار حد آستانه (TLV) را تعریف کرده است؛ TLV به غلظت مجاز یک ماده آلاینده در هوا گفته می‌شود که تصور می‌شود تقریباً همه کارگران بتوانند به‌طور مکرر و روزانه در طول عمر کاری خود در معرض آن قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. این مقادیر بر اساس ترکیبی از تجربه صنعتی و مطالعات انسانی و حیوانی تعیین شده‌اند.

    میانگین‌های وزنی زمانی (TWA)
    مقادیر TLV معمولاً به‌صورت میانگین وزنی ۸ ساعته در نظر گرفته می‌شوند. جنبه میانگین‌گیری به این معناست که مواجهه‌هایی بالاتر از حد مجاز قابل‌قبول است، به شرطی که با دوره‌هایی از تماس کمتر از حد مجاز جبران شوند.

    محدودیت‌های تماس کوتاه‌مدت (STEL)
    محدودیت‌های تماس کوتاه‌مدت غلظت‌هایی هستند که بالاتر از میانگین ۸ ساعته‌اند و کارگران می‌توانند برای مدت زمان کوتاه در معرض آن‌ها قرار گیرند بدون اینکه دچار اثرات زیان‌آور شوند. (اگر غلظت به اندازه کافی بالا باشد، حتی یک بار تماس نیز می‌تواند اثرات مضر بر سلامت داشته باشد.)
    STEL برای موقعیت‌هایی به‌کار می‌رود که در آن کارگر در معرض غلظت بالای گاز قرار دارد اما فقط برای مدت کوتاهی. این محدودیت‌ها به‌صورت میانگین وزنی ۱۵ دقیقه‌ای تعریف می‌شوند که نباید حتی در صورتی که میانگین ۸ ساعته کمتر از مقدار TLV باشد، از آن فراتر رود.

    غلظت‌های سقفی (Ceiling Concentrations)
    برای برخی از گازهای سمی، حتی یک تماس که از TLV فراتر رود می‌تواند برای سلامت کارگر خطرناک باشد. در این موارد، از غلظت‌های سقفی استفاده می‌شود تا سطوحی را مشخص کند که هرگز نباید از آن‌ها عبور شود.

    حدود مجاز تماس (PELs)
    حدود مجاز تماس (Permissible Exposure Limits) توسط اداره ایمنی و بهداشت شغلی ایالات متحده (OSHA) تدوین و اجرا می‌شوند. بخش ۱۹۱۰.۱۰۰۰ از بخش ۲۹ کد مقررات فدرال (CFR) این استانداردها را شامل می‌شود که مشابه مقادیر TLV سازمان ACGIH هستند، با این تفاوت که PEL به‌صورت قانونی الزام‌آور است نه صرفاً توصیه‌شده. با این حال، دقیق‌ترین مقادیر PEL معمولاً در برگه‌های اطلاعات ایمنی مواد (MSDS) درج شده‌اند.

    شرایط فوری خطرناک برای زندگی و سلامت (IDLH)
    مؤسسه ملی ایمنی و بهداشت شغلی (NIOSH) شرایط تماس IDLH را به‌عنوان شرایطی تعریف می‌کند که در آن، قرار گرفتن در معرض آلاینده‌های هوابرد می‌تواند منجر به مرگ، اثرات مضر فوری یا تأخیری دائمی بر سلامت شود یا مانع از فرار فرد از آن محیط گردد.
    از آنجا که مقادیر IDLH برای تضمین توانایی کارگر در فرار از محیط خطرناک در صورت از کار افتادن تجهیزات حفاظت تنفسی تعیین شده‌اند، این مقادیر عمدتاً برای تعیین نوع مناسب وسایل حفاظت تنفسی مطابق با استانداردهای OSHA به‌کار می‌روند.

    کاهش یا افزایش سطح اکسیژن

    کمبود اکسیژن (Oxygen Deficiency)
    هوای طبیعی محیط دارای غلظت ۲۰.۸ درصد حجمی اکسیژن است. زمانی که سطح اکسیژن به کمتر از ۱۹.۵ درصد از کل ترکیب هوا کاهش یابد، آن فضا «کم‌اکسیژن» در نظر گرفته می‌شود. در چنین محیط‌هایی، اکسیژن لازم برای ادامه‌ی حیات ممکن است با گازهای دیگری مانند دی‌اکسید کربن جایگزین شود. این امر منجر به ایجاد فضایی می‌شود که در صورت تنفس، می‌تواند خطرناک یا کشنده باشد.

    کمبود اکسیژن همچنین ممکن است بر اثر زنگ‌زدگی، خوردگی، تخمیر یا سایر اشکال اکسایش که اکسیژن مصرف می‌کنند، ایجاد شود. در فرآیند تجزیه مواد، اکسیژن از جو برای تأمین واکنش اکسایش مصرف می‌شود.

    تأثیرات کمبود اکسیژن ممکن است تدریجی یا ناگهانی باشد، که این موضوع به غلظت کلی اکسیژن و همچنین سطوح دیگر گازهای موجود در فضا بستگی دارد. به‌طور کلی، کاهش سطح اکسیژن محیط باعث بروز علائم فیزیولوژیکی زیر می‌شود:

    درصد اکسیژن اثرات فیزیولوژیکی
    ۱۹.۵ تا ۱۶ بدون اثر قابل مشاهده
    ۱۶ تا ۱۲ افزایش سرعت تنفس، افزایش ضربان قلب، اختلال در تمرکز، تفکر و هماهنگی حرکتی
    ۱۴ تا ۱۰ قضاوت نادرست، ضعف در هماهنگی عضلانی، خستگی سریع در اثر فعالیت، تنفس متناوب
    ۱۰ تا ۶ تهوع و استفراغ، ناتوانی در انجام حرکات شدید یا از دست دادن توان حرکتی، بیهوشی و در ادامه مرگ
    کمتر از ۶ دشواری در تنفس، حرکات تشنجی، مرگ

    غنی شدن اکسیژن (Oxygen Enrichment)
    زمانی که غلظت اکسیژن در فضا به بالاتر از ۲۰.۸ درصد حجمی افزایش یابد، آن محیط «غنی از اکسیژن» محسوب می‌شود و مستعد ناپایداری خواهد بود. در نتیجه افزایش سطح اکسیژن، احتمال و شدت آتش‌سوزی ناگهانی یا انفجار به‌شدت افزایش می‌یابد.

     

    فناوری‌های آشکارسازی گاز

    امروزه انواع مختلفی از فناوری‌های آشکارسازی گاز مورد استفاده قرار می‌گیرند. از جمله رایج‌ترین آن‌ها می‌توان به موارد زیر اشاره کرد:

    • کاتالیستی مهره‌ای (Catalytic Bead)
      • نیمه‌رسانای اکسید فلز (که با عنوان «حالت جامد» نیز شناخته می‌شود)
      • مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
      • مادون قرمز باز با مسیر بلند (Open (Long Path) Infrared)
      • مادون قرمز فوتواکوستیک (Photoacoustic Infrared)
      • الکتروشیمیایی برای آشکارسازی گازهای سمی
      • الکتروشیمیایی برای آشکارسازی اکسیژن
      • رسانایی گرمایی (Thermal Conductivity)
      • یونیزاسیون نوری (Photoionization)
      • مادون قرمز غیرپراکندگی (NDIR)

    جدول‌ها و نمودارهای صفحات بعدی عملکرد هر یک از این فناوری‌ها را به‌صورت خلاصه نمایش می‌دهند.

    فناوری: کاتالیستی مهره‌ای (Catalytic Bead)

    WhatsApp Image 2025 09 25 at 2.26.03 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    اصل عملکرد:
    از یک مهره کاتالیستی برای اکسید کردن گاز قابل احتراق استفاده می‌کند؛ پل ویتستون تغییر مقاومت ایجاد شده را به سیگنال الکتریکی دتکتور تبدیل می‌کند.

    توضیح دقیق:
    یک سیم پیچ با پوشش ماده‌ای شیشه‌ای یا سرامیکی که روی آن کاتالیزور قرار دارد، به صورت الکتریکی تا دمایی گرم می‌شود که بتواند گاز تحت پایش را بسوزاند (اکسید کند). این فرآیند گرما تولید کرده و دمای سیم را افزایش می‌دهد. با افزایش دمای سیم، مقاومت الکتریکی آن نیز افزایش می‌یابد. این مقاومت توسط مدار پل ویتستون اندازه‌گیری شده و این اندازه‌گیری به سیگنال الکتریکی تبدیل می‌شود که توسط دتکتور گاز استفاده می‌شود. سنسور دوم به نام جبران‌کننده برای جبران تغییرات دما، فشار و رطوبت به کار می‌رود.

    محدوده اندازه‌گیری:
    درصدی از حد پایین انفجار (% LEL)

    مزایا:
    طول عمر بالا، حساسیت کمتر به تغییرات دما، رطوبت، تراکم و فشار؛ دقت بالا؛ پاسخ سریع؛ توانایی پایش گستره وسیعی از گازها و بخارهای قابل احتراق در هوا.

    معایب:
    مستعد مسمومیت سنسور؛ نیاز به هوا یا اکسیژن؛ طول عمر کاهش‌یافته در مواجهه‌های مکرر یا مداوم با غلظت‌های بالای LEL.

    فناوری: نیمه‌رسانای اکسید فلز (Metal Oxide Semiconductor)

    WhatsApp Image 2025 09 25 at 2.26.09 AM

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق؛ گازهای سمی

    اصل عملکرد:
    این دتکتور از اکسید فلزی ساخته شده است که در واکنش به حضور گاز، مقاومت آن تغییر می‌کند؛ این تغییر مقاومت اندازه‌گیری شده و به مقدار غلظت گاز تبدیل می‌شود.

    توضیح دقیق:
    یک ماده نیمه‌رسانا (اکسید فلز) روی یک بستر عایق بین دو الکترود قرار می‌گیرد.
    بستر تا دمایی گرم می‌شود که حضور گاز می‌تواند باعث تغییر برگشت‌پذیر در رسانایی ماده نیمه‌رسانا شود. وقتی گازی وجود ندارد، اکسیژن به صورت یون روی سطح جذب شده و سنسور نیمه‌رسانا می‌شود؛ وقتی مولکول‌های گاز مورد نظر حضور دارند، جایگزین یون‌های اکسیژن شده و مقاومت بین الکترودها کاهش می‌یابد. این تغییر به‌صورت الکتریکی اندازه‌گیری شده و متناسب با غلظت گاز است.

    محدوده اندازه‌گیری:
    قسمت در میلیون (PPM)

    مزایا:
    حساسیت بالا (قادر به تشخیص غلظت‌های پایین)؛ دامنه دمای عملکرد وسیع؛ عمر طولانی.

    معایب:
    غیر اختصاصی (حساسیت متقاطع به ترکیبات دیگر)؛ خروجی غیرخطی؛ حساس به تغییرات رطوبت؛ مستعد مسمومیت.

     

     

    فناوری: مادون قرمز نقطه‌ای با مسیر کوتاه (Point Infrared Short Path)
    (همچنین با نام مادون قرمز غیرپخشی یا NDIR شناخته می‌شود)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

     

    اصل عملکرد:
    این فناوری از قابلیت جذب پرتو مادون قرمز توسط گازها استفاده می‌کند. دو نمونه گاز شامل گاز مورد نظر و یک گاز مرجع بی‌اثر در معرض تابش مادون قرمز قرار می‌گیرند. میزان عبور نور از هر نمونه اندازه‌گیری شده و با هم مقایسه می‌شود تا غلظت گاز هدف تعیین گردد.

     

    توضیح دقیق:
    از یک منبع مادون قرمز با مدولاسیون الکتریکی و دو آشکارساز استفاده می‌شود که انرژی مادون قرمز را به سیگنال‌های الکتریکی تبدیل می‌کنند. هر آشکارساز به دامنه خاصی از طول موج مادون قرمز حساس است.
    پرتو ساطع‌شده از منبع از طریق یک پنجره وارد حجم باز محفظه می‌شود. ممکن است از یک آینه در انتهای مسیر برای بازتاب انرژی و هدایت آن به سمت آشکارسازها استفاده شود.

    وجود گاز قابل احتراق باعث کاهش شدت پرتو دریافتی توسط آشکارساز تحلیلی می‌شود، اما شدت پرتو دریافت‌شده توسط آشکارساز مرجع تغییر نمی‌کند.
    میکروپروسسور نسبت این دو سیگنال را بررسی کرده و آن را به درصد حد پایین انفجار (%LEL) تبدیل می‌کند.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار (%LEL)

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)
    نسبت به دتکتورهای مسیر باز، اندازه‌گیری دقیق در محل نقطه‌ای

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست.

     

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل احتراق

    WhatsApp Image 2025 09 25 at 2.26.09 AM1

    اصل عملکرد:
    عملکرد مشابه دتکتورهای مادون قرمز نقطه‌ای دارد، با این تفاوت که منبع مادون قرمز از آشکارساز جدا شده است.

     

    توضیح دقیق:
    دتکتورهای مسیر باز مادون قرمز، مفهوم تشخیص نقطه‌ای را به مسیرهایی با طول تا ۱۰۰ متر گسترش می‌دهند. مانند نمونه‌های نقطه‌ای، این دتکتورها از دو پرتو استفاده می‌کنند:

    • پرتو “نمونه” در طول موجی از مادون قرمز قرار دارد که توسط هیدروکربن‌ها جذب می‌شود.
    • پرتو “مرجع” در طول موجی خارج از محدوده جذب گاز قرار دارد.

    نسبت بین این دو پرتو به‌طور پیوسته مقایسه می‌شود:
    در حالت بدون گاز، نسبت سیگنال‌ها ثابت باقی می‌ماند.
    وقتی ابر گاز از مسیر عبور می‌کند، پرتو نمونه به نسبت غلظت گاز جذب یا تضعیف می‌شود، اما پرتو مرجع بدون تغییر باقی می‌ماند.
    سیستم، حاصل‌ضرب غلظت متوسط گاز در عرض ابر گاز را محاسبه کرده و مقدار را به‌صورت درصد حد پایین انفجار بر متر (%LEL/m) نمایش می‌دهد.

     

    محدوده اندازه‌گیری:
    درصد حد پایین انفجار بر متر (%LEL/m)

     

    مزایا:
    دقت و گزینش‌پذیری بالا
    دامنه اندازه‌گیری وسیع
    نیاز به نگهداری پایین
    مقاومت بالا در برابر مواد شیمیایی مسموم‌کننده
    عدم نیاز به اکسیژن یا هوا
    پایداری کالیبراسیون (عدم نیاز به کالیبراسیون دوره‌ای)
    عملکرد ایمن در خطا (Fail-to-safe)

     

    معایب:
    مناسب برای تشخیص گاز هیدروژن نیست
    برخلاف فناوری نقطه‌ای، محل نشت گاز را به‌طور دقیق مشخص نمی‌کند
    نیاز به مسیر باز و بدون مانع بین منبع و آشکارساز دارد

    WhatsApp Image 2025 09 25 at 2.26.10 AM2

    WhatsApp Image 2025 09 25 at 2.26.10 AM1

    فناوری: مادون قرمز مسیر باز (Open Path Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال (Combustible gases)

     

    اصل عملکرد:
    مشابه دتکتورهای مادون قرمز نقطه‌ای (Point IR) عمل می‌کند، با این تفاوت که منبع تابش مادون قرمز و آشکارساز از یکدیگر جدا هستند.

     

    توضیح تفصیلی:
    دتکتورهای مسیر باز مادون قرمز، روش تشخیص نقطه‌ای را به مسیری با طول حداکثر ۱۰۰ متر گسترش می‌دهند. مانند فناوری نقطه‌ای، این سیستم از دو پرتو استفاده می‌کند:

    • پرتو نمونه (Sample Beam): در طول موج مادون قرمز قرار دارد که توسط گازهای هیدروکربنی جذب می‌شود.
    • پرتو مرجع (Reference Beam): خارج از محدوده جذب گاز قرار دارد و تحت تأثیر حضور گاز نیست.

    نسبت شدت این دو پرتو به‌صورت پیوسته مقایسه می‌شود:
    اگر گازی وجود نداشته باشد، نسبت دو سیگنال ثابت می‌ماند.
    وقتی ابری از گاز از مسیر عبور می‌کند، شدت پرتو نمونه کاهش می‌یابد، ولی پرتو مرجع ثابت باقی می‌ماند.
    سیستم با مقایسه این نسبت، مقدار حاصل‌ضرب میانگین غلظت گاز و عرض ابر گاز را محاسبه می‌کند.

    واحد اندازه‌گیری: درصد حد انفجار پایین در واحد متر (%LEL/m)

     

    مزایا:

    • دقت و گزینش‌پذیری بالا
    • دامنه وسیع اندازه‌گیری
    • نیاز به نگهداری بسیار کم
    • مقاوم در برابر مسمومیت شیمیایی
    • نیاز نداشتن به هوا یا اکسیژن محیط
    • پایداری بسیار خوب در کالیبراسیون (عدم نیاز به کالیبراسیون منظم)
    • طراحی Fail-to-safe (ایمن در صورت بروز خطا)

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

    WhatsApp Image 2025 09 25 at 2.26.11 AM 1

    WhatsApp Image 2025 09 25 at 2.26.11 AM1

    • نسبت به فناوری نقطه‌ای، توانایی تعیین دقیق محل نشت گاز را ندارد
    • نیاز به مسیر مستقیم و بدون مانع بین منبع و آشکارساز دارد

     

     

    فناوری: مادون قرمز فوتواکوستیک (Photoacoustic Infrared)

     

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی (Combustible gases; Toxic gases)

     

    اصل عملکرد:
    از توانایی جذب پرتو مادون قرمز توسط گاز و تغییرات فشار ناشی از آن استفاده می‌شود.

     

    توضیح تفصیلی:
    نمونه گاز در معرض نور مادون قرمز قرار می‌گیرد. زمانی که مولکول‌های گاز نور را جذب می‌کنند، ضربان یا پالس فشاری تولید می‌شود.
    مقدار این پالس فشاری مستقیماً نشان‌دهنده غلظت گاز موجود است.
    این تغییرات فشار توسط میکروفون یا سنسور حساس به فشار تشخیص داده می‌شود و به سیگنال الکتریکی تبدیل می‌گردد.

    واحدهای اندازه‌گیری:

    • درصد حد انفجار پایین (%LEL)
    • درصد حجمی (% by volume)
    • قسمت در میلیون (PPM)
    • قسمت در میلیارد (PPB)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • استفاده آسان
    • مقاوم در برابر مسمومیت سنسور
    • پایداری بلندمدت

     

    معایب:

    • برای تشخیص گاز هیدروژن مناسب نیست

     

    فناوری: الکتروشیمیایی برای گازهای سمی (Electrochemical Toxic Gases)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (Toxic gases)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت گاز است.

     

    توضیح تفصیلی:
    سنسور شامل یک محفظه با ژل یا الکترولیت و دو الکترود فعال است:

    • الکترود اندازه‌گیری (آند)
    • الکترود متقابل (کاتد)
      یک الکترود سوم (مرجع) ولتاژ ثابت بین آند و کاتد را حفظ می‌کند.

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.

    در آند واکنش اکسیداسیون و در کاتد واکنش کاهش رخ می‌دهد.
    در نتیجه، یون‌های مثبت به سمت کاتد و یون‌های منفی به سمت آند حرکت می‌کنند.
    این جریان الکتریکی متناسب با غلظت گاز سمی تولید می‌شود.

    واحد اندازه‌گیری:
    قسمت در میلیون (PPM) برای گازهای سمی

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان

     

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش طول عمر در محیط‌های بسیار خشک یا بسیار گرم

     

     

     

     

    دتکتور گاز الکتروشیمیائی گازهای سمی

    Electrochemical Toxic Sensor

     

     

    فناوری: الکتروشیمیایی برای سنجش اکسیژن (Electrochemical Oxygen)

     

    نوع گاز قابل تشخیص:
    کمبود یا غنی‌شدگی اکسیژن (O₂)

     

    اصل عملکرد:
    واکنش الکتروشیمیایی برای تولید جریانی که متناسب با غلظت اکسیژن است.

     

    توضیح تفصیلی:
    سنسور شامل محفظه‌ای حاوی ژل یا الکترولیت و دو الکترود است:

    • الکترود اندازه‌گیری (آند)
    • الکترود مرجع/متقابل (معمولاً از جنس سرب)

    نمونه گاز از طریق غشاء وارد محفظه می‌شود.
    واکنش اکسیداسیون در آند و واکنش کاهش در کاتد رخ می‌دهد.
    جریان یونی ایجادشده، متناسب با غلظت اکسیژن، یک جریان الکتریکی تولید می‌کند که توسط دستگاه اندازه‌گیری می‌شود.

    واحد اندازه‌گیری:
    درصد حجمی اکسیژن (% Volume)

     

    مزایا:

    • حساسیت بالا
    • خروجی خطی
    • کاربری آسان
    • مقاوم در برابر سمّی شدن سنسور

    معایب:

    • عمر مفید محدود
    • تأثیرپذیر از گازهای مزاحم (interferents)
    • کاهش عمر در محیط‌های بسیار خشک یا بسیار گرم، یا در شرایط اکسیژن غنی‌شده

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM

     

     

    دتکتور گاز الکتروشیمیائی گاز اکسیژن

    Typical Electrochemical Oxygen Sensor

     

    WhatsApp Image 2025 09 25 at 2.26.12 AM1

     

    دتکتور گاز  رسانایی حرارتی معمولی

    Typical Thermal Conductivity Sensor

     

    فناوری: رسانش گرمایی (Thermal Conductivity)

    WhatsApp Image 2025 09 25 at 2.26.13 AM

    نوع گاز قابل تشخیص:
    گازهای قابل اشتعال و گازهای سمی

     

    اصل عملکرد:
    سنجش توانایی گاز برای انتقال حرارت با مقایسه آن با یک گاز مرجع (معمولاً هوا)

    توضیح تفصیلی:
    در این روش از دو سنسور استفاده می‌شود:

    • سنسور آشکارساز (Detecting Sensor)
    • سنسور جبران‌کننده (Compensating Sensor)

    هر دو سنسور در یک پل ویتستون (Wheatstone Bridge) قرار دارند.
    سنسور آشکارساز در معرض گاز موردنظر قرار دارد، در حالی که سنسور جبران‌کننده در محفظه‌ای با هوای تمیز مهر و موم شده است.
    وقتی گاز وارد سنسور آشکارساز می‌شود، باعث خنک شدن آن می‌گردد که این امر مقاومت الکتریکی را تغییر می‌دهد.
    این تغییر مقاومت متناسب با غلظت گاز است.
    سنسور جبران‌کننده تضمین می‌کند که تغییر دما ناشی از خود گاز است نه دمای محیط یا عوامل دیگر.

    واحد اندازه‌گیری:
    PPM تا ۱۰۰٪ حجمی

     

    مزایا:

    • دامنه وسیع اندازه‌گیری

     

    معایب:

    • غیر اختصاصی (به سایر ترکیبات نیز واکنش نشان می‌دهد)
    • برای گازهایی با رسانش گرمایی نزدیک به یک (مانند هوا، NH₃، CO، NO، O₂، N₂) مناسب نیست
    • اندازه‌گیری گازهایی با رسانش گرمایی کمتر از یک دشوارتر است
    • خروجی سیگنال همیشه خطی نیست

     

    فناوری: یونیزاسیون نوری (Photoionization – PID)

     

    نوع گاز قابل تشخیص:
    گازهای سمی (ترکیبات آلی)

     

    اصل عملکرد:
    مبنای آشکارسازی بر اساس یونیزه کردن گاز با استفاده از پرتو فرابنفش (UV)

     

    توضیح تفصیلی:
    دتکتور یونیزاسیون نوری (PID) از یک لامپ فرابنفش برای یونیزه کردن ترکیب موردنظر استفاده می‌کند.
    مولکول‌های گاز تحت تابش فرابنفش یونیزه شده و یون‌ها تولید می‌شوند.
    این یون‌ها روی یک الکترود جمع‌آوری می‌گردند و جریان الکتریکی ایجاد می‌کنند.
    مقدار این جریان متناسب با غلظت گاز است و به‌صورت عددی در واحد PPM یا مقادیر زیر PPM (sub-ppm) روی نمایشگر دستگاه نشان داده می‌شود.

     

    واحد اندازه‌گیری:
    PPM و زیر PPM

     

    مزایا:

    • سرعت پاسخ‌دهی بسیار بالا
    • توانایی تشخیص در سطوح بسیار پایین
    • قابلیت تشخیص طیف گسترده‌ای از ترکیبات

     

    معایب:

    • هزینه بالا
    • نیاز به نگهداری بیشتر
    • نیاز به کالیبراسیون مکرر
    • غیر اختصاصی بودن (عدم تمایز دقیق بین ترکیبات مشابه)
    • حساسیت به رطوبت

     

    دتکتور گاز فوتویونیزاسیون

    Photoionization Sensor Design

    WhatsApp Image 2025 09 25 at 2.26.13 AM1

    روش‌های نمونه‌برداری گاز

    سه روش اصلی برای نمونه‌برداری از گاز وجود دارد:

    ۱. نمونه‌برداری به روش انتشار (Diffusion Sampling)
    ۲. نمونه‌برداری با پمپ (Pumped Sampling)
    ۳. نمونه‌برداری با مکش (Aspirated Sampling)

     

    نمونه‌برداری به روش انتشار (Diffusion Sampling)

    در این روش، انتقال گاز به سمت حسگر از طریق حرکت طبیعی مولکول‌ها از ناحیه‌ای با غلظت بالا به ناحیه‌ای با غلظت پایین صورت می‌گیرد.
    واژه «انتشار» به فرایندی اشاره دارد که در آن مولکول‌ها یا ذرات دیگر به دلیل حرکت حرارتی تصادفی خود با یکدیگر مخلوط می‌شوند.
    شرایط محیطی مانند دما، جریان‌های هوا و سایر عوامل محیطی بر میزان و سرعت انتشار تأثیر می‌گذارند.

     

    مزایا:

    • نصب دتکتور دقیقاً در نقطه موردنظر برای نمونه‌گیری انجام می‌شود.
    • پاسخ‌دهی سریع به دلیل عدم نیاز به انتقال نمونه
    • عدم نیاز به پمپ یا فیلتر و در نتیجه نگهداری ساده‌تر

     

    نمونه‌برداری با پمپ (Pumped Sampling)

    در این روش، یک پمپ برای مکش نمونه گاز از یک مکان دوردست به داخل یا از میان حسگر به‌کار گرفته می‌شود.
    با استفاده از نمونه‌برداری پمپی، امکان جمع‌آوری نمونه‌ها به‌صورت همزمان از دو یا چند محل مختلف وجود دارد.

     

    مزایا:

    • قابلیت نمونه‌گیری از فواصل دور
    • امکان پایش هم‌زمان چند نقطه
    • مناسب برای کاربردهایی که در آن حسگر نمی‌تواند مستقیماً در محل نمونه‌برداری نصب شود

     

    توجه:

    • این روش نیاز به تجهیزات مکانیکی (پمپ) دارد که ممکن است نیازمند نگهداری منظم باشند.
    • ممکن است به زمان انتقال نمونه نیاز داشته باشد که باعث تاخیر در پاسخ‌دهی شود.

     

    شرایط مناسب برای نمونه‌برداری پمپی (Pumped Sampling):

    مواردی که این روش توصیه می‌شود:

    • نقطه نمونه‌برداری بسیار گرم یا بسیار سرد است.
    • دسترسی به محل نمونه‌برداری دشوار است.
    • بخارهای سنگین وجود دارد که به‌خوبی با نیروهای طبیعی پخش نمی‌شوند.
    • در برخی کاربردها، استفاده از پمپ می‌تواند سیستم را از کلاس ضدانفجار (XP) به کلاس کاربرد عمومی (GP) تبدیل کند.
      (در این حالت، ممکن است نیاز به نصب مهارکننده شعله (Flashback Arrestor) بین ورودی نمونه و حسگر باشد.)
    • مناسب برای فضاهای بسته و محدود (Confined Spaces)

     

    نمونه‌برداری آسپیره (Aspirated Sampling)

    در این روش، نمونه گاز با استفاده از مکش غیرفعال یا جریان طبیعی به داخل یا از میان حسگر کشیده می‌شود.

     

    مزایای نمونه‌برداری آسپیره نسبت به پمپی:

    • هزینه پایین‌تر
    • نگهداری کمتر به‌دلیل نبود قطعات متحرک
      (در مقایسه با پمپ که نیاز به تعمیرات دوره‌ای دارد)

     

  • ملاحظات مربوط به اسپیراتینگ ها یا دتکتورهای دودی مکشی بر اساس اصول عملکرد آن‌ها

    اثر رقیق‌سازی
    حساسیت یک سامانه تشخیص مکشی به دو عامل اصلی بستگی دارد: تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی و آستانه‌های قابل برنامه‌ریزی تشخیص دود. تعداد سوراخ‌های نمونه‌برداری می‌تواند بر میزان رقیق‌سازی هوای بازگشتی به محفظه حسگر تأثیر بگذارد.
    برای مثال، زمانی که دود از یک سوراخ نمونه‌برداری وارد می‌شود، غلظت دود به‌دلیل عبور از سایر سوراخ‌هایی که هوای پاک (بدون دود) را جذب می‌کنند، کاهش می‌یابد. زمانی که این هوای تمیز با هوای آلوده به دود ترکیب می‌شود و به محفظه تشخیص وارد می‌گردد، هوای آلوده به دود رقیق می‌شود. به این پدیده «اثر رقیق‌سازی» گفته می‌شود (شکل ۷ در پایین).

    در شکل ۷، رنگ خاکستری نشان‌دهنده دودی است که از دورترین سوراخ نمونه‌برداری در لوله وارد می‌شود. این دود در حین عبور از لوله با هوای پاک ترکیب شده و غلظت آن کاهش می‌یابد. اثر رقیق‌سازی به‌طور مستقیم با تعداد سوراخ‌های نمونه‌برداری در شبکه لوله‌کشی مرتبط است. هرچه تعداد سوراخ‌ها بیشتر باشد، حجم هوایی که به سمت ASD منتقل می‌شود نیز بیشتر شده و در نتیجه دود معلق در هوا بیشتر رقیق می‌شود.
    برای مثال، اگر لوله نمونه‌برداری ۵۰ متر (۱۶۴ فوت) طول داشته باشد و در هر ۵ متر (۱۶ فوت) یک سوراخ تعبیه شده باشد، در مجموع ۱۰ سوراخ از جمله درپوش انتهایی خواهیم داشت.

    در این مثال ساده، فرض می‌شود که هر سوراخ مقدار تقریباً برابری از هوا را وارد می‌کند. اگر یک منبع دود با غلظت ۲٪ انسداد بر متر (obs/m) در انتهای لوله قرار گیرد و از سایر سوراخ‌ها دود وارد نشود، دود در مسیر حرکت خود با هوای پاک ترکیب می‌شود. زمانی که نمونه به آشکارساز می‌رسد، غلظت آن به ۰.۲٪ obs/m، یا یک‌دهم مقدار اولیه کاهش یافته است. بنابراین، اگر آستانه هشدار اولیه روی ۰.۲٪ obs/m تنظیم شده باشد، غلظت دود در خارج از سوراخ باید بیش از ۲٪ obs/m باشد تا هشدار به صدا درآید.

    در نتیجه، هرچه طول لوله و تعداد سوراخ‌های نمونه‌برداری بیشتر باشد، سامانه بیشتر در معرض اثر رقیق‌سازی قرار می‌گیرد. در این شرایط، بهتر است بر اساس بدترین حالت ممکن طراحی صورت گیرد.
    در واقعیت، محاسبه رقیق‌سازی به سادگی مثال بالا نیست و عوامل بیشتری دخیل‌اند. هر سامانه ویژگی‌های متفاوتی دارد، بنابراین محاسبه دقیق آن بسیار پیچیده است. عواملی که بر نرخ رقیق‌سازی تأثیر می‌گذارند شامل اندازه و تعداد سوراخ‌ها، سه‌راهی‌ها و زانویی‌ها در شبکه لوله‌کشی، قطر لوله، و عوامل محیطی مانند دما، فشار و رطوبت هوا می‌شوند.

     

    زمان انتقال

    زمان انتقال، مدت‌زمانی است که ذرات دود برای رسیدن به محفظه حسگر در دتکتور دودی مکشی نیاز دارند. این زمان (بر حسب ثانیه) از لحظه ورود ذرات به نقطه نمونه‌برداری تا رسیدن آن‌ها به محفظه تشخیص اندازه‌گیری می‌شود. این زمان‌ها با استفاده از نرم‌افزار طراحی دتکتور دودی مکشی محاسبه شده و در فرآیند راه‌اندازی و تأیید نهایی در میدان، به‌صورت عملی ارزیابی و تأیید می‌گردند.

    WhatsApp Image 2025 09 30 at 3.50.36 PM

    چندین پارامتر در تعیین زمان انتقال تأثیرگذار هستند، از جمله:

    • اندازه و تعداد سوراخ‌های نمونه‌برداری
    • تنظیم سرعت مکنده (دور بر دقیقه)
    • تنظیم حساسیت آشکارساز
    • مقدار کل و چیدمان لوله‌های نمونه‌برداری

    استانداردها و آیین‌نامه‌های مدرن، زمان‌های انتقال مشخصی را برای کلاس‌های مختلف دتکتورهای دودی مکشی الزام می‌کنند. حداکثر زمان انتقال ممکن است بسته به نوع کاربرد، از ۶۰ ثانیه برای دتکتورهای بسیار زودهنگام، ۹۰ ثانیه برای دتکتورهای زودهنگام، یا ۱۲۰ ثانیه برای دتکتورهای استاندارد متغیر باشد.

    برای تعیین زمان‌های مجاز انتقال، به استانداردهای EN 54-20، NFPA 72، NFPA 76 و آیین‌نامه‌های محلی مربوطه مراجعه شود.

     

  • دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

    WhatsApp Image 2025 09 14 at 9.31.18 AM

    کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

    طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

    دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

    ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

    WhatsApp Image 2025 09 14 at 9.31.19 AM

    • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
    • تولید دود کم و بدون هالوژن (LS0H)
    • ساختار مقاوم برای استفاده در محیط‌های سخت
    • نصب آسان با گزینه‌های متنوع برای نصب
    • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
    • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

    WhatsApp Image 2025 09 14 at 9.31.19 AM1

    • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
    • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
    • طیف گسترده‌ای از کاربردهای اثبات‌شده

    WhatsApp Image 2025 09 14 at 9.31.20 AM

    اصول عملکرد

    دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

    مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

    WhatsApp Image 2025 09 14 at 9.31.20 AM1

    این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

    ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

    در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

    رجوع شود به:
    «ویژگی‌ها به عنوان کابل تشخیص آتش»

    کاربردها

    دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

    دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

    دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

    این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

    نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

    کاربردهای رایج:

    • تونل‌ها، کانال‌ها و سقف‌های کاذب
    • پله‌های برقی و مسیرهای متحرک
    • مخازن ذخیره‌سازی پتروشیمی
    • سالن‌های رنگ و اتاقک‌های اسپری
    • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
    • فضاهای سقفی و زیرشیروانی
    • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
    • مناطق تأسیسات نیروگاه هسته‌ای
    • انبارهای سرد و سردخانه‌ها
    • تابلوهای کنترل و کلیدهای برق
    • قفسه‌های مرتفع انبارها
    • سکوهای نفتی دریایی
    • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
    • سیلوهای غلات و انبارهای کشاورزی
    • محفظه‌های موتور خودروهای جاده‌ای / ریلی
    • نشت بخار و خطاهای گرمایش ردیابی‌شده
    • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
    • فضاهای زیرکفی اتاق‌های کامپیوتر

    ویژگی‌ها به عنوان کابل تشخیص آتش

    در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

    • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
    • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

    ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

    WhatsApp Image 2025 09 14 at 9.31.21 AM

    همچنین به مثال ارائه‌شده رجوع شود.

    مثال

    این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

    • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
    • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
    • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

    عملکرد دو مرحله‌ای

    اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

    .  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

    عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

    یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

    مشخصات پایه

    • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
    • رنگ: قرمز
    • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
    • بافت: سیم مسی قلع‌زده
    • دی‌الکتریک داخلی: سفید
    • رسانای مرکزی: فولاد با روکش مس
    • استحکام کششی: ۲۰۰ نیوتن

    WhatsApp Image 2025 09 14 at 9.31.21 AM1

    دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

    ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

    با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

    انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

    پیکربندی سیستم و سازگاری تجهیزات

    دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

    دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

  • دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

    A.17.8.2 اصول عملکرد دتکتورهای شعله

    (1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

    9k=

    این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

    یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

    9k=

    (2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

    A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

    Z

    تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

    Z

    انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

    بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

    تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

    Z

    محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

    A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

    A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

    Z

    که در آن:

    S = توان تابشی که به حسگر می‌رسد
    k = ثابت تناسب برای حسگر
    P = توان تابشی ساطع‌شده توسط آتش
    e = پایه لگاریتم نپر (۲.۷۱۸۳)
    ζ = ضریب تضعیف هوا
    d = فاصله بین آتش و حسگر

    2Q==

    حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
    این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

  • انتخاب دتکتورهای گاز

    ۸-۱. انتخاب دتکتور گاز

    تشخیص گاز می‌تواند بر اساس چند اصل مختلف انجام شود. انتخاب اصل تشخیص صحیح برای نوع گاز هدف، محیط و هدف مورد نظر ضروری است.

     

    ۱. چه گازی باید اندازه‌گیری شود؟

    گاز قابل اشتعال (برای جلوگیری از انفجار)

    پنج روش تشخیص اصلی به شرح زیر استفاده می‌شوند: روش احتراق کاتالیستی، روش سرامیک کاتالیستی جدید، روش نیمه‌رسانا، روش مادون قرمز غیرپاشنده و روش تداخلسنج.

    دتکتورهای احتراق کاتالیستی معمولاً در محدوده %LEL استفاده می‌شوند. دتکتورهای سرامیک کاتالیستی جدید معمولاً برای تشخیص در محدوده ۱۰۰۰۰ تا چند هزار ppm استفاده می‌شوند. دتکتورهای نیمه‌رسانا برای اندازه‌گیری در محدوده چند هزار تا چند ده ppm استفاده می‌شوند.

    دتکتورهای گاز قابل اشتعال مادون قرمز غیرپاشنده و تداخلسنج معمولاً گاز را در غلظت‌های %LEL و %vol اندازه‌گیری می‌کنند. دتکتورهای مادون قرمز غیرپاشنده و تداخلسنج، دتکتورهای فیزیکی هستند که واکنش شیمیایی ندارند. آن‌ها امکان تشخیص گاز را حتی در حضور موادی (مانند هالیدها، سولفیدها و سیلیکون) که دتکتورهای احتراق کاتالیستی و نیمه‌رسانا را مسموم می‌کنند، فراهم می‌سازند.

     

    گاز سمی (برای جلوگیری از مسمومیت)

    گازهای سمی معمولاً به دتکتورهای با حساسیت بالا نیاز دارند که قادر به تشخیص غلظت‌های در محدوده چند صد ppm تا چند ppb باشند.

    روش‌های تشخیص شامل روش نیمه‌رسانا، روش الکترولیز پتانسیواستاتیک، روش تشخیص ذرات پیرولیز، روش نوار شیمیایی و روش PID است. اصل تشخیص معمولاً بر اساس محدوده‌ای انتخاب می‌شود که امکان تشخیص در نقاط تنظیم هشدار یا مقادیر حد آستانه را فراهم کند.

    دتکتورهای نیمه‌رسانا گاز را در غلظت‌های حدود چند ده ppm تا چند هزار ppm تشخیص می‌دهند. دتکتورهای الکترولیز پتانسیواستاتیک گاز را در غلظت‌های حدود چند ده ppm تا چند ده ppb تشخیص می‌دهند. دتکتورهای تشخیص ذرات پیرولیز بر اساس اصل حسگری طراحی شده‌اند که به‌طور خاص برای تشخیص ترکیبات فلزی آلی در گازهای مواد نیمه‌رسانا مانند TEOS استفاده می‌شود.

    (تترااتوکسی سیلان). دتکتورهای گاز با نوار شیمیایی مزیت تشخیص گاز در غلظت‌های فوق‌العاده پایین در حد چند ppb را ارائه می‌دهند. این دتکتورها حداقل تأثیرپذیری را از گازهای مزاحم دارند و بنابراین برای استفاده در محیط‌هایی که سایر انواع دتکتورها دچار اختلال می‌شوند، ایده‌آل هستند.

     

    اکسیژن (برای جلوگیری از کم‌اکسیژنی و اکسیژن اضافی)

    دو اصل برای تشخیص اکسیژن استفاده می‌شود: روش سلول گالوانیکی غشایی و روش الکترولیز پتانسیواستاتیک. دتکتورهای سلول گالوانیکی غشایی پرکاربردترین نوع هستند که به دلیل پایداری بلندمدت و مقاومت در برابر تداخل مورد استفاده قرار می‌گیرند. با این حال، این دتکتورها به دلیل استفاده از سرب (Pb) احتمالاً در آینده تحت مقررات RoHS قرار خواهند گرفت. (در حال حاضر معاف هستند.) مجموعه‌ای از دتکتورهای الکترولیز پتانسیواستاتیک بدون سرب با توجه به روندهای قانونی در حال ظهور هستند.

     

    ۲. نوع ثابت یا قابل حمل؟

    اگر دتکتورها توسط کارگران حمل یا پوشیده می‌شوند، دتکتورهای گاز قابل حمل را انتخاب کنید. برای نظارت بر نشت گاز در یک مکان ثابت، دتکتورهای گاز ثابت را انتخاب نمایید.

     

    ۳. نوع انتشار یا مکشی؟

    دتکتورهای گاز عموماً بر اساس روش تشخیص به دو نوع تقسیم می‌شوند: نوع انتشار و نوع مکشی. دتکتورهای گاز نوع مکشی دارای یک پمپ داخلی هستند که گاز را از نقاط احتمالی نشت (مثلاً روی خطوط یا داخل محفظه‌ها) به سمت دتکتور می‌کشند. دتکتورهای گاز نوع انتشار، دتکتورهای غیرفعالی هستند که گازهای شناور در محیط را هنگام رسیدن به دتکتور تشخیص می‌دهند.

     

    ۴. تشخیص چندگانه یا تک‌گاز؟

    علاوه بر دتکتورهای گاز قابل حمل که یک جزء گازی را تشخیص می‌دهند، دتکتورهایی وجود دارند که می‌توانند چندین گاز را به طور همزمان تشخیص دهند. ترکیب پایه‌ای گازها در دتکتورهای چندگانه معمولاً شامل چهار جزء است: گاز قابل اشتعال، گاز سمی (H2S یا CO) و اکسیژن. بسته به محصول خاص، دتکتورهای

  • بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

    چکیده

    دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

     

    ۱. مقدمه

    دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

     

    ۲. اصول عملکرد طول‌موج دوگانه

    WhatsApp Image 2025 09 27 at 11.52.20 PM

    OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

    • UV: تأثیرگذار بر ذرات ریز و درشت
    • IR: عمدتاً حساس به ذرات بزرگ‌تر

    این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

     

    ۳. اصطلاحات کلیدی

    • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
    • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
    • خطای ورود جسم: انسداد ناگهانی شدید
    • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
    • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

     

    ۴. خطاهای رایج در سیستم OSID

    • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
    • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
    • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

     

    ۵. استقرار ایمن در محیط‌های دشوار

    ۵.۱ محیط‌های پرگرد‌و‌غبار

    • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
    • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

    ۵.۲ محیط‌های مرطوب

    WhatsApp Image 2025 09 27 at 11.52.21 PM

    • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM1
    • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM2
    • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

    WhatsApp Image 2025 09 27 at 11.52.22 PM

    ۶. تجهیزات محافظتی

    WhatsApp Image 2025 09 27 at 11.52.22 PM1

    • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
    • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
    • WhatsApp Image 2025 09 27 at 11.52.23 PM
    • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
    • WhatsApp Image 2025 09 27 at 11.52.23 PM1
    • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

    WhatsApp Image 2025 09 27 at 11.52.24 PM

     

    ۷. آلارم‌های کاذب استثنایی

    با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

    WhatsApp Image 2025 09 27 at 11.52.24 PM1

    ۸. جمع‌بندی و توصیه‌ها

    • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
    • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
    • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
    • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.