دتکتور شعله در استاندارد NFPA 86

IMG 2076

هدف اصلی استاندارد NFPA 86 کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث مرتبط با کوره‌ها و اجاق‌های صنعتی است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی ضروری است.

A.8.10.1
بخش‌های فرعی ۸.۲.۲ و ۸.۲.۵ الزام می‌کنند که دتکتور شعله (Flame Detector) و سیستم ایمنی احتراق (Combustion Safeguard) مطابق با دستورالعمل‌های سازنده نصب و به کار گرفته شوند. در مواردی که دتکتورهای شعله (اسکنرها) همراه با سیستم‌های ایمنی احتراق به طور مداوم و بدون خاموشی بیش از حداکثر بازه زمانی توصیه شده توسط دستورالعمل‌های سازنده سیستم ایمنی احتراق و دتکتور شعله کار می‌کنند، چنین عملکرد مداوم بدون خاموشی و بررسی ایمنی شروع به کار (Safe-Start Check) مطابق با استاندارد نخواهد بود.

توضیحات:

دتکتور شعله (Flame Detector): دستگاهی است که شعله آتش را تشخیص می‌دهد.
سیستم ایمنی احتراق (Combustion Safeguard): سیستمی است که برای ایمنی در فرآیندهای احتراق استفاده می‌شود.
Safe-Start Check: بررسی ایمنی قبل از شروع به کار سیستم، که اطمینان حاصل می‌کند سیستم به درستی کار می‌کند.

این متن تأکید می‌کند که دتکتورهای شعله و سیستم‌های ایمنی احتراق باید طبق دستورالعمل‌های سازنده نصب و استفاده شوند و در صورت کارکرد مداوم بدون خاموشی و بررسی ایمنی، ممکن است با استانداردها مطابقت نداشته باشند.

9k=

سنسورهای فرابنفش (UV) ممکن است به گونه‌ای خراب شوند که از دست رفتن شعله تشخیص داده نشود. در مواردی که این سنسورها به طور مداوم استفاده می‌شوند، خرابی‌ها می‌توانند توسط یک دتکتور فرابنفش خودبررسی‌کننده (Self-Checking) یا با آزمایش دوره‌ای دتکتور برای اطمینان از عملکرد صحیح، تشخیص داده شوند.

A.8.10.3
شکل A.8.10.3 (بدون مقیاس) نموداری است که توالی رویدادهای لازم برای دستیابی به زمان بسته شدن شیر قطع ایمنی (SSOV) در مدت حداکثر ۵ثانیه پس از از دست رفتن شعله را نشان می‌دهد. شیرهای قطع ایمنی معمولی (SSOV) حداکثر زمان بسته شدن ۱ ثانیه دارند؛ با این حال، برخی شیرهای تأیید شده یا لیست‌شده ممکن است زمان‌های طولانی‌تری داشته باشند.

N A.8.10.5(1)
در مواردی که از سنسورهای شعله مستقل برای تشخیص شعله پایلوت(Pilot) و شعله اصلی (Main Flame) استفاده می‌شود، اطمینان حاصل کنید که شعله پایلوت و شعله اصلی به طور مستقل تشخیص داده می‌شوند. به دلیل دشواری تشخیص مستقل شعله پایلوت و شعله اصلی با دو اسکنر فرابنفش (UV)، تشخیص شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) قابل قبول است.

توضیحات کلیدی:

1. سنسورهای فرابنفش (UV Sensors): این سنسورها برای تشخیص شعله استفاده می‌شوند اما ممکن است خراب شوند و از دست رفتن شعله را تشخیص ندهند.
2. خودبررسی (Self-Checking): برخی دتکتورهای فرابنفش قابلیت خودبررسی دارند تا خرابی‌ها را تشخیص دهند.
3. شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را قطع می‌کنند و زمان بسته شدن آنها باید کوتاه باشد (معمولاً ۱ ثانیه، اما حداکثر ۵ ثانیه).
4. تشخیص مستقل شعله پایلوت و شعله اصلی: در برخی سیستم‌ها، شعله پایلوت توسط میله شعله (Flame Rod) و شعله اصلی توسط اسکنر فرابنفش (UV Scanner) تشخیص داده می‌شود.

شعله‌هایی که تا ۳ فوت (۱ متر) یا کمتر گسترش می‌یابند، تنها نیاز به یک سنسور شعله برای تشخیص شعله پایلوت و شعله اصلی دارند. یک مشعل خطی (Line Burner)، مشعل لوله‌ای (Pipe Burner) یا مشعل تابشی (Radiant Burner) با شعله‌هایی که تا ۳ فوت (۱ متر) یا بیشتر گسترش می‌یابند، نیاز به دو سنسور شعله دارند: یکی برای تشخیص شعله پایلوت و دیگری برای تشخیص شعله مشعل اصلی در انتهای مجموعه که دورترین نقطه از منبع اشتعال است. دو مثال از آرایش‌های مشعل که به عنوان یک مشعل واحد با یک سیستم ایمنی شعله نصب‌شده در انتهای مجموعه در نظر گرفته می‌شوند، در شکل‌های A.8.10.6(a) وA.8.10.6(b) نشان داده شده‌اند.

A.8.12
در هر جایی که دمای سوخت روغن می‌تواند به زیر سطح ایمن برسد، افزایش ویسکوزیته (گرانروی) از اتمیزه شدن مناسب جلوگیری می‌کند. سوخت‌های روغن شماره ۲ و شماره ۴ می‌توانند در صورت کاهش دما به زیر نقطه ریزش(Pour Point) منجمد شوند، چه از پیش‌گرم‌کننده‌ها استفاده شود و چه نشود. در هر جایی که دمای سوخت روغن به بالاتر از سطح ایمن برسد، تبخیر روغن قبل از اتمیزه شدن اتفاق می‌افتد و باعث کاهش حجم سوخت به اندازه‌ای می‌شود که خاموش‌شدن قابل توجه شعله را ایجاد می‌کند.

A.8.13.1
این واقعیت که روغن یا گاز به عنوان سوخت ذخیره (Standby Fuel) در نظر گرفته می‌شود، نباید الزامات ایمنی مربوط به آن سوخت را کاهش دهد.

A.8.16
نقطه تنظیم دمای اضافی (Excess Temperature Set Point) باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

A.8.16.6
برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۶.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند ارزیابی کنند.

توضیحات کلیدی:

1. سنسورهای شعله: تعداد سنسورهای شعله مورد نیاز به طول شعله و نوع مشعل بستگی دارد.
2. سوخت روغن: دمای سوخت روغن باید در محدوده ایمن نگه داشته شود تا از مشکلاتی مانند افزایش ویسکوزیته یا تبخیر جلوگیری شود.
3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.2Q==

A.8.16.7
اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

A.8.16.8
عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

A.8.16.9
عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

A.8.17.3
نمایش بصری امکان تشخیص خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، را فراهم می‌کند که ممکن است منجر به اقدامات مورد نیاز در بخش ۸.۱۷.۲ نشود. اپراتور یا پرسنل نگهداری می‌توانند قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) را با مشاهده نشانگر دما ارزیابی کنند. همچنین، قابل قبول است که خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) به یک PLC یا ابزار دیگر به صورت موازی با قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) وارد شود، به شرطی که دقت قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) کاهش نیابد. PLC یا ابزار دیگر می‌تواند برای نظارت، روندیابی و هشدار خروجی ترموکوپل قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) با مقایسه آن با اندازه‌گیری دمای مستقل، مانند قفل ایمنی دمای عملیاتی، استفاده شود.

A.8.17.4
اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

Δ A.8.17.8
یک کنتاکت کمکی در دستگاه قفل ایمنی محدودیت دمای اضافی می‌تواند به عنوان قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد) استفاده شود، به شرطی که الزامات بخش ۸.۱۷.۲ برآورده شوند.

توضیحات کلیدی:

1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
2. ترموکوپل و سیم‌های گسترش: این اجزا باید برای محیط عملیاتی مناسب باشند تا از اتصال کوتاه جلوگیری شود.
3. PLC (Programmable Logic Controller): یک کنترل‌کننده منطقی قابل برنامه‌ریزی که برای نظارت و کنترل فرآیندها استفاده می‌شود.
4. قفل ایمنی بای‌پس ۱۴۰۰ درجه فارنهایت (۷۶۰ درجه سانتی‌گراد): یک سیستم ایمنی که در صورت رسیدن دما به این حد، اقدامات لازم را انجام می‌دهد.

Z

قطع برق خودکار یا دستی مدارهای تحت تأثیر به شرح زیر است:
(۱خرابی سیستم (اتصال کوتاه) که توسط حفاظت معمول مدار شاخه‌ای برطرف نشده است (به NFPA 70 مراجعه شود).
(۲دمای اضافی در بخشی از کوره که توسط دستگاه‌های کنترل دمای معمول کاهش نیافته است.
(۳خرابی هر یک از کنترل‌های عملیاتی معمول که چنین خرابی می‌تواند به شرایط ناایمن منجر شود.
(۴از دست رفتن برق که می‌تواند به شرایط ناایمن منجر شود.

A.8.18.1.5
الزامات بخش ۸.۱۸.۱.۵ ممکن است نیاز به کاهش ظرفیت (دریفت) برخی از اجزای لیست‌شده توسط سازندگان داشته باشد، مانند استفاده برای انواع دیگر خدمات صنعتی، کنترل موتور و همان‌طور که در جدول A.8.18.1.5 نشان داده شده است.

A.8.18.2
نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

A.8.18.2.5
برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۸.۲.۴ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

A.8.18.2.6
اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

توضیحات کلیدی:

1. قطع برق خودکار یا دستی: این اقدامات برای جلوگیری از شرایط ناایمن در سیستم‌های حرارتی و کوره‌ها انجام می‌شود.
2. دمای اضافی: افزایش دمای بیش از حد در کوره می‌تواند خطرناک باشد و باید توسط سیستم‌های کنترل دما مدیریت شود.
3. نقطه تنظیم دمای اضافی: این نقطه باید به‌گونه‌ای تنظیم شود که از رسیدن مواد به دمای خوداشتعالی جلوگیری کند.
4. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
5. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.

Z

A.8.18.2.7
عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

A.8.18.2.8
عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

A.8.19
نقطه تنظیم دمای اضافی باید حداکثر در دمایی تنظیم شود که توسط سازنده مشخص شده است. اگر مواد قابل اشتعال یا سوختنی در یک کوره یا خشک‌کن پردازش می‌شوند، نقطه تنظیم باید دمایی باشد که اجازه ندهد مواد به دمای خوداشتعالی (Auto-Ignition Temperature) برسند. محدودیت‌های نقطه تنظیم بر اساس دمای خوداشتعالی برای کوره‌های با اتمسفر خاص و سوزاننده‌های بخار اعمال نمی‌شود. اگر به دلایل فرآیندی، کار باید از رسیدن به دمای بالا که کمتر از نقطه تنظیم دمای اضافی کوره است محافظت شود، می‌توان از یک قفل ایمنی اضافی محدودیت دما استفاده کرد، یا کنترل‌کننده دمای عملیاتی می‌تواند به‌طور مناسب قفل یا هشدار داده شود.

برای یک فن تخلیه با سرعت ثابت، با افزایش دمای کوره، جریان تخلیه کوره بر حسب فوت مکعب استاندارد در دقیقه کاهش می‌یابد. افزایش بیش از حد دما، تهویه ایمنی را کاهش می‌دهد و می‌تواند باعث انفجار بخار قابل اشتعال در کوره‌ها و خشک‌کن‌های مجهز به تهویه ایمنی شود.

A.8.19.2
قطع جریان سیال انتقال حرارت به کوره می‌تواند با خاموش‌کردن سیستم مرکزی گرمایش سیال یا با بستن شیرهای قطع ایمنی سیال انتقال حرارت در خطوط تأمین و بازگشت کوره انجام شود. اگر از شیرهای قطع ایمنی سیال انتقال حرارت استفاده می‌شود، سیستم مرکزی گرمایش سیال ممکن است نیاز به یک حلقه اضطراری خودکار داشته باشد تا یک بار خنک‌کننده مصنوعی فراهم کند و جریان سیال را از طریق گرم‌کن حفظ کند.

Δ جدول
این بخش احتمالاً به یک جدول اشاره دارد که در ادامه متن آمده است

توضیحات کلیدی:

1. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
2. تهویه ایمنی: افزایش دمای کوره می‌تواند تهویه ایمنی را کاهش داده و خطر انفجار ایجاد کند.
3. شیرهای قطع ایمنی سیال انتقال حرارت (Heat Transfer Fluid Safety Shutoff Valves): این شیرها برای قطع جریان سیال انتقال حرارت در شرایط اضطراری استفاده می‌شوند.
4. حلقه اضطراری (Emergency Loop): یک سیستم پشتیبان که در صورت قطع جریان سیال، بار خنک‌کننده مصنوعی ایجاد می‌کند تا از آسیب به سیستم جلوگیری شود.

A.8.19.6
برای تشخیص سایر خرابی‌های سنسور، مانند اتصال کوتاه ترموکوپل، که منجر به اقدامات مورد نیاز در بخش ۸.۱۹.۵ نمی‌شود، اپراتور یا پرسنل نگهداری می‌توانند نشانگر دمای قفل ایمنی محدودیت دمای اضافی را ارزیابی کنند.

A.8.19.7
اجزای حسگر دما، مانند ترموکوپل و سیم‌های گسترش، که برای محیط مورد نظر رتبه‌بندی نشده‌اند، در معرض خطر بیشتری برای اتصال کوتاه هستند.

A.8.19.8
عنصر حسگر باید در جایی قرار گیرد که تفاوت بین سنسور کنترل دما و سنسور محدودیت دمای اضافی به حداقل برسد. عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی باید در جایی قرار گیرد که بتواند شرایط دمای اضافی را تشخیص دهد، شرایطی که باعث اولین آسیب به کوره یا کار می‌شود، زمانی که دما در کوره از حداکثر نقطه تنظیم عملیاتی فراتر می‌رود و برای ایمنی عملیات بسیار حیاتی است.

A.8.19.9
عنصر حسگر دما در قفل ایمنی محدودیت دمای اضافی می‌تواند توسط سایر ابزارهای اندازه‌گیری نظارت شود، به شرطی که دقت خوانش دمای قفل ایمنی محدودیت دمای اضافی کاهش نیابد.

توضیحات کلیدی:

1. اتصال کوتاه ترموکوپل: این مشکل می‌تواند باعث خرابی سنسورهای دما شود و باید توسط پرسنل نگهداری بررسی شود.
2. قفل ایمنی محدودیت دمای اضافی (Excess Temperature Limit Interlock): این سیستم برای جلوگیری از افزایش دمای بیش از حد در کوره یا تجهیزات استفاده می‌شود.
3. نظارت توسط ابزارهای دیگر: عنصر حسگر دما می‌تواند توسط ابزارهای جانبی نظارت شود، به شرطی که دقت اندازه‌گیری کاهش نیابد.

9k=

نوشته‌های مشابه

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.

     

  • تشریح عملی استفاده از دتکتورهای گازی در صنعت

    مقدمه

    سامانه‌های شناسایی گاز به طور گسترده‌ای در صنعت فرایندی برای شناسایی و کاهش اثرات نشت گاز و کمینه‌سازی پیامدهای احتمالی آن‌ها به کار گرفته شده‌اند. مکانیسم‌های شناسایی با توجه به نوع مواد شیمیایی متفاوت هستند و باید با دقت فناوری مناسب برای هر کاربرد انتخاب شود؛ همراه با ملاحظات عملی مربوط به نصب، راه‌اندازی و نگهداری. بیشتر کاربردهای کنونی هشدارهایی برای اپراتور ایجاد می‌کنند که بر اساس قرائت‌های بالا از دتکتورهای گازی فعال می‌شوند. با این حال، با فشار صنعت برای ادغام دتکتورهای ایمنی گاز در سامانه‌های توقف اضطراری، نیاز به طراحی، کالیبراسیون و راه‌اندازی صحیح این دتکتورها برای کاهش آلارم‌های کاذب، به‌طور فزاینده‌ای اهمیت یافته است.

     

    فناوری‌های شناسایی گاز

    دو دسته کلی برای دتکتورهای گازی وجود دارد: دتکتورهای نقطه‌ای و دتکتورهای ناحیه‌ای.

    • دتکتورهای گازی نقطه‌ای دارای یک محل واحد برای دتکتور هستند که در آن ابر گازی باید مستقیماً با دتکتور تماس پیدا کند. انواع دتکتورهای نقطه‌ای شامل دتکتورهای کاتالیتیکی، الکتروشیمیایی، حالت جامد و مادون‌قرمز (IR) هستند. دتکتورهای کاتالیتیکی و IR به‌طور گسترده‌ای در صنعت استفاده می‌شوند و در این مقاله به‌طور مفصل بررسی شده‌اند.
    • دتکتورهای ناحیه‌ای قادرند بدون نیاز به تماس مستقیم ابر گازی با دتکتور، رهایش گاز را شناسایی کنند. انواع دتکتورهای ناحیه‌ای شامل مسیر باز (خط دید – LOS) و صوتی هستند.

     

    دتکتورهای گازی نقطه‌ای

    دتکتورهای گازی کاتالیتیکی

    دتکتورهای کاتالیتیکی (شکل ۱) از نوع دتکتورهای نقطه‌ای هستند که از یک مقاومت پلاتینی داغ پوشیده‌شده با کاتالیست برای واکنش با گازهای قابل احتراق استفاده می‌کنند. هنگامی‌که گاز قابل احتراق با این مقاومت تماس پیدا می‌کند، پوشش آن اکسید می‌شود و مقاومت پوشیده‌شده گرم می‌گردد. افزایش دما در این مقاومت در مقایسه با یک مقاومت کنترلی اندازه‌گیری می‌شود تا درصد حد پایین اشتعال (٪LFL) تعیین شود.

     

    مزایا:

    • عملکرد ساده
    • مقاوم و آسان برای استفاده و کالیبراسیون
    • دارای قابلیت اطمینان بالا
    • به‌راحتی برای گازهای خاصی مانند هیدروژن کالیبره می‌شود

     

    معایب:

    • نیاز به کالیبراسیون مکرر به‌دلیل غیرفعال شدن یا آلودگی
    • قرارگیری طولانی‌مدت در معرض گازهای قابل اشتعال باعث کاهش حساسیت می‌شود

     

    ملاحظات عملی:

    • دتکتورهای کاتالیتیکی معمولاً برای شناسایی گازهایی مانند هیدروژن مفید هستند، در حالی‌که دیگر دتکتورهای نقطه‌ای واکنش‌پذیری کمتری دارند.
    • دانه‌های دتکتور ممکن است نیاز به تعویض داشته باشند یا کالیبراسیون دتکتورها باید به‌صورت مکرر انجام شود تا قابلیت اطمینان بالا حفظ گردد.
    • کیت‌های کالیبراسیون از فروشندگان مختلف در دسترس هستند تا امکان کالیبراسیون از راه دور را فراهم کنند، زیرا دتکتورها ممکن است در ارتفاعاتی نصب شوند که دسترسی به آن‌ها آسان نباشد.
    • نیاز توان مصرفی دتکتورهای کاتالیتیکی بالا نیست و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۳ تا ۵ درصد است که بستگی به بازه ٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۱۰ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۳۰ ثانیه است. این زمان، مدت‌زمانی است که دتکتور برای تشخیص غلظت صحیح گاز و تولید سیگنال پس از تماس گاز با دتکتور نیاز دارد.
    • قابلیت عملکرد در بازه دمایی گسترده از ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس را دارد.
    • قابلیت اطمینان بسیار بالا در محیط‌هایی با دمای شدید، رطوبت بالا و ارتعاشات

     

     

    دتکتورهای گازی مادون‌قرمز (InfraRed – IR)

    دتکتورهای مادون‌قرمز از جذب مادون‌قرمز توسط گازهای هیدروکربنی در طول موج ۳.۴ میکرومتر برای شناسایی حضور گازهای قابل احتراق استفاده می‌کنند. این دتکتورها از یک فرستنده نور مادون‌قرمز استفاده می‌کنند که در طول موج گاز هدف و نیز برای کنترل طول موج عمل می‌کند. الگوریتم‌های پیچیده‌ای برای محاسبه ٪LFL بر اساس عبور اندازه‌گیری‌شده نور به‌کار گرفته می‌شود.

     

    مزایا:

    • رایج‌ترین سامانه شناسایی گاز
    • تنوع بالای تأمین‌کنندگان و رقابت قیمتی مناسب
    • نصب و راه‌اندازی و کالیبراسیون آسان
    • کالیبراسیون به دفعات کمتری نسبت به دتکتورهای کاتالیتیکی مورد نیاز است
    • ایمنی در برابر نویز و آلودگی‌ها
    • عملکرد مداوم در حضور گازهای قابل اشتعال بدون افت عملکرد

     

    معایب:

    • هزینه اولیه خرید و نصب بالا است
    • گاز باید در ناحیه مادون‌قرمز فعال باشد؛ مانند گازهای هیدروکربنی
    • در شرایط دمایی شدید، رطوبت بالا یا محیط‌های با ارتعاش زیاد عملکرد مؤثری ندارد
    • برای کاربردهای چندگازه مناسب نیست

     

    ملاحظات عملی:

    • دتکتورهای IR معمولاً برای شناسایی گازهای هیدروکربنی مفید هستند.
    • نیاز توان مصرفی این دتکتورها بین ۵ تا ۲۰ وات است و معمولاً با توان حلقه‌ای از کنترلر تغذیه می‌شوند.
    • دقت اندازه‌گیری بین ۱ تا ۵ درصد است که بستگی به بازه ‌٪LFL دارد.
    • زمان پاسخ معمول برای رسیدن به ۵۰٪ LFL حدود ۵ ثانیه و برای رسیدن به ۹۰٪ LFL حدود ۱۰ ثانیه است.
    • این دتکتورها می‌توانند در بازه دمایی وسیع بین ۴۰- درجه سلسیوس تا ۷۵+ درجه سلسیوس کار کنند.
    • دتکتورهای IR برای گاز خاصی مانند متان یا پروپان کالیبره می‌شوند. اگر گازهای دیگر با همان دتکتور اندازه‌گیری شوند، فروشندگان باید منحنی‌های تصحیح برای تعیین غلظت ارائه دهند که دقت این اندازه‌گیری‌های تصحیح‌شده محدود خواهد بود.
    • اگر دتکتور در اثر تماس با گاز «اشباع» شود، ممکن است مدت زمان زیادی برای بازگشت مقدار خوانده‌شده به سطح نرمال نیاز باشد. این مورد به‌ویژه در صورت استفاده از فیلتر آب‌گریز (hydrophobic) یا حفاظ هوا (weather baffle) صادق است.
    • هرگونه انحراف در نصب دتکتور نسبت به زاویه توصیه‌شده توسط سازنده ممکن است منجر به خطاهای بزرگ در مقادیر غلظت اندازه‌گیری‌شده شود.

     

    دتکتورهای ناحیه‌ای (Area Detectors)

    دتکتورهای مسیر باز (Open Path)

    دتکتورهای ناحیه‌ای مسیر باز به دو نوع تقسیم می‌شوند: مادون‌قرمز (IR) و طیف‌سنجی لیزری.
    دتکتور مادون‌قرمز مسیر باز از همان فناوری دتکتورهای نقطه‌ای مادون‌قرمز استفاده می‌کند. در این نوع، فاصله بین فرستنده و گیرنده مادون‌قرمز بسته به قابلیت دتکتور می‌تواند از ۱۵ فوت تا ۶۵۰ فوت متغیر باشد.
    در نوع طیف‌سنجی لیزری، چندین طول موج مختلف برای شناسایی غلظت خاصی از گاز اندازه‌گیری می‌شود.
    در این مقاله، تمرکز بر دتکتورهای مسیر باز مادون‌قرمز است، زیرا این نوع در صنعت به‌طور گسترده مورد استفاده قرار می‌گیرد.

    مزایا:

    • به‌طور گسترده در سکوهای فراساحلی (Offshore) و تأسیسات خشکی (On-shore) برای شناسایی نشت گاز در یک ناحیه وسیع استفاده می‌شوند.
    • هم به‌عنوان آژیر هشدار اولیه و هم برای فعال‌سازی فرآیند تخلیه (Evacuation) کاربرد دارند.
    • در صورتی که هدف صرفاً تشخیص نشت گاز و نه اندازه‌گیری غلظت آن باشد، نسبت به دتکتورهای نقطه‌ای به تجهیزات نصب‌شده کمتری نیاز دارند.

     

    معایب:

    • دتکتورهای مسیر باز بسیار حساس به حفظ خط دید مستقیم بین فرستنده و گیرنده هستند.
      این موضوع، راه‌اندازی اولیه (راه‌اندازی و کالیبراسیون) را بسیار دشوار و زمان‌بر می‌کند.
    • نسبت به موانع موقتی مانند واگن‌های ریلی، داربست‌ها، تجهیزات یا وسایل نقلیه دیگر بسیار آسیب‌پذیر هستند.
    • میزان هشدارهای اشتباه (False alarms) یا تریپ‌های ناخواسته در آن‌ها بسیار زیاد است و این ویژگی آن‌ها را بدنام کرده است.

     

    معایب دتکتورهای مسیر باز:

    • این دستگاه مقدار درصد حد انفجار پایین (LFL) را گزارش نمی‌دهد، بلکه مقدار LFL-متر را نشان می‌دهد.
    • هزینه اولیه خرید و نصب این تجهیزات به‌طور قابل توجهی از دتکتورهای نقطه‌ای IR بیشتر است.
    • لرزش‌ها ممکن است باعث عدم‌ترازی بین فرستنده و گیرنده شوند.

     

    ملاحظات کاربردی:

    • سنسورهای مسیر باز عمدتاً برای تشخیص گازهای هیدروکربنی مفید هستند. با این حال، تعداد کمی دتکتور مسیر باز برای گازهای سمی در بازار موجود است.
    • مصرف برق این دتکتورها بین ۲۰ تا ۵۰ وات متغیر است. برخی مدل‌ها در صورت عدم نیاز به تنظیمات دقیق برای حفظ خط دید، توان بالاتری مصرف می‌کنند تا به‌طور مداوم پرتو IR را در ناحیه گسترده‌تری ارسال کنند. در صورت عدم محدودیت در توان مصرفی، استفاده از این مدل‌ها می‌تواند زمان کالیبراسیون را کاهش دهد.
    • دقت عملکرد حدود ۱٪ است، بسته به محدوده اندازه‌گیری LFL-m.
    • زمان پاسخ به ۹۰٪ LFL در حدود ۵ ثانیه است.
    • این دتکتورها در بازه دمایی ۵۰تا ۵۰+ درجه سانتی‌گراد قابل‌استفاده هستند.
    • این دتکتورها به یک گاز خاص کالیبره نمی‌شوند، بنابراین قادر به ارائه مقادیر LFL-m برای طیفی از گازهای هیدروکربنی هستند. اما در مدل‌های سمی، مانند تشخیص سولفید هیدروژن یا آمونیاک، فقط باید برای همان گاز طراحی‌شده استفاده شوند.
    • ترازی دقیق بین منبع و گیرنده زمان‌بر و دشوار است، و ممکن است به دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته از بین برود.
    • با وجود اینکه این دتکتورها نیازی به تماس مستقیم گاز با سنسور ندارند، قرارگیری صحیح آن‌ها برای عملکرد مؤثر بسیار حیاتی است. گاز باید با پرتو IR برخورد داشته باشد تا آلارم فعال شود.

     

    دتکتورهای صوتی (Acoustic Gas Detectors)

    دتکتورهای صوتی با تشخیص امواج فراصوت تولید شده توسط نشت گازهای فشرده عمل می‌کنند. زمانی که نشت در یک سامانه تحت فشار رخ می‌دهد، امواج صوتی تولیدی به محدوده مافوق‌صوت (بالاتر از ۲۰ کیلوهرتز) وارد می‌شوند. شدت صدا به عواملی مانند فشار، دبی نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

    مزایا:

    • زمان پاسخ تقریباً صفر است.
    • تشخیص مستقل از نوع گاز انجام می‌شود.
    • بسیاری از دتکتورهای صوتی می‌توانند الگوهای نشت خاص را بر اساس داده‌های تاریخی یاد بگیرند و این امر به افزایش دقت کمک می‌کند.

    معایب:

    • در صورت تنظیم نادرست، به دلیل حساسیت به هر نوع نشت، ممکن است دچار آلارم‌ها یا تریپ‌های اشتباه (Nuisance Alarm/Trip) شود؛ مثلاً نشت نیتروژن یا هوای ابزار می‌تواند باعث فعال‌سازی هشدار شود.

     

    ملاحظات کاربردی:

    • فناوری صوتی در تشخیص نشت گاز طی سال‌های اخیر پیشرفت زیادی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهتر است از دتکتورهای صوتی به عنوان آلارم اولیه استفاده شود، در حالی که دتکتورهای نقطه‌ای یا مسیر باز برای فعال‌سازی فرمان‌های قطع استفاده شوند.
    • اکثر این دتکتورها باتری‌خور و کم‌مصرف (۱ تا ۲ وات) هستند.
    • نصب ساده و هزینه بسیار کمتر نسبت به دتکتورهای گازی دارند.
    • جانمایی دقیق آن‌ها مانند دتکتورهای گازی حیاتی نیست، زیرا نیاز به تماس مستقیم با گاز ندارند.
    • در بازه دمایی ۵۰تا ۷۵+ درجه سانتی‌گراد قابل‌استفاده هستند.

     

    جانمایی دتکتورهای گازی (Placement of Gas Detectors)

    تاریخچه:

    تشخیص گاز ابتدا با استفاده از قناری‌ها در معادن آغاز شد و با پیشرفت فناوری به وضعیت کنونی رسیده است.
    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) مستند API 2031 را منتشر کرد تا راهنمایی‌هایی برای جانمایی دتکتورهای گازی ارائه دهد، اما این مستند به دلیل نگرانی‌هایی به‌زودی از انتشار خارج شد.

    در حال حاضر استاندارد مشخص و جهانی برای محل نصب دتکتورهای گاز در نواحی فرایندی وجود ندارد، و بیشتر شرکت‌ها از استانداردهای داخلی خود استفاده می‌کنند.

    مطالعات سنتی محل نصب دتکتورها بر پایه تجربه مهندسین انجام می‌شود. استفاده از مدل‌سازی CFD (دینامیک سیالات محاسباتی) نیز رایج است، اما بسیار پرهزینه است.
    گزارش HSE بریتانیا از ۸ سال داده‌های سکوهای فراساحلی نشان داده که تنها ۶۰٪ از نشت‌های شناخته‌شده توسط دتکتورها شناسایی شده‌اند.

     

    طراحی کمی تشخیص گاز (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage)

    طبق استاندارد ISA84 TR7، پوشش جغرافیایی عبارت است از:

    «بخشی از ناحیه هندسی (در یک ارتفاع مشخص از ناحیه تحت پایش) که اگر نشت در آن رخ دهد، توسط تجهیزات شناسایی گاز (با در نظر گرفتن آرایش رأی‌گیری سیستم) شناسایی خواهد شد.»

    در این روش، دتکتورها دارای حجم مؤثر در ناحیه خطر تعریف‌شده هستند. سپس تحلیل‌هایی برای تعیین ضریب پوشش سناریویی (درصد ناحیه‌ای که توسط دتکتورها پوشش داده می‌شود) انجام می‌شود.

    معایب دتکتورهای مسیر باز (Open Path):

    • این دستگاه مقدار درصد LFL را گزارش نمی‌دهد، بلکه مقدار LFL-m را ارائه می‌دهد.
    • هزینه اولیه ابزار و نصب آن به‌طور قابل‌توجهی بیشتر از دتکتورهای نقطه‌ای مادون‌قرمز است.
    • لرزش‌ها می‌توانند موجب برهم‌خوردن هم‌راستایی منبع و گیرنده شوند.

     

    ملاحظات عملیاتی:

    • دتکتورهای دارای خط دید (Line of Sight) عمدتاً برای شناسایی هیدروکربن‌ها مفید هستند، اما نسخه‌های سمی این دتکتورها بسیار محدود هستند.
    • مصرف توان حسگرهای IR مسیر باز بین ۲۰ تا ۵۰ وات است. برخی مدل‌ها که نیاز به تنظیم دقیق ندارند، مصرف توان بالاتری دارند زیرا پرتوهای مادون‌قرمز را به‌طور مداوم در ناحیه‌ای وسیع ارسال می‌کنند؛ اگر تأمین توان مشکلی نداشته باشد، این نوع از دتکتورها به دلیل کاهش زمان کالیبراسیون مناسب‌اند.
    • دقت عملکرد این دتکتورها در حدود ۱٪ (وابسته به بازه LFL-m) است.
    • زمان پاسخ معمول تا ۹۰٪ LFL حدود ۵ ثانیه است.
    • بازه دمایی عملکرد این دتکتورها از ۵۰درجه سانتی‌گراد تا ۵۰+ درجه است.
    • دتکتورهای ناحیه‌ای به گاز خاصی کالیبره نمی‌شوند، لذا می‌توانند مقدار %LFL-m را برای طیفی از گازهای هیدروکربنی ارائه دهند. اما دتکتورهای سمی فقط باید برای گاز خاص کالیبره‌شده مانند سولفید هیدروژن یا آمونیاک استفاده شوند.
    • تنظیم و تراز کردن فرستنده و گیرنده بسیار زمان‌بر است و ممکن است به‌دلیل لرزش، شرایط آب‌وهوایی یا برخوردهای ناخواسته، دچار عدم هم‌راستایی شوند.
    • با اینکه گاز نیاز ندارد مستقیماً با حسگر تماس داشته باشد، اما محل نصب صحیح همچنان حیاتی است تا ابر گاز با پرتوی IR برخورد کند و هشدار فعال شود.

     

    دتکتورهای آکوستیک (Acoustic Detectors):

    دتکتورهای گاز آکوستیک امواج فراصوتی ناشی از نشت گاز تحت فشار را شناسایی می‌کنند. هنگامی‌که نشت تحت فشار رخ می‌دهد، صدای تولیدشده شامل فرکانس‌هایی فراتر از حد شنوایی انسان (بالاتر از ۲۰ کیلوهرتز) است.

    به نقل از [Det-Tronics, 2014]، شدت صدای نشتی به عواملی مانند فشار، نرخ نشت، ویسکوزیته گاز و فاصله از منبع نشت بستگی دارد.

     

    مزایا:

    • زمان پاسخ بسیار ناچیز است.
    • نسبت به نوع گاز مستقل است و می‌تواند هر نوع نشت گازی را شناسایی کند

    WhatsApp Image 2025 09 24 at 3.16.31 AM

    • اغلب مدل‌ها قابلیت یادگیری الگوهای خاص نشتی گاز را با استفاده از داده‌های تاریخی دارند که باعث بهبود دقت اندازه‌گیری می‌شود.

     

    معایب:

    • اگر به‌درستی پیکربندی نشده باشد، هشدارها یا تریپ‌های ناخواسته ایجاد می‌کند؛ به‌عنوان مثال، نشت نیتروژن یا هوای ابزار نیز ممکن است آلارم فعال کند.

     

    ملاحظات عملیاتی:

    • فناوری آکوستیک در سال‌های اخیر پیشرفت قابل‌توجهی داشته، اما همچنان تحقیقات برای کاهش هشدارهای اشتباه ادامه دارد.
    • بهترین کاربرد این دتکتورها به‌عنوان آلارم اولیه است، در حالی‌که دتکتورهای نقطه‌ای یا ناحیه‌ای برای توقف فرآیند به‌صورت خودکار یا توسط اپراتور استفاده می‌شوند
    • .WhatsApp Image 2025 09 24 at 3.16.32 AM
    • اغلب دتکتورهای آکوستیک با باتری کار می‌کنند و مصرف توان آن‌ها ۱ تا ۲ وات است.
    • نصب آن‌ها بسیار ساده و کم‌هزینه‌تر از سایر دتکتورهاست. همچنین، محل نصب نسبت به دتکتورهای گاز حساسیت کمتری دارد.
    • بازه دمایی عملکرد آن‌ها از ۵۰تا ۷۵+ درجه سانتی‌گراد است.

     

    جانمایی دتکتورهای گاز (Placement of Gas Detectors)

    در گذشته، از قناری در قفس به‌عنوان سیستم هشدار نشت گاز استفاده می‌شد! با پیشرفت فناوری، صنعت پتروشیمی به‌تدریج از فناوری‌های نوین بهره‌مند شده است.

    در سال ۱۹۹۱، مؤسسه نفت آمریکا (API) استاندارد API 2031 را منتشر کرد که مربوط به جانمایی دتکتورهای گاز بود، اما به‌زودی برای جلوگیری از مشکلات صنعتی از انتشار خارج شد

    .WhatsApp Image 2025 09 24 at 3.16.42 AM 1

    در حال حاضر هیچ استاندارد حاکم و رسمی جهانی برای محل نصب دتکتورهای گاز در مناطق فرآیندی وجود ندارد، ولی اکثر شرکت‌ها استاندارد داخلی برای این منظور دارند.

     

    طراحی مبتنی بر پوشش کمی (Quantitative Detection Design)

    پوشش جغرافیایی (Geographic Coverage):

    طبق ISA 84 TR7:
    «پوشش جغرافیایی، درصدی از سطح هندسی یک ناحیه فرآیندی تعریف‌شده در یک ارتفاع خاص است که اگر نشتی گاز در آن ناحیه رخ دهد، توسط دتکتورها شناسایی می‌شود (با در نظر گرفتن طرح رأی‌گیری).»

    در این روش:

    • دتکتورها دارای حجم مؤثر در منطقه خطر تعریف‌شده هستند.
    • با انجام تحلیل، درصد ناحیه‌ای که توسط دتکتورها تحت پوشش قرار گرفته محاسبه می‌شود

    WhatsApp Image 2025 09 24 at 3.16.43 AM2

    معایب این روش:

    • نیازی به مدلسازی اضافی ندارد.
    • اما اثربخشی دتکتورها باید فرض شود که این فرض برای دتکتورهای نقطه‌ای و مسیر باز ممکن است خوش‌بینانه (Non-conservative) باشد، زیرا ابر گاز باید حتماً با دتکتور تماس مستقیم داشته باشد تا تشخیص انجام شود.

     

    پوشش سناریو (Scenario Coverage):

    طبق ISA 84 TR7:
    پوشش سناریو، درصدی از سناریوهای نشت است که ناشی از شکست در تجهیزات ناحیه فرآیندی تعریف‌شده بوده و می‌تواند توسط دتکتورها شناسایی شود (با در نظر گرفتن فراوانی و شدت نشت و طرح رأی‌گیری)

    در این روش:

    • از نرم‌افزارهای مدلسازی انتشار (Dispersion Modeling) برای پیش‌بینی پخش گاز استفاده می‌شود.
    • خروجی تحلیل، درصد سناریوهای قابل شناسایی توسط دتکتورها خواهد بود.

     

    مزایا:

    • دتکتورها می‌توانند براساس شرایط واقعی فرآیند در تجهیزات و لوله‌کشی‌ها، به‌درستی جانمایی شوند.
    • این روش از نصب دتکتورها در مناطق کم‌خطرتر جلوگیری می‌کند؛ چرا که به‌جای در نظر گرفتن صرفاً موقعیت فیزیکی، عوامل مؤثری مانند جهت باد، شرایط آب‌وهوایی، و تراکم تجهیزات فرآیندی در منطقه لحاظ می‌شود.

     

    معایب:

    • نیازمند تحلیل دقیق برای هر سناریوی نشت است؛ این فرآیند ممکن است پرهزینه و زمان‌بر باشد.
    • با این حال، اکثر سایت‌هایی که تحت پوشش مدیریت ایمنی فرآیند (PSM) هستند، معمولاً یک مطالعه تعیین محل تجهیزات (Facility Siting Study) انجام داده‌اند که در آن سناریوهای محتملِ از دست رفتن ایزولاسیون (Loss of Containment) بررسی شده‌اند.
    • بنابراین، اطلاعات این مطالعات می‌تواند مستقیماً برای محاسبه پوشش سناریویی استفاده شود و هزینه یا زمان اضافی زیادی نیاز ندارد.

     

  • دتکتور گاز نیمه‌هادی چیست؟

    دتکتورهای گاز نیمه‌هادی یکی از انواع حسگرهای تشخیص گاز هستند که از مواد نیمه‌هادی، معمولاً اکسید فلز (Metal Oxide Semiconductor – MOS)، برای شناسایی گازهای مختلف استفاده می‌کنند. این نوع حسگرها به دلیل حساسیت بالا، پاسخ سریع و دوام طولانی در بسیاری از کاربردهای صنعتی و تجاری مورد استفاده قرار می‌گیرند.

    2Q==

    ساختار دتکتور گاز نیمه‌هادی

    یک دتکتور گاز نیمه‌هادی شامل بخش‌های زیر است:

    الف) ماده حسگر (Sensing Material)

    معمولاً از اکسید فلزاتی مانند اکسید قلع (SnO)، اکسید روی(ZnO) یا اکسید تیتانیوم (TiO) ساخته می‌شود.

    9k=

    این مواد دارای سطح متخلخل هستند که امکان جذب مولکول‌های گاز را فراهم می‌کند.

    ب) المنت گرمایشی (Heating Element)

    برای کارکرد صحیح، این حسگرها نیاز به دمای بالا (حدود ۲۰۰ تا ۴۰۰درجه سانتی‌گراد) دارند.
    این دما به فعال‌سازی واکنش‌های شیمیایی روی سطح نیمه‌هادی کمک می‌کند.

    ج) الکترودهای اندازه‌گیری (Electrodes)

    تغییرات مقاومت الکتریکی در نیمه‌هادی را اندازه‌گیری کرده و به یک مدار پردازشی ارسال می‌کنند.

    2Q==

    د) مدار پردازش سیگنال

    سیگنال الکتریکی دریافتی از سنسور را تقویت و تحلیل می‌کند.
    می‌تواند خروجی را به صورت هشدار، سیگنال آنالوگ یا دیجیتال ارائه دهد.

    2. عملکرد دتکتور گاز نیمه‌هادی

    9k=

    مرحله ۱: جذب گاز توسط ماده نیمه‌هادی

    وقتی مولکول‌های گاز روی سطح نیمه‌هادی جذب می‌شوند، با اکسیژن جذب‌شده در سطح تعامل می‌کنند.

    مرحله ۲: تغییر در هدایت الکتریکی

    این تعامل باعث کاهش یا افزایش تعداد حامل‌های بار الکتریکیدر نیمه‌هادی می‌شود.
    در نتیجه، مقاومت الکتریکی حسگر تغییر می‌کند.

    9k=

    مرحله ۳: اندازه‌گیری و پردازش سیگنال

    مدار الکترونیکی تغییرات مقاومت را به سیگنال الکتریکی قابل اندازه‌گیری تبدیل می‌کند.
    با تحلیل این سیگنال، نوع و غلظت گاز تشخیص داده می‌شود.

    2Q==

    3. انواع دتکتورهای گاز نیمه‌هادی بر اساس عملکرد

    الف) دتکتورهای گاز کاهش‌دهنده (Reducing Gas Detectors)

    برای گازهایی مانند مونوکسید کربن (CO)، متان (CH)، هیدروژن (H) و سایر هیدروکربن‌ها استفاده می‌شوند.
    گاز با اکسیژن سطح حسگر واکنش داده و باعث کاهش مقاومت الکتریکی می‌شود.

    ب) دتکتورهای گاز اکسیدکننده (Oxidizing Gas Detectors)

    برای گازهایی مانند دی‌اکسید نیتروژن (NO) و ازن (O) استفاده می‌شوند.
    این گازها باعث افزایش مقاومت الکتریکی سنسور می‌شوند.

    4. مزایا و معایب دتکتورهای گاز نیمه‌هادی

    مزایا:

    حساسیت بالا نسبت به بسیاری از گازها
    پاسخ سریع به تغییرات غلظت گاز
    طول عمر زیاد (۵ تا ۱۰ سال)
    قیمت مناسب‌تر نسبت به برخی فناوری‌های پیشرفته‌تر (مانند سنسورهای مادون قرمز)

    معایب:

    وابسته به دما و رطوبت محیط (افزایش دما یا رطوبت می‌تواند عملکرد را تغییر دهد)
    مصرف انرژی نسبتاً بالا (به دلیل نیاز به المنت گرمایشی)
    عدم تفکیک گازهای مختلف (برای تشخیص دقیق‌تر نیاز به الگوریتم‌های پردازش پیشرفته یا سنسورهای ترکیبی دارد)

    5. کاربردهای دتکتور گاز نیمه‌هادی

    سیستم‌های اعلام حریق: برای تشخیص گازهای قابل اشتعال مانند متان و پروپان
    کنترل کیفیت هوا: در ساختمان‌های هوشمند و محیط‌های صنعتی
    خودروها: برای تشخیص نشتی گاز و کنترل انتشار آلاینده‌ها
    صنایع شیمیایی و پتروشیمی: نظارت بر گازهای سمی و خطرناک

    نتیجه‌گیری

    دتکتورهای گاز نیمه‌هادی به دلیل سادگی، هزینه مناسب و حساسیت بالا، یکی از پرکاربردترین حسگرهای گازی هستند. با این حال، برای افزایش دقت و کاهش تأثیرات محیطی، اغلب در ترکیب با حسگرهای دیگر یا الگوریتم‌های پردازش داده مورد استفاده قرار می‌گیرند.

  • دتکتور شعله در استاندارد NFPA 86

    استاندارد NFPA 86 یکی از مهم‌ترین استانداردهای ایمنی صنعتی است که با هدف کاهش خطرات ناشی از آتش‌سوزی، انفجار و سایر حوادث در کوره‌ها و اجاق‌های صنعتی تدوین شده است. این استاندارد برای مهندسان، اپراتورها و مدیران ایمنی در صنایعی مانند متالورژی، سرامیک و شیمیایی اهمیت حیاتی دارد. با افزایش میزان تولید صنعتی و استفاده از فرآیندهای حرارتی در صنایع مختلف، رعایت این استانداردها برای تضمین ایمنی و بهینه‌سازی عملکرد تجهیزات ضروری است. این استاندارد نه‌تنها در ایمنی نقش دارد، بلکه موجب افزایش بهره‌وری و کاهش هزینه‌های تعمیرات و نگهداری نیز می‌شود.

    دتکتور شعله و عملکرد آن

    9k=

    دتکتور شعله، یکی از اصلی‌ترین تجهیزات ایمنی در فرآیندهای حرارتی صنعتی است که وظیفه شناسایی وجود شعله در محیط را بر عهده دارد. این تجهیزات به‌طور مستقیم در کاهش ریسک آتش‌سوزی و جلوگیری از انفجار نقش دارند. عدم استفاده از دتکتورهای مناسب یا نصب نادرست آن‌ها می‌تواند خسارات جبران‌ناپذیری به بار آورد.

    اهمیت دتکتور شعله

    دتکتورهای شعله برای تشخیص حضور آتش از فناوری‌های مختلفی استفاده می‌کنند که از جمله آن‌ها می‌توان به موارد زیر اشاره کرد:

    دتکتور فرابنفش (UV): این سنسورها برای شناسایی تابش فرابنفش ناشی از شعله‌های آتش به کار می‌روند.
    دتکتور مادون قرمز (IR): این سنسورها تغییرات انرژی مادون قرمز ساطع‌شده از شعله را شناسایی می‌کنند.
    دتکتور ترکیبی UV/IR: ترکیب این دو فناوری می‌تواند میزان تشخیص دقیق‌تر و کاهش هشدارهای کاذب را به همراه داشته باشد.
    دتکتور مرئی (VIS): برخی دتکتورها از حسگرهای نوری استفاده می‌کنند که در محدوده نور مرئی کار می‌کنند.

    استانداردهای نصب دتکتور شعله

    براساس بندهای 8.2.2 و 8.2.5 استاندارد NFPA 86، نصب دتکتورهای شعله باید مطابق دستورالعمل‌های سازنده و استانداردهای بین‌المللی باشد. در نظر گرفتن موارد زیر می‌تواند از بروز مشکلات جلوگیری کند:

    نصب در مکان مناسب: دتکتور باید در نقطه‌ای قرار گیرد که بیشترین میدان دید را نسبت به شعله‌های احتمالی داشته باشد.
    نگهداری و کالیبراسیون: تجهیزات باید به‌طور دوره‌ای بررسی و تنظیم شوند تا از دقت عملکرد آن‌ها اطمینان حاصل شود.
    پیشگیری از هشدارهای کاذب: برخی از منابع نوری، جرقه‌ها یا بازتاب‌های ناخواسته می‌توانند باعث هشدارهای اشتباه شوند، لذا باید محل نصب با دقت انتخاب شود.

    عملکرد سیستم‌های ایمنی احتراق

    2Q==

    علاوه بر دتکتورهای شعله، سیستم‌های ایمنی احتراق (Combustion Safeguard Systems) نیز نقش مهمی در حفاظت از فرآیندهای حرارتی دارند. این سیستم‌ها شامل مجموعه‌ای از تجهیزات نظارتی، شیرهای ایمنی و سیستم‌های کنترلی هستند که با تشخیص تغییرات غیرعادی در احتراق، عملکرد دستگاه را کنترل می‌کنند.

    اجزای کلیدی سیستم‌های ایمنی احتراق

    کنترلر احتراق: وظیفه دارد وضعیت شعله و عملکرد سوخت را بررسی کند.
    شیر قطع ایمنی (SSOV): این شیرها در صورت از دست رفتن شعله، جریان سوخت را متوقف می‌کنند.
    حسگرهای فشار و دما: برای اطمینان از تعادل مناسب فشار و دمای گاز یا مایع سوختی استفاده می‌شوند.

    نقش سنسورهای فرابنفش در تشخیص شعله

    سنسورهای فرابنفش (UV Sensors) یکی از ابزارهای مهم در تشخیص شعله‌های آتش هستند، اما ممکن است در اثر خرابی، دیگر قادر به تشخیص خاموش شدن شعله نباشند. به همین دلیل، استاندارد NFPA 86 توصیه می‌کند که این سنسورها دارای قابلیت خودبررسی‌کننده (Self-Checking UV Detectors) باشند یا به‌صورت دوره‌ای آزمایش شوند.

    تنظیمات دمایی و تهویه ایمنی در کوره‌ها

    Z

    کنترل دمای سوخت

    در فرآیندهای صنعتی که از سوخت‌های مایع مانند نفت یا گازوئیل استفاده می‌شود، کنترل دمای سوخت برای جلوگیری از مشکلاتی نظیر افزایش ویسکوزیته یا تبخیر ناگهانی، ضروری است.
    دمای سوخت باید در محدوده‌ای باشد که موجب احتراق یکنواخت و جلوگیری از خاموش شدن ناگهانی شعله شود.

    تنظیم محدودیت دمای اضافی

    نقطه تنظیم دمای اضافی باید بر اساس توصیه‌های سازنده تنظیم شود تا از رسیدن مواد قابل احتراق به دمای خوداشتعالی جلوگیری شود.
    این دما نباید از محدوده‌ای که می‌تواند باعث خرابی تجهیزات شود، فراتر رود.

    اهمیت تهویه ایمنی

    در صورت افزایش دمای کوره، جریان هوای خروجی کاهش یافته و احتمال تجمع گازهای اشتعال‌پذیر افزایش می‌یابد.
    کاهش تهویه مناسب می‌تواند موجب انفجار گازهای فرار شده و باعث بروز حوادث جدی شود.

    Z

    استفاده از PLC در نظارت بر دمای کوره‌ها

    امروزه استفاده از PLC (Programmable Logic Controller) برای نظارت بر دما و عملکرد تجهیزات صنعتی به‌شدت رایج شده است. این سیستم‌ها می‌توانند به‌صورت خودکار وضعیت سنسورها و تجهیزات ایمنی را تحلیل کرده و در صورت بروز هرگونه ناهنجاری، اقدامات لازم را انجام دهند. مزایای استفاده از PLC شامل:

    پایش دائمی و ارسال هشدارهای زودهنگام
    کاهش خطای انسانی در نظارت بر تجهیزات
    امکان کنترل و تنظیم خودکار دما و فشار

    نکات ایمنی در زمان قطع برق

    استاندارد NFPA 86 تأکید دارد که مدارهای الکتریکی مرتبط با فرآیندهای احتراقی، در شرایط اضطراری باید به‌صورت خودکار یا دستی قطع شوند. این موارد شامل:

    خرابی‌های سیستم که منجر به شرایط خطرناک شود.
    افزایش غیرقابل‌کنترل دما که تهدیدی برای ایمنی تجهیزات و محیط اطراف باشد.
    قطع ناگهانی برق که می‌تواند باعث از کار افتادن سیستم‌های ایمنی و احتراقی شود.

    9k=

    نتیجه‌گیری

    استاندارد NFPA 86 مجموعه‌ای از دستورالعمل‌های مهم برای ایمنی فرآیندهای صنعتی ارائه می‌دهد. استفاده صحیح از دتکتورهای شعله، سیستم‌های ایمنی احتراق، کنترل دمای کوره و تهویه مناسبمی‌تواند خطرات ناشی از آتش‌سوزی و انفجار را کاهش دهد. علاوه بر این، نظارت هوشمند با استفاده از PLC و رعایت الزامات نصب و نگهداری، نقش مهمی در بهبود عملکرد تجهیزات و افزایش طول عمر آن‌ها دارد.

    توصیه‌های نهایی:

    دتکتورهای شعله باید در مکان‌های مناسب نصب شوند تا دید کافی نسبت به شعله داشته باشند.
    سنسورهای فرابنفش باید دارای قابلیت خودبررسی باشند یا به‌صورت دوره‌ای تست شوند.
    سیستم‌های تهویه ایمنی باید همواره عملکرد مناسبی داشته باشند تا از تجمع گازهای خطرناک جلوگیری شود.
    در موارد افزایش دمای غیرمجاز، سیستم‌های کنترلی باید به‌صورت خودکار عمل کنند تا از خرابی یا حوادث ناگوار جلوگیری شود.
    نظارت مستمر بر عملکرد تجهیزات با استفاده از PLC باعث افزایش بهره‌وری و کاهش هزینه‌های نگهداری می‌شود.

    با رعایت این موارد، می‌توان ایمنی در محیط‌های صنعتی را بهبود بخشید و از وقوع حوادث جلوگیری کرد.

  • بررسی عملکرد دتکتور دود نوری تصویری OSID در محیط‌های چالش‌برانگیز

    چکیده

    دتکتور دود نوری تصویری (OSID) یکی از نوآورانه‌ترین فناوری‌های کشف دود در فضاهای باز و شرایط محیطی دشوار به شمار می‌رود. این سیستم با استفاده از طول‌موج‌های دوگانه (UV و IR) و فناوری تصویر‌برداری، قادر است به دقت بین دود واقعی و ذرات مزاحم تمایز قائل شود. در این مقاله، عملکرد OSID در محیط‌های پر گرد‌و‌غبار، مرطوب، دارای میعان، مه، نور خورشید مستقیم، و نوسانات دمایی بررسی شده و راهکارهای فنی جهت بهبود عملکرد در این شرایط ارائه می‌شود.

     

    ۱. مقدمه

    دتکتورهای دود در فضاهای باز و صنعتی اغلب با چالش‌هایی مانند گرد و غبار، رطوبت بالا، تابش نور مستقیم خورشید و نوسانات دمایی مواجه هستند. فناوری OSID به عنوان یک گزینه مناسب برای چنین محیط‌هایی، با بهره‌گیری از امواج مادون قرمز و فرابنفش و استفاده از تصویربرداری نوری، راهکاری نوین برای کاهش آلارم‌های کاذب ارائه می‌دهد.

     

    ۲. اصول عملکرد طول‌موج دوگانه

    WhatsApp Image 2025 09 27 at 11.52.20 PM

    OSID با ارسال و دریافت هم‌زمان امواج نوری با دو طول‌موج متفاوت (UV و IR)، قادر است به‌طور مؤثر اندازه ذرات را تشخیص دهد.

    • UV: تأثیرگذار بر ذرات ریز و درشت
    • IR: عمدتاً حساس به ذرات بزرگ‌تر

    این روش باعث می‌شود سیگنال‌های ناشی از ذرات مزاحم مانند گرد و غبار موقتی حذف شده و تنها دود واقعی تشخیص داده شود.

     

    ۳. اصطلاحات کلیدی

    • راه‌اندازی کامل (Full Commissioning): ثبت موقعیت‌ها و سطوح مرجع اولیه
    • راه‌اندازی جزئی: استفاده مجدد از اطلاعات ذخیره‌شده بدون بازتنظیم مرجع
    • خطای ورود جسم: انسداد ناگهانی شدید
    • خطای تضعیف: کاهش سیگنال به‌دلیل ذرات محیطی
    • تصویر ناپایدار: ناشی از لرزش یا انسداد مکرر

     

    ۴. خطاهای رایج در سیستم OSID

    • انسداد کامل: ناشی از اشیای بزرگ مانند لیفتراک، بنر، نردبان
    • تضعیف متوسط: ناشی از گرد و غبار، بخار آب، مه
    • نابسامانی تصویر: اغلب به دلیل ارتعاش شدید، تغییرات شدید دما یا جریان هوای گرم

     

    ۵. استقرار ایمن در محیط‌های دشوار

    ۵.۱ محیط‌های پرگرد‌و‌غبار

    • در محیط‌هایی با غبار موقت: استفاده از حالت صنعتی و فعال‌سازی فیلتر غبار توصیه می‌شود.
    • در محیط‌های با غبار دائم: استفاده از سیستم OSID توصیه نمی‌شود؛ چون خطای مداوم در سطح مرجع منجر به نارضایتی کاربران می‌شود.

    ۵.۲ محیط‌های مرطوب

    WhatsApp Image 2025 09 27 at 11.52.21 PM

    • مه پاش (Water Mist): اگر به‌صورت مقطعی باشد، مشکلی ایجاد نمی‌کند؛ اما اگر دائمی و متراکم باشد، باعث تضعیف سیگنال می‌شود.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM1
    • میعان (Condensation): در صورت وقوع، لنزها باید با گرم‌کن محافظت شوند.
    • WhatsApp Image 2025 09 27 at 11.52.21 PM2
    • مه (Fog): مه شدید و یکنواخت باعث آلارم‌های کاذب می‌شود، به‌ویژه در فضاهای نیمه‌باز.

    WhatsApp Image 2025 09 27 at 11.52.22 PM

    ۶. تجهیزات محافظتی

    WhatsApp Image 2025 09 27 at 11.52.22 PM1

    • پوشش IP66: برای محافظت در برابر رطوبت و گرد‌و‌غبار
    • قفس محافظ فلزی: برای جلوگیری از آسیب فیزیکی در محیط‌های ورزشی یا عمومی
    • WhatsApp Image 2025 09 27 at 11.52.23 PM
    • سایبان نوری: کاهش اشباع ناشی از نور مستقیم خورشید
    • WhatsApp Image 2025 09 27 at 11.52.23 PM1
    • میخ ضد پرنده: جلوگیری از نشستن پرندگان و آلودگی لنزها

    WhatsApp Image 2025 09 27 at 11.52.24 PM

     

    ۷. آلارم‌های کاذب استثنایی

    با وجود سیستم فیلترینگ دوگانه، در برخی شرایط خاص مانند دود اگزوز یا ذرات معلق مشابه دود ممکن است آلارم کاذب ایجاد شود. با این حال، ناحیه اطمینان در فناوری OSID بسیار گسترده‌تر از بیم‌دتکتورهای سنتی است.

    WhatsApp Image 2025 09 27 at 11.52.24 PM1

    ۸. جمع‌بندی و توصیه‌ها

    • در محیط‌هایی با آلودگی مستمر بالای ۲۰٪، استفاده از سیستم OSID توصیه نمی‌شود.
    • نصب در شرایط تمیز و بدون غبار، کلیدی برای عملکرد دقیق سیستم است.
    • برای محیط‌های بسیار دشوار، دتکتورهای مکشی (ASD) گزینه مناسب‌تری هستند.
    • تست‌های مقدماتی و استفاده از نرم‌افزار پایش‌گر داخلی برای ارزیابی عملکرد توصیه می‌شود.

     

  • طراحی سیستم های اسپرینکلر

    • ترجمه و تدوین : مرکز اطلاعات کامپیوتری شرکت اسپین الکتریک

      فصل 19 از NFPA-13

      فصل ۱۹: رویکردهای طراحی

      ۱۹.۱ کلیات:
      از فصل ۱۹ برای تعیین رویکردهای طراحی استفاده خواهد شد.

      ۱۹.۲ رویکردهای عمومی طراحی:
      الزامات بخش ۱۹.۲ برای تمامی سیستم‌های اسپرینکلر، مگر در مواردی که توسط بخشی خاص از فصل ۱۹ یا فصل ۲۰ اصلاح شده باشد، اعمال می‌گردد.

      ۱۹.۲.۱
      حفاظت از یک ساختمان یا بخشی از آن مجاز است که طبق هر یک از رویکردهای طراحی قابل‌اعمال، به صلاحدید طراح انجام گیرد.

      ۱۹.۲.۲ خطرات مجاور یا روش‌های طراحی:*
      برای ساختمان‌هایی که دارای دو یا چند خطر یا روش طراحی مجاور به یکدیگر هستند، موارد زیر اعمال می‌گردد:

      1. اگر نواحی مورد نظر به‌صورت فیزیکی توسط پرده دود، مانع یا دیواری جدا نشده باشند که بتواند از انتقال حرارت ناشی از آتش در یک ناحیه به نحوی جلوگیری کند که از فعال شدن اسپرینکلرها در ناحیه مجاور جلوگیری کند، الزامات مربوط به طراحی با شدت بیشتر باید به‌اندازه ۱۵ فوت (۴٫۶ متر) فراتر از مرز آن ناحیه گسترش یابد.
      2. الزامات بند (۱) زمانی اعمال نمی‌شود که نواحی با یکی از موارد زیر از هم جدا شده باشند:
      o پرده دود یا مانعی که در بالای راهرو قرار دارد، مشروط بر اینکه راهرو دارای حداقل ۲ فوت (۶۰۰ میلی‌متر) جداسازی افقی از خطر مجاور در هر طرف باشد.
      o دیواری که قادر به جلوگیری از انتقال حرارت از یک ناحیه به ناحیه مجاور و در نتیجه ممانعت از فعال شدن اسپرینکلرهای آن باشد.
      3. الزامات بند (۱) همچنین در مورد گسترش معیارهای طراحی با شدت بیشتر از یک سطح سقف بالاتر به زیر سقف پایین‌تر، زمانی که اختلاف ارتفاع بین دو سطح سقف حداقل ۲ فوت (۶۰۰ میلی‌متر) باشد و این تفاوت در بالای یک راهرو با حداقل ۲ فوت جداسازی افقی از خطر مجاور در هر طرف قرار گرفته باشد، اعمال نمی‌گردد.

      ۱۹.۲.۳
      برای سیستم‌هایی که به‌صورت هیدرولیکی محاسبه می‌شوند، کل نیازمندی‌های تأمین آب سیستم برای هر پایه طراحی باید مطابق با رویه‌های بخش ۲۷.۲، مگر در مواردی که در فصل ۱۹ یا ۲۰ اصلاح شده باشد، تعیین شود.

      ۱۹.۲.۴ تقاضای آب:

      ۱۹.۲.۴.۱*
      نیازمندی‌های تقاضای آب باید از طریق منابع زیر تعیین شود:

      1. رویکردهای کنترل آتش بر اساس خطر اشغال و طراحی‌های خاص در فصل ۱۹
      2. رویکردهای طراحی ذخیره‌سازی در فصل‌های ۲۰ تا ۲۵
      3. رویکردهای ویژه برای اشغال‌های خاص در فصل ۲۶

      ۱۹.۲.۴.۲*
      حداقل نیازمندی‌های تقاضای آب برای یک سیستم اسپرینکلر باید با افزودن میزان جریان مجاز شیلنگ آتش‌نشانی به تقاضای آب مورد نیاز اسپرینکلرها تعیین گردد.

      ۱۹.۲.۵ منابع تأمین آب:

      ۱۹.۲.۵.۱
      حداقل مقدار تأمین آب باید برای حداقل مدت زمان تعیین‌شده در فصل ۱۹ در دسترس باشد.

      ۱۹.۲.۵.۲*
      مخازن باید به گونه‌ای طراحی شوند که بتوانند تجهیزات تحت پوشش خود را تأمین کنند.

      ۱۹.۲.۵.۳*
      پمپ‌ها نیز باید به گونه‌ای طراحی شوند که بتوانند تجهیزات مرتبط خود را تأمین نمایند.

      19.2.6 جریان مجاز شیلنگ آتش‌نشانی (Hose Allowance)

      19.2.6.1 سیستم‌های دارای طبقه‌بندی خطر متعدد:
      برای سیستم‌هایی که شامل چند نوع طبقه‌بندی خطر هستند، جریان مجاز شیلنگ و مدت‌زمان تأمین آب باید مطابق یکی از روش‌های زیر تعیین شود:

      1. الزامات تأمین آب برای بالاترین طبقه‌بندی خطر در سیستم مورد استفاده قرار گیرد.
      2. الزامات تأمین آب برای هر طبقه‌بندی خطر به‌صورت جداگانه و بر اساس ناحیه طراحی مربوط به همان خطر در محاسبات استفاده شود.
      3. اگر طبقه‌بندی خطر بالاتر تنها در اتاق‌هایی مجزا با مساحت کمتر یا مساوی ۴۰۰ فوت مربع (۳۷ مترمربع) باشد و این اتاق‌ها مجاور هم نباشند، الزامات تأمین آب برای کاربری اصلی (principal occupancy) برای سایر بخش‌های سیستم کفایت می‌کند. (یادآوری: این بند دارای تفسیر فنی می‌باشد)

      19.2.6.2*
      مقدار جریان آب مجاز برای شیلنگ‌های خارجی باید به نیازمندی‌های اسپرینکلر در نقطه اتصال به شبکه آب شهری یا نزدیک‌ترین هیدرانت (شیر آتش‌نشانی خصوصی) افزوده شود، هرکدام که به رایزر سیستم نزدیک‌تر باشند.

      19.2.6.3
      در مواردی که استفاده از اتصالات داخلی شیلنگ پیش‌بینی یا الزامی باشد، موارد زیر اعمال می‌گردد:

      1. برای نصب یک اتصال شیلنگ، میزان ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) به تقاضای آب سیستم اسپرینکلر افزوده می‌شود.
      2. برای نصب چند اتصال شیلنگ، میزان ۱۰۰ گالن بر دقیقه (380 لیتر بر دقیقه) به تقاضای آب افزوده می‌شود.
      3. این مقدار باید به‌صورت افزایشی از ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) در نظر گرفته شود، به‌طوری‌که هر مرحله از دورترین نقطه اتصال شیلنگ محاسبه شده و در فشار موردنیاز سیستم در آن نقطه اضافه گردد.

      19.2.6.3.1
      در صورتی که سیستم به‌صورت ترکیبی از اسپرینکلر و رایزر آتش‌نشانی(کلاس I یا III) باشد و ساختمان به‌طور کامل طبق NFPA 13 اسپرینکلر شده باشد، هیچ نیازی به در نظر گرفتن تقاضای داخلی شیلنگ در خروجی‌های رایزر آتش‌نشانی نیست.

      19.2.6.4*
      زمانی‌که شیر شیلنگ برای استفاده واحد آتش‌نشانی به رایزر سیستم اسپرینکلر از نوع تر (wet pipe) متصل شده باشد، مطابق بند 16.15.2، موارد زیر اعمال می‌شود:

      1. نیازی نیست تقاضای اسپرینکلر به تقاضای رایزر آتش‌نشانی مطابقNFPA 14 افزوده شود.
      2. در صورتی که مجموع تقاضای اسپرینکلر و جریان مجاز شیلنگ طبق جدول 19.3.3.1.2 از الزامات NFPA 14 بیشتر باشد، مقدار بیشتر باید ملاک قرار گیرد.
      3. برای ساختمان‌هایی که تنها بخشی از آن‌ها اسپرینکلر شده، تقاضای اسپرینکلر (بدون احتساب جریان مجاز شیلنگ) طبق شکل 19.3.3.1.1 باید به الزامات مندرج در NFPA 14 اضافه گردد.

      19.2.7 فن‌ های حجیم با سرعت پایین (HVLS – High Volume Low Speed Fans)*

      نصب فن‌های HVLS در ساختمان‌هایی که مجهز به سیستم اسپرینکلر (از جمله اسپرینکلرهای پاسخ بسیار سریع برای فضاهای ذخیره‌سازی – ESFR) هستند، باید مطابق با موارد زیر انجام شود:

      1. قطر حداکثری فن نباید بیش از ۲۴ فوت (۷٫۳ متر) باشد.
      2. فن باید تقریباً در مرکز بین چهار اسپرینکلر مجاور قرار گیرد.
      3. فاصله عمودی بین فن HVLS و پخش‌کننده اسپرینکلر (deflector) باید حداقل ۳ فوت (۰٫۹ متر) باشد.

      19.2.7 – فن‌های HVLS

      بند (4):
      تمامی فن‌های HVLS باید به‌گونه‌ای در مدار سیستم قرار گیرند که به‌محض فعال شدن هشدار جریان آب (waterflow alarm) بلافاصله خاموش شوند.
      در مواردی که ساختمان به سیستم اعلام حریق مجهز باشد، این اینترلاک (مدار قطع خودکار) باید مطابق با الزامات استاندارد NFPA 72 اجرا گردد.

      19.3 رویکرد کنترل حریق بر اساس طبقه‌بندی خطر اشغال برای اسپرینکلرهای پاششی

      19.3.1 کلیات

      19.3.1.1*
      نیازمندی‌های تأمین آب برای این نوع سیستم‌ها باید از یکی از دو روش زیر تعیین شود:

      روش جدول لوله‌کشی (Pipe Schedule Method) طبق بند 19.3.2
      روش محاسبات هیدرولیکی (Hydraulic Calculation Method) طبق بند 19.3.3

      19.3.1.2 طبقه‌بندی نوع اشغال:

      19.3.1.2.1
      طبقه‌بندی نوع اشغال در این استاندارد، فقط مربوط به نصب اسپرینکلرها و تأمین آب آن‌ها است و کاربرد عمومی برای تعیین نوع خطرات ساختمانی ندارد.
      19.3.1.2.2
      طبقه‌بندی اشغال نباید به‌عنوان یک طبقه‌بندی کلی خطرات حریق در ساختمان استفاده شود.
      19.3.1.2.3
      کاربری‌ها یا بخش‌هایی از کاربری‌ها باید بر اساس موارد زیرطبقه‌بندی شوند:
      o مقدار و قابلیت اشتعال محتویات
      o نرخ آزادسازی حرارت مورد انتظار
      o کل پتانسیل آزادسازی انرژی
      o ارتفاع پشته‌سازی مواد
      o وجود مایعات قابل اشتعال یا احتراق
      این عوامل باید طبق تعاریف بندهای 4.3.2 تا 4.3.7 در نظر گرفته شوند.
      19.3.1.2.4 طبقه‌بندی‌ها به شرح زیر هستند:
      1. خطر سبک (Light Hazard)
      2. خطر معمولی – گروه ۱ و ۲ (Ordinary Hazard Group 1 and 2)
      3. خطر بالا – گروه ۱ و ۲ (Extra Hazard Group 1 and 2)
      4. خطرات خاص اشغالی (Special Occupancy Hazards)مراجعه شود به فصل ۲۶

      19.3.2 نیازمندی‌های تأمین آب — روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.1
      برای تعیین حداقل نیازمندی تأمین آب در کاربری‌های خطر سبک و خطر معمولی که سیستم آن‌ها طبق جداول اندازه‌گذاری لوله‌های مندرج در بخش 27.5 طراحی شده، باید از جدول 19.3.2.1 استفاده شود.

      19.3.2.2
      برای کاربری‌های خطر بالا (Extra Hazard)، الزامات فشار و جریان باید صرفاً بر اساس روش محاسبات هیدرولیکی بند 19.3.3 تعیین شود.

      19.3.2.3
      استفاده از روش جدول لوله‌کشی مجاز است فقط در موارد زیر:

      1. افزایش یا اصلاح در سیستم‌های موجودی که بر اساس جدول لوله‌کشی بخش 27.5 طراحی شده‌اند.
      2. افزایش یا اصلاح در سیستم‌های موجود با طبقه‌بندی خطر بالا که با جدول لوله‌کشی طراحی شده‌اند.
      3. سیستم‌های جدیدی با مساحت حداکثر ۵۰۰۰ فوت مربع (۴۶۵مترمربع)

      2Q==

      19.3.2 – نیازمندی‌های تأمین آب – روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.3 بند 4
      سیستم‌های جدیدی که مساحت آن‌ها بیش از ۵۰۰۰ فوت مربع (۴۶۵متر مربع) باشد، در صورتی می‌توانند از جدول 19.3.2.1 استفاده کنند که مقادیر جریان مورد نیاز در آن جدول در حداقل فشار باقیمانده‌ی ۵۰psi (معادل ۳.۴ بار) در بالاترین تراز اسپرینکلر فراهم باشند.

      19.3.2.4
      جهت تعیین حداقل نیازمندی‌های تأمین آب، از جدول 19.3.2.1 استفاده می‌شود.

      19.3.2.5
      مقادیر مدت زمان پایین‌تر در جدول 19.3.2.1 تنها در صورتی قابل قبول هستند که:

      تجهیزات هشدار جریان آب (waterflow alarm)
      و تجهیزات نظارتی (supervisory devices)
      به‌صورت برقی (electrically supervised) بوده
      و این نظارت توسط یک مرکز مورد تأیید و به‌طور دائمی تحت پایش انجام شود.

      19.3.2.6 – فشار باقیمانده (Residual Pressure):

      19.3.2.6.1
      فشار باقیمانده مندرج در جدول 19.3.2.1 باید در تراز بالاترین اسپرینکلر فراهم باشد.

      19.3.2.6.2 افت فشار ناشی از شیرهای برگشت‌ناپذیر (Backflow Prevention Valves):

      19.3.2.6.2.1
      چنانچه در سیستم‌های طراحی شده با جدول لوله‌کشی از شیر برگشت‌ناپذیر استفاده شود، افت فشار ناشی از این شیر باید در محاسبات فشار باقیمانده لحاظ گردد.
      19.3.2.6.2.2
      میزان افت فشار ایجادشده توسط این شیر (بر حسب psi یا bar)، باید به افت فشار ناشی از ارتفاع و فشار باقیمانده مورد نیاز در ردیف بالایی اسپرینکلرها اضافه گردد تا فشار کلی مورد نیاز در محل تأمین آب مشخص شود.

      19.3.2.7
      استفاده از مقادیر جریان پایین‌تر در جدول 19.3.2.1 تنها زمانی مجاز است که:

      ساختمان از مصالح غیرقابل احتراق (noncombustible) ساخته شده باشد
      یا
      نواحی بالقوه‌ی آتش‌سوزی، با توجه به اندازه‌ی ساختمان یا تقسیم‌بندی فضاها (compartmentation)، محدود شده باشند به‌گونه‌ای که هیچ ناحیه‌ی باز (open area) از مقادیر زیر تجاوز نکند:
      o ۳۰۰۰ فوت مربع (۲۸۰ متر مربع) برای کاربری با خطر سبک(Light Hazard)
      o ۴۰۰۰ فوت مربع (۳۷۰ متر مربع) برای کاربری با خطر معمولی (Ordinary Hazard)

      19.3.3 نیازمندی‌های تأمین آب – روش محاسبات هیدرولیکی(Hydraulic Calculation Methods)

      19.3.3.1 کلیات

      19.3.3.1.1
      نیازمندی تأمین آب اسپرینکلر باید تنها بر اساس یکی از روش‌های زیرو به صلاحدید طراح تعیین شود:

      1. منحنی چگالی/مساحت (Density/Area Curves) مطابق شکل 19.3.3.1.1 و روش بند 19.3.3.2
      2. اتاق دارای بیشترین بار آبی (Room Design Method) مطابق بند 19.3.3.3
      3. نواحی طراحی خاص (Special Design Areas) مطابق بند 19.3.3.4

      19.3.3.1.2
      حداقل تأمین آب باید برای مدت زمانی فراهم باشد که در جدول 19.3.3.1.2مشخص شده است.

      19.3.3.1.3
      مقادیر مدت زمان پایین‌تر در جدول مذکور فقط در صورت وجود نظارت برقی و پایش دائمی توسط یک مرکز مورد تأیید قابل قبول هستند.

      19.3.3.1.4 محدودیت‌ها در روش‌های چگالی/مساحت و طراحی اتاق:

      در صورتی که از روش چگالی/مساحت یا روش طراحی اتاق استفاده شود، الزامات زیر اعمال می‌گردد:

      (1)*
      برای کاربری‌های خطر سبک و معمولی، اگر ناحیه عملکرد اسپرینکلر کمتر از ۱۵۰۰ فوت مربع (۱۴۰ متر مربع) باشد، باید چگالی متناظر با ۱۵۰۰ فوت مربع استفاده شود.
      (2)
      برای کاربری‌های خطر بالا، اگر ناحیه عملکرد اسپرینکلر کمتر از ۲۵۰۰ فوت مربع (۲۳۰ متر مربع) باشد، باید چگالی متناظر با ۲۵۰۰ فوت مربع استفاده گردد.

      Z

      19.3.3.1.5 فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر
      19.3.3.1.5.1* هنگام استفاده از روش چگالی/مساحت یا طراحی اتاق، مگر اینکه الزامات بند 19.3.3.1.5.2 رعایت شده باشد، برای ساختمان‌هایی که دارای فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر هستند، همان‌طور که در بندهای 9.2.1 و 9.3.18 توصیف شده است، حداقل مساحت عملکرد اسپرینکلر برای آن بخش از ساختمان باید 3000 فوت مربع (280 متر مربع) باشد.
      (A) ناحیه طراحی 3000 فوت مربع (280 متر مربع) فقط باید به سیستم اسپرینکلر یا بخش‌هایی از سیستم اسپرینکلری که در مجاورت فضای پنهان قابل‌اشتعال واجد شرایط هستند، اعمال شود.
      (B) اصطلاح «مجاور» به هر سیستم اسپرینکلری که فضایی در بالا، پایین یا کنار فضای پنهان واجد شرایط را محافظت می‌کند اطلاق می‌شود، مگر در مواردی که مانعی با درجه مقاومت در برابر آتش معادل با مدت زمان تأمین آب، به‌طور کامل فضای پنهان را از ناحیه دارای اسپرینکلر جدا کرده باشد.

      19.3.3.1.5.2 فضاهای پنهان بدون اسپرینکلر زیر، نیاز به حداقل مساحت عملکرد اسپرینکلر برابر با 3000 فوت مربع (280 متر مربع) ندارند:
      (1) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با بار قابل‌اشتعال ناچیز که دسترسی به آن‌ها وجود ندارد. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (2) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با دسترسی محدود که اجازه اشغال یا ذخیره مواد قابل‌اشتعال را نمی‌دهند. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (3) فضاهای پنهان قابل‌اشتعال که به‌طور کامل با عایق غیرقابل‌اشتعال پر شده‌اند.
      (4)* در کاربری‌های خطر سبک یا معمول، جایی که سقف‌های غیرقابل‌اشتعال یا با قابلیت اشتعال محدود مستقیماً به پایین تیرهای چوبی توپر یا ساختارهای توپر با قابلیت اشتعال محدود یا غیرقابل‌اشتعال متصل شده‌اند، به‌گونه‌ای که فضاهای بسته بین تیرها ایجاد شود با حجم حداکثر 160 فوت مکعب (4.5 متر مکعب)، از جمله فضای زیر عایقی که مستقیماً روی تیرهای سقف یا درون آن‌ها قرار گرفته در یک فضای پنهان که در غیر این صورت دارای اسپرینکلر است.

      2Q==

      (5) فضاهای پنهان که در آن‌ها از مصالح سخت استفاده شده و سطوح در معرض دید با یکی از موارد زیر، در همان شکلی که در فضا نصب شده‌اند، مطابقت دارند:
      (a) مصالح سطحی دارای شاخص گسترش شعله برابر یا کمتر از 25 هستند و ثابت شده که این مصالح در آزمون مطابق با استاندارد ASTM E84 «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی» یا UL 723 «استاندارد آزمون ویژگی‌های احتراقی سطحی مصالح ساختمانی»، که به‌مدت 20 دقیقه اضافی در همان شکل نصب‌شده در فضا ادامه یافته، آتش را بیش از 10.5 فوت (3.2 متر) گسترش نمی‌دهند، یا
      (b) مصالح سطحی با الزامات ASTM E2768، «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی با مدت زمان طولانی (آزمون تونلی 30 دقیقه‌ای)» مطابقت دارند.

      (6) فضاهای پنهان که مصالح در معرض دید آن‌ها به‌طور کامل از چوب تیمارشده با مواد مقاوم در برابر حریق ساخته شده‌اند، مطابق تعریف NFPA 703.

      (7) فضاهای پنهان در بالای اتاق‌های کوچک مجزا که مساحت آن‌ها از 55 فوت مربع (5.1 متر مربع) بیشتر نیست.

      (8) مسیرهای عمودی عبور لوله (pipe chases) با مساحت کمتر از 10 فوت مربع (0.9 متر مربع)، به شرطی که در ساختمان‌های چندطبقه، این مسیرها در هر طبقه با استفاده از مصالح معادل ساختار کف، مسدودکننده حریق(firestopped) شده باشند و در صورتی که این مسیرهای لوله‌کشی فاقد منابع اشتعال باشند، لوله‌کشی از مصالح غیرقابل احتراق باشد و نفوذ لوله در هر طبقه به‌درستی آب‌بندی شده باشد.

      (9) ستون‌های خارجی با مساحت کمتر از 10 فوت مربع (0.9 متر مربع) که با تیرک‌ها یا تیرچه‌های چوبی شکل گرفته‌اند و سایبان‌های بیرونی را نگه می‌دارند، به شرطی که این سایبان‌ها به‌طور کامل با سیستم اسپرینکلر محافظت شده باشند.

      (10) فضاهای با خطر سبک یا معمولی که در آن‌ها سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود مستقیماً یا بر روی کانال‌های فلزی با عمق بیش از 1 اینچ (25 میلی‌متر) به پایین تیرچه‌های چوبی کامپوزیت متصل شده‌اند، به‌شرطی که کانال‌های تیرچه مجاور با مصالحی معادل تخته گچی ½ اینچ (13 میلی‌متر) به حجم‌هایی بیش از 160 فوت مکعب (4.5 متر مکعب) تقسیم‌بندی شده باشند و حداقل 3½ اینچ (90 میلی‌متر) عایق پتویی (batt insulation) در پایین کانال‌های تیرچه نصب شده باشد زمانی که سقف با استفاده از کانال‌های فلزی متصل شده باشد.

      (11) حفره‌ها درون فضاهای دیواری فاقد اسپرینکلر.

      19.3.3.2 روش چگالی/مساحت

      19.3.3.2.1 منبع آب
      19.3.3.2.1.1 الزامات منبع آب فقط برای اسپرینکلرها باید از نمودارهای چگالی/مساحت در شکل 19.3.3.1.1 یا از فصل 26 در مواردی که معیارهای چگالی/مساحت برای خطرات اشغال خاص مشخص شده‌اند، محاسبه شود.
      19.3.3.2.1.2 هنگام استفاده از شکل 19.3.3.1.1، محاسبات باید هر نقطه‌ای منفرد روی منحنی چگالی/مساحت مناسب را ارضا کند.
      19.3.3.2.1.3 هنگام استفاده از شکل 19.3.3.1.1، ضروری نیست که همه نقاط روی منحنی انتخاب‌شده ارضا شوند.

      19.3.3.2.2 اسپرینکلرها
      19.3.3.2.2.1 چگالی‌ها و مساحت‌های ارائه‌شده در شکل 19.3.3.1.1 فقط باید برای استفاده با اسپرینکلرهای اسپری باشد.
      19.3.3.2.2.2 استفاده از اسپرینکلرهای با واکنش سریع در اشغال‌های خطر زیاد یا دیگر اشغال‌هایی که دارای مقادیر قابل توجهی مایعات قابل اشتعال یا گردوغبارهای قابل احتراق هستند مجاز نیست.
      19.3.3.2.2.3 برای اسپرینکلرهای پوشش گسترده (extended coverage)، حداقل مساحت طراحی باید برابر با مساحت مربوط به خطر در شکل 19.3.3.1.1 یا مساحت محافظت‌شده توسط پنج اسپرینکلر، هرکدام که بیشتر است، باشد.
      19.3.3.2.2.4 اسپرینکلرهای پوشش گسترده باید دارای فهرست‌بندی و طراحی برای حداقل دبی مطابق با چگالی برای خطر مورد نظر طبق شکل 19.3.3.1.1 باشند.

      19.3.3.2.3 اسپرینکلرهای با واکنش سریع
      19.3.3.2.3.1 در مواردی که از اسپرینکلرهای با واکنش سریع فهرست‌شده، از جمله اسپرینکلرهای با پوشش گسترده و واکنش سریع، در سراسر یک سیستم یا بخشی از سیستمی که دارای مبنای طراحی هیدرولیکی یکسان است استفاده شود، مساحت عملکرد سیستم می‌تواند بدون تغییر در چگالی، کاهش یابد طبق آنچه در شکل 19.3.3.2.3.1 آمده است، به‌شرطی که همه شرایط زیر برآورده شوند:
      (1) سیستم لوله‌کشی مرطوب باشد
      (2) اشغال خطر سبک یا خطر معمولی باشد
      (3) ارتفاع سقف حداکثر 20 فوت (6.1 متر) باشد

      (4) هیچ فضای سقفیِ بدون محافظت مطابق با موارد مجاز در بندهای 10.2.9 و 11.2.8 نباید بیش از 32 فوت مربع (3.0 متر مربع) باشد.

      (5) هیچ ناحیه‌ای بدون محافظت در بالای سقف‌های ابری (cloud ceilings) مطابق با موارد مجاز در بند 9.2.7 نباید وجود داشته باشد.

      19.3.3.2.3.2 تعداد اسپرینکلرها در ناحیه طراحی نباید هرگز کمتر از پنج عدد باشد.

      19.3.3.2.3.3 در مواردی که از اسپرینکلرهای با واکنش سریع روی سقف یا بام شیب‌دار استفاده می‌شود، برای تعیین درصد کاهش ناحیه طراحی، حداکثر ارتفاع سقف یا بام باید لحاظ شود.

      19.3.3.2.4 سقف‌های شیب‌دار. در مواردی که از انواع زیر از اسپرینکلرها روی سقف‌های شیب‌دار با شیب بیش از 1 به 6 (افزایش 2 واحد در طول 12 واحد، معادل شیب 16.7 درصد) در کاربردهای غیر انباری استفاده می‌شود، ناحیه عملکرد سیستم باید بدون تغییر چگالی، 30 درصد افزایش یابد:

      (1) اسپرینکلرهای اسپری، شامل اسپرینکلرهای پوشش گسترده که طبق بند 11.2.1(4) فهرست شده‌اند، و اسپرینکلرهای با واکنش سریع
      (2) اسپرینکلرهای CMSA

      19.3.3.2.5 سیستم‌های خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف.* برای سیستم‌های لوله‌کشی خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف، ناحیه عملکرد اسپرینکلر باید بدون تغییر چگالی، 30 درصد افزایش یابد.

      19.3.3.2.6 اسپرینکلرهای دمای بالا. در مواردی که از اسپرینکلرهای دمای بالا برای اشغال‌های با خطر زیاد استفاده می‌شود، ناحیه عملکرد اسپرینکلر می‌تواند بدون تغییر چگالی، تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع).

      19.3.3.2.7 در مواردی که از اسپرینکلرهایی با ضریب دبی K-11.2 (160) یا بزرگ‌تر همراه با منحنی‌های طراحی مربوط به Extra Hazard Group 1 یا Extra Hazard Group 2 و مطابق با بند 19.3.3.1.1 استفاده می‌شود، ناحیه طراحی می‌تواند تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع)، بدون توجه به درجه حرارت اسپرینکلر.

      Z

      19.3.3.2.8* تعدیلات چندگانه
      19.3.3.2.8.1 هنگامی که تعدیلات چندگانه در ناحیه عملکرد باید مطابق با بندهای 19.3.3.2.3، 19.3.3.2.4، 19.3.3.2.5 یا 19.3.3.2.6 انجام گیرد، این تعدیلات باید به صورت مرکب بر پایه ناحیه عملکرد انتخاب‌شده اولیه از شکل 19.3.3.1.1 اعمال شوند.
      19.3.3.2.8.2 اگر ساختمان دارای فضاهای پنهان قابل احتراق و بدون اسپرینکلر باشد، قوانین بند 19.3.3.1.4 باید پس از انجام تمام اصلاحات دیگر اعمال شود.

      19.3.3.3 روش طراحی اتاق
      19.3.3.3.1* نیازمندی‌های تأمین آب برای تنها اسپرینکلرها باید بر پایه اتاقی که بیشترین تقاضا را ایجاد می‌کند، بنا شود.
      19.3.3.3.2 چگالی انتخاب‌شده باید از شکل 19.3.3.1.1 مطابق با طبقه‌بندی خطر اشغال و اندازه اتاق باشد.
      19.3.3.3.3 برای استفاده از روش طراحی اتاق، تمام اتاق‌ها باید دارای دیوارهایی با درجه مقاومت در برابر آتش برابر با مدت زمان تأمین آب ذکر شده در جدول 19.3.3.1.2 باشند.
      19.3.3.3.4 اگر اتاق کوچک‌تر از ناحیه مشخص‌شده در شکل 19.3.3.1.1 باشد، مفاد بندهای 19.3.3.1.4(1) و 19.3.3.1.4(2) باید اعمال شوند.
      19.3.3.3.5 حداقل حفاظت از بازشوها باید به صورت زیر باشد:
      (1) خطر سبک — درب‌های خودبسته‌شونده یا خودکار غیر مقاوم در برابر آتش.
      (2) خطر سبک بدون حفاظت از بازشو — در صورتی که بازشوها حفاظت نشده باشند، محاسبات باید شامل اسپرینکلرهای داخل اتاق به‌علاوه دو اسپرینکلر در فضای ارتباطی نزدیک‌ترین به هر بازشوی حفاظت‌نشده باشد، مگر اینکه فضای ارتباطی تنها دارای یک اسپرینکلر باشد که در این صورت محاسبات باید شامل عملکرد همان یک اسپرینکلر باشد. انتخاب اسپرینکلرهای اتاق و فضای ارتباطی که باید محاسبه شود، باید به گونه‌ای باشد که بیشترین تقاضای هیدرولیکی را تولید کند. برای اشغال‌های خطر سبک با بازشوهای بدون حفاظت در دیوارها، حداقل عمق پیشانی (lintel) برای بازشوها 8 اینچ (200 میلی‌متر) الزامی است و عرض بازشو نباید بیش از 8 فوت (2.4 متر) باشد. داشتن تنها یک بازشوی 36 اینچ (900 میلی‌متر) یا کمتر بدون پیشانی مجاز است، مشروط بر اینکه بازشوی دیگری به فضاهای مجاور وجود نداشته باشد.
      (3) خطر معمولی و خطر بالا — درب‌های خودبسته‌شونده یا خودکار با درجه مقاومت آتش مناسب برای محصورسازی.

      19.3.3.3.6 در صورتی که روش طراحی اتاق استفاده شود و ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای حفاظت‌شده طبق بند 19.3.3.3.5 محافظت می‌شود، حداکثر تعداد اسپرینکلرهایی که نیاز به محاسبه دارند پنج عدد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو خواهد بود.
      19.3.3.3.7 در صورتی که ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای بدون حفاظت در یک اشغال خطر سبک محافظت می‌شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای موجود در راهرو تا حداکثر پنج عدد باشد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو.

      19.3.3.4 نواحی طراحی ویژه
      19.3.3.4.1 در صورتی که ناحیه طراحی شامل یک شوت خدمات ساختمانی باشد که با رایزر جداگانه‌ای تغذیه می‌شود، حداکثر تعداد اسپرینکلرهایی که باید محاسبه شوند، سه عدد است، که هرکدام باید حداقل ۱۵ گالن در دقیقه (57 لیتر در دقیقه) تخلیه داشته باشند.
      19.3.3.4.2* در صورتی که ناحیه‌ای قرار است تنها توسط یک خط اسپرینکلر محافظت شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای روی خط تا حداکثر هفت عدد باشد.
      19.3.3.4.3 اسپرینکلرهای داخل کانال‌ها که در بخش‌های 8.9 و 9.3.9 توصیف شده‌اند، باید به‌گونه‌ای طراحی هیدرولیکی شوند که فشار تخلیه در هر اسپرینکلر حداقل ۷ psi (0.5 bar) باشد، در حالی که تمام اسپرینکلرهای داخل کانال در حال تخلیه هستند.
      19.3.3.4.4 برج‌های پله: برج‌های پله یا دیگر ساختارهایی با طبقات ناقص، اگر با رایزر مستقل لوله‌کشی شده باشند، از نظر اندازه لوله به‌عنوان یک ناحیه تلقی می‌شوند.

      19.4 رویکردهای طراحی ویژه
      19.4.1 اسپرینکلرهای مسکونی
      19.4.1.1* ناحیه طراحی باید شامل چهار اسپرینکلر مجاور باشد که بیشترین تقاضای هیدرولیکی را ایجاد می‌کنند.
      19.4.1.2* مگر اینکه الزامات بند 19.3.3.1.5.2 برای ساختمان‌هایی که دارای فضاهای پنهان قابل احتراق بدون اسپرینکلر هستند (طبق توصیف در بندهای 9.2.1 و 9.3.18) رعایت شده باشد، حداقل ناحیه طراحی عملکرد اسپرینکلر برای آن بخش از ساختمان باید شامل هشت اسپرینکلر باشد.
      19.4.1.2.1* ناحیه طراحی شامل هشت اسپرینکلر فقط باید برای بخش‌هایی از اسپرینکلرهای مسکونی اعمال شود که در مجاورت فضای پنهان قابل احتراق واجد شرایط قرار دارند.
      19.4.1.2.2 واژه «مجاور» شامل هر سیستم اسپرینکلری می‌شود که فضایی را در بالا، پایین، یا کنار فضای پنهان محافظت می‌کند، مگر آنکه مانعی با درجه مقاومت در برابر آتش معادل حداقل مدت زمان تأمین آب، فضای پنهان را به‌طور کامل از ناحیه دارای اسپرینکلر جدا کرده باشد.
      19.4.1.3 مگر اینکه الزامات بند 19.4.1.4 رعایت شده باشد، حداقل دبی مورد نیاز از هر اسپرینکلر در ناحیه طراحی باید بزرگ‌تر از مقادیر زیر باشد:
      (1) طبق حداقل نرخ جریان ذکر شده در لیستینگ اسپرینکلر
      (2) در اتاق‌ها یا فضاهایی بزرگ‌تر از 800 فوت مربع (74 متر مربع)، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی ناحیه طراحی، طبق مفاد بند 9.5.2.1
      (3) در اتاق‌ها یا فضاهایی با 800 فوت مربع (74 متر مربع) یا کمتر، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی سطح اتاق یا فضا با استفاده از مساحت اتاق تقسیم بر تعداد اسپرینکلرهای موجود در آن

      19.4.1.4 برای تغییرات یا افزودن به سیستم‌های موجود مجهز به اسپرینکلرهای مسکونی، معیارهای دبی لیست‌شده کمتر از 0.1 gpm/ft² (4.1 mm/min) مجاز است.
      19.4.1.4.1 در مواردی که اسپرینکلرهای مسکونی تولیدشده پیش از سال 2003 که دیگر توسط تولیدکننده عرضه نمی‌شوند تعویض می‌گردند، و این اسپرینکلرها با چگالی طراحی کمتر از 0.05 gpm/ft² (2.04 mm/min) نصب شده‌اند، استفاده از اسپرینکلر مسکونی با ضریب K معادل (±5 درصد) مجاز است، مشروط بر اینکه سطح پوشش فعلی لیست‌شده برای اسپرینکلر جایگزین تجاوز نکند.

      19.4.1.5 در نواحی مانند اتاق زیر شیروانی، زیرزمین‌ها، یا سایر انواع کاربری‌هایی که خارج از واحدهای مسکونی اما درون همان سازه قرار دارند، این نواحی باید به‌عنوان مبنای طراحی جداگانه طبق بخش 19.2 محافظت شوند.
      19.4.1.6 الزامات اختصاصی برای سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق الزامات کاربری خطر کم(light hazard) در جدول 19.3.3.1.2 باشد.

      19.4.2 حفاظت در برابر مواجهه   (Exposure Protection)

      19.4.2.1* لوله‌کشی باید طبق بخش 27.2 به‌صورت هیدرولیکی طراحی شود به‌نحوی که حداقل ۷ psi (0.5 bar) فشار در هر اسپرینکلر که به سمت ناحیه مواجهه (exposure) قرار گرفته، با فرض فعال بودن تمام این اسپرینکلرها، فراهم گردد.
      19.4.2.2 اگر منبع آب سایر سامانه‌های حفاظت در برابر آتش را نیز تغذیه می‌کند، باید توانایی تأمین هم‌زمان کل تقاضای این سامانه‌ها و همچنین تقاضای سامانه محافظت از مواجهه را داشته باشد.

      19.4.3 پرده‌های آبی (Water Curtains)

      19.4.3.1 اسپرینکلرهای موجود در یک پرده آبی، همان‌طور که در بندهای 9.3.5 یا 9.3.13.2 توصیف شده‌اند، باید به‌گونه‌ای طراحی شوند که حداقل تخلیه 3 گالن در دقیقه برای هر فوت طول (37 لیتر در دقیقه برای هر متر طول) از پرده آبی را فراهم کنند، به‌طوری که هیچ اسپرینکلری کمتر از 15 گالن در دقیقه (57 لیتر در دقیقه) تخلیه نداشته باشد.
      19.4.3.2 برای پرده‌های آبی با اسپرینکلر خودکار (automatic sprinklers)، تعداد اسپرینکلرهایی که در طراحی محاسبه می‌شوند باید برابر با تعداد اسپرینکلرهایی باشد که در طولی مطابق با طول موازی با خطوط انشعاب (branch lines) در ناحیه‌ای که در بند 27.2.4.2 مشخص شده است، قرار دارند.
      19.4.3.3 برای پرده آبی سیستم دلوژ (deluge system) که جهت محافظت از دهانه‌ی صحنه تئاتر (proscenium opening) طبق بند 9.3.13.2 استفاده می‌شود، پرده آبی باید به‌گونه‌ای طراحی شود که همه اسپرینکلرهای باز متصل به آن را تأمین کند.

      19.4.3.4 اسپرینکلرهای زیر سقف یا بام در فضاهای پنهان قابل احتراق با سازه‌های چوبی (Wood Joist یا Wood Truss) با فواصل کمتر از 3 فوت (0.9 متر) و شیب 4 در 12 یا بیشتر

      19.4.3.4.1 در صورتی که فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از 8 فوت (2.4 متر) در جهت عمود بر شیب نباشد، حداقل فشار تخلیه اسپرینکلر باید 7 psi (0.5 bar) باشد.

      19.4.3.4.2 چنانچه فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از ۸ فوت (۲.۴ متر) در جهت عمود بر شیب باشد، حداقل فشار تخلیه اسپرینکلر باید ۲۰ psi (1.4 bar) باشد.
      19.4.3.4.3 الزامات سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق با الزامات کاربری خطر کم (light hazard) در جدول 19.3.3.1.2 رعایت شود.

      19.4.3.5 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای پرده آبی و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب پرده آبی باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.

      19.4.4 شیشه محافظت‌شده با اسپرینکلر (Sprinkler-Protected Glazing)

      19.4.4 در مواردی که الزامات شیشه محافظت‌شده با اسپرینکلر باید با بند 9.3.15 مطابقت داشته باشند، مدت زمان تأمین آب برای ناحیه طراحی شامل اسپرینکلرهای پنجره نباید کمتر از درجه‌بندی مورد نیاز مجموعه (assembly) باشد.
      19.4.4.1 برای شیشه محافظت‌شده با اسپرینکلر، تعداد اسپرینکلرهایی که در طراحی هیدرولیکی لحاظ می‌شوند، باید معادل تعداد اسپرینکلرهایی باشند که در طولی برابر با طول موازی با خطوط انشعاب در ناحیه‌ای که توسط بند 27.2.4.2 مشخص شده، قرار دارند.
      19.4.4.2 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای شیشه محافظت‌شده و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب برای شیشه محافظت‌شده نیز باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.
      19.4.4.3 محاسبات طراحی هیدرولیکی باید شامل ناحیه‌ای از طراحی باشند که اسپرینکلرهای سقفی مجاور شیشه محافظت‌شده با اسپرینکلر را در بر گیرد.

      19.5 سامانه‌های دلوژ (Deluge Systems)

      اسپرینکلرهای باز و سامانه‌های دلوژ باید طبق استانداردهای مربوطه به‌صورت هیدرولیکی طراحی و محاسبه شوند.