راهنمای جامع استفاده از بیم دتکتور دودی اعلام حریق

smoke detector wood ceiling closeup

تشخیص نوری بیم راهکاری اقتصادی برای شناسایی دود در فضاهای باز بزرگ مانند مراکز خرید، انبارها و فرودگاه‌ها ارائه می‌دهد.

ابتدا بیایید به دیگر روش‌های تشخیص که معمولاً استفاده می‌شوند نگاه کنیم و دلیل انتخاب بیم دتکتور دودی اعلام حریق به جای آن‌ها را بررسی کنیم.

دتکتور نقطه‌ای اغلب استفاده می‌شود اما می‌تواند منجر به شبکه‌ای پیچیده از چندین دتکتور همپوشان گردد که نصب آن‌ها بسیار زمان‌بر، سیم‌کشی آن‌ها پرهزینه و دسترسی به آن‌ها هنگام تعمیر و نگهداری دشوار خواهد بود. یک بیم دتکتور دودی اعلام حریق نوری به طور کلی می‌تواند جایگزین حدود ۱۶ دتکتور نقطه‌ای منفرد گردد و ۱۵۰۰ متر مربع را پوشش دهد.WhatsApp Image 2025 09 18 at 2.08.33 AM

سیستم‌های نمونه‌برداری مکشی معمولاً روی سقف نصب می‌شوند اما پیچیده و زمان‌بر برای نصب هستند. این سیستم‌ها شامل شبکه‌ای از لوله‌های نمونه‌برداری، درپوش‌ها و زانوها می‌باشند. همه این‌ها نیاز به نصب و نگهداری دارند. خود لوله‌کشی می‌تواند مزاحم باشد و نیاز به پنهان کردن در ساختار ساختمان داشته باشد.

WhatsApp Image 2025 09 18 at 2.08.33 AM1

WhatsApp Image 2025 09 18 at 2.08.34 AM

برخی کدهای اجرایی نصب همچنین ارتفاعی را که دتکتور نقطه‌ای و مکشی می‌توانند استفاده شوند محدود می‌کنند زیرا هرچه سقف بالاتر باشد، چگالی ذرات کمتر خواهد شد و ممکن است زیر آستانه هشدار مورد نیاز این نوع دتکتورها قرار گیرد. بیم دتکتور دودی اعلام حریق در ارتفاع کارآمدتر است زیرا وقتی دود بالا می‌رود پخش می‌شود و ناحیه بزرگ‌تری را تحت تأثیر قرار می‌دهد و به این ترتیب مسیر بیم بیشتری تحت تأثیر قرار می‌گیرد. این مسیر تشخیص گسترده کارآمدتر از محفظه کوچک یک دتکتور نقطه‌ای است.

WhatsApp Image 2025 09 18 at 2.08.34 AM1

سیستم‌های تشخیص نقطه‌ای و مکشی به بالارفتن دود تا سقف وابسته هستند. مشکلاتی نیز می‌تواند به دلیل لایه‌ای موسوم به لایه استراتیفیکیشن ایجاد شود. ذرات دود سنگین‌تر از هوا هستند و توسط هوای گرم اطرافشان از میان هوای خنک‌تر بالا برده می‌شوند. این هوای خنک اطراف، ستون دود را سرد کرده و هوای گرم محبوس شده در زیر سقف یک لایه حرارتی تشکیل می‌دهد که مانع رسیدن دود به سقف می‌شود.

WhatsApp Image 2025 09 18 at 2.08.34 AM2

دتکتور نقطه‌ای و مکشی ممکن است به دلیل این پدیده قادر به تشخیص دود نباشند. با این حال، بیم دتکتور دودی اعلام حریق معمولاً ۶۰۰ میلی‌متر پایین‌تر از سقف نصب می‌شود (مطابق BS5839) که به این معناست کمتر احتمال دارد بالای خط استراتیفیکیشن قرار گیرد.

تشخیص شعله و ویدئویی: نوعی بسیار تخصصی و پرهزینه از تشخیص که اغلب به عنوان یک روش ثانویه با حساسیت بالا و سریع در محیط‌های با ارزش بالا مانند تولید هواپیما استفاده می‌شود.

انتخاب نوع دتکتور در نهایت با ارزیابی وضعیت، ویژگی‌های ساختمان، محیط، سرعت تشخیص، ارزیابی ریسک‌های بالقوه و مواد موجود تعیین می‌گردد.

بیم دتکتور دودی اعلام حریق راهکاری همه‌کاره و مقرون‌به‌صرفه برای حفاظت از نواحی وسیع، به‌ویژه با سقف‌های بلند ارائه می‌دهد.

انواع بیم دتکتور دودی اعلام حریق نوری: سه نوع اصلی بیم وجود دارد که باید در نظر گرفت.

بیم دتکتور دودی اعلام حریق غیر موتوری «رفلکتیو»: این نوع به سادگی با ارسال یک پرتو نامرئی مادون قرمز که به یک رفلکتور در انتهای مقابل برخورد می‌کند کار می‌کند و سپس مسیر دید را برای انسداد مانیتور می‌کند. هر دو فرستنده و گیرنده در یک واحد قرار دارند. این نوع معمولاً استفاده می‌شود اما تنها باید در محیط مناسب استفاده گردد. فقط در فضاهایی باید استفاده شود که ساختار آن‌ها صلب بوده و فاقد هرگونه حرکت باشند. ساختمان‌ها می‌توانند به دلایل متعددی حرکت کنند، ساختمان‌های جدید می‌توانند نشست کنند، انبارهای فلزی بزرگ می‌توانند در شرایط گرم و سرد تاب بردارند و شرایط آب‌وهوایی نامساعد مانند برف می‌تواند ساختمان‌ها را تغییر شکل دهد. باید توجه داشت که یک درجه حرکت ساختمان می‌تواند باعث انحراف بیم حدود ۱.۴ متر در ۱۰۰ متر شود که منجر به آلارم کاذب در یک بیم ثابت خواهد شد. راه‌اندازی، تنظیم و نگهداری بیم فقط در ارتفاع قابل انجام است و نیاز به تجهیزات دسترسی در ارتفاع خواهد داشت.

بیم دتکتور دودی اعلام حریق انتها به انتها: این نوع معمولاً یک کاربرد تخصصی و پرهزینه است که نیاز به شلیک پرتو از میان فضاهای کوچک دارد که ممکن است برای بیم‌های رفلکتوری مشکل‌ساز باشند زیرا احتمال بازگشت ناخواسته سیگنال از سازه‌های نزدیک وجود دارد. آن‌ها با یک فرستنده در یک انتها و یک گیرنده در انتهای مقابل کار می‌کنند که انسداد را بررسی می‌کند. این نوع تشخیص نیاز به سیم‌کشی در هر دو انتها دارد که می‌تواند به معنای اجرای پرهزینه کابل‌های ۱۰۰ متر یا بیشتر و دسترسی در ارتفاع برای راه‌اندازی، تنظیم و نگهداری باشد.

بیم دتکتور دودی اعلام حریق موتوری: پیشرفتی که به دلیل محدودیت‌های بیم ثابت و انتها به انتها ایجاد شده است. موتوری بودن و هوشمندی بیم به این معناست که می‌توان آن‌ها را به طور خودکار هم‌تراز و راه‌اندازی کرد و این کار در سطح زمین از طریق یک کنترلر از راه دور چندزبانه با کاربری ساده انجام می‌شود. تنظیم پارامترهای بیم مانند زمان واکنش نیز می‌تواند از طریق این کنترلر انجام گیرد. هنگامی که بیم هوشمند موتوری هم‌تراز شد، در سرویس به طور مداوم هم‌ترازی خود را حفظ می‌کند، به این معنا که حرکت ساختمان دیگر مشکلی ایجاد نمی‌کند و در نتیجه صرفه‌جویی در زمان، هزینه، اعتبار و به طور مهم کاهش آلارم‌های کاذب حاصل خواهد شد.

چه مواردی باید هنگام استفاده از بیم دتکتور دودی اعلام حریق در نظر گرفته شود؟

بیم دتکتور دودی اعلام حریق با اندازه‌گیری انسداد سیگنال دریافتی خود کار می‌کند. ساختمان‌هایی با دیواره‌های باز یا فضاهای باز به بیرون می‌توانند نسبت به ابر و مه حساس باشند. تغییرات شدید دمای ساختمان می‌تواند باعث ایجاد میعان روی رفلکتور یا سر بیم شود که موجب قرائت‌های کاذب خواهد شد. باید مراقب سناریوهای مختلف جوی به‌ویژه در ماه‌های زمستان بود. برخی بیم‌ها دارای راه‌حل‌های ضد میعان هستند. محیط‌هایی که دود و بخار تولید می‌کنند مانند سالن‌های جوشکاری و پایانه‌های اتوبوس می‌توانند مشکل‌ساز باشند.

بیم‌های موتوری اکنون به گزینه اصلی صنعت تبدیل شده‌اند و در سراسر جهان فروخته می‌شوند و با فراهم کردن ایمنی کار از سطح زمین موجب صرفه‌جویی در زمان و هزینه می‌شوند.

 

نوشته‌های مشابه

  • تأسیس تأسیسات سیستم های اطفاء حریق گاز پایه

    10.1 ایمنی

    بایستی در حین نصب، سرویس‌دهی، نگهداری، آزمایش، حمل و نقل و شارژ مجدد سیستم‌های عامل پاک و مخازن عامل، از روش‌های ایمن پیروی شود.

    10.2 عمومی

    10.2.1 سیستم تکمیل‌شده باید توسط پرسنلی که دانش و تجربه لازم در زمینه الزامات این استاندارد، تجهیزات نصب‌شده و راهنمای طراحی، نصب و نگهداری سازنده را دارند، بازبینی و آزمایش شود.
    10.2.2 تنها از تجهیزات و دستگاه‌های فهرست‌شده باید در سیستم‌ها استفاده شود.

    10.2.3 آزمایش پذیرش سیستم

    10.2.3.1 سیستم باید مطابق با الزامات این استاندارد و راهنمای طراحی، نصب و نگهداری سازنده آزمایش شود.
    10.2.3.2 تجهیزات باید بررسی شوند تا تأیید شود که مطابق با دستورالعمل‌های سازنده و اسناد طراحی سیستم نصب شده‌اند.
    10.2.3.3 ابعاد واقعی خطر باید با ابعادی که در نقشه‌های سیستم مشخص شده‌اند، بررسی شوند تا مقدار عامل تأیید شود.
    10.2.3.4 در صورتی که آزمایش تخلیه انجام شود، مخازن عامل باید قبل و بعد از آزمایش تخلیه وزن شوند.
    10.2.3.5 وزن عامل در مخازن باید از طریق وزن‌کشی یا روش‌های تأیید شده دیگر تأیید شود.
    10.2.3.6 برای عوامل گاز بی‌اثر، فشار مخزن باید قبل و بعد از آزمایش تخلیه ثبت شود.
    10.2.3.7 در صورتی که برای عملکرد سیستم لازم باشد، زمان کاهش سرعت فن و زمان بسته شدن دمپر باید تأیید شود که مطابق با معیارهای طراحی سیستم است.

    10.2.4 آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه

    زمانی که توسط مشخصات پروژه الزامی است، آزمایش سیستم‌های حفاظت از آتش و ایمنی زندگی یکپارچه باید مطابق با NFPA 4 انجام شود.

    10.3 گزارش آزمایش پذیرش

    10.3.1 آزمایش پذیرشی که در 10.2.3 الزامی است باید در یک گزارش آزمایش مستند شود.
    10.3.2 گزارش آزمایش پذیرش باید توسط مالک سیستم برای تمام مدت عمر سیستم نگهداری شود.

    10.4 بازبینی اجزای مکانیکی

    10.4.1 سیستم توزیع لوله‌کشی باید بازبینی شود تا تأیید شود که با اسناد طراحی و نصب مطابقت دارد.
    10.4.2 اندازه نازل‌ها و لوله‌ها باید مطابق با نقشه‌های سیستم باشد.
    10.4.3 روش‌های کاهش اندازه لوله و وضعیت اتصالات انشعاب باید برای تطابق با طراحی بررسی شوند.
    10.4.4 مفاصل لوله‌کشی، نازل‌های تخلیه و تکیه‌گاه‌های لوله باید به‌طور ایمن بسته شوند تا از حرکت عمودی یا جانبی ناخواسته در حین تخلیه جلوگیری شود.
    10.4.5 نازل‌های تخلیه باید به‌گونه‌ای نصب شوند که لوله‌کشی نتواند در حین تخلیه از اتصال خارج شود.
    10.4.6 در حین مونتاژ، سیستم توزیع لوله‌کشی باید به‌طور داخلی بازبینی شود تا احتمال هرگونه آلودگی با روغن یا ذرات که ممکن است منطقه خطر را آلوده کرده یا توزیع عامل را تحت تأثیر قرار دهد (به دلیل کاهش در مساحت اوریفیس نازل) شناسایی شود.
    10.4.7 نازل تخلیه باید مطابق با فهرست نازل نصب شود.
    10.4.8 اگر محافظ‌های نازل نصب شده‌اند، باید طبق فهرست تجهیزات نصب شوند.
    10.4.9 نازل‌های تخلیه، لوله‌کشی و براکت‌های نصب باید به‌گونه‌ای نصب شوند که خطر آسیب به پرسنل نداشته باشند.
    10.4.10 عامل نباید مستقیماً به نواحی‌ای که ممکن است پرسنل در آن‌ها حضور داشته باشند در منطقه کاری برخورد کند.
    10.4.11 عامل نباید مستقیماً به هیچ جسم رها شده‌ای یا قفسه‌ها، سطوح بالای کابینت‌ها یا سطوح مشابه که ممکن است اشیاء رها شده در آن‌ها وجود داشته باشد و به ش projectiles تبدیل شوند، برخورد کند.

    10.4.12 تمامی مخازن ذخیره عامل باید مطابق با مجموعه تأسیسات تایید شده از نقشه‌های سیستم نصب شوند.

    10.4.13 تمامی مخازن و براکت‌های نصب باید مطابق با الزامات سازنده به‌طور ایمن نصب شوند.

    10.4.14 سیستم لوله‌کشی باید در یک مدار بسته با استفاده از نیتروژن یا گاز خشک فشار آزمایی شود.

    10.4.14.1 لوله باید به حداقل فشار 40 psi (276 kPa) فشار وارد شود.
    10.4.14.2 پس از برداشتن منبع گاز فشار، فشار در لوله نباید کمتر از 80 درصد فشار آزمایش پس از 10 دقیقه باشد.
    10.4.14.3 آزمایش فشار در صورتی که سیستم لوله‌کشی تنها یک تغییر جهت بین مخزن ذخیره‌سازی و نازل تخلیه داشته باشد و تمامی لوله‌ها از نظر سفت بودن فیزیکی بررسی شده باشند، مجاز است که حذف شود.

    10.4.15* آزمایش جریان با استفاده از نیتروژن یا گاز بی‌اثر باید بر روی شبکه لوله‌کشی انجام شود تا تأیید شود که جریان به‌طور مداوم وجود دارد.

    10.5 بازبینی یکپارچگی محفظه

    10.5.1 باید تأیید شود که محفظه حفاظت‌شده به‌طور کلی با اسناد ساخت مطابقت دارد.
    10.5.2 تمامی سیستم‌های سیلاب‌کامل باید مورد بازبینی و آزمایش قرار گیرند تا درزهای هوایی قابل توجهی که می‌توانند منجر به شکست محفظه در نگه‌داشتن سطح غلظت عامل مشخص شده برای مدت زمان مشخص شده شوند، شناسایی و به‌طور مؤثر مهر و موم شوند.
    10.5.3* نتایج کمی باید به‌دست آید و ثبت شود تا تأیید شود که غلظت عامل مشخص‌شده برای مدت زمان مشخص‌شده حفاظت مطابق با بخش 7.4 است، با استفاده از واحد فن دمنده تایید شده یا روش‌های دیگری که توسط مرجع نظارتی تایید شده باشد. (برای راهنمایی، به پیوست D مراجعه کنید.)

    10.6 بازبینی اجزای الکتریکی

    10.6.1 تمامی سیستم‌های سیم‌کشی باید مطابق با کدهای محلی و نقشه‌های سیستم نصب شوند.
    10.6.2 سیم‌کشی جریان متناوب (ac) و مستقیم (dc) نباید در یک لوله یا مسیر مشترک ترکیب شوند، مگر اینکه از شیلدینگ و زمین‌گذاری استفاده شده باشد.
    10.6.3 تمامی مدارهای میدانی باید از خطاهای زمینی و اتصالات کوتاه آزاد باشند.
    o 10.6.3.1 هنگامی که مدارهای میدانی اندازه‌گیری می‌شوند، تمامی اجزای الکترونیکی مانند تشخیص‌دهنده‌های دود و شعله یا تجهیزات الکترونیکی ویژه برای سایر تشخیص‌دهنده‌ها یا پایه‌های نصب آن‌ها باید حذف شده و پل‌ها نصب شوند تا از احتمال آسیب به این دستگاه‌ها جلوگیری شود.
    o 10.6.3.2 اجزای حذف‌شده مطابق با 10.6.3.1 باید پس از اندازه‌گیری‌ها جایگزین شوند.
    10.6.4 تأمین برق به واحد کنترل باید از یک منبع اختصاصی جداگانه باشد که در هنگام راه‌اندازی سیستم قطع نشود.
    10.6.5 منابع انرژی اصلی و 24 ساعته حداقل باید برای تأمین نیازهای عملکردی تشخیص، سیگنال‌دهی، کنترل و فعال‌سازی سیستم قابل اعتماد و کافی باشند.
    10.6.6* تمامی عملکردهای کمکی مانند دستگاه‌های آلارم، نمایشگرها، اعلان‌کننده‌های از راه دور، خاموشی سیستم تهویه و خاموشی برق باید برای عملکرد مطابق با الزامات سیستم و مشخصات طراحی بررسی شوند.
    10.6.7 خاموش کردن آلارم‌ها، در صورت مجاز بودن، نباید تأثیری بر سایر عملکردهای کمکی داشته باشد.
    10.6.8 دستگاه‌های تشخیص باید برای نوع و مکان مطابق با نقشه‌های سیستم بررسی شوند.
    10.6.9* تشخیص‌دهنده‌ها نباید در نزدیکی موانع یا تجهیزات تهویه و خنک‌کننده هوا نصب شوند که می‌تواند ویژگی‌های واکنش آن‌ها را تحت تأثیر قرار دهد.
    10.6.10* طراحی سیستم تشخیص باید حجم تغییرات هوای داخل منطقه حفاظت‌شده را در نظر بگیرد.
    10.6.11 تشخیص‌دهنده‌ها باید مطابق با داده‌های فنی سازنده و الزامات NFPA 72 نصب شوند.
    10.6.12 ایستگاه‌های دستی کشیدن (Manual Pull Stations)
    o 10.6.12.1 ایستگاه‌های دستی کشیدن باید به‌طور ایمن نصب شوند.
    o 10.6.12.2 قسمت قابل استفاده ایستگاه دستی کشیدن باید حداقل 42 اینچ (1.07 متر) و حداکثر 48 اینچ (1.22 متر) از کف تمام‌شده باشد.
    o 10.6.12.3 ایستگاه‌های دستی کشیدن باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.
    o 10.6.12.4 تمامی ایستگاه‌های دستی کشیدن باید به‌طور واضح شناسایی شوند که به کدام خطر حفاظت می‌کنند، عملکرد آن‌ها چیست و روش عملیات آن‌ها چگونه است.
    o 10.6.12.5 تمامی ایستگاه‌های دستی که برای آزادسازی عامل‌ها استفاده می‌شوند باید نیاز به دو اقدام مجزا و متمایز برای عملکرد داشته باشند.
    10.6.13 سیستم‌های با قابلیت اصلی/رزرو
    o 10.6.13.1 برای سیستم‌هایی با قابلیت اصلی/رزرو، سوئیچ اصلی/رزرو باید مطابق با دستورالعمل‌های طراحی، نصب و نگهداری سازنده سیستم و نقشه‌های سیستم نصب شود.
    o 10.6.13.2 اگر نصب شده باشد، سوئیچ اصلی/رزرو باید شناسایی شود.
    10.6.14 سیستم‌هایی که از سوئیچ‌های انصراف استفاده می‌کنند
    o 10.6.14.1 سوئیچ‌های انصراف باید از نوع “deadman” باشند که نیاز به فشار دستی مداوم دارند.
    o 10.6.14.2 سوئیچ‌هایی که در موقعیت انصراف باقی می‌مانند زمانی که آزاد شوند، نباید برای این منظور استفاده شوند.
    o 10.6.14.3 سوئیچ‌های انصراف باید به‌گونه‌ای نصب شوند که در داخل منطقه خطر به‌راحتی قابل دسترس باشند.
    o 10.6.14.4 سوئیچ‌های انصراف باید به‌طور ایمن نصب شوند.
    o 10.6.14.5 ایستگاه‌های انصراف باید به‌گونه‌ای نصب شوند که برجسته، بدون مانع و قابل دسترس باشند.

    10.6.14.6 قسمت قابل استفاده از سوئیچ انصراف نباید کمتر از 42 اینچ (1.07 متر) و بیشتر از 48 اینچ (1.22 متر) از کف تمام‌شده باشد.

    10.6.14.7 ایستگاه‌های دستی کشیدن همیشه باید سوئیچ‌های انصراف را لغو کنند.

    10.6.15 واحد کنترل آزادسازی باید مطابق با مستندات سیستم نصب شده و به‌راحتی قابل دسترس باشد.

    10.7 آزمایش عملکردی

    10.7.1 آزمایش‌های عملکردی مقدماتی

    10.7.1.1 اگر سیستم به یک دفتر دریافت آلارم متصل باشد، دفتر دریافت آلارم باید اطلاع داده شود که آزمایش سیستم آتش‌نشانی قرار است انجام شود و پاسخ اضطراری از سوی آتش‌نشانی یا پرسنل ایستگاه آلارم ضروری نیست.
    10.7.1.2 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید مطلع شوند که آزمایشی قرار است انجام شود.
    10.7.1.3 تمامی پرسنل در مناطقی که ممکن است تحت تأثیر آزمایش در تأسیسات کاربر نهایی قرار گیرند باید دستورالعمل‌هایی دریافت کنند که به آن‌ها توضیح داده شود چه اتفاقاتی ممکن است در حین آزمایش سیستم اطفاء حریق رخ دهد.
    10.7.1.4* مکانیزم آزادسازی هر مخزن ذخیره عامل باید غیرفعال شده یا با یک دستگاه عملیاتی جایگزین شود به‌طوری‌که فعال‌سازی مدار آزادسازی منجر به آزادسازی عامل نشود.
    10.7.1.5 هر تشخیص‌دهنده باید برای عملکرد آزمایش شود.
    10.7.1.6 تمامی دستگاه‌های آلارم قطبی‌شده و رله‌های کمکی باید برای قطبیت مطابق با دستورالعمل‌های سازنده بررسی شوند.
    10.7.1.7 مدارهای شروع و اعلان باید برای دستگاه‌های انتهای خط، در صورت لزوم، بررسی شوند.
    10.7.1.8 تمامی مدارهای تحت نظارت باید برای پاسخ به مشکلات آزمایش شوند.

    10.7.2 آزمایش عملکرد عملیاتی سیستم

    10.7.2.1 هر مدار شروع تشخیص باید اجرا شود تا تأیید شود که تمامی عملکردهای آلارم مطابق با مشخصات طراحی رخ می‌دهند.
    10.7.2.2 هر آزادسازی دستی باید اجرا شود تا تأیید شود که عملکرد آزادسازی دستی مطابق با مشخصات طراحی انجام می‌شود.
    10.7.2.3 هر مدار سوئیچ انصراف باید اجرا شود تا تأیید شود که عملکرد انصراف مطابق با مشخصات طراحی انجام می‌شود و سیگنال‌های نظارتی بصری و صوتی در پنل کنترل اعلام می‌شود.
    10.7.2.4 تمامی شیرهای خودکار باید برای تأیید عملکرد آزمایش شوند، مگر اینکه آزمایش شیر منجر به آزادسازی عامل یا آسیب به شیر (آزمایش تخریبی) شود.
    10.7.2.5 تجهیزات پنوماتیک، در صورت نصب، باید برای یکپارچگی آزمایش شوند تا از عملکرد صحیح آن‌ها اطمینان حاصل شود.

    10.7.3 عملیات نظارت از راه دور

    10.7.3.1 هر نوع دستگاه شروع باید در حالت برق پشتیبان اجرا شود تا تأیید شود که پس از فعال شدن دستگاه، سیگنال آلارم در پنل از راه دور دریافت می‌شود.

    10.7.3.2 یک وضعیت خطا باید به هر مدار شروع یا اعلان اعمال شود تا تأیید شود که وضعیت مشکل در ایستگاه از راه دور دریافت شده است.

    10.7.3.3 هر دستگاه تحت نظارت باید اجرا شود تا تأیید شود که وضعیت نظارتی در ایستگاه از راه دور دریافت شده است.

    10.7.4 منبع قدرت اصلی پنل کنترل

    یک قطع برق اصلی باید مطابق با مشخصات سازنده آغاز شود تا تأیید شود که سیستم بر روی برق پشتیبان کار می‌کند.

    10.7.5 بازگرداندن سیستم به وضعیت عملیاتی

    10.7.5.1 هنگامی که آزمایش‌های عملکردی به پایان رسید، سیستم باید به وضعیت عملیاتی کامل بازگردانده شود.
    10.7.5.2 دفتر دریافت آلارم و تمامی پرسنل مربوطه در تأسیسات کاربر نهایی باید مطلع شوند که آزمایش سیستم آتش‌نشانی تکمیل شده است و سیستم به وضعیت کامل خدمات بازگشته است.

    10.8 مستندات مالک

    10.8.1 نسخه‌های کاغذی یا الکترونیکی تمامی گزارش‌های آزمایش و مستندات مربوطه باید به مالک سیستم ارائه شود.
    10.8.2 مالک سیستم باید این گزارش‌ها را برای مدت زمان عمر سیستم نگه‌داری کند.

    10.9 آموزش

    10.9.1 تمامی افرادی که احتمالاً مجبور به استفاده از سیستم‌های اطفاء حریق هستند باید آموزش دیده و آموزش‌های خود را در زمینه عملکردهایی که باید انجام دهند، به‌روز نگه دارند.
    10.9.2* پرسنلی که در یک اتاق سرور که توسط عامل پاک‌کننده محافظت می‌شود کار می‌کنند باید آموزش‌هایی در خصوص مسائل ایمنی عامل دریافت کنند.

  • محاسبات برای طراحی سیستم اطفاء حریق بوسیله گاز دی اکسید کربن

    A.5.1.2 دستیابی و حفظ غلظت صحیح اطمینان می‌دهد که آتش به‌طور کامل و دائمی در ماده قابل احتراق خاص یا مواد دخیل در آتش خاموش می‌شود.

    A.5.2.1 در این نوع حفاظت، فرض بر این است که فضای نسبتاً بسته‌ای برای کاهش از دست دادن عامل اطفاء حریق در نظر گرفته شده است. مساحت منافذ غیرقابل بسته شدن مجاز بستگی به نوع مواد قابل احتراق دارد.

    A.5.2.1.1 در صورتی که دو یا چند خطر به دلیل نزدیکی آن‌ها به طور همزمان در آتش درگیر شوند، باید هر خطر با یک سیستم جداگانه حفاظت شود، یا با ترکیبی از سیستم‌ها که به‌طور همزمان عمل کنند، یا با یک سیستم واحد که باید به‌طور همزمان برای تمام خطرات بالقوه درگیر طراحی و تنظیم شود.

    A.5.2.1.3 برای آتش‌های عمیق، باید از منافذ پایین اجتناب شود، صرف‌نظر از نیازهای تهویه، تا غلظت اطفاء حریق برای مدت زمان لازم حفظ شود. دریچه‌های تهویه تحت این شرایط باید تا حد امکان در بالاترین نقطه محفظه قرار گیرند.

    A.5.2.3 تقریباً تمام خطراتی که مواد قابل احتراقی دارند که آتش سطحی تولید می‌کنند، می‌توانند مقادیر مختلفی از موادی که آتش‌های عمیق تولید می‌کنند را در خود جای دهند. انتخاب صحیح نوع آتشی که سیستم باید برای اطفاء آن طراحی شود، اهمیت زیادی دارد و در بسیاری از موارد نیازمند قضاوت صحیح پس از بررسی دقیق تمام عوامل مختلف است. اساساً، چنین تصمیمی بر اساس پاسخ به سوالات زیر گرفته می‌شود:
    (1) آیا احتمال ایجاد آتش عمیق وجود دارد، با توجه به سرعت شناسایی و کاربرد سیستم مورد نظر؟
    (2) اگر آتش عمیق ایجاد شود، آیا به‌طور جزئی خواهد بود، شرایط به‌گونه‌ای است که باعث شعله‌ور شدن ماده‌ای که آتش سطحی تولید کرده است نخواهد شد، و آیا می‌توان ترتیبی برای اطفاء دستی آن پس از تخلیه دی‌اکسیدکربن قبل از ایجاد مشکل فراهم کرد؟
    (3) آیا ارزش‌ها یا اهمیت تجهیزات به‌گونه‌ای است که حفاظت نهایی توجیه‌پذیر باشد، صرف‌نظر از هزینه اضافی برای فراهم کردن سیستمی که قادر به اطفاء آتش‌های عمیق باشد؟

    خواهید دید که در صورتی که احتمال کمی از آتش عمیق وجود داشته باشد که مشکلاتی ایجاد کند، در بسیاری از موارد پذیرش این خطر کم ممکن است توجیه‌پذیر باشد و انتخاب سیستمی که فقط آتش‌های سطحی را خاموش کند صحیح باشد. به عنوان مثال، ترانسفورماتورهای الکتریکی و سایر تجهیزات الکتریکی پر شده با روغن معمولاً به‌عنوان تولیدکننده آتش سطحی در نظر گرفته می‌شوند، اگرچه ممکن است این احتمال وجود داشته باشد که هسته گرم شده آتش عمیق در عایق الکتریکی ایجاد کند. از سوی دیگر، اهمیت برخی از تجهیزات الکتریکی برای تولید می‌تواند به‌گونه‌ای باشد که برخورد با خطر به‌عنوان آتش عمیق توجیه‌پذیر باشد.

    اغلب، تصمیم‌گیری نیاز به مشاوره با مقامات صلاحیت‌دار و با مالک و مهندسان شرکت تأمین‌کننده تجهیزات دارد. مقایسه هزینه‌ها بین سیستمی که برای اطفاء آتش سطحی طراحی شده است و سیستمی که برای اطفاء آتش عمیق طراحی شده است، می‌تواند عامل تعیین‌کننده باشد. در همه موارد، توصیه می‌شود که تمام طرف‌های ذی‌نفع کاملاً از هرگونه خطرات موجود آگاه باشند، اگر سیستم فقط برای اطفاء آتش سطحی طراحی شود و از هزینه‌های اضافی مربوط به طراحی سیستمی که قادر به اطفاء آتش عمیق است.

    A.5.2.3.1 آتش‌های سطحی رایج‌ترین خطراتی هستند که به‌ویژه به سیستم‌های اطفاء حریق با سیل کامل مناسب هستند.

    A.5.2.3.2 در هر صورت، پس از آتش عمیق، ضروری است که خطر بلافاصله بررسی شود تا اطمینان حاصل شود که اطفاء حریق کامل بوده و هر ماده‌ای که در آتش دخیل بوده است برداشته شود.

    در مواقعی که جو انفجاری از بخارات قابل اشتعال یا گرد و غبار قابل احتراق در داخل یک محفظه وجود دارد، تخلیه دی‌اکسیدکربن مایع می‌تواند باعث ایجاد جرقه‌ای استاتیکی شود که انفجار ایجاد کند. خطر انفجار می‌تواند با تزریق بخار دی‌اکسیدکربن به داخل خطر برای ایجاد جو بی‌اثر کاهش یابد. تزریق بخار دی‌اکسیدکربن باید به‌آرامی انجام شود تا از ایجاد آشفتگی که می‌تواند گرد و غبار قابل احتراق را در داخل محفظه به حالت معلق درآورد، جلوگیری شود. یک مثال از چنین خطری، سیلوی ذخیره زغال‌سنگ است.
    (توجه: حفاظت در برابر حریق و بی‌اثر کردن سیلوهای زغال‌سنگ از محدوده این استاندارد خارج است.) به A.4.2.1 مراجعه کنید.

    A.5.3.2.2 حداقل غلظت نظری دی‌اکسیدکربن و حداقل غلظت طراحی دی‌اکسیدکربن برای جلوگیری از اشتعال برخی مایعات و گازهای رایج در جدول 5.3.2.2 آورده شده است.

    A.5.3.3.1 از آنجا که در فضای کوچک نسبت به حجم محصور، مساحت مرز بیشتری وجود دارد، بنابراین احتمال نشت بیشتر و به تبع آن نیاز به در نظر گرفتن فاکتورهای حجم گرید شده در جدول 5.3.3(a) و جدول 5.3.3(b) است.
    حداقل مقادیر گاز برای کوچکترین حجم‌ها در جدول آورده شده است تا هدف ستون B در جدول‌های 5.3.3(a) و 5.3.3(b) روشن شود و از همپوشانی احتمالی در حجم‌های مرزی جلوگیری شود.

    A.5.3.5.1 زمانی که تهویه اجباری مدنظر نباشد، نشت مخلوط دی‌اکسیدکربن و هوا از فضای محصور بستگی به یکی یا چند مورد از پارامترهای زیر دارد:
    (1) دمای محفظه: دی‌اکسیدکربن در دمای پایین کمتر گسترش می‌یابد و چگالی بیشتری خواهد داشت؛ بنابراین، مقدار بیشتری از آن در صورت وجود منافذ در قسمت پایین محفظه نشت خواهد کرد.
    (2) حجم محفظه: درصد گاز دی‌اکسیدکربن که از هر منفذ در یک فضای کوچک نشت می‌کند، بسیار بیشتر از آن است که از همان منفذ در فضای بزرگتر نشت کند.
    (3) تهویه: معمولاً یک منفذ در یا نزدیک به سقف مطلوب است تا گازهای سبک‌تر از اتاق خارج شوند طی تخلیه.
    (4) محل منافذ: چون دی‌اکسیدکربن از هوا سنگین‌تر است، ممکن است نشت دی‌اکسیدکربن از منافذ نزدیک به سقف بسیار کم یا هیچ‌گونه نشت نداشته باشد، در حالی که نشت در سطح کف می‌تواند قابل توجه باشد.

    A.5.3.5.3 خطراتی که در محفظه‌هایی که معمولاً دمای آن‌ها بالاتر از 2000 درجه فارنهایت (93 درجه سلسیوس) است، قرار دارند، بیشتر در معرض خطر بازاشتعال هستند. بنابراین، اضافه کردن دی‌اکسیدکربن اضافی توصیه می‌شود تا غلظت‌های اطفاء حریق برای مدت زمان بیشتری حفظ شود، و این اجازه می‌دهد تا ماده خاموش‌شده خنک شود و احتمال بازاشتعال زمانی که گاز پخش می‌شود، کاهش یابد.

    A.5.3.5.5 تحت شرایط عادی، آتش‌های سطحی معمولاً در طول دوره تخلیه خاموش می‌شوند.

    A.5.3.5.7 آزمایش‌ها نشان داده‌اند که دی‌اکسیدکربن که مستقیماً بر روی سطح مایع توسط نازل‌های نوع کاربرد محلی اعمال می‌شود، می‌تواند برای تأمین خنک‌کنندگی مورد نیاز جهت جلوگیری از بازاشتعال پس از پایان تخلیه دی‌اکسیدکربن ضروری باشد.

    A.5.4.1 اگرچه داده‌های خاص آزمایشی در دسترس نیست، اما شناخته شده است که برخی از انواع آتش‌های عمیق ممکن است نیاز به زمان‌های نگهداری بیش از 20 دقیقه داشته باشند. مقدار دی‌اکسیدکربن مورد نیاز برای آتش‌های عمیق بر اساس محفظه‌های نسبتاً محکم است.

    A.5.4.2 برای مواد قابل اشتعال که قادر به تولید آتش‌های عمیق هستند، غلظت‌های مورد نیاز دی‌اکسیدکربن نمی‌توانند با دقت مشابهی با مواد سوختی سطحی تعیین شوند. غلظت اطفاء حریق به جرم ماده موجود بستگی خواهد داشت زیرا اثرات عایق حرارتی وجود دارد. بنابراین، عوامل سیل کردن بر اساس شرایط آزمایشی عملی تعیین شده‌اند.

    A5.4.2.1 به طور کلی، عوامل سیل کردن برای فراهم کردن غلظت‌های طراحی مناسب برای اتاق‌ها و محفظه‌های ذکر شده در جدول 5.4.2.1 یافت شده است.
    برای اطلاعات بیشتر، به پیوست D مراجعه کنید.
    بسته به قابلیت اشتعال، این خطرات ممکن است شامل آتش‌های عمیق نباشند. (به 5.3.5.6 مراجعه کنید.)

    A5.5.2 نرخ‌های حداقل طراحی اعمال شده برای آتش‌های سطحی یا عمیق معمولی کافی در نظر گرفته شده‌اند. با این حال، در مواردی که سرعت گسترش آتش سریع‌تر از حالت عادی برای نوع آتش باشد، یا زمانی که مقادیر بالا یا تجهیزات حیاتی درگیر باشند، نرخ‌های بالاتر از حداقل‌ها می‌توانند و در بسیاری از موارد باید استفاده شوند.
    در مواردی که یک خطر شامل ماده‌ای باشد که هر دو نوع آتش سطحی و عمیق را تولید کند، نرخ اعمال باید حداقل نرخ مورد نیاز برای آتش‌های سطحی باشد.
    پس از انتخاب نرخ مناسب برای خطر، جداول و اطلاعاتی که در ادامه آمده باید استفاده شود یا مهندسی خاصی که نیاز است باید برای به دست آوردن ترکیب صحیح از رهاسازی‌های مخزن، لوله‌کشی تأمین و اندازه‌های اوریفیس که این نرخ مطلوب را تولید کند، انجام شود.
    نرخ نشت از یک محفظه در غیاب تهویه اجباری عمدتاً به تفاوت چگالی بین جو داخل محفظه و هوای اطراف محفظه بستگی دارد.
    معادله زیر می‌تواند برای محاسبه نرخ از دست دادن دی‌اکسیدکربن استفاده شود، به این فرض که نشت کافی در قسمت بالایی محفظه وجود دارد تا ورود هوای آزاد را امکان‌پذیر کند:

    4ffu5FbiHe8aAAAAAASUVORK5CYII=

    جایی که:

    R = نرخ دی‌اکسیدکربن [پوند در دقیقه (کیلوگرم در دقیقه)]
    C = نسبت غلظت دی‌اکسیدکربن
    p = چگالی بخار دی‌اکسیدکربن [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    A = مساحت بازشو [فوت مربع (متر مربع)] (شامل ضریب جریان)
    g = ثابت گرانش [32.2 فوت بر ثانیه مربع (9.81 متر بر ثانیه مربع)]
    p1 = چگالی جو [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    p2 = چگالی هوای اطراف [پوند بر فوت مکعب (کیلوگرم بر متر مکعب)]
    h = ارتفاع ایستا بین بازشو و بالای محفظه [فوت (متر)]

    اگر تنها در دیوارها بازشوهایی وجود داشته باشد، مساحت بازشوهای دیوار می‌تواند برای محاسبات تقسیم بر 2 شود زیرا فرض بر این است که هواي تازه می‌تواند از نیمی از بازشوها وارد شود و گاز محافظ از نیمی دیگر خارج خواهد شد.
    شکل E.1 (ب) می‌تواند به‌عنوان راهنمایی برای برآورد نرخ‌های تخلیه در سیستم‌های تخلیه طولانی استفاده شود. منحنی‌ها با استفاده از معادله قبلی محاسبه شده‌اند، با فرض دمای 70 درجه فارنهایت (21 درجه سلسیوس) داخل و خارج محفظه. در یک سیستم واقعی، دمای داخل معمولاً با تخلیه کاهش می‌یابد، که باعث افزایش نرخ از دست رفتن گاز می‌شود. به دلیل وجود متغیرهای زیاد، ممکن است نیاز به آزمایش سیستم نصب‌شده برای اطمینان از عملکرد صحیح باشد.
    در صورتی که نشت قابل توجهی وجود داشته باشد، غلظت طراحی باید به سرعت به دست آید و برای مدت زمان طولانی حفظ شود. دی‌اکسیدکربن مورد نیاز برای جبران نشت باید با نرخ کمتری اعمال شود. نرخ تخلیه طولانی‌شده باید به اندازه کافی برای حفظ غلظت طراحی باشد.

    A.5.5.2.1 معمولاً زمان تخلیه اندازه‌گیری شده زمانی در نظر گرفته می‌شود که دستگاه اندازه‌گیری شروع به ثبت حضور دی‌اکسیدکربن می‌کند تا غلظت طراحی به دست آید.

    A.5.5.3 حفاظت از موتورهای احتراق ثابت و توربین‌های گازی درNFPA 37 مورد بررسی قرار گرفته است.
    برای تجهیزات الکتریکی محصور از نوع گردش داخلی، مقدار اولیه تخلیه نباید کمتر از 1 پوند (0.45 کیلوگرم) گاز برای هر 10 فوت مکعب (0.28 متر مکعب) از حجم محصور تا 2000 فوت مکعب (56.6 متر مکعب) باشد. برای حجم‌های بزرگتر، 1 پوند (0.45 کیلوگرم) گاز برای هر 12 فوت مکعب (0.34 متر مکعب) یا حداقل 200 پوند (90.8 کیلوگرم) باید استفاده شود. جدولA.5.5.3(الف) و جدول A.5.5.3(ب) می‌تواند به‌عنوان راهنما برای برآورد مقدار گاز مورد نیاز برای تخلیه طولانی‌شده جهت حفظ حداقل غلظت 30 درصد برای زمان کاهش شتاب استفاده شود. این مقدار بر اساس حجم داخلی دستگاه و زمان کاهش شتاب است، با فرض نشت متوسط. برای دستگاه‌های بدون گردش داخلی که دارای دمپر هستند، 35 درصد به مقادیر نشان داده‌شده در جدول A.5.5.3(الف) و جدول A.5.5.3(ب) باید اضافه شود تا حفاظت از تخلیه طولانی‌شده تأمین شود.

    A.5.5.4.2 روش‌های موجود برای جبران دماهای بالایی شامل کاهش چگالی پر کردن برای دماهای بالا و فشرده‌سازی نیتروژن همراه با کاهش چگالی پر کردن برای دماهای پایین است. باید با تولیدکنندگان مشورت شود برای راهنمایی بیشتر.

    A.5.6.1 ملاحظه‌های تهویه فشار شامل عواملی مانند استحکام محفظه و نرخ تزریق است.

    A.5.6.2 منافذ و نشت‌هایی مانند درها، پنجره‌ها و دمپرها که ممکن است به راحتی قابل شناسایی نباشند یا به راحتی محاسبه نشوند، در سیستم‌های سیلاب دی‌اکسیدکربن معمولاً به‌اندازه کافی برای تهویه طبیعی بدون نیاز به تهویه اضافی فراهم کرده‌اند. اتاق‌های ذخیره‌سازی رکوردها، فضاهای یخچالی و کانال‌های تهویه نیز تحت شرایط سیستم متوسط خود نیاز به تهویه اضافی ندارند.
    در بسیاری از موارد، به‌ویژه زمانی که مواد خطرناک درگیر هستند، منافذ تهویه برای تهویه انفجاری قبلاً فراهم شده است. این‌ها و سایر منافذ موجود معمولاً تهویه کافی را فراهم می‌کنند.
    عملیات ساخت‌وساز عمومی راهنمای جدول A.5.6.2 را برای در نظر گرفتن استحکام عادی و فشارهای مجاز محفظه‌های متوسط فراهم می‌آورد.

    A.6.1.2 نمونه‌هایی از خطراتی که توسط سیستم‌های کاربردی محلی محافظت می‌شوند شامل وان‌های غوطه‌وری، تانک‌های خنک‌کننده، اتاق‌های اسپری، ترانسفورماتورهای الکتریکی پر شده از روغن، دریچه‌های بخار، آسیاب‌های نورد، دستگاه‌های چاپ و غیره می‌شود.

    A.6.1.4 به بخش‌های 4.3، 4.5.5 و A.4.3 اشاره می‌شود در مورد خطرات ناشی از کدورت دید و کاهش غلظت اکسیژن به مقداری که نمی‌تواند حیات را پشتیبانی کند، نه تنها در ناحیه اطراف تخلیه، بلکه در مناطق مجاور که گاز می‌تواند به آنجا مهاجرت کند.

    A.6.3.1 در محاسبه مجموع مقدار دی‌اکسیدکربن مورد نیاز برای یک سیستم کاربردی محلی، نرخ جریان همه نازل‌ها باید با هم جمع شوند تا نرخ جریان جرمی برای حفاظت از خطر خاص به‌دست آید. این نرخ باید ضربدر زمان تخلیه شود.

    A.6.3.1.1 این سیلندرها معمولاً در ظرفیت‌های اسمی 50 پوند، 75 پوند و 100 پوند (22.7 کیلوگرم، 34.1 کیلوگرم و 45.4 کیلوگرم) دی‌اکسیدکربن اندازه‌گیری می‌شوند. زمانی که سیلندرها با دی‌اکسیدکربن در چگالی پر کردن عادی که از 68 درصد بیشتر نباشد، پر می‌شوند، بخشی از تخلیه از سیلندرها به‌صورت دی‌اکسیدکربن مایع و باقی‌مانده به‌صورت بخار خواهد بود. برای مقاصد طراحی، تخلیه بخار به‌عنوان اثربخش در خاموش کردن آتش در نظر گرفته نمی‌شود. مشخص شده است که مقدار دی‌اکسیدکربن تخلیه‌شده از نازل به‌صورت مایع دی‌اکسیدکربن از 70 درصد تا 75 درصد از کل مقدار دی‌اکسیدکربن موجود در سیلندر متغیر است و بنابراین لازم است ظرفیت اسمی سیلندر برای یک سیستم خاص 40 درصد افزایش یابد تا بخش بخار دی‌اکسیدکربن در نظر گرفته شود. به‌عنوان مثال، یک سیلندر 50 پوندی (22.7 کیلوگرم) می‌تواند بین 35 پوند و 37.5 پوند (15.9 کیلوگرم و 17.0 کیلوگرم) دی‌اکسیدکربن به‌صورت مایع تخلیه کند که بخش مؤثر تخلیه در خاموش کردن آتش است.

    A.6.3.1.2 زمانی که دی‌اکسیدکربن مایع از یک لوله‌کشی گرم عبور می‌کند، مایع به‌سرعت تبخیر می‌شود تا دمای لوله به دمای اشباع دی‌اکسیدکربن برسد. مقدار دی‌اکسیدکربن مایع تبخیرشده به این روش بستگی به مقدار کل حرارت دارد که باید از لوله‌کشی برداشته شود و حرارت نهان تبخیر دی‌اکسیدکربن دارد. برای دی‌اکسیدکربن با فشار بالا، حرارت نهان تبخیر حدود 64Btu/pound (149 kJ/kg) است؛ برای دی‌اکسیدکربن با فشار پایین، حرارت نهان تبخیر حدود 120 Btu/pound (279 kJ/kg) است.
    مقدار حرارت که باید از لوله‌کشی برداشته شود، حاصل‌ضرب وزن لوله‌کشی در ظرفیت حرارتی ویژه فلز و تغییر دمای متوسط لوله‌کشی است. برای لوله‌کشی فولادی، ظرفیت حرارتی ویژه متوسط حدود 0.11 Btu/pound·°F (0.46 kJ/kg·K) تغییر دما است. تغییر دمای متوسط نیز تفاوت بین دمای آغاز تخلیه و دمای متوسط مایع در حال جریان در لوله خواهد بود. برای دی‌اکسیدکربن با فشار بالا، می‌توان دمای متوسط مایع در لوله‌کشی را حدود 60 درجه فارنهایت (16 درجه سلسیوس) فرض کرد. برای دی‌اکسیدکربن با فشار پایین، دمای متوسط را می‌توان حدود -5 درجه فارنهایت (-21 درجه سلسیوس) فرض کرد. این دماها البته تا حدودی متناسب با فشار نازل‌های متوسط تغییر خواهند کرد، اما چنین تنظیمات جزئی تأثیر قابل توجهی بر نتایج نخواهد گذاشت. معادله زیر می‌تواند برای محاسبه مقدار دی‌اکسیدکربن تبخیرشده در لوله‌کشی استفاده شود:

     

    جایی که:

    W = C0₂ تبخیر شده [پوند (کیلوگرم)]
    w = وزن لوله‌کشی [پوند (کیلوگرم)]
    Cp = گرمای ویژه فلز در لوله [Btu/پوند·°F; 0.11 برای فولاد (kJ/کیلوگرم·K; 0.46 برای فولاد)]
    T₁ = دمای متوسط لوله قبل از تخلیه [°F (°C)]
    T₂ = دمای متوسط C0₂ [°F (°C)]
    H = حرارت نهان تبخیر C0₂ مایع [Btu/پوند (kJ/کیلوگرم)]

    A.6.3.3 چون آزمایش‌های انجام شده در فهرست یا تاییدیه‌های اسپرینکلرهای دی‌اکسید کربن ایجاب می‌کند که آتش در حداکثر زمان ۲۰ ثانیه خاموش شود، زمان حداقل ۳۰ ثانیه برای این استاندارد تعیین شده است. این زمان اضافی به‌عنوان یک ضریب ایمنی برای شرایط غیرقابل پیش‌بینی در نظر گرفته شده است. مهم است که این زمان تخلیه به‌عنوان حداقل در نظر گرفته شود و شرایطی مانند دماهای بالا و خنک شدن سطوح بسیار داغ در منطقه خطر ممکن است نیاز به افزایش زمان تخلیه برای اطمینان از خاموشی کامل و مؤثر داشته باشد.

    A.6.3.3.2 جریان دی‌اکسید کربن نیازی نیست که همزمان در تمام اسپرینکلرها شروع یا متوقف شود، اما همه اسپرینکلرها باید حداقل به مدت زمان تخلیه مایع کربن دی‌اکسید به‌طور همزمان کار کنند.

    A.6.3.3.5 دمای حداکثر سوخت مایع در حال سوخت محدود به نقطه جوش آن است که در آن سرمایش تبخیری با ورود حرارت مطابقت دارد. در بیشتر مایعات، دمای خود اشتعال بسیار بالاتر از دمای جوش است، بنابراین باز اشتعال بعد از خاموش شدن تنها می‌تواند توسط یک منبع اشتعال خارجی ایجاد شود. با این حال، برخی مایعات منحصر به فرد دارای دماهای خود اشتعال بسیار پایین‌تری نسبت به دمای جوش خود هستند. روغن‌های پخت‌وپز معمولی و موم پارافین ذوب‌شده این ویژگی را دارند. برای جلوگیری از باز اشتعال در این مواد، لازم است تا جوّ اطفاء حریق تا زمانی که سوخت پایین‌تر از دمای خود اشتعال آن سرد شود، حفظ شود. یک زمان تخلیه ۳ دقیقه‌ای برای واحدهای کوچک کافی است، اما ممکن است برای واحدهای با ظرفیت بزرگتر به زمان بیشتری نیاز باشد.

    A.6.4.1 کاربرد عملی روش نرخ بر اساس مساحت در راهنمای طراحی FSSA برای سیستم‌های محلی دی‌اکسید کربن نرخ بر اساس مساحت توضیح داده شده است. این راهنما به کاربر در تمام فرآیند طراحی سیستم دی‌اکسید کربن بر اساس نرخ مساحت با مثال‌ها کمک می‌کند. کاربر با مراحل مختلف طراحی سیستم شامل چیدمان، محاسبات و طراحی کلی سیستم آشنا خواهد شد.

    A.6.4.2.1 در فهرست‌های فردی یا تاییدیه‌های اسپرینکلرهای نوع سقفی، آزمایش‌هایی برای تعیین جریان بهینه‌ای که یک اسپرینکلر باید برای ارتفاع نصب آن نسبت به سطح مایع استفاده کند، انجام می‌شود. این آزمایش‌ها به شرح زیر انجام می‌شوند:

    1. آزمایش‌های آتش‌سوزی برای اسپرینکلرهای نوع سقفی انجام می‌شود تا یک منحنی که جریان‌های حداکثر قابل استفاده برای اسپرینکلرها را در ارتفاعات مختلف نشان می‌دهد، توسعه یابد.
    2. پس از آزمایش‌های فوق، حداقل جریان برای ارتفاعات مختلف فرض می‌شود که ۷۵ درصد از حداکثر جریان قبلاً تعیین شده است.
    3. پس از آزمایش‌های فوق، آزمایش‌هایی انجام می‌شود تا مساحت آتش تغییر کند تا بیشترین مساحتی که یک اسپرینکلر در ارتفاعات مختلف می‌تواند خاموش کند، تعیین شود.
    4. از داده‌های مراحل قبلی دو منحنی رسم می‌شود: یک منحنی جریان در مقابل ارتفاع و منحنی مساحت در مقابل ارتفاع.

    این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، بنابراین مهم است که مساحت پوشش اسپرینکلرها در ارتفاعات مختلف بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. در سیستم‌های اسپرینکلر چندگانه، این محدودیت‌ها برای بخش‌های خطر که هر اسپرینکلر به‌طور جداگانه پوشش می‌دهد، استفاده می‌شود.

    چون این منحنی‌ها بر اساس آزمایش‌های آتش‌سوزی با استفاده از سینی‌های مربعی توسعه یافته‌اند، مهم است که به‌خاطر داشته باشید که پوشش مساحت برای اسپرینکلرها در ارتفاعات مختلف که توسط منحنی دوم نشان داده شده، باید بر اساس مساحت‌های مربعی تقریبی در نظر گرفته شود. همچنین مهم است که به یاد داشته باشید این دو منحنی محدودیت‌های پوشش تک اسپرینکلر را نشان می‌دهند. در سیستم‌های چند اسپرینکلری، این محدودیت‌ها برای بخشی از خطر که توسط هر اسپرینکلر پوشش داده می‌شود، استفاده می‌شود.

    A.6.4.2.2 برای اسپرینکلرهای کنار مخزن و خطی، آزمایش‌های آتش‌سوزی برای توسعه منحنی‌هایی که حداکثر و حداقل جریان‌های قابل استفاده برای اسپرینکلر را به مساحت آتشی که اسپرینکلر قادر به خاموش کردن آن است، مرتبط می‌کند، انجام می‌شود. همچنین محدودیت‌های اضافی در مورد حداکثر عرض خطر و الزامات فاصله بین اسپرینکلرها و نزدیک‌ترین گوشه خطر وجود دارد. در این آزمایش‌ها، اسپرینکلرها معمولاً در فاصله ۶اینچی (۱۵۲ میلی‌متر) از سطح مایع نصب می‌شوند، که پارامتر ارتفاع را حذف می‌کند. این آزمایش‌ها به‌صورت زیر انجام می‌شوند.

    اسپرینکلرهای تک یا چندگانه روی لبه سینی‌های مربعی یا مستطیلی نصب می‌شوند. در آزمایش‌های اسپرینکلر چندگانه، اسپرینکلرها روی یک طرف یا دو طرف متقابل نصب می‌شوند. آزمایش‌ها روی اندازه‌های مختلف سینی و آرایش‌های فاصله‌ای مختلف انجام می‌شود تا منحنی حداکثر نرخ یا منحنی پاشش ایجاد شود که می‌توان آن را به‌عنوان تابعی از جریان در مقابل مساحت پوشش یا عرض خطر ترسیم کرد. پس از این مرحله، حداقل جریان برای شرایط مختلف مساحت یا عرض خطر (با محدودیت‌های فاصله‌ای مناسب دیگر) توسط یک سری آزمایش مشابه تعیین می‌شود.

    برای همه این آزمایش‌ها، جریان‌ها بر اساس دمای ذخیره‌سازی ۰درجه فارنهایت (۱۸- درجه سانتی‌گراد) برای سیستم‌های فشار پایین (فشار متوسط ۳۰۰ psi یا ۲۰۶۸ kPa) یا دمای ذخیره‌سازی ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) برای سیستم‌های فشار بالا (فشار متوسط ۷۵۰ psi یا ۵۱۷۱ kPa) محاسبه می‌شوند. در سیستم‌های فشار بالا، دمای واقعی ذخیره‌سازی می‌تواند بین ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) و ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) متغیر باشد. به همین دلیل، آزمایش‌های منحنی حداکثر نرخ یا پاشش با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی بالاتر از نرخ محاسبه شده ایجاد می‌کند. آزمایش‌های نرخ حداقل با استفاده از سیلندرهای ذخیره‌سازی که به دمای ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) تنظیم شده‌اند، انجام می‌شود که جریان کمی پایین‌تر از نرخ محاسبه شده ایجاد می‌کند.

    از داده‌های حاصل از این آزمایش‌ها، یک منحنی جریان در مقابل مساحت پوشش یا عرض خطر ترسیم می‌شود که منحنی حداکثر یا پاشش آن با ضریبی معادل ۱۰ درصد کاهش و نرخ حداقل آن با ضریبی معادل ۱۵ درصد افزایش می‌یابد. یک منحنی معمولی برای اسپرینکلر کنار مخزن در شکل F.1 (c) و یک منحنی برای اسپرینکلر خطی در شکل F.1 (d) نشان داده شده است.

    A.6.4.3.4 برای آزمایش‌های فهرست و تاییدیه، اسپرینکلرهای محلی دی‌اکسید کربن نوع سقفی روی آتش‌سوزی‌های دو بعدی سینی انجام می‌شوند. (مراجعه شود به A.6.4.2.1.) برخی اسپرینکلرها هنگام استفاده روی چنین آتش‌سوزی‌های “مسطح” پوشش مساحت عالی دارند. اگرچه مخروط واقعی تخلیه می‌تواند تنها روی یک مساحت کوچک از آتش تأثیر بگذارد، دی‌اکسید کربن می‌تواند از ناحیه برخورد واقعی خارج شده و مساحت بسیار بزرگتری از سینی آتش را به‌طور مؤثر پوشش دهد.

    اگر سطحی که تخلیه دی‌اکسید کربن روی آن برخورد می‌کند، بسیار نامنظم باشد، ممکن است تخلیه نازل نتواند تمام قسمت‌های خطر را به‌طور مؤثر پوشش دهد. اگر نازل‌های استفاده شده دارای مناطق برخورد کوچکی نسبت به مناطق پوشش فهرست شده خود باشند، ممکن است نیاز به نازل‌های اضافی برای پوشش کامل اشیاء با اشکال نامنظم باشد. در صورتی که چنین خطراتی با اشکال نامنظم باید پوشش داده شوند، طراح باید اطمینان حاصل کند که تعداد، نوع و مکان نازل‌ها برای تضمین پوشش کامل سطوح خطر کافی است. بررسی پوشش اسپرینکلرهای محلی از جمله قسمت‌های مهم آزمایش تخلیه است.

    A.6.4.4.5 ممکن است نیاز به نازل‌های اضافی برای این منظور خاص باشد، به‌ویژه اگر انبار بیش از ۲ فوت (۰.۶ متر) بالاتر از سطح محافظت شده قرار گیرد.

    A.6.5.1 کاربرد عملی روش نرخ به حجم پیچیده است. طراحی یک سیستم می‌تواند با استفاده از مثال‌ها و یک محاسبه گام به گام از یک سیستم، تسهیل شود. دستورالعمل‌های طراحی FSSA برای سیستم‌های کاربرد محلی دی‌اکسید کربن با روش نرخ به حجم توضیح می‌دهند که چگونه یک سیستم دی‌اکسید کربن با استفاده از این روش طراحی شود.

    A.6.5.3.2 شکل A.6.5.3.2 نمودار پوشش جزئی است.

    A.6.6.2 دماهای ذخیره‌سازی فشار بالا که از ۳۲ درجه فارنهایت تا ۱۲۰ درجه فارنهایت (۰ درجه سانتی‌گراد تا ۴۹ درجه سانتی‌گراد) متغیر هستند، نیاز به روش‌های خاص برای جبران تغییرات نرخ جریان ندارند. در صورتی که دماهای ذخیره‌سازی فشار بالا بتوانند زیر ۳۲ درجه فارنهایت (۰ درجه سانتی‌گراد) یا بالاتر از ۱۲۰ درجه فارنهایت (۴۹ درجه سانتی‌گراد) قرار گیرند، ممکن است نیاز باشد ویژگی‌های خاصی در سیستم گنجانده شود تا نرخ جریان صحیح تضمین شود.

    A.7.1.1 یک منبع دی‌اکسید کربن جداگانه می‌تواند برای استفاده از شلنگ دستی فراهم شود، یا دی‌اکسید کربن می‌تواند از یک واحد ذخیره‌سازی مرکزی که چندین خط شلنگ را تأمین می‌کند یا از سیستم‌های ثابت دستی یا خودکار تأمین شود. (مراجعه شود به ۴.۶.۱.۱.)

    A.7.1.3 استفاده از لوله‌های دستی یا سیستم‌های ثابت یا خودکار برای انتقال دی‌اکسید کربن از یک واحد ذخیره‌سازی مرکزی که به چندین لوله‌ متصل است، امکان‌پذیر است. (مراجعه شود به 4.6.1.1.)
    A.7.1.4 اشاره‌ای به 4.3.1 و A.4.3 در مورد خطرات برای پرسنل به دلیل کاهش دید و کاهش غلظت اکسیژن تا حدی که قادر به حمایت از حیات نباشد، نه تنها در منطقه تخلیه بلکه در مناطق مجاور که گاز ممکن است به آنجا منتقل شود، می‌شود.
    A.7.5.2 اتصال مجموعه نازل تخلیه به شلنگ با استفاده از اتصال گردشی برای فراهم آوردن راحتی بیشتر در جابجایی توصیه می‌شود.
    A.7.5.4 عملکرد سیستم‌های لوله‌ دستی به عمل دستی و جابجایی دستی نازل تخلیه بستگی دارد. بنابراین سرعت و سادگی عملیات برای اطفاء حریق موفق ضروری است.
    A.7.5.4.2 از شیرهای بلیدر یا دستگاه‌های مشابه می‌توان برای کاهش تاخیر در تخلیه مایع در سیستم‌های فشار پایین استفاده کرد.
    A.8.1.1 تأمین دی‌اکسید کربن بر روی یک وسیله نقلیه متحرک نصب شده است که می‌تواند به محل حریق کشیده یا رانده شود و به سرعت به سیستم لوله‌ کشی متصل شود که خطرات درگیر را محافظت می‌کند. تأمین متحرک عمدتاً تجهیزات آتش‌نشانی یا پرسنل آتش‌نشانی است که برای استفاده مؤثر به آموزش نیاز دارند.
    A.8.1.2 سیستم‌های لوله‌ کشی و تأمین متحرک می‌توانند برای تکمیل سیستم‌های حفاظت در برابر حریق ثابت استفاده شوند یا به تنهایی برای محافظت از خطرات خاص استفاده شوند:
    (1) تأمین متحرک می‌تواند به عنوان یک پشتیبان برای تکمیل تأمین ثابت استفاده شود.
    (2) تأمین متحرک همچنین می‌تواند با لوله‌های دستی برای محافظت از خطرات پراکنده تجهیز شود.
    A.8.4.1 ممکن است مقادیر اضافی دی‌اکسید کربن برای جبران تاخیر در رساندن تأمین متحرک به خطر مورد نیاز باشد.
    A.8.5 اثربخشی حفاظت در برابر حریق فراهم شده توسط سیستم‌های لوله‌ کشی و تأمین متحرک به کارایی و توانایی نیروی انسانی که تأمین متحرک را اداره می‌کند بستگی دارد. به طور کلی، این تجهیزات در دسته تجهیزات آتش‌نشانی قرار دارند که به یک گروه از پرسنل ثابت نیاز دارند.
    A.9.1(2)(c) مثال‌ها شامل فضاهایی هستند که موتورهایی برای پیشرانه، موتورهایی که ژنراتورهای الکتریکی را به حرکت درمی‌آورند، ایستگاه‌های پر کردن سوخت، پمپ‌های بارگیری یا ماشین‌آلات تهویه، گرمایش و تهویه مطبوع را در خود دارند.
    A.9.1(2)(d) سیستم‌های دی‌اکسید کربن برای فضاهای وسیله نقلیه که برای مسافران قابل دسترسی هستند، توصیه نمی‌شود.
    A.9.2.1 منظور این است که NFPA 12، از جمله این فصل، به عنوان یک سند مستقل برای طراحی، نصب و نگهداری سیستم‌های دی‌اکسید کربن دریایی استفاده شود.
    فصل 9 در سال 1998 اضافه شد تا به نصب‌های دریایی پرداخته شود. این فصل به عنوان جایگزین سایر استانداردها مانند 46CFR 119، نصب ماشین‌آلات” طراحی شده است.
    A.9.3.3.1 برخی از موتورهای احتراق داخلی برای پیشرانه و ژنراتورهای مولد برق، هوای احتراق را از فضای محافظت شده که در آن نصب شده‌اند، می‌کشند. چون این نوع موتورها موظف به خاموش شدن قبل از تخلیه سیستم هستند، در برخی موارد، سیستم خودکار تخلیه ممکن است پیشرانه یا تأمین برق را زمانی که بیشترین نیاز است، خاموش کند. یک سیستم غیرخودکار به خدمه کشتی انعطاف‌پذیری بیشتری می‌دهد تا بهترین مسیر عمل را انتخاب کنند. به عنوان مثال، در حالی که کشتی در یک کانال پر ازدحام در حال حرکت است، توانایی مانور کشتی می‌تواند از تخلیه فوری سیستم مهم‌تر باشد.

    A.9.3.3.2 در سکوی‌های فراساحلی و برخی از کشتی‌ها، محفظه‌های ماشین‌آلات کوچک اغلب به‌گونه‌ای قرار دارند که دسترسی پرسنل در هنگام وقوع حریق دشوار و/یا خطرناک است و ممکن است تأخیر غیرقابل قبولی در فعال‌سازی سیستم‌ها ایجاد کند. تا زمانی که ایمنی زندگی و قابلیت ناوبری کشتی تحت تأثیر منفی قرار نگیرد، فعال‌سازی خودکار سیستم‌های محافظت‌کننده از این فضاها مجاز است.
    A.9.3.3.4 به‌استثنای فضاهای محافظت‌شده بسیار کوچک که در 9.3.3.3.3 ذکر شده است، هدف این استاندارد این است که دو عملیات دستی جداگانه برای ایجاد تخلیه یک سیستم دریایی نیاز باشد. فراهم کردن یک کنترل دستی جداگانه برای هر یک از شیرهای کنترل تخلیه مورد نیاز در 9.3.3.3 این هدف را محقق می‌کند. این الزامات استثنایی است بر «عملیات دستی معمولی» که در 4.5.1.2 تعریف شده است.
    A.9.3.3.5 برای یک سیستم دی‌اکسید کربن فشار بالا، کنترل دستی اضطراری برای تأمین، اپراتور دستی بر روی سیلندرهای پیلوت است.
    A.9.3.3.7 دی‌اکسید کربن کافی باید فراهم شود تا آلارم‌ها را با فشار نامی خود برای مدت زمان لازم فعال نگه دارد.
    A.9.3.6.2.2 یک مثال از جایی که تخلیه‌ها ضروری است، نقاط پایین در لوله‌کشی دی‌اکسید کربن است که همچنین توسط سیستم تشخیص دود از نوع نمونه‌برداری استفاده می‌شود.
    آتش‌سوزی در فضاهای باری ممکن است به‌طور کامل توسط تخلیه دی‌اکسید کربن اطفاء نشود. اینکه آتش به‌طور کامل اطفاء شده است یا فقط سرکوب شده است بستگی به چندین عامل دارد، از جمله نوع و مقدار مواد سوختی. احتمال نشت مقداری از جو دی‌اکسید کربن غنی‌شده از محفظه بار وجود دارد. بنابراین، ممکن است نیاز باشد دی‌اکسید کربن اضافی به‌طور موقت تخلیه شود تا سرکوب آتش در محفظه بار تا زمانی که کشتی به بندر برسد، حفظ شود. پس از رسیدن به بندر، قبل از باز شدن درب محفظه بار، یک گروه آتش‌نشانی مجهز و آموزش‌دیده باید آماده باشد تا اطفاء کامل مواد سوخته را انجام دهد.

     

  • آشکارسازهای دودی بیم (Beam Smoke Detectors): چشم‌های نامرئی نگهبان در برابر حریق‌های وسیع

    چکیده: آشکارسازهای دودی بیم، ستون فقرات سیستم‌های پیشرفته اعلام حریق در فضاهای بزرگ و وسیع محسوب می‌شوند. این مقاله به بررسی عمیق اصول فیزیکی و مهندسی نهفته در عملکرد آشکارسازهای دودی بیم می‌پردازد، از مکانیسم تشخیص دود بر پایه پراکندگی و تضعیف نور مادون قرمز گرفته تا پیکربندی‌های مختلف و ملاحظات طراحی در کاربردهای عملی. با تحلیل جزئیات نحوه عملکرد این دتکتورها در حالت عادی و در شرایط حریق، چالش‌های احتمالی و راهکارهای غلبه بر آن‌ها، و همچنین مقایسه با سایر روش‌های تشخیص دود، تصویری جامع از اهمیت و کارایی این فناوری ارائه می‌شود. هدف این مقاله، ارائه یک دیدگاه علمی و کاربردی برای متخصصان، طراحان سیستم‌های ایمنی، و علاقه‌مندان به فناوری‌های اعلام حریق است.

    WhatsApp Image 2025 09 28 at 3.14.16 PM

    مقدمه: امنیت در برابر حریق، از دیرباز یکی از مهم‌ترین دغدغه‌های جوامع بشری بوده است. با توسعه سازه‌های بزرگ و پیچیده نظیر انبارهای وسیع، سالن‌های کنفرانس، آتریوم‌ها، و مراکز خرید، چالش تشخیص زودهنگام حریق در این فضاهای گسترده به مراتب افزایش یافته است. آشکارسازهای دودی نقطه‌ای سنتی، که برای پوشش مساحت‌های محدودتری طراحی شده‌اند، در چنین محیط‌هایی کارایی لازم را ندارند. اینجاست که آشکارسازهای دودی بیم، با قابلیت پوشش دهی مسافت‌های طولانی، به عنوان یک راه حل بی‌بدیل مطرح می‌شوند. این مقاله به کاوش در اعماق این تکنولوژی پرداخته و پیچیدگی‌های علمی و کاربردی آن را آشکار می‌سازد.

    WhatsApp Image 2025 09 28 at 3.14.16 PM1

    1. اساس فیزیکی تشخیص دود: برهم‌کنش نور و ذرات معلق در قلب عملکرد آشکارسازهای دودی بیم، پدیده‌های فیزیکی پراکندگی (Scattering) و تضعیف (Attenuation) نور توسط ذرات دود قرار دارد. نور، به عنوان یک موج الکترومغناطیسی، هنگام عبور از محیطی حاوی ذرات معلق، مانند دود، با این ذرات برهم‌کنش می‌کند. این برهم‌کنش به دو شکل اصلی بروز می‌یابد:
    2. WhatsApp Image 2025 09 28 at 3.14.17 PM
    • تضعیف (Absorption & Scattering): بخشی از انرژی نور توسط ذرات دود جذب شده یا در جهات مختلف پراکنده می‌شود. این امر منجر به کاهش شدت نور عبوری از مسیر می‌شود. آشکارسازهای دودی بیم، عمدتاً بر پایه اندازه‌گیری همین کاهش شدت نور عمل می‌کنند.
    • WhatsApp Image 2025 09 28 at 3.14.17 PM1
    • پراکندگی (Scattering): ذرات دود، نور را در تمامی جهات پراکنده می‌کنند. میزان و الگوی پراکندگی نور به اندازه ذرات، طول موج نور و زاویه دید بستگی دارد. این پدیده، اساس کار آشکارسازهای دودی از نوع پراکندگی نور (مانند برخی دتکتورهای نقطه‌ای) است، اما در دتکتورهای بیم، تمرکز اصلی بر تضعیف کلی پرتو است.
    • WhatsApp Image 2025 09 28 at 3.14.17 PM2

    برای افزایش حساسیت و کاهش تأثیر عوامل محیطی نامطلوب (مانند گرد و غبار)، اکثر آشکارسازهای دودی بیم از نور مادون قرمز (Infrared – IR) استفاده می‌کنند. طول موج‌های مادون قرمز کمتر توسط بخار آب و ذرات بسیار ریز هوا پراکنده می‌شوند، اما به طور مؤثر توسط ذرات بزرگ‌تر دود تضعیف می‌گردند.

    WhatsApp Image 2025 09 28 at 3.14.18 PM

    1. اجزای اصلی و پیکربندی‌های آشکارسازهای دودی بیم یک سیستم آشکارساز دودی بیم معمولاً از سه جزء اصلی تشکیل شده است:
    2. WhatsApp Image 2025 09 28 at 3.14.18 PM1
    • فرستنده (Transmitter): این بخش شامل یک منبع نور مادون قرمز (IR LED) است که یک پرتو نوری متمرکز و کنترل‌شده را تولید می‌کند. لنزهای اپتیکی در این بخش وظیفه متمرکز کردن پرتو را بر عهده دارند تا پرتو با حداقل واگرایی به سمت گیرنده حرکت کند. در برخی مدل‌های پیشرفته، از چندین IR LED برای افزایش قدرت پرتو و پوشش دهی مسافت‌های طولانی‌تر استفاده می‌شود.
    • گیرنده (Receiver): این واحد شامل یک فوتودیود (Photodiode) یا یک آرایه از فوتودیودها است که وظیفه دریافت پرتو نور فرستاده شده و تبدیل آن به یک سیگنال الکتریکی را بر عهده دارد. کیفیت و حساسیت فوتودیود در تشخیص تغییرات جزئی در شدت نور حیاتی است. لنزهای گیرنده نیز به جمع‌آوری نور و هدایت آن به سمت فوتودیود کمک می‌کنند.
    • کنترل‌کننده (Controller/Control Unit): این بخش که معمولاً جدا از فرستنده و گیرنده نصب می‌شود، مسئول پردازش سیگنال‌های دریافتی از گیرنده، مقایسه آن‌ها با مقادیر مرجع (آستانه‌های از پیش تعیین شده)، و اعلام وضعیت‌های مختلف (عادی، پیش‌هشدار، حریق، خطا) است. این واحد همچنین قابلیت تنظیم حساسیت، انجام تست‌های خودکار (Auto Alignment و Drift Compensation) و اتصال به پنل مرکزی اعلام حریق را فراهم می‌کند.

    پیکربندی‌ها: آشکارسازهای دودی بیم را می‌توان به دو دسته اصلی از نظر پیکربندی تقسیم کرد:

    • نوع جداگانه (Separate Type – Transmitter/Receiver): در این پیکربندی، فرستنده و گیرنده در دو واحد مجزا و در فواصل معینی (معمولاً 5 تا 120 متر، و در برخی مدل‌ها تا 150-200 متر) روبروی یکدیگر نصب می‌شوند. پرتو نور از فرستنده ساطع شده و مستقیماً به گیرنده می‌رسد. این رایج‌ترین نوع آشکارساز بیم است و برای پوشش دهی مسیرهای طولانی مناسب است.
    • نوع بازتابنده (Reflector Type – Transceiver/Reflector): در این حالت، فرستنده و گیرنده در یک واحد مشترک (Transceiver) قرار دارند و پرتو نور به سمت یک بازتابنده (Reflector) که در فاصله دوری نصب شده، ارسال می‌شود. بازتابنده، پرتو نور را به سمت واحد فرستنده/گیرنده بازتاب می‌دهد. این پیکربندی مزیت سیم‌کشی کمتر (تنها یک واحد به برق و سیم‌کشی نیاز دارد) و سهولت نصب بیشتری دارد، اما معمولاً برای مسافت‌های کمی کوتاه‌تر (معمولاً تا 100 متر) مورد استفاده قرار می‌گیرد و به دلیل عبور نور از مسیر دو بار (رفت و برگشت)، حساسیت کمی متفاوت دارد.
    1. اصل عملکرد در حالت عادی و حریق (بر اساس تصاویر):
    • حالت عادی (Normal State): در شرایط عادی و بدون وجود دود، پرتو نور مادون قرمز که از IR LED ساطع می‌شود، بدون مانع از طریق محفظه شفاف به سمت گیرنده (فوتودیود) حرکت می‌کند. پرتوها با شدت کامل به فوتودیود می‌رسند. فوتودیود این نور را به یک سیگنال الکتریکی تبدیل می‌کند که توسط واحد کنترل به عنوان “حالت عادی” یا “بدون حریق” تفسیر می‌شود. این سیگنال پایه، مرجعی برای مقایسه‌های بعدی است.
    • حالت حریق (Fire Alarm – با حضور دود): هنگامی که دود ناشی از حریق وارد مسیر پرتو نور می‌شود، ذرات دود (که در تصویر به رنگ خاکستری نشان داده شده‌اند) با پرتو نور برهم‌کنش می‌کنند. همانطور که پیشتر توضیح داده شد، این برهم‌کنش باعث تضعیف و پراکندگی پرتو نور می‌شود. در نتیجه، شدت نوری که به فوتودیود می‌رسد، به طور قابل توجهی کاهش می‌یابد. فوتودیود این کاهش شدت نور را به یک سیگنال الکتریکی با دامنه کمتر تبدیل می‌کند. واحد کنترل این کاهش سیگنال را تشخیص داده و در صورتی که این کاهش از یک آستانه از پیش تعیین شده (که معمولاً بر حسب درصد انسداد نور در واحد طول بیان می‌شود) فراتر رود، وضعیت “آلارم حریق” را اعلام می‌کند و به پنل مرکزی اعلام حریق سیگنال ارسال می‌نماید.
    1. تکنیک‌های پیشرفته در آشکارسازهای بیم:
    • جبران رانش (Drift Compensation): با گذشت زمان، عوامل محیطی مانند گرد و غبار یا کثیف شدن لنزها می‌توانند باعث کاهش تدریجی شدت نور دریافتی شوند، حتی در غیاب دود. اگر این کاهش به درستی جبران نشود، می‌تواند منجر به آلارم‌های کاذب یا کاهش حساسیت واقعی شود. تکنولوژی جبران رانش به آشکارساز اجازه می‌دهد تا به آرامی و به صورت هوشمندانه تغییرات طولانی مدت در شدت نور را شناسایی و آستانه آلارم را متناسب با آن تنظیم کند، بدون اینکه بر توانایی تشخیص سریع دود واقعی تأثیر بگذارد.
    • هم‌ترازی خودکار (Auto Alignment): نصب دقیق فرستنده و گیرنده برای اطمینان از هم‌راستایی کامل پرتو نور بسیار حیاتی است. سیستم‌های پیشرفته دارای قابلیت هم‌ترازی خودکار هستند که به طور خودکار موقعیت لنزها یا پرتو را تنظیم می‌کنند تا حداکثر شدت نور به گیرنده برسد. این ویژگی نه تنها نصب را آسان‌تر می‌کند، بلکه عملکرد بهینه را در طول زمان تضمین می‌نماید.
    • فیلترهای نوری و محافظ‌ها: برای جلوگیری از ورود حشرات، ذرات بزرگ گرد و غبار و نورهای مزاحم محیطی (مانند نور خورشید) به محفظه اپتیکی، از فیلترهای نوری و محفظه‌های محافظت شده (مانند Insect Screen و Lightproof Chamber Cover در تصاویر) استفاده می‌شود. این اقدامات به حفظ دقت و پایداری عملکرد آشکارساز کمک می‌کنند.
    • تشخیص چندگانه (Multi-criteria Detection): در برخی سیستم‌های پیشرفته‌تر، آشکارسازهای بیم ممکن است با سنسورهای دیگری نظیر سنسورهای حرارتی یا گاز ترکیب شوند تا اطلاعات بیشتری برای تشخیص دقیق‌تر حریق و کاهش آلارم‌های کاذب فراهم آورند.
    1. کاربردها و مزایا: آشکارسازهای دودی بیم به دلیل ویژگی‌های منحصربه‌فردشان، در طیف گسترده‌ای از کاربردها به کار گرفته می‌شوند:
    • انبارها و سوله های صنعتی: فضاهایی با سقف‌های بلند و مساحت‌های وسیع که نصب تعداد زیادی آشکارساز نقطه‌ای غیرعملی و پرهزینه است.
    • سالن‌های ورزشی، تئاترها و سینماها: فضاهای باز با ارتفاع زیاد که نیاز به پوشش دهی گسترده دارند.
    • آتریوم‌ها و لابی‌های بزرگ: سازه‌های معماری با فضاهای باز عمودی.
    • فرودگاه‌ها و ایستگاه‌های قطار: مکان‌هایی با جریان هوای زیاد و مسافرت دود در مسافت‌های طولانی.
    • مراکز خرید و فروشگاه‌های بزرگ: برای پوشش دهی فضاهای وسیع و راهروها.

    مزایای کلیدی:

    • پوشش دهی وسیع: هر آشکارساز می‌تواند مساحتی به مراتب بزرگتر از آشکارسازهای نقطه‌ای را پوشش دهد، که منجر به کاهش تعداد دتکتورهای مورد نیاز و هزینه‌های نصب می‌شود.
    • مناسب برای سقف‌های بلند: توانایی تشخیص دود در ارتفاعات بالا که دتکتورهای نقطه‌ای ممکن است با تأخیر عمل کنند.
    • مقاومت در برابر آلارم‌های کاذب: با تکنیک‌های جبران رانش و فیلترینگ پیشرفته، این سیستم‌ها در برابر عوامل محیطی مقاوم‌تر هستند.
    • نگهداری آسان: دسترسی برای نگهداری و تمیز کردن معمولاً آسان‌تر از تعداد زیادی دتکتور نقطه‌ای است.
    1. چالش‌ها و ملاحظات طراحی: با وجود مزایای فراوان، نصب و طراحی سیستم‌های آشکارساز دودی بیم نیازمند ملاحظاتی خاص است:
    • هم‌ترازی دقیق: نصب اولیه نیازمند دقت بالا در هم‌ترازی فرستنده و گیرنده است. هرگونه حرکت سازه‌ای کوچک می‌تواند بر عملکرد تأثیر بگذارد.
    • انسداد مسیر: مسیر پرتو نور باید همواره از هرگونه مانع (مانند قفسه‌های بلند، ماشین‌آلات، پرده‌ها یا حتی جرثقیل‌های سقفی) عاری باشد. برنامه‌ریزی دقیق چیدمان فضا ضروری است.
    • تأثیر نور محیط: نور شدید خورشید یا منابع نوری قدرتمند دیگر می‌توانند در عملکرد سیستم اختلال ایجاد کنند. انتخاب مکان مناسب و استفاده از فیلترهای نوری حیاتی است.
    • شرایط محیطی: تغییرات شدید دما، رطوبت، یا وجود ذرات گرد و غبار بسیار زیاد (در محیط‌های بسیار آلوده) می‌تواند بر عملکرد تأثیر بگذارد. برخی مدل‌ها دارای محفظه‌های گرمایشی یا تهویه‌شده برای مقابله با این چالش‌ها هستند.
    • الگوی جریان هوا: در فضاهای بزرگ، الگوی جریان هوا می‌تواند بر نحوه انتشار دود تأثیر بگذارد. طراحی سیستم باید با در نظر گرفتن این الگوها باشد تا اطمینان حاصل شود که دود به موقع وارد مسیر پرتو می‌شود.
    1. مقایسه با سایر آشکارسازها: در مقایسه با آشکارسازهای دودی نقطه‌ای، آشکارسازهای بیم در پوشش دهی مساحت‌های وسیع و ارتفاعات بالا برتری دارند. آشکارسازهای نمونه‌بردار هوا (Aspirating Smoke Detectors – ASD) نیز برای تشخیص بسیار زودهنگام در محیط‌های حساس استفاده می‌شوند، اما پیچیدگی نصب و هزینه بالاتری دارند. آشکارسازهای بیم یک راه حل میانی ارائه می‌دهند که تعادلی بین پوشش دهی، حساسیت و هزینه ایجاد می‌کند.

    نتیجه‌گیری: آشکارسازهای دودی بیم به عنوان یک جزء حیاتی در سیستم‌های مدرن اعلام حریق، نقش بی‌بدیلی در حفاظت از جان و مال در فضاهای بزرگ و پیچیده ایفا می‌کنند. فهم عمیق اصول فیزیکی، مهندسی و ملاحظات طراحی مربوط به این فناوری، برای پیاده‌سازی سیستم‌های ایمنی مؤثر و قابل اعتماد ضروری است. با پیشرفت تکنولوژی، انتظار می‌رود که این دتکتورها هوشمندتر، مقاوم‌تر در برابر عوامل محیطی، و حتی در تشخیص انواع مختلف دود دقیق‌تر شوند، و بدین ترتیب، امنیت ساختمان‌های ما را در برابر بلایای حریق بیش از پیش تضمین کنند. این چشم‌های نامرئی، همواره در کمین کوچکترین نشانه‌ای از خطر، بیدار و هوشیار باقی می‌مانند.

    WhatsApp Image 2025 09 28 at 3.14.16 PM

  • راهنمای نصب بیم دتکتور Thefirebeam

    WhatsApp Image 2025 09 14 at 8.43.22 AM2WhatsApp Image 2025 09 14 at 8.43.25 AMWhatsApp Image 2025 09 14 at 8.43.25 AM1WhatsApp Image 2025 09 14 at 8.43.26 AMWhatsApp Image 2025 09 14 at 8.43.26 AM1WhatsApp Image 2025 09 14 at 8.43.27 AMWhatsApp Image 2025 09 14 at 8.43.27 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM WhatsApp Image 2025 09 14 at 8.43.28 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM2 WhatsApp Image 2025 09 14 at 8.43.29 AM WhatsApp Image 2025 09 14 at 8.43.29 AM2 WhatsApp Image 2025 09 14 at 8.43.30 AM WhatsApp Image 2025 09 14 at 8.43.30 AM1 WhatsApp Image 2025 09 14 at 8.43.30 AM2 WhatsApp Image 2025 09 14 at 8.43.31 AM WhatsApp Image 2025 09 14 at 8.43.31 AM1 WhatsApp Image 2025 09 14 at 8.43.32 AM

    مشخصات فنی

    مشخصات الکتریکی:
    ولتاژ تغذیه: 10.2 تا 40 ولت DC
    جریان مصرفی: 3 میلی‌آمپر (جریان ثابت) در تمام حالات عملیاتی

    مشخصات محیطی:
    دمـا: 10- درجه سانتی‌گراد تا 55+ درجه سانتی‌گراد
    رطوبت: 10 تا 95٪ RH بدون میعان
    شاخص حفاظتی: IP65 در صورت نصب و ترمینال‌گذاری مناسب

    مشخصات مکانیکی:
    هد بیم: 180 میلی‌متر ارتفاع × 155 میلی‌متر عرض × 137 میلی‌متر عمق
    وزن: 1.1 کیلوگرم
    کنترلر: 185 میلی‌متر ارتفاع × 120 میلی‌متر عرض × 62 میلی‌متر عمق
    وزن: 0.55 کیلوگرم
    رفلکتور میان‌برد 40KIT80: 293 میلی‌متر ارتفاع × 293 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.8 کیلوگرم
    رفلکتور بلندبرد 80KIT100: 394 میلی‌متر ارتفاع × 394 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 1.8 کیلوگرم
    آداپتور: 270 میلی‌متر ارتفاع × 250 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.6 کیلوگرم (برای نصب هد بیم روی یونی‌استرات)

    مشخصات اپتیکی:
    طول موج اپتیکی: 870 نانومتر
    حداکثر تراز زاویه‌ای: ±15 درجه
    حداکثر انحراف زاویه‌ای (استاتیک بدون تراز خودکار):
    هد بیم ±0.75 درجه – رفلکتور ±2 درجه

    مشخصات عملیاتی:
    محدوده حفاظتی:
    FIREBEAM: محصول استاندارد 5 تا 40 متر
    40KIT80: کیت رفلکتور میان‌برد 40 تا 80 متر
    80KIT100: کیت رفلکتور بلندبرد 80 تا 100 متر

    سطوح حساسیت آلارم:
    25٪ (1.25dB) تا 50٪ (3dB) با افزایش 1٪ (0.05dB)
    (پیش‌فرض 35٪ (1.87dB))

    شرایط آلارم:
    کاهش عبور نور به کمتر از سطح حساسیت از پیش تعیین‌شده
    زمان رسیدن به شرایط آلارم قابل تنظیم 2 تا 30 ثانیه با افزایش 1 ثانیه
    (پیش‌فرض 10 ثانیه)

    نمایش آلارم:
    وضعیت کنترلر – FIRE
    LED قرمز چشمک‌زن کنترلر هر 0.5 ثانیه
    LED قرمز چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله آلارم CO با ظرفیت 2 آمپر @ 30 ولت DC

    ویژگی‌های تست/ریست:
    عملکرد تست بیم توسط کنترلر
    انتخاب حالت آلارم ماندگار/ریست خودکار (پیش‌فرض ریست خودکار)
    ریست آلارم در حالت ماندگار با ریست کنترلر، قطع تغذیه برای بیش از 5 ثانیه، اعمال 12 تا 24 ولت DC به ورودی ریست در هد بیم

    سطح حساسیت خطا:
    90٪

    شرایط خطا:
    کاهش عبور نور به کمتر از سطح حساسیت خطا در کمتر از 1 ثانیه
    قطع تغذیه یا ولتاژ ورودی کمتر از 9 ولت DC
    حالت‌های راه‌اندازی اولیه، پیش‌تراز و تراز خودکار
    خاموش شدن بیم در طول تعمیر و نگهداری (بازگشت خودکار پس از 8 ساعت به حالت عادی)
    زمان رسیدن به شرایط خطا قابل تنظیم 2 تا 60 ثانیه با افزایش 1 ثانیه (پیش‌فرض 10 ثانیه)

    نمایش خطا:
    وضعیت کنترلر – FAULT
    LED زرد چشمک‌زن کنترلر هر 1 ثانیه
    LED زرد چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله خطا CO با ظرفیت 2 آمپر @ 30 ولت DC

    شرایط عادی:
    سطح عبور نور بالاتر از سطح حساسیت آلارم
    وضعیت کنترلر – NORMAL
    LED سبز چشمک‌زن کنترلر هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)
    LED سبز چشمک‌زن هد هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)

    تراز خودکار/جبران آلودگی بیم:
    تراز خودکار در حین عملکرد عادی در صورت کاهش عبور نور به کمتر از 90٪ (بدون تأثیر بر حالت کاری عادی)
    جبران آلودگی بیم با مانیتورینگ 4 ساعته. داده‌های جبران در کنترلر در دسترس است.

     

  • دتکتور شعله در استاندارد NFPA 86

    هدف اصلی استاندارد NFPA 86 کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث مرتبط با کوره‌ها و اجاق‌های صنعتی است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی ضروری است.

    A.8.10.1
    بخش‌های فرعی ۸.۲.۲ و ۸.۲.۵ الزام می‌کنند که دتکتور شعله (Flame Detector) و سیستم ایمنی احتراق (Combustion Safeguard) مطابق با دستورالعمل‌های سازنده نصب و به کار گرفته شوند. در مواردی که دتکتورهای شعله (اسکنرها) همراه با سیستم‌های ایمنی احتراق به طور مداوم و بدون خاموشی بیش از حداکثر بازه زمانی توصیه شده توسط دستورالعمل‌های سازنده سیستم ایمنی احتراق و دتکتور شعله کار می‌کنند، چنین عملکرد مداوم بدون خاموشی و بررسی ایمنی شروع به کار (Safe-Start Check) مطابق با استاندارد نخواهد بود.

    توضیحات:

    دتکتور شعله (Flame Detector): دستگاهی است که شعله آتش را تشخیص می‌دهد.
    سیستم ایمنی احتراق (Combustion Safeguard): سیستمی است که برای ایمنی در فرآیندهای احتراق استفاده می‌شود.
    Safe-Start Check: بررسی ایمنی قبل از شروع به کار سیستم، که اطمینان حاصل می‌کند سیستم به درستی کار می‌کند.

    این متن تأکید می‌کند که دتکتورهای شعله و سیستم‌های ایمنی احتراق باید طبق دستورالعمل‌های سازنده نصب و استفاده شوند و در صورت کارکرد مداوم بدون خاموشی و بررسی ایمنی، ممکن است با استانداردها مطابقت نداشته باشند.

    9k=

    سنسورهای فرابنفش (UV) ممکن است به گونه‌ای خراب شوند که از دست رفتن شعله تشخیص داده نشود. در مواردی که این سنسورها به طور مداوم استفاده می‌شوند، خرابی‌ها می‌توانند توسط یک دتکتور فرابنفش خودبررسی‌کننده (Self-Checking) یا با آزمایش دوره‌ای دتکتور برای اطمینان از عملکرد صحیح، تشخیص داده شوند.

    A.8.10.3
    شکل A.8.10.3 (بدون مقیاس) نموداری است که توالی رویدادهای لازم برای دستیابی به زمان بسته شدن شیر قطع ایمنی (SSOV) در مدت حداکثر ۵ثانیه پس از از دست رفتن شعله را نشان می‌دهد. شیرهای قطع ایمنی معمولی (SSOV) حداکثر زمان بسته شدن ۱ ثانیه دارند؛ با این حال، برخی شیرهای تأیید شده یا لیست‌شده ممکن است زمان‌های طولانی‌تری داشته باشند.

    N A.8.10.5(1)
    در مواردی که از سنسورهای شعله مستقل برای تشخیص شعله پایلوت(Pilot) و شعله اصلی (Main Flame) استفاده می‌شود، اطمینان حاصل کنید که شعله پایلوت و شعله اصلی به طور مستقل تشخیص داده می‌شوند. به دلیل دشواری تشخیص مستقل شعله پایلوت و شعله اصلی با دو اسکنر فرابنفش (UV)، تشخیص شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) قابل قبول است.

    توضیحات کلیدی:

    1. سنسورهای فرابنفش (UV Sensors): این سنسورها برای تشخیص شعله استفاده می‌شوند اما ممکن است خراب شوند و از دست رفتن شعله را تشخیص ندهند.
    2. خودبررسی (Self-Checking): برخی دتکتورهای فرابنفش قابلیت خودبررسی دارند تا خرابی‌ها را تشخیص دهند.
    3. شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را قطع می‌کنند و زمان بسته شدن آنها باید کوتاه باشد (معمولاً ۱ ثانیه، اما حداکثر ۵ ثانیه).
    4. تشخیص مستقل شعله پایلوت و شعله اصلی: در برخی سیستم‌ها، شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) تشخیص داده می‌شود.

    شعله‌هایی که تا ۳ فوت (۱ متر) یا کمتر گسترش می‌یابند، تنها نیاز به یک سنسور شعله برای تشخیص شعله پایلوت و شعله اصلی دارند. یک مشعل خطی (Line Burner)، مشعل لوله‌ای (Pipe Burner) یا مشعل تابشی (Radiant Burner) با شعله‌هایی که تا ۳ فوت (۱ متر) یا بیشتر گسترش می‌یابند، نیاز به دو سنسور شعله دارند: یکی برای تشخیص شعله پایلوت و دیگری برای تشخیص شعله مشعل اصلی در انتهای مجموعه که دورترین نقطه از منبع اشتعال است. دو مثال از آرایش‌های مشعل که به عنوان یک مشعل واحد با یک سیستم ایمنی شعله نصب‌شده در انتهای مجموعه در نظر گرفته می‌شوند، در شکل‌های A.8.10.6(a) وA.8.10.6(b) نشان داده شده‌اند.

    A.8.12
    در هر جایی که دمای سوخت روغن می‌تواند به زیر سطح ایمن برسد، افزایش ویسکوزیته (گرانروی) از اتمیزه شدن مناسب جلوگیری می‌کند. سوخت‌های روغن شماره ۲ و شماره ۴ می‌توانند در صورت کاهش دما به زیر نقطه ریزش(Pour Point) منجمد شوند، چه از پیش‌گرم‌کننده‌ها استفاده شود و چه نشود. در هر جایی که دمای سوخت روغن به بالاتر از سطح ایمن برسد، تبخیر روغن قبل از اتمیزه شدن اتفاق می‌افتد و باعث کاهش حجم سوخت به اندازه‌ای می‌شود که خاموش‌شدن قابل توجه شعله را ایجاد می‌کند.

    A.8.13.1
    این واقعیت که روغن یا گاز به عنوان سوخت ذخیره (Standby Fuel) در نظر گرفته می‌شود، نباید الزامات ایمنی مربوط به آن سوخت را کاهش دهد.

    A.8.16
    نقطه تنظیم دمای اضافی (Excess Temperature Set Point) باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.16.6
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۶.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند ارزیابی کنند.

    توضیحات کلیدی:

    1. سنسورهای شعله: تعداد سنسورهای شعله مورد نیاز به طول شعله و نوع مشعل بستگی دارد.
    2. سوخت روغن: دمای سوخت روغن باید در محدوده ایمن نگه داشته شود تا از مشکلاتی مانند افزایش ویسکوزیته یا تبخیر جلوگیری شود.
    3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
    4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.2Q==

    A.8.16.7
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    A.8.16.8
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.16.9
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    A.8.17.3
    نمایش بصری امکان تشخیص خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، را فراهم می‌کند که ممکن است منجر به اقدامات مورد نیاز در بخش ۸.۱۷.۲ نشود. اپراتور یا پرسنل نگهداری می‌توانند قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) را با مشاهده نشانگر دما ارزیابی کنند. همچنین، قابل قبول است که خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) به یک PLC یا ابزار دیگر به صورت موازی با قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) وارد شود، به شرطی که دقت قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) کاهش نیابد. PLC یا ابزار دیگر می‌تواند برای نظارت، روندیابی و هشدار خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) با مقایسه آن با اندازه‌گیری دمای مستقل، مانند قفل ایمنی دمای عملیاتی، استفاده شود.

    A.8.17.4
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    Δ A.8.17.8
    یک کنتاکت کمکی در دستگاه قفل ایمنی محدودیت دمای اضافی می‌تواند به عنوان قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) استفاده شود، به شرطی که الزامات بخش ۸.۱۷.۲ برآورده شوند.

    توضیحات کلیدی:

    1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    2. ترموکوپل و سیم‌های گسترش: این اجزا باید برای محیط عملیاتی مناسب باشند تا از اتصال کوتاه جلوگیری شود.
    3. PLC (Programmable Logic Controller): یک کنترل‌کننده منطقی قابل برنامه‌ریزی که برای نظارت و کنترل فرآیندها استفاده می‌شود.
    4. قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد): یک سیستم ایمنی که در صورت رسیدن دما به این حد، اقدامات لازم را انجام می‌دهد.

    Z

    قطع برق خودکار یا دستی مدارهای تحت تأثیر به شرح زیر است:
    (۱خرابی سیستم (اتصال کوتاه) که توسط حفاظت معمول مدار شاخه‌ای برطرف نشده است (به NFPA 70 مراجعه شود).
    (۲دمای اضافی در بخشی از کوره که توسط دستگاه‌های کنترل دمای معمول کاهش نیافته است.
    (۳خرابی هر یک از کنترل‌های عملیاتی معمول که چنین خرابی می‌تواند به شرایط ناایمن منجر شود.
    (۴از دست رفتن برق که می‌تواند به شرایط ناایمن منجر شود.

    A.8.18.1.5
    الزامات بخش ۸.۱۸.۱.۵ ممکن است نیاز به کاهش ظرفیت (دریفت) برخی از اجزای لیست‌شده توسط سازندگان داشته باشد، مانند استفاده برای انواع دیگر خدمات صنعتی، کنترل موتور و همان‌طور که در جدول A.8.18.1.5 نشان داده شده است.

    A.8.18.2
    نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.18.2.5
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۸.۲.۴ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

    A.8.18.2.6
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    توضیحات کلیدی:

    1. قطع برق خودکار یا دستی: این اقدامات برای جلوگیری از شرایط ناایمن در سیستم‌های حرارتی و کوره‌ها انجام می‌شود.
    2. دمای اضافی: افزایش دمای بیش از حد در کوره می‌تواند خطرناک باشد و باید توسط سیستم‌های کنترل دما مدیریت شود.
    3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
    4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
    5. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.

    Z

    A.8.18.2.7
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.18.2.8
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    A.8.19
    نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

    برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

    A.8.19.2
    قطع جریان سیال انتقال حرارت به کوره می‌تواند با خاموش‌کردن سیستم مرکزی گرمایش سیال یا با بستن شیرهای قطع ایمنی سیال انتقال حرارت در خطوط تأمین و بازگشت کوره انجام شود. اگر از شیرهای قطع ایمنی سیال انتقال حرارت استفاده می‌شود، سیستم مرکزی گرمایش سیال ممکن است نیاز به یک حلقه اضطراری خودکار داشته باشد تا یک بار خنک‌کننده مصنوعی فراهم کند و جریان سیال را از طریق گرم‌کن حفظ کند.

    Δ جدول
    این بخش احتمالاً به یک جدول اشاره دارد که در ادامه متن آمده است

    توضیحات کلیدی:

    1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    2. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
    3. شیرهای قطع ایمنی سیال انتقال حرارت (Heat Transfer Fluid Safety Shutoff Valves): این شیرها برای قطع جریان سیال انتقال حرارت در شرایط اضطراری استفاده می‌شوند.
    4. حلقه اضطراری (Emergency Loop): یک سیستم پشتیبان که در صورت قطع جریان سیال، بار خنک‌کننده مصنوعی ایجاد می‌کند تا از آسیب به سیستم جلوگیری شود.

    A.8.19.6
    برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۹.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

    A.8.19.7
    اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

    A.8.19.8
    عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

    A.8.19.9
    عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

    توضیحات کلیدی:

    1. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.
    2. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
    3. نظارت توسط ابزارهای دیگر: عنصر حسگر دما می‌تواند توسط ابزارهای جانبی نظارت شود، به شرطی که دقت اندازه‌گیری کاهش نیابد.

    9k=

  • پروتکل آزمون دتکتورهای گازهای سمی

    این پروتکل روشی را برای ارزیابی عملکرد دتکتورهای گاز سمی ارائه می‌دهد. یک برگه‌ی کاری نیز همراه آن است که راهنمای مفیدی برای ثبت عملکرد دتکتورهای گاز می‌باشد. همچنین می‌توان از آن به عنوان بخشی از گزارش نگهداری برای سیستم‌های کامل دتکتور گاز استفاده کرد. برای درک مزایای تجهیزات خاص دتکتور گاز، چندین پارامتر باید آزمایش شوند. این عوامل شامل زمان پاسخ، شرایط محیطی، تأثیر دما، دقت و حساسیت به مواد تداخل‌زا، زمان بازیابی، نشانگر خرابی، پایداری (درایفت) و تکرارپذیری در طول زمان می‌باشد. شرایط آزمون باید شبیه شرایط واقعی باشد؛ بنابراین شرایط آزمون باید محیط کاری (دما و رطوبت) را شبیه‌سازی کند. تجهیزات و مواد باید به‌طور متناسب انتخاب شوند. گازهای استفاده‌شده ممکن است بسیار سمی باشند. بنابراین، ضروری است که یک مهندس ایمنی آموزش‌دیده یا بهداشت صنعتی مسئول تولید این گازها باشد و گاز در یک محیط با تهویه مناسب تولید و با ایمنی تخلیه شود.

    تجهیزات و گاز آزمون
    ۱. هوای صفر برای کالیبراسیون صفر
    در کاربردهایی که هوای محیط به‌طور معمول دارای سطح پایینی از گاز هدف است، برخی دتکتورها ممکن است به کالیبراسیون صفر با هوای “پاک” نیاز داشته باشند.
    الف. هوای فشرده (فیلتر شده از طریق زغال فعال برای حذف اکثر گازهای ناخواسته و بخار آب)
    ب. هوای صفر در بطری Lecture

    ۲. گاز اسپن برای آزمون ضربه و کالیبراسیون
    برای دستیابی به بهترین دقت، ترکیبی از گاز هدف که در هوای محیط رقیق شده باشد، بهترین گاز کالیبراسیون است. با این حال، این معمولاً نیاز به اپراتور ماهر، تجهیزات دقیق و روش مرجع برای تحلیل غلظت گاز دارد. روش‌های زیر برای آماده‌سازی گاز برای آزمون ضربه و کالیبراسیون توصیه می‌شوند:

    الف. بطری گاز کالیبراسیون یک‌بار مصرف (فشار پایین، پیش‌مخلوط با هوا یا نیتروژن)
    این روش با رگولاتور جریان ثابت یا جریان تقاضا ساده‌ترین و عملی‌ترین روش برای آزمون ضربه دتکتورهای الکتروشیمیایی است (هم سیستم‌های استخراجی و هم دتکتور غیرفعال با کلاهک کالیبراسیون یا محفظه جریان).
    برای سیستم‌های نمونه‌برداری استخراجی که غلظت گاز در بطری بالاتر از محدوده تشخیص است، می‌توان گاز آزمون را با رگولاتور جریان ثابت و اتصال T در خط نمونه‌برداری رقیق کرد. از رگولاتوری با نرخ جریان کمتر از نرخ جریان نمونه‌برداری استفاده شود و کیسه‌ی هوای تمیز در اتصال T نصب شود.
    مثال: با استفاده از رگولاتور ۰٫۲۵ لیتر در دقیقه با هوای تمیز در اتصال T، غلظت گاز آزمون برای MIDAS با جریان حدود ۰٫۵ لیتر در دقیقه تقریباً نصف غلظت بطری خواهد بود.
    می‌توان از بطری هوای صفر با رگولاتور جریان ثابت برای رقیق‌سازی استفاده کرد (و از اتصال T دیگر برای تخلیه مازاد در سیستم‌های استخراجی بهره برد). این روش برای سیستم‌های تشخیص غیرفعال نیز مؤثر است.
    روش رقیق‌سازی بطری Lecture فقط برای آزمون ضربه مناسب است زیرا دقت مخلوط گاز به دقت جریان بستگی دارد.
    نوع و غلظت گاز کالیبراسیون، لوله‌کشی نمونه، رگولاتورهای جریان و مبدل‌های کالیبراسیون، اجزای کلیدی زنجیره کالیبراسیون هستند. ابزار فقط به اندازه دقت گازی که با آن کالیبره شده، دقیق است.
    با توجه به اینکه پایداری غلظت و عمر مفید به ترکیب گاز و نوع بطری بستگی دارد، از سیلندرهای بدون گواهی یا تاریخ‌گذشته استفاده نکنید.
    بیشتر مواد شیمیایی بسیار واکنش‌پذیر با نیتروژن مخلوط می‌شوند. اطمینان حاصل شود که تمام مواد در تماس با گاز از قبل با گاز نمونه آماده‌سازی شده‌اند.

    برخی دتکتورها ممکن است برای خوانش صحیح به رطوبت نیاز داشته باشند. یک مرطوب‌کننده مانند “Nafion” می‌تواند به خط نمونه افزوده شود.
    قبل از استفاده از مرطوب‌کننده، سازگاری آن با گاز هدف بررسی شود.

    WhatsApp Image 2025 09 20 at 11.35.20 PM

    ب. کیسه‌ی نمونه‌گیری (Tedlar یا Teflon)
    این روش برای سیستم‌های استخراجی و گازهای غیر واکنشی مناسب است، چه از سیلندر گاز پر شده باشد، چه از گاز رقیق شده یا دستگاه نفوذی.

    ج. دستگاه نفوذی یا پخش‌کننده
    دستگاه نفوذی در مقایسه با سیلندر کالیبراسیون استاندارد مزایایی دارد؛ از جمله ارائه غلظت‌های دقیق و دامنه وسیعی از غلظت‌ها که با تغییر نرخ جریان رقیق‌سازی یا دمای محفظه قابل تولید است.
    با نرخ نفوذ مشخص و دمای معین، جریان ثابتی از هوا که با مواد شیمیایی نفوذ کرده مخلوط شده، گاز کالیبراسیون ثابتی تولید می‌کند.
    دستگاهی با دمای ثابت و تنظیم جریان لازم است. دستگاه‌های قابل حمل به صورت تجاری موجودند.
    پیش از استفاده، دستگاه‌های نفوذی باید در دمای کالیبراسیون و جریان حامل آماده‌سازی شوند تا نرخ به تعادل برسد.
    بیشتر دستگاه‌ها به ۳۰ دقیقه تا ۳ ساعت برای رسیدن به تعادل نیاز دارند.
    لوله‌های دیواره ضخیم، ترکیبات با فشار بخار پایین و ترکیبات هالوژنه معمولاً زمان بیشتری نیاز دارند.
    بهترین روش، راه‌اندازی سیستم کالیبراسیون از روز قبل و اجازه دادن به رسیدن به تعادل تا صبح است.
    آزمون‌های مکرر در بازه زمانی مشخص انجام شود تا تعادل حاصل شود.
    گاز آزمون می‌تواند در کیسه‌ی گاز نمونه‌گیری پر شود، به دتکتور غیرفعال خورانده شود، یا مستقیماً در حالت اتصال T با خروجی تخلیه (Overflow) به سیستم Span وارد شود.
    در دستگاه‌های تولید گاز نفوذی قابل حمل، ممکن است فیلتر زغال فعال برای هوای حامل/رقیق‌کننده پیش از محفظه نفوذی وجود داشته باشد؛ گاز تولیدشده خشک‌تر از هوای محیط خواهد بود، و برای برخی گازها و دتکتورها به رطوبت بیشتر نیاز خواهد بود (مانند Nafion).

    آزمون زمان پاسخ (Time Response)
    برای اندازه‌گیری عملکرد واقعی دتکتور، پاسخ سیستم به غلظت مشخصی از گاز آزمون با زمان ثبت‌شده برای رسیدن به ۹۰٪ مقدار پایدار (T₉₀) اندازه‌گیری می‌شود.
    این آزمون باید در دمای محیط (معمولاً ۲۰ تا ۲۵ درجه سانتی‌گراد) و با جریان گاز مشخص انجام شود.

    بیشتر بخوانید: رفع خطای سیستم اعلام حریق

    آزمون دما و رطوبت (Temperature and Humidity Test)
    برای بررسی تأثیر دما و رطوبت، عملکرد دتکتور باید در دمای پایین و بالا (مثلاً ۰°C و ۵۰°C) و رطوبت نسبی بالا (تا ۹۰٪ RH) مورد آزمون قرار گیرد. این آزمون تأثیر شرایط محیطی را بر دقت و پاسخ دتکتور بررسی می‌کند.

    آزمون حساسیت به گازهای تداخلی (Cross Sensitivity Test)
    دتکتور باید در معرض گازهای غیرهدف قرار گیرد تا بررسی شود آیا به آن‌ها پاسخ می‌دهد یا خیر. گازهایی مانند CO₂، H₂، CH₄، بخارهای آلی، یا ترکیبات مشابه باید به عنوان گازهای تداخلی استفاده شوند.
    در صورت وجود پاسخ، درصد انحراف و میزان خطا در خروجی ثبت می‌شود.

    آزمون پایداری (Drift Test)
    دتکتور باید به مدت چندین ساعت (یا چند روز بسته به طراحی سیستم) در هوای پاک یا گاز استاندارد نگهداری شود و تغییرات خروجی آن پایش شود. تغییر در خروجی در طول زمان باید در محدوده قابل قبول باشد.

    آزمون تکرارپذیری (Repeatability Test)
    گاز آزمون با غلظت ثابت باید چندین بار به دتکتور اعمال شود و مقدار پاسخ در هر بار ثبت شود. انحراف معیار پاسخ‌ها نباید بیشتر از محدوده مجاز تعیین‌شده توسط سازنده باشد.

    آزمون بازیابی (Recovery Test)
    پس از قرار گرفتن در معرض گاز هدف، دتکتور باید به شرایط اولیه خود بازگردد. زمان لازم برای بازگشت به صفر یا مقدار پایدار اولیه ثبت می‌شود. اگر دتکتور به زمان طولانی برای بازیابی نیاز داشته باشد، باید در مستندات ذکر شود.

    آزمون نشانگر خرابی (Fault Indication Test)
    در صورتی که دتکتور مجهز به مدار تشخیص خرابی باشد، شرایط خرابی باید شبیه‌سازی و بررسی شود که آیا دتکتور به‌درستی هشدار خرابی را اعلام می‌کند یا خیر (مانند قطع تغذیه، عدم دریافت سیگنال، خراب شدن سنسور و …).

    تکمیل برگه کاری (Test Record Sheet)
    تمام اطلاعات آزمون، نتایج اندازه‌گیری، نوع گاز، تاریخ آزمون، مشخصات دتکتور (شماره سریال، مدل، محل نصب) و شرایط آزمون باید در برگه‌ی کاری ثبت شود تا به‌عنوان سندی برای ارزیابی عملکرد دتکتور در آینده و مستندسازی نگهداری مورد استفاده قرار گیرد.