دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

IMG 2122

1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

9k=

این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

9k=

(2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

Z

تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

Z

انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

Z

محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

Z

که در آن:

S = توان تابشی که به حسگر می‌رسد
k = ثابت تناسب برای حسگر
P = توان تابشی ساطع‌شده توسط آتش
e = پایه لگاریتم نپر (۲.۷۱۸۳)
ζ = ضریب تضعیف هوا
d = فاصله بین آتش و حسگر

2Q==

حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.

بیشتر بخوانید: رفع خطای سیستم اعلام حریق

در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

نوشته‌های مشابه

  • راهنمای نصب بیم دتکتور Thefirebeam

    WhatsApp Image 2025 09 14 at 8.43.22 AM2WhatsApp Image 2025 09 14 at 8.43.25 AMWhatsApp Image 2025 09 14 at 8.43.25 AM1WhatsApp Image 2025 09 14 at 8.43.26 AMWhatsApp Image 2025 09 14 at 8.43.26 AM1WhatsApp Image 2025 09 14 at 8.43.27 AMWhatsApp Image 2025 09 14 at 8.43.27 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM WhatsApp Image 2025 09 14 at 8.43.28 AM1 WhatsApp Image 2025 09 14 at 8.43.28 AM2 WhatsApp Image 2025 09 14 at 8.43.29 AM WhatsApp Image 2025 09 14 at 8.43.29 AM2 WhatsApp Image 2025 09 14 at 8.43.30 AM WhatsApp Image 2025 09 14 at 8.43.30 AM1 WhatsApp Image 2025 09 14 at 8.43.30 AM2 WhatsApp Image 2025 09 14 at 8.43.31 AM WhatsApp Image 2025 09 14 at 8.43.31 AM1 WhatsApp Image 2025 09 14 at 8.43.32 AM

    مشخصات فنی

    مشخصات الکتریکی:
    ولتاژ تغذیه: 10.2 تا 40 ولت DC
    جریان مصرفی: 3 میلی‌آمپر (جریان ثابت) در تمام حالات عملیاتی

    مشخصات محیطی:
    دمـا: 10- درجه سانتی‌گراد تا 55+ درجه سانتی‌گراد
    رطوبت: 10 تا 95٪ RH بدون میعان
    شاخص حفاظتی: IP65 در صورت نصب و ترمینال‌گذاری مناسب

    مشخصات مکانیکی:
    هد بیم: 180 میلی‌متر ارتفاع × 155 میلی‌متر عرض × 137 میلی‌متر عمق
    وزن: 1.1 کیلوگرم
    کنترلر: 185 میلی‌متر ارتفاع × 120 میلی‌متر عرض × 62 میلی‌متر عمق
    وزن: 0.55 کیلوگرم
    رفلکتور میان‌برد 40KIT80: 293 میلی‌متر ارتفاع × 293 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.8 کیلوگرم
    رفلکتور بلندبرد 80KIT100: 394 میلی‌متر ارتفاع × 394 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 1.8 کیلوگرم
    آداپتور: 270 میلی‌متر ارتفاع × 250 میلی‌متر عرض × 5 میلی‌متر عمق
    وزن: 0.6 کیلوگرم (برای نصب هد بیم روی یونی‌استرات)

    مشخصات اپتیکی:
    طول موج اپتیکی: 870 نانومتر
    حداکثر تراز زاویه‌ای: ±15 درجه
    حداکثر انحراف زاویه‌ای (استاتیک بدون تراز خودکار):
    هد بیم ±0.75 درجه – رفلکتور ±2 درجه

    مشخصات عملیاتی:
    محدوده حفاظتی:
    FIREBEAM: محصول استاندارد 5 تا 40 متر
    40KIT80: کیت رفلکتور میان‌برد 40 تا 80 متر
    80KIT100: کیت رفلکتور بلندبرد 80 تا 100 متر

    سطوح حساسیت آلارم:
    25٪ (1.25dB) تا 50٪ (3dB) با افزایش 1٪ (0.05dB)
    (پیش‌فرض 35٪ (1.87dB))

    شرایط آلارم:
    کاهش عبور نور به کمتر از سطح حساسیت از پیش تعیین‌شده
    زمان رسیدن به شرایط آلارم قابل تنظیم 2 تا 30 ثانیه با افزایش 1 ثانیه
    (پیش‌فرض 10 ثانیه)

    نمایش آلارم:
    وضعیت کنترلر – FIRE
    LED قرمز چشمک‌زن کنترلر هر 0.5 ثانیه
    LED قرمز چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله آلارم CO با ظرفیت 2 آمپر @ 30 ولت DC

    ویژگی‌های تست/ریست:
    عملکرد تست بیم توسط کنترلر
    انتخاب حالت آلارم ماندگار/ریست خودکار (پیش‌فرض ریست خودکار)
    ریست آلارم در حالت ماندگار با ریست کنترلر، قطع تغذیه برای بیش از 5 ثانیه، اعمال 12 تا 24 ولت DC به ورودی ریست در هد بیم

    سطح حساسیت خطا:
    90٪

    شرایط خطا:
    کاهش عبور نور به کمتر از سطح حساسیت خطا در کمتر از 1 ثانیه
    قطع تغذیه یا ولتاژ ورودی کمتر از 9 ولت DC
    حالت‌های راه‌اندازی اولیه، پیش‌تراز و تراز خودکار
    خاموش شدن بیم در طول تعمیر و نگهداری (بازگشت خودکار پس از 8 ساعت به حالت عادی)
    زمان رسیدن به شرایط خطا قابل تنظیم 2 تا 60 ثانیه با افزایش 1 ثانیه (پیش‌فرض 10 ثانیه)

    نمایش خطا:
    وضعیت کنترلر – FAULT
    LED زرد چشمک‌زن کنترلر هر 1 ثانیه
    LED زرد چشمک‌زن هد هر 1 ثانیه
    کنتاکت رله خطا CO با ظرفیت 2 آمپر @ 30 ولت DC

    شرایط عادی:
    سطح عبور نور بالاتر از سطح حساسیت آلارم
    وضعیت کنترلر – NORMAL
    LED سبز چشمک‌زن کنترلر هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)
    LED سبز چشمک‌زن هد هر 1 ثانیه (قابل برنامه‌ریزی روشن/خاموش)

    تراز خودکار/جبران آلودگی بیم:
    تراز خودکار در حین عملکرد عادی در صورت کاهش عبور نور به کمتر از 90٪ (بدون تأثیر بر حالت کاری عادی)
    جبران آلودگی بیم با مانیتورینگ 4 ساعته. داده‌های جبران در کنترلر در دسترس است.

     

  • ملاحظات هنگام نصب بیم دتکتورهای دودی

    بیم دتکتورهای دودی انتخابی واضح برای حفاظت از ساختمان‌هایی با سقف‌های بلند مانند آتریوم‌ها، لابی‌ها، سالن‌های ورزشی، ورزشگاه‌ها، موزه‌ها، کلیساها، کارخانه‌ها و انبارها هستند. معمولاً حریق‌ها در بخش‌های پایین‌تر ساختمان و در نزدیکی سطح کف آغاز می‌شوند. در این حالت، دود ناشی از آتش به سمت سقف بالا می‌رود؛ ستون دود هنگام حرکت از نقطه شروع خود، به اطراف پخش شده و میدان دودی به شکل یک مخروط وارونه ایجاد می‌کند که هرچه بالاتر می‌رود رقیق‌تر می‌شود. در نتیجه کاهش غلظت دود، دتکتورهای نقطه‌ای هرچه در ارتفاع بیشتری نصب شوند، کارایی کمتری خواهند داشت. بر اساس استاندارد BS5839 بخش ۱، ارتفاع نصب دتکتورهای نقطه‌ای برای حفاظت جانی به ۱۰٫۵ متر و برای حفاظت از اموال به ۱۵ متر محدود شده است.

    در مقابل، بیم دتکتورهای دودی که کل ستون دود را نمونه‌برداری می‌کنند، به‌طور ایده‌آل برای کاربردهای با سقف بلند مناسب هستند. این موضوع در استاندارد BS5839 بخش ۱ نیز مورد تأیید است که استفاده از بیم دتکتورها را تا ارتفاع ۲۵ متر برای حفاظت جانی و ۴۰ متر برای حفاظت از اموال مجاز می‌داند.

    انواع بیم دتکتور
    بیم دتکتورهای دودی دارای تأییدیه اروپایی طبق استاندارد EN54-12:2002 «سیستم‌های اعلام حریق و آتش – دتکتورهای دودی – دتکتورهای خطی با استفاده از پرتو نوری» آزمایش می‌شوند. دو نوع اصلی بیم دتکتورهای نوری خطی شامل نوع «انتهای به انتها» و نوع «رفلکتوری» هستند که هر دو بر اساس اصل کاهش شدت نور کار می‌کنند: یک پرتو نوری در عرض ناحیه تحت حفاظت تابانده می‌شود و میزان تضعیف آن بر اثر وجود دود پایش می‌گردد.

    بیم دتکتور نوع «انتهای به انتها» دارای فرستنده و گیرنده جداگانه در دو انتهای ناحیه تحت حفاظت است. این نوع نیازمند تأمین برق برای هر دو واحد فرستنده و گیرنده بوده که باعث طولانی‌تر شدن مسیر سیم‌کشی و در نتیجه افزایش هزینه نصب نسبت به نوع رفلکتوری می‌شود. بیم دتکتورهای رفلکتوری یا «تک‌سَر» تمام تجهیزات الکترونیکی را در یک محفظه دارند: پرتو به سمت یک رفلکتور در انتهای مقابل ناحیه تحت حفاظت تابانده می‌شود و گیرنده میزان تضعیف سیگنال بازگشتی را پایش می‌کند.

    اگرچه بیم دتکتورهای رفلکتوری به دلیل صرفه‌جویی قابل توجه در هزینه نصب، امروزه بیشتر از نوع انتهای به انتها استفاده می‌شوند، اما در به‌کارگیری آن‌ها باید ملاحظاتی در نظر گرفته شود. باید توجه داشت که در بیم دتکتور نوع انتهای به انتها، هر جسمی که در مسیر پرتو قرار گیرد و باعث کاهش شدت سیگنال شود، عملکرد دتکتور را مختل نمی‌کند و بدترین حالت ممکن ایجاد یک آلارم کاذب است. اما در بیم دتکتورهای رفلکتوری، وجود یک جسم بازتاب‌دهنده در مسیر پرتو، به‌ویژه در نزدیکی دستگاه، ممکن است بازتاب کافی به گیرنده ایجاد کند حتی اگر سیگنال به بیشتر ناحیه تحت حفاظت نرسد. این موضوع معمولاً در مورد بیم دتکتورهایی با میزان بازتاب کم، به‌خصوص مدل‌های با رفلکتور کوچک، مشکل‌سازتر است.

    هزینه نسبی
    طبق استاندارد BS5839 بخش ۱، یک دتکتور دودی نقطه‌ای دارای شعاع پوشش حداکثر ۷٫۵ متر است. در یک طرح ساده جانمایی (شکل ۱a)، این مقدار معادل فاصله حداکثر ۱۰٫۵ متر بین دتکتورها است. با تغییر دقیق چیدمان دتکتورها (شکل ۱b) می‌توان تعداد دتکتورهای نقطه‌ای موردنیاز برای پوشش یک مساحت مشخص را کاهش داد. برای بیم دتکتورهای دودی، استاندارد BS5839 بخش ۱ حداکثر برد ۱۰۰ متر و پوشش ۷٫۵ متر در هر طرف پرتو را مجاز می‌داند که این مقدار، پوشش نظری ۱۵۰۰ مترمربع را فراهم می‌کند (شکل ۱c)؛ مساحتی که معمولاً برای پوشش آن به ۱۶ عدد یا بیشتر دتکتور دودی نقطه‌ای نیاز است. کاهش تعداد تجهیزات موجب کاهش هزینه نصب و نگهداری می‌شود. بزرگ‌ترین محدودیت بیم دتکتور دودی این است که یک تجهیز «خط دید» محسوب می‌شود و در نتیجه ممکن است هر جسم یا شخصی که وارد مسیر پرتو شود، موجب اختلال شود و این امر استفاده از آن را در بیشتر فضاهای اشغال‌شده با ارتفاع سقف معمولی غیرعملی می‌سازد.

    جریان هوا
    جریان هوای زیاد برای شناسایی دود توسط هم دتکتورهای نقطه‌ای و هم بیم دتکتورهای دودی مشکل خاصی ایجاد می‌کند، زیرا انتشار دود تحت شرایط عادی ممکن است اتفاق نیفتد. سرعت بالای هوا همچنین می‌تواند دود را از محفظه تشخیص دتکتور نقطه‌ای خارج کند، بنابراین باید عملکرد دتکتور نقطه‌ای در مکان‌هایی که سرعت هوا بیش از ۱٫۵ متر بر ثانیه است یا تعویض هوا در ناحیه حفاظت‌شده بیش از ۷٫۵ بار در ساعت می‌باشد، با دقت بررسی شود. بیم دتکتورهای دودی معمولاً در آزمون‌های تأییدیه برای پایداری در جریان هوای زیاد آزمایش نمی‌شوند، زیرا جریان زیاد هوا تأثیر قابل‌توجهی بر قابلیت تشخیص آن‌ها ندارد. هرچند در نواحی با جریان هوای بالا معمولاً نیاز به کاهش فاصله نصب نیست، اما باید رفتار پیش‌بینی‌شده دود در این شرایط مدنظر قرار گیرد.

    مقاومت در برابر حرکت ساختمان
    برای عملکرد صحیح، بیم دتکتورها به یک سطح نصب بسیار پایدار نیاز دارند؛ سطحی که حرکت، جابه‌جایی، لرزش یا تغییر شکل در طول زمان نداشته باشد، زیرا این موارد می‌توانند باعث ایجاد آلارم یا خطای کاذب شوند. دتکتور باید روی یک دیوار باربر محکم، ستون پشتیبان، تیر سازه‌ای یا سطح دیگری که انتظار نمی‌رود در طول زمان دچار لرزش یا جابه‌جایی شود، نصب شود. این تجهیز را می‌توان مستقیماً روی سازه ساختمان نصب کرد که معمولاً امکان تنظیم ±۱۰ درجه را فراهم می‌کند، یا در صورت نیاز به نصب مورب یا نصب روی سقف، از براکت‌های قابل تنظیم با دامنه تغییر بیشتر استفاده نمود. اگر نصب هر دو بخش دستگاه روی سازه محکم امکان‌پذیر نباشد، باید فرستنده روی سطح محکم‌تر نصب شود، زیرا جابه‌جایی رفلکتور یا گیرنده اثر کمتری نسبت به جابه‌جایی فرستنده دارد.

    بیم دتکتور باید در برابر حرکت‌های احتمالی ساختمان که ناشی از نیروهای محیطی مختلف است، مقاومت بالایی داشته باشد. باد، برف، باران و تغییرات دما می‌توانند باعث خم‌شدن ساختمان شوند؛ به عنوان مثال، باد با سرعت ۶۰ کیلومتر بر ساعت که بر یک دیوار ۱۰۰ مترمربعی وارد می‌شود، می‌تواند فشاری معادل ۴ تن ایجاد کند. در فواصل طولانی، حتی تغییر شکل‌های جزئی سازه می‌تواند موجب انحراف زیاد پرتو از هدف شود؛ برای مثال، در برد ۱۰۰ متر، جابه‌جایی ۰٫۵ درجه‌ای فرستنده می‌تواند نقطه مرکزی پرتو را نزدیک به ۹۰۰ میلی‌متر جابه‌جا کند. برای اطمینان از عملکرد قابل‌اعتماد، بیم دتکتور باید بتواند با حداکثر عدم‌همراستایی زاویه‌ای ±۰٫۵ درجه در دتکتور و ±۱۰ درجه در رفلکتور به‌خوبی کار کند تا تغییر شکل‌های موقت سازه بدون ایجاد آلارم یا خطای کاذب قابل تحمل باشد.

    نصب و راه‌اندازی اولیه
    همراستاسازی بیم دتکتور معمولاً شامل چهار مرحله است: همراستاسازی اولیه، تنظیم دقیق، تنظیم بهره و تأیید. توضیحات زیر مربوط به یک بیم دتکتور رفلکتوری معمولی است؛ بیم دتکتورهای نوع انتهای به انتها به یک مرحله اضافی نیاز دارند، زیرا باید هر دو سر فرستنده/گیرنده به‌درستی همراستا شوند. همراستاسازی اولیه با استفاده از نشانه‌گیر نوری داخلی و پیچ‌های تنظیم افقی و عمودی برای قرار دادن رفلکتور در مرکز آینه همراستاسازی انجام می‌شود. پس از همراستاسازی اولیه، فرآیند تنظیم دقیق انجام می‌شود. یک نمایشگر دیجیتال روی برد مدار دتکتور وجود دارد و تکنسین با تنظیم پیچ‌های افقی و عمودی، بالاترین مقدار ممکن را روی نمایشگر به دست می‌آورد. در طول این فرآیند، دتکتور پرتو را پایش کرده و بهره داخلی خود را برای دستیابی به بهترین پاسخ تنظیم می‌کند. پس از قرار گرفتن دوباره درپوش دستگاه، یک تنظیم نهایی بهره داخلی به‌صورت خودکار انجام می‌شود.

    مرحله نهایی
    مرحله پایانی شامل آزمایش عملکرد اعلام حریق و خطای دتکتور توسط تکنسین است. با استفاده از یک ماده مات و غیررفلکتوری، رفلکتور به طور کامل مسدود می‌شود که باید باعث ایجاد سیگنال خطای مسدود شدن پرتو پس از حدود ۳۰ ثانیه گردد. سپس حساسیت بررسی می‌شود. رفلکتور تا حدی کمتر از مقدار تنظیم حساسیت مربوطه با استفاده از مقیاس مدرج روی رفلکتور پوشانده می‌شود که نباید هیچ تغییری در وضعیت پرتو ایجاد کند. در نهایت، رفلکتور تا حدی بالاتر از مقدار حساسیت نسبی مسدود می‌شود که باید باعث ایجاد سیگنال آلارم حریق گردد.

    تنظیم حساسیت و جبران تغییرات تدریجی
    چالش همیشگی برای سازندگان دتکتور، ایجاد تعادل در مقدار تنظیم حساسیت به‌گونه‌ای است که عملکرد بین تشخیص سریع حریق واقعی و جلوگیری از آلارم‌های کاذب بیش از حد، متوازن باشد. برای دستیابی به عملکرد بهینه، سازندگان پیشرفته بیم دتکتورهای دودی قابلیت جبران خودکار برای خنثی‌سازی اثر تغییرات محیطی کوتاه‌مدت و بلندمدت را فراهم می‌کنند. الگوریتم حساسیت خودتنظیم، آستانه آلارم را طی چند ساعت به‌صورت خودکار برای جبران تغییرات کوتاه‌مدت محیط حفاظت‌شده (مانند فعالیت لیفتراک‌ها در طول روز کاری) تنظیم می‌کند. این تنظیمات توانایی دتکتور برای واکنش سریع به وقوع آتش‌سوزی را مختل نمی‌کند.

    با تجمع گردوغبار روی بخش‌های نوری بیم دتکتور، حساسیت دستگاه افزایش یافته و احتمال بروز آلارم‌های کاذب بیشتر می‌شود. الگوریتم‌هایی برای جبران تجمع تدریجی گردوغبار ارائه می‌شوند تا ضمن حفظ حساسیت ثابت، فاصله‌های زمانی نگهداری رعایت شود. با این حال، لنزهای دتکتور و رفلکتور (در نوع رفلکتوری) همچنان باید به‌صورت دوره‌ای تمیز شوند. فاصله زمانی نگهداری به شرایط محل بستگی دارد؛ بدیهی است هرچه محیط آلوده‌تر باشد، دفعات تمیزکاری باید بیشتر شود.

    نگهداری و آزمون
    یکی از مشکلات نصب هر نوع دتکتور دودی در ارتفاع بالا، نیاز به دسترسی پرهزینه و زمان‌بر به دتکتور برای انجام آزمون کامل آلارم در طی سرویس سالانه است. بیشتر سازندگان امکان آزمون از راه دور بخش الکترونیکی دستگاه را فراهم می‌کنند، اما تکنسین معمولاً همچنان باید به‌صورت دستی فیلتری را در مسیر پرتو قرار دهد تا نشان دهد که دستگاه در حضور دود وارد وضعیت آلارم می‌شود؛ این فیلتر جایگزینی قابل‌قبول برای آزمون دود است که معمولاً برای دتکتورهای نقطه‌ای الزامی است. تاکنون تنها یک سازنده بیم دتکتورهای متعارف و آدرس‌پذیر را با یک فیلتر کالیبره سرووکنترل‌شده تجهیز کرده است که می‌تواند در مقابل گیرنده قرار گیرد و اثر دود واردشده به پرتو را شبیه‌سازی کند. اگر کاهش صحیح سیگنال نور بازگشتی تشخیص داده شود، دستگاه وارد وضعیت آلارم می‌شود، در غیر این صورت سیگنال خطا ارسال می‌گردد. این قابلیت که با نام Asuretest شناخته می‌شود، الزامات نگهداری و آزمون دوره‌ای اکثر استانداردهای محلی را برآورده کرده و مسیر کامل آلارم، شامل آزمون هر دو بخش الکترونیک و اپتیک دستگاه، را به‌طور کامل بررسی می‌کند. Asuretest را می‌توان از طریق کلید آزمون از راه دور در سطح زمین یا در نسخه آدرس‌پذیر، مستقیماً از پنل کنترل فعال کرد.

    نتیجه‌گیری
    بیم دتکتورها راهکاری مؤثر برای طراحان سیستم‌های اعلام حریق جهت تأمین حفاظت مقرون‌به‌صرفه برای فضاهای بزرگ با سقف بلند فراهم می‌کنند. پیشرفت‌های اخیر در زمینه راه‌اندازی، تنظیم خودکار حساسیت و قابلیت‌های آزمون، به‌کارگیری بیم دتکتورها را به‌عنوان بخشی از سیستم اعلام حریق به گزینه‌ای ساده‌تر و قابل مدیریت‌تر تبدیل کرده است. به‌ویژه، قابلیت Asuretest با راه‌اندازی از راه دور که آزمون کامل اجزای اپتیکی و الکترونیکی مسیر آلارم را فراهم می‌کند، ضمن رعایت استانداردهای محلی، نیاز به اجاره تجهیزات دسترسی به ارتفاع بالا را برطرف کرده و پیامدهای ایمنی و بهداشت کار در ارتفاع را حذف می‌کند و هزینه‌های نگهداری دوره‌ای را به‌طور قابل‌توجهی کاهش می‌دهد.

     

  • NFPA12 پیوست G اطلاعات درباره اثرات گاز دی‌اکسید کربن سیستم اطفاء

    پیوست G اطلاعات عمومی درباره دی‌اکسید کربن
    این پیوست بخشی از الزامات این سند NFPA نیست، بلکه فقط برای اهداف اطلاعاتی ارائه شده است.
    G.1 دی‌اکسید کربن به طور متوسط با غلظت حدود ۰.۰۴ درصد حجمی در جو وجود دارد. این ماده همچنین محصول نهایی طبیعی متابولیسم انسان و حیوانات است. دی‌اکسید کربن به چندین روش مهم بر برخی عملکردهای حیاتی تأثیر می‌گذارد، از جمله کنترل تنفس، گشاد شدن و تنگ شدن رگ‌های خونی – به ویژه در مغز – و تنظیم pH مایعات بدن. غلظت دی‌اکسید کربن در هوا نرخ آزادسازی دی‌اکسید کربن از ریه‌ها را کنترل می‌کند و بنابراین بر غلظت دی‌اکسید کربن در خون و بافت‌ها تأثیر می‌گذارد. افزایش غلظت دی‌اکسید کربن در هوا می‌تواند خطرناک شود، زیرا باعث کاهش نرخ آزادسازی دی‌اکسید کربن از ریه‌ها و کاهش دریافت اکسیژن می‌شود. اطلاعات بیشتر در مورد مواجهه با دی‌اکسید کربن را می‌توان از انتشارات شماره 76-194 اداره بهداشت و خدمات انسانی آمریکا (NIOSH) به دست آورد. ملاحظات ایمنی پرسنل در بخش ۴.۳ پوشش داده شده است.
    جدول G.1 اطلاعاتی درباره اثرات حاد سلامتی ناشی از غلظت‌های بالای دی‌اکسید کربن ارائه می‌دهد.

    9k=

    دی‌اکسید کربن یک محصول تجاری استاندارد با کاربردهای فراوان است. این گاز شاید بیشتر به عنوان گازی که به نوشابه‌ها و سایر نوشیدنی‌های گازدار حالت “فیز” می‌دهد، شناخته شده باشد. در کاربردهای صنعتی، دی‌اکسید کربن به دلیل خواص شیمیایی، خواص مکانیکی به عنوان عامل فشاردهنده، یا خواص سرمایشی به صورت یخ خشک استفاده می‌شود.
    در کاربردهای اطفاء حریق، دی‌اکسید کربن دارای چندین ویژگی مطلوب است. این گاز غیرخورنده، بدون آسیب‌رسانی و بدون باقی گذاشتن باقی‌مانده‌ای برای تمیزکاری پس از حریق است. همچنین فشار مورد نیاز برای تخلیه از طریق لوله‌ها و اسپرینکلرها را خود تأمین می‌کند. چون یک گاز است، به راحتی نفوذ کرده و به همه بخش‌های خطر گسترش می‌یابد. دی‌اکسید کربن رسانای الکتریسیته نیست و بنابراین می‌توان از آن در خطرات برقی فعال استفاده کرد. این گاز می‌تواند تقریباً برای تمام مواد قابل احتراق به جز چند فلز فعال، هیدریدهای فلزی و موادی مانند نیترات سلولز که دارای اکسیژن آزاد هستند، به طور مؤثر استفاده شود.
    در شرایط معمول، دی‌اکسید کربن گازی بی‌رنگ و بی‌بو با چگالی حدود ۵۰ درصد بیشتر از چگالی هوا است. بسیاری از افراد ادعا می‌کنند که می‌توانند بوی دی‌اکسید کربن را حس کنند، اما این احتمالاً به دلیل وجود ناخالصی‌ها یا تأثیرات شیمیایی در بینی است. دی‌اکسید کربن به راحتی با فشرده‌سازی و سرمایش به مایع تبدیل می‌شود. با سرمایش و انبساط بیشتر، می‌توان آن را به حالت جامد نیز تبدیل کرد.
    رابطه بین دما و فشار دی‌اکسید کربن مایع در منحنی شکل G.1 نشان داده شده است. با افزایش دمای مایع، فشار نیز افزایش می‌یابد. با افزایش فشار، چگالی بخار بالای مایع افزایش می‌یابد. از سوی دیگر، مایع با افزایش دما منبسط شده و چگالی آن کاهش می‌یابد. در دمای ۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)، مایع و بخار چگالی یکسانی دارند و در نتیجه فاز مایع ناپدید می‌شود. این دما به عنوان دمای بحرانی دی‌اکسید کربن شناخته می‌شود. در دمای زیر دمای بحرانی [۸۷.۸ درجه فارنهایت (۳۱ درجه سانتی‌گراد)]، دی‌اکسید کربن در یک مخزن بسته به صورت بخشی مایع و بخشی گاز است. بالاتر از دمای بحرانی، کاملاً به حالت گاز در می‌آید.
    یکی از ویژگی‌های غیرمعمول دی‌اکسید کربن این است که نمی‌تواند به صورت مایع در فشارهای کمتر از ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)] وجود داشته باشد. این فشار نقطه سه‌گانه است که در آن دی‌اکسید کربن می‌تواند به صورت جامد، مایع یا بخار باشد. زیر این فشار، بسته به دما، دی‌اکسید کربن باید یا به صورت جامد یا گاز باشد.
    اگر فشار در یک مخزن ذخیره‌سازی با تخلیه بخار کاهش یابد، بخشی از مایع تبخیر می‌شود و مایع باقی‌مانده سردتر می‌شود. در فشار ۶۰.۴ psi [۷۵ psi مطلق (۵۱۷ کیلوپاسکال)]، مایع باقی‌مانده به یخ خشک در دمای ۶۹.۹- درجه فارنهایت (۵۷- درجه سانتی‌گراد) تبدیل می‌شود. کاهش بیشتر فشار به فشار اتمسفری، دمای یخ خشک را به دمای طبیعی ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) کاهش می‌دهد.
    همین فرآیند زمانی اتفاق می‌افتد که دی‌اکسید کربن مایع به اتمسفر تخلیه شود. بخش بزرگی از مایع به بخار تبدیل شده و حجم آن به شدت افزایش می‌یابد. بقیه به ذرات ریز یخ خشک در دمای ۱۰۹.۳- درجه فارنهایت (۷۹- درجه سانتی‌گراد) تبدیل می‌شود. این یخ خشک یا برف باعث می‌شود که تخلیه ظاهری ابری سفیدرنگ داشته باشد. دمای پایین همچنین موجب چگالش بخار آب موجود در هوای مکیده شده می‌شود، به طوری که مه آب معمولی تا مدتی پس از تصعید یخ خشک باقی می‌ماند.
    دی‌اکسید کربن گازی بی‌رنگ، بی‌بو، غیررسانای الکتریکی و بی‌اثر است که یک محیط مناسب برای اطفاء حریق محسوب می‌شود. دی‌اکسید کربن مایع هنگام آزادسازی مستقیم به اتمسفر، به یخ خشک (“برف”) تبدیل می‌شود. گاز دی‌اکسید کربن ۱.۵ برابر سنگین‌تر از هوا است. دی‌اکسید کربن با کاهش غلظت اکسیژن، بخار سوخت، یا هر دو در هوا تا جایی که احتراق متوقف شود، آتش را خاموش می‌کند. (به بخش ۴.۳ مراجعه شود.)

    سیستم‌های اطفاء حریق دی‌اکسید کربن در محدوده این استاندارد برای خاموش کردن آتش‌های مربوط به خطرات خاص یا تجهیزات در کاربری‌های زیر مفید هستند:
    (۱) در جایی که یک محیط بی‌اثر و غیررسانای الکتریکی ضروری یا مطلوب باشد
    (۲) در جایی که پاکسازی سایر محیط‌ها مشکل ایجاد کند
    (۳) در جایی که نصب چنین سیستم‌هایی نسبت به سیستم‌هایی که از محیط‌های دیگر استفاده می‌کنند، اقتصادی‌تر باشد

    برخی از انواع خطرات و تجهیزاتی که سیستم‌های دی‌اکسید کربن می‌توانند به طور رضایت‌بخشی از آن‌ها محافظت کنند شامل موارد زیر است:
    (۱) مواد مایع قابل اشتعال (به بخش ۴.۵.۴.۹ مراجعه شود.)
    (۲) خطرات الکتریکی مانند ترانسفورماتورها، کلیدها، قطع‌کننده‌های مدار، تجهیزات چرخشی و تجهیزات الکترونیکی
    (۳) موتورهایی که از بنزین و سایر سوخت‌های مایع قابل اشتعال استفاده می‌کنند
    (۴) مواد قابل احتراق معمولی مانند کاغذ، چوب و منسوجات
    (۵) جامدات خطرناک

    G.2 اطلاعات بیشتر درباره خواص فیزیکی دی‌اکسید کربن در “راهنمای مهندسی حفاظت از حریق SFPE” قابل دسترسی است.

  • استفاده از موئین یا کاپیلاری در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    لوله موئین، یک قطعه لوله انعطاف‌پذیر است که به لوله اصلی نمونه‌برداری متصل می‌شود و در انتهای آن یک سوراخ نمونه‌برداری قرار دارد. هدف از استفاده از این لوله‌ها، گسترش ناحیه نمونه‌برداری به دور از شبکه اصلی لوله‌ها است.

    از لوله‌های موئین زمانی استفاده می‌شود که نمونه‌برداری از یک فضای بسته مانند یک کابینت یا سقف کاذب انجام می‌شود، یا در مواردی که به دلایل ظاهری یا امنیتی ضروری است. این روش، شبکه اصلی لوله‌کشی را پنهان می‌کند و تنها یک نقطه کوچک نمونه‌برداری در فضا باقی می‌گذارد. شکل ۵در زیر، لوله موئینی را نشان می‌دهد که از لوله اصلی نمونه‌برداری به پایین امتداد یافته و سوراخ نمونه‌برداری در محل مورد نظر قرار دارد.

    نرم‌افزار طراحی، افزودن لوله‌های موئین و نقاط نمونه‌برداری به طراحی شبکه لوله را پشتیبانی می‌کند و جریان هوای مناسب در سیستم را محاسبه می‌نماید. حداکثر طول معمول برای لوله‌های انعطاف‌پذیر موئین ۸ متر (۲۶فوت) است، اما این مقدار می‌تواند بسته به محاسبات نرم‌افزار طراحی متغیر باشد. زمانی که چندین لوله موئین در یک شبکه استفاده می‌شود، طول هر یک از آن‌ها باید تقریباً برابر باشد تا تعادل سیستم حفظ شود.

    توجه ۱: توصیه می‌شود از اجرای طولانی لوله‌هایی که هم دارای سوراخ‌های نمونه‌برداری استاندارد و هم نقاط نمونه‌برداری موئین هستند، خودداری شود، زیرا این امر می‌تواند جریان هوا را نامتعادل کرده و زمان پاسخ‌دهی نقاط موئین را کاهش دهد.

    IMG 1300 IMG 1301 IMG 1302

    سوراخ‌های نمونه‌برداری
    سوراخ‌های نمونه‌برداری می‌توانند مستقیماً روی لوله، روی یک درپوش انتهایی، یا در یک نقطه نمونه‌برداری در انتهای لوله موئین قرار گیرند. مهم‌ترین عامل، سوراخ‌کاری صحیح با قطری مطابق با مشخصات تعیین‌شده توسط نرم‌افزار طراحی است.

    سوراخ‌های نمونه‌برداری باید پس از نصب شبکه لوله‌کشی ایجاد شوند. برای جلوگیری از مسدود شدن سوراخ‌ها توسط گرد و غبار و آلودگی، سوراخ‌ها باید در قسمت زیرین لوله‌های نمونه‌برداری و نه در بالای آن‌ها ایجاد شوند. این کار از ورود ذرات افتاده به درون سوراخ‌ها جلوگیری می‌کند. دستورالعمل‌های زیر هنگام سوراخ‌کاری لوله‌ها باید رعایت شود:

    سوراخ‌ها باید به صورت عمود (۹۰ درجه) بر لوله ایجاد شوند. اگر مته به صورت عمود نگه داشته نشود، سوراخ به شکل دایره‌ای کامل نخواهد بود و ممکن است بر جریان هوا تأثیر بگذارد.
    سوراخ‌ها باید دقیقاً در مکان‌هایی که نرم‌افزار طراحی مشخص کرده است، ایجاد شوند.
    سوراخ‌ها باید دقیقاً با اندازه تعیین‌شده توسط نرم‌افزار طراحی ایجاد شوند.
    سوراخ‌ها نباید به صورت دوطرفه (از هر دو سمت لوله) سوراخ شوند.
    سوراخ‌کاری باید با مته‌ای تیز و با سرعت کم انجام شود. این کار خطر ایجاد پلیسه و همچنین احتمال ورود گرد و غبار و براده به داخل لوله را کاهش می‌دهد.
    پس از سوراخ‌کاری تمام سوراخ‌ها، بهتر است با دمیدن هوای فشرده داخل لوله، هرگونه گرد و غبار یا آلودگی را از لوله پاکسازی کرد. همچنین می‌توان با باز کردن درپوش انتهایی و استفاده از جاروبرقی صنعتی، ذرات را از سمت اتصال لوله به آشکارساز بیرون کشید.
    نکته بسیار مهم: پیش از دمیدن هوای فشرده یا اتصال جاروبرقی صنعتی به شبکه لوله، باید لوله نمونه‌برداری را از آشکارساز جدا کرد، چراکه ورود ذرات ریز به محفظه سنجش ممکن است به قطعات داخلی آسیب برساند.

    IMG 1303

  • دستورالعمل نصب دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی LHS™، یک دتکتور دمای ثابت منعطف، بادوام و مقرون‌به‌صرفه است که برای حفاظت از طیف وسیعی از کاربردهای اعلام حریق تجاری و صنعتی مناسب می‌باشد.

    دتکتور حرارتی خطی LHS کابلی با قطر کم است که قابلیت تشخیص حرارت ناشی از حریق را در تمام طول خود دارد. این کابل شامل یک زوج به‌هم‌تابیده از هادی‌های فولادی با روکش مس (۱۹ AWG) است که توسط یک عایق حساس به دما پوشیده شده و برای کاربردهای محیطی مختلف با یک روکش یا بافت پلاستیکی محافظت می‌شود (به شکل ۱ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.33 PM

    دتکتور حرارتی خطی LHS برای تشخیص در فضای باز و همچنین در مجاورت مستقیم طراحی شده است. طیف گسترده‌ای از روکش‌ها و دماهای عملکردی (به جدول ۱ مراجعه شود) برای طراحی مناسب سیستم در دسترس هستند، از جمله برای فضاهای محدود یا محیط‌های سخت که استفاده از سایر روش‌های تشخیص را غیرممکن می‌سازد. کابل دتکتور حرارتی خطی LHS با هر پنل اعلام حریقی که قابلیت پذیرش تجهیزات تحریک‌کننده از نوع تماس خشک را داشته باشد، سازگار است.

    دتکتور حرارتی خطی معتبر توسط lسازمان های معتبر غیرانتفاعی مانند UL  تأیید شده است. برای نصب مورد تأیید FM، باید کابل دتکتور حرارتی خطی به یک پنل اعلام حریق مورد تأیید FM متصل شود.

    عملکرد

    حرارت ناشی از آتش‌سوزی باعث ذوب‌شدن عایق ویژه کابل دتکتور حرارتی خطی در دمای خاصی می‌شود که این امر باعث اتصال کوتاه شدن دو هادی شده و وضعیت هشدار را در پنل اعلام حریق ایجاد می‌کند. همچنین می‌توان از این کابل به‌عنوان یک تجهیز تماسی مستقل نیز استفاده کرد. وضعیت عملکردی نرمال کابل دتکتور حرارتی خطی مدار باز است.

    ملاحظات طراحی

    طراحی و نصب سیستم باید مطابق با اصول پذیرفته‌شده مهندسی حفاظت در برابر حریق و همچنین مطابق با کدها و استانداردهای قابل اجرا انجام شود:

    * NFPA-72، کد ملی اعلام حریق

    * NEC 760، کد ملی برق

    * هرگونه الزامات محلی نصب

    * الزامات مرجع قانونی ذی‌صلاح (AHJ)

    ۱. انتخاب شماره قطعه مناسب برای هر کاربرد خاص باید با در نظر گرفتن دمای خطر، دمای محیط و شرایط محیطی محل نصب دتکتور انجام شود.

    ۲. برای حفاظت در فضای باز، دتکتور حرارتی خطی باید در سقف نصب شود، با رعایت فاصله‌های مورد تأیید FM بین خطوط موازی. فاصله از دیوارها باید نصف فاصله‌های ذکر شده باشد. مسیر انتقال حرارت به دتکتور نباید مسدود شود. برای تشخیص سریع‌تر، فاصله ۲۵ میلی‌متر (۱ اینچ) از سقف رعایت شود.

    ۳. برای تشخیص در مجاورت مستقیم، دتکتور حرارتی خطی باید به‌صورت محکم روی جسم مورد حفاظت نصب شود تا انتقال حرارت مؤثر صورت گیرد. دقت شود که لرزش و لبه‌های تیز باعث ساییدگی کابل نشوند، زیرا ممکن است منجر به فعال‌سازی نادرست شود.

    ۴. در کاربردهای بیرونی، ممکن است نیاز باشد دتکتور حرارتی خطی از تابش مستقیم نور خورشید محافظت شود تا از تجاوز دمای عملکرد و/یا دمای محیطی حداکثری آن جلوگیری گردد، زیرا این امر ممکن است منجر به فعال‌سازی نادرست شود.
    ۵. برای استفاده از دتکتور حرارتی خطی در مکان‌های خطرناک (کلاس ۱ گروه‌های A،B،C،D و کلاس ۲ گروه‌های E،F،G)، باید از موانع ایمنی ذاتی مورد تأیید FM برای ایزوله‌کردن دتکتور از پنل کنترل استفاده شود.

    سیم‌کشی مدار تحریک

    دتکتور حرارتی خطی به‌عنوان یک تجهیز تحریک‌کننده با تماس خشک به هر پنل اعلام حریق متصل می‌شود. برای الزامات الکتریکی خاص مدار تحریک، دستورالعمل نصب پنل اعلام حریق را دنبال کنید (به شکل ۲ مراجعه شود).

    WhatsApp Image 2025 09 15 at 4.12.34 PM

    • دتکتور حرارتی خطی می‌تواند به‌صورت یک حلقه مدار کلاس B یا کلاس A اجرا شود، بدون انشعاب
      ۲. حداکثر طول منطقه دتکتور حرارتی خطی توسط مشخصات الکتریکی مدار تحریک پنل اعلام حریق تعیین می‌شود. برای محاسبه حداکثر طول، از مقاومت و ظرفیت خازنی دتکتور حرارتی خطی طبق جدول ۱ استفاده کنید. به‌عنوان مثال، یک پنل اعلام حریق با مقاومت ورودی حلقه برابر ۵۰ اهم اجازه می‌دهد تا ۸۲۰ فوت (=۵۰/(۲ × ۰٫۰۳۰۴۸)) کابل دتکتور حرارتی خطی نصب شود.
    • WhatsApp Image 2025 09 15 at 4.12.34 PM1
    • ۳. اگر پنل اعلام حریق از فضای تحت حفاظت فاصله دارد، کابل دتکتور حرارتی خطی فقط در فضای تحت حفاظت نصب شود و از کابل رابط برای اتصال آن به پنل اعلام حریق استفاده گردد. کابل رابط می‌تواند هر نوع سیم مسی مورد تأیید برای استفاده در سیستم اعلام حریق باشد.

    WhatsApp Image 2025 09 15 at 4.12.35 PM

    . دتکتور حرارتی خطی در فضای تحت حفاظت نیازی به پیوستگی ندارد. می‌توان از سیم‌کشی مسی مورد تأیید برای اتصال بخش‌های جداگانه کابل دتکتور حرارتی خطی استفاده کرد.
    ۵. اگر مدار تحریک به‌صورت کلاس B (دو سیمه) اجرا می‌شود، باید در انتهای کابل دتکتور حرارتی خطی یک تجهیز انتهایی مطابق با پنل اعلام حریق نصب گردد.
    ۶. در صورت تأیید مرجع قانونی ذی‌صلاح (AHJ)، تجهیزات تحریک‌کننده دیگر (مانند دتکتور دود، شستی دستی و…) نیز می‌توانند در همان منطقه با دتکتور حرارتی خطی نصب شوند. کابل دتکتور حرارتی خطی می‌تواند مستقیماً بین این تجهیزات سیم‌کشی شود.

    WhatsApp Image 2025 09 15 at 4.12.35 PM1

    نصب کابل دتکتور حرارتی خطی

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با تمامی کدها و الزامات قابل اجرا نصب گردد. روش‌های نصب توصیه‌شده در زیر، استفاده از روش‌های جایگزین مناسب با نصب خاص را منتفی نمی‌کنند، به‌شرطی‌که این روش‌ها مورد تأیید مرجع قانونی ذی‌صلاح (AHJ) باشند.

    WhatsApp Image 2025 09 15 at 4.12.35 PM2

    ⚠️ هشدار
    در مکان‌هایی که احتمال آسیب مکانیکی وجود دارد، کابل دتکتور باید محافظت شود تا از آسیب‌دیدگی که ممکن است باعث فعال‌سازی نادرست شود، جلوگیری گردد.

    هنگام طراحی چیدمان دتکتور حرارتی خطی، کابل‌ها باید در مکان‌هایی نصب شوند که در معرض آسیب فیزیکی نباشند.
    اگر از بست‌های فلزی استفاده می‌شود، باید از بوش‌های غیر فلزی برای جلوگیری از ساییدگی یا له‌شدگی کابل دتکتور حرارتی خطی استفاده گردد.

    ۱. کابل باید به‌طور مناسب پشتیبانی شود تا از آویزان شدن آن جلوگیری شود. کشیدن کابل ضروری نیست، اما در مسیرهای مستقیم توصیه می‌شود کابل در هر ۱ متر (۳ فوت) پشتیبانی شود. در صورت نیاز، می‌توان فاصله‌های کمتری را برای انطباق با مقررات محلی یا شرایط خاص مانند گوشه‌ها و نقاط انتقال به‌کار برد. کشش وارد بر دتکتور حرارتی خطی نباید از ۵۰ نیوتن تجاوز کند. دتکتور حرارتی خطی را می‌توان با شعاعی نه کمتر از ۵۰ میلی‌متر (۲ اینچ) خم کرد.

    ۲. در صورت امکان، دتکتور حرارتی خطی باید به‌صورت یکپارچه و با حداقل تعداد اتصالات نصب شود.

    ۳. دتکتور حرارتی خطی باید آخرین تجهیز نصب‌شده در پروژه باشد. در صورتی که آخرین تجهیز نصب نشود، باید موقتاً با بست‌های پلاستیکی مهار شود تا خطر آسیب دیدگی کاهش یابد. باید از آسیب ناشی از رفت‌وآمد افراد، ضربات مکانیکی، پیچ‌خوردگی یا منابع حرارتی خارجی جلوگیری شود.

    WhatsApp Image 2025 09 15 at 4.12.36 PM

    . کانکتور ضدآب برای ایجاد رهایی مناسب از تنش در محل ورود دتکتور حرارتی خطی به جعبه یا محفظه الکتریکی استفاده می‌شود. توصیه می‌شود در انتهای مسیر طولانی دتکتور حرارتی خطی، تنش کابل تثبیت شود. این کانکتور برای پیچ شدن به دهانه استاندارد جعبه برق ریخته‌گری شده ¾ اینچ (NPT ¾”) طراحی شده است.

    ۵. دتکتور حرارتی خطی باید در نواحی در معرض دید که محل تشخیص نیستند، برای محافظت در برابر آسیب مکانیکی در داخل لوله فلزی الکتریکی (EMT) نصب شود. همچنین در محل‌هایی که کابل باید از دیوارها یا جداکننده‌ها عبور کند، باید از قطعات کوتاه EMT استفاده شود. در انتهای لوله EMT باید از بوشینگ‌های غیر فلزی استفاده شود تا از آسیب به دتکتور حرارتی خطی جلوگیری گردد.

    WhatsApp Image 2025 09 15 at 4.12.36 PM1

    . انتخاب سخت‌افزار نصب مناسب با توجه به تجهیزات یا سازه‌های پشتیبان در منطقه محافظت‌شده انجام می‌گیرد. شرایط محیطی و امکان‌پذیری نصب بست‌ها نیز باید مدنظر قرار گیرد. دتکتور حرارتی خطی باید همواره به پشتیبانی متصل شود که کمترین میزان حرکت را مجاز بداند، بدون اینکه عایق کابل فشرده یا له شود. سه نوع بست استاندارد (بست اصلی، بست فلنچی، بست نایلونی) امکان نصب ایمن و مطمئن دتکتور حرارتی خطی را در اغلب کاربردها فراهم می‌کنند.

    ۷. بست اصلی بست چندمنظوره‌ای است که بر روی تمام فلنج‌های تیرآهن تا ضخامت ۱۳ میلی‌متر (½ اینچ) نصب می‌شود و در برابر لرزش مقاوم است. برای اتصال دتکتور حرارتی خطی به بست اصلی، از بست نایلونی استفاده کنید.

    ۸. بست فلنچی در دو اندازه عرضه می‌شود: شماره قطعه برای فلز با ضخامت تا ۴ میلی‌متر (۳/۱۶ اینچ) و برای فلز با ضخامت ۴ تا ۶ میلی‌متر (¼ اینچ). این بست‌ها به‌راحتی روی فلنج‌های فلزی در خرپاهای سقف یا قفسه‌ها کوبیده می‌شوند و اتصال محکم و مقاوم در برابر لرزش ایجاد می‌کنند. برای اتصال دتکتور حرارتی خطی به هر دو نوع بست فلنچی، از بست نایلونی با شماره قطعه استفاده شود.

    WhatsApp Image 2025 09 15 at 4.12.37 PM

    . بست کمربندی نایلونی، یک بست کمربندی سنگین با زبانه نصب است که برای اتصال به لوله‌های اسپرینکلر یا دیگر لوله‌های سامانه اعلام و اطفای حریق تا قطر ۸ اینچ (۲۰ سانتی‌متر) طراحی شده است. استفاده از این روش برای نصب دتکتور حرارتی خطی (LHS) در صورتی مجاز است که توسط مرجع محلی ذی‌صلاح (AHJ) تأیید شود. برای اتصال کابل دتکتور به بست کمربندی نایلونی باید از بست نایلونی کابل) استفاده شود.

    ⚠️ هشدار
    هنگام نصب کابل دتکتور حرارتی خطی در محیط‌هایی با دمای زیر صفر، باید احتیاط ویژه‌ای انجام شود تا از تماس یا حرکت ناگهانی کابل جلوگیری گردد. در دماهای زیر ۳۲ درجه فارنهایت (۰ درجه سلسیوس)، ممکن است بست نایلونی به‌دلیل ضربه یا تماس فیزیکی دچار شکستگی شود.

    ۱۰. کابل نگهدار (Messenger cable) باید در مواقعی استفاده شود که نیاز به آویزان نگه‌داشتن کابل دتکتور حرارتی خطی در فاصله‌ای از یک شیء یا در ناحیه‌ای بدون سقف وجود داشته باشد. در این موارد باید از کابل استیل ضدزنگ تجاری با سایز مناسب به‌عنوان کابل نگهدار استفاده شود و کابل نگهدار باید به‌طور مناسب کشیده و سفت شود. کابل دتکتور را می‌توان با استفاده از بست‌های کمربندی، به‌فاصله تقریبی هر ۳ فوت (۱ متر) به کابل نگهدار متصل نمود.

    اتصال کابل دتکتور (SENSOR CABLE SPLICING)

    کابل دتکتور حرارتی خطی باید به‌صورت حرفه‌ای و مطابق با استانداردها و مقررات مربوطه متصل یا انشعاب داده شود. روش‌های پیشنهادی برای اتصال کابل در ادامه ارائه شده‌اند، اما این به معنای عدم استفاده از روش‌های جایگزین مناسب برای شرایط خاص نمی‌باشد.
    به دلیل حساسیت عایق کابل دتکتور به گرما، استفاده از لحیم‌کاری یا لوله‌های حرارتی (heat-shrink) در هیچ شرایطی مجاز نیست.

    روش ترجیحی – استفاده از جعبه تقسیم (Junction Box):
    روش پیشنهادی برای اتصال دو بخش کابل دتکتور، یا اتصال کابل دتکتور به کابل رابط مسی (lead-in)، یا اتصال به تجهیز انتهایی (End-of-Line)، استفاده از جعبه تقسیم است.

    ۱. کابل دتکتور می‌تواند با استفاده از روش‌های استاندارد صنعتی برای اتصال هادی‌های مسی متصل شود. اتصالات باید از نوع فشاری و ایمن باشند، مانند:

    • کانکتورهای پیچی (Wire Nuts) مانند 3M/Highland H-30 یا معادل آن
    • اتصال‌دهنده‌های استوانه‌ای (Butt Splices) مانند Panduit BSN18 یا معادل آن
    • ترمینال دوپین (2-Position Terminal Block) مانند Molex/Beau C1502-151 یا معادل آن

    اتصال باید مطابق با دستورالعمل نصب سازنده انجام شود.

    ۲. استفاده از جعبه تقسیم:
    هر جعبه تقسیم استاندارد برق با درپوش قابل استفاده است. در مکان‌های مرطوب یا نمناک، استفاده از جعبه ضدآب الزامی است. برای ایجاد رهایی از تنش در کابل دتکتور در محل ورود به جعبه، باید از کانکتور ضد آب با شماره قطعه P/N 73-117068-027 یا معادل آن استفاده شود. استفاده از گیره‌های کابل سبک “Romex” مجاز نیست، زیرا ممکن است باعث فشار بر کابل شده و در نتیجه هشدار کاذب ایجاد شود.

    💡 روش جایگزین – اتصال درون‌خطی (In-line Splice):
    در صورت تأیید مرجع ذی‌صلاح (AHJ)، اتصال درون‌خطی دو رشته کابل دتکتور ممکن است مجاز باشد. با این حال، این نوع اتصال برای اتصال کابل دتکتور به سیم رابط مسی، کابل بین‌اتصالی یا تجهیز انتهای خط (EOL) توصیه نمی‌شود. همچنین در صورت وارد شدن تنش قابل‌توجه به کابل دتکتور، استفاده از اتصال درون‌خطی توصیه نمی‌گردد.

    در کاربردهای تشخیص مجاورت، باید کابل دتکتور به صورت حلقه‌ای نصب شود، زیرا ناحیه اتصال در پوشش تشخیص قرار نمی‌گیرد.

    مراحل اتصال درون‌خطی:

    ۱. کابل دتکتور باید با استفاده از کانکتورهای فشاری عایق‌دار نایلونی (مانند Panduit BSN18 یا معادل آن) متصل شود. محل دو اتصال را نسبت به یکدیگر جابجا کنید (offset).

    ۲. ژاکت و عایق کابل‌ها را مطابق شکل ۷ جدا کرده و دو رسانا را با اختلاف طول موردنظر برش دهید.

    ۳. دو اتصال فشاری را با ابزار پرس مورد تأیید، مطابق شکل ۸ پرس کنید.

    ۴. در مکان‌های خشک، محل اتصال را با نوار چسب برق (مانند 3M/Scotch Super 33+ یا معادل آن) مطابق دستورالعمل سازنده عایق کنید. نوار را بکشید و هر دور آن را حدود نصف عرضش با دور قبلی هم‌پوشانی دهید. نوار باید حدود ۵۰ میلی‌متر (۲ اینچ) از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    ۵. در مکان‌های مرطوب یا نمناک، محل اتصال را با نوار سیلیکونی همجوش (مانند Tyco Electronics/Amp 608036-1 یا معادل آن) مطابق دستورالعمل سازنده آب‌بندی کنید. نوار باید مانند روش بالا، ۵۰ میلی‌متر از دو سر بریدگی ژاکت کابل دتکتور فراتر برود (مطابق شکل ۹).

    🧪تست عملکردی (TESTING):

    تست عملکردی کابل دتکتور حرارتی LHS باید مطابق با دستورالعمل‌های مربوط به دتکتورهای حرارتی نوع خطی با دمای ثابت و غیرقابل بازنشانی در فصل ۷ کد ملی اعلام حریق NFPA 72 انجام شود. برای الزامات اضافی، با مرجع ذی‌صلاح (AHJ) مشورت شود. تست عملکردی، کارکرد الکتریکی کابل دتکتور را تأیید می‌کند و نیازی به منبع حرارتی ندارد.

    مراحل تست:

    ۱. در انتهای ناحیه LHS، یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) قرار دهید و اطمینان حاصل کنید که زون به وضعیت آلارم می‌رود.

    ۲. (در صورت الزام مرجع ذی‌صلاح) یک رشته از EOL را جدا کرده و اطمینان حاصل کنید که زون به وضعیت خطا (trouble) می‌رود.

    ۳. (در صورت الزام مرجع ذی‌صلاح) هر دو رسانای ناحیه LHS را از پنل کنترل حریق (FCP) جدا کرده، و یک اتصال کوتاه بر روی تجهیز انتهای خط (EOL) ایجاد نمایید. سپس در انتهای زون (سمت FCP)، مقاومت کلی حلقه کابل دتکتور را اندازه‌گیری و ثبت کنید. این مقدار را با مقدار آزمون پذیرش اولیه مقایسه نمایید.

    نگهداری
    کابل دتکتور حرارتی خطی (LHS) به جز بازبینی چشمی برای اطمینان از صحت نصب، نیاز به هیچ‌گونه تعمیر و نگهداری ندارد.

    🔧 آسیب به کابل دتکتور:
    در صورت آسیب فیزیکی به کابل دتکتور، ممکن است هادی‌های داخلی با یکدیگر اتصال کوتاه پیدا کنند که منجر به آلارم می‌شود.
    برای یافتن محل اتصال کوتاه، می‌توان از روش‌های زیر استفاده کرد:

    • بررسی چشمی
    • استفاده از اهم‌متر و مقایسه مقدار با مقدار ثبت‌شده در تست پذیرش
    • استفاده از تولیدکننده تُن و دستگاه ردیاب (tone generator & probe)
      در صورت یافتن محل آسیب، باید یک قطعه جدید از کابل دتکتور به محل آسیب متصل شود.
      حداقل یک متر (۳ فوت) از کابل در هر سمت نقطه آسیب‌دیده باید تعویض شود.

    🔥 پس از وقوع آتش‌سوزی:
    از آنجا که کابل دتکتور حرارتی خطی از نوع غیرقابل بازیابی است، پس از تشخیص حریق، باید جایگزین شود.
    اگر قرار نیست کل زون تعویض شود، لازم است حداقل ۳ متر (۱۰ فوت) از کابل دتکتور در هر سمت بخش آسیب‌دیده جایگزین شود.

  • طراحی سیستم های اسپرینکلر

    • ترجمه و تدوین : مرکز اطلاعات کامپیوتری شرکت اسپین الکتریک

      فصل 19 از NFPA-13

      فصل ۱۹: رویکردهای طراحی

      ۱۹.۱ کلیات:
      از فصل ۱۹ برای تعیین رویکردهای طراحی استفاده خواهد شد.

      ۱۹.۲ رویکردهای عمومی طراحی:
      الزامات بخش ۱۹.۲ برای تمامی سیستم‌های اسپرینکلر، مگر در مواردی که توسط بخشی خاص از فصل ۱۹ یا فصل ۲۰ اصلاح شده باشد، اعمال می‌گردد.

      ۱۹.۲.۱
      حفاظت از یک ساختمان یا بخشی از آن مجاز است که طبق هر یک از رویکردهای طراحی قابل‌اعمال، به صلاحدید طراح انجام گیرد.

      ۱۹.۲.۲ خطرات مجاور یا روش‌های طراحی:*
      برای ساختمان‌هایی که دارای دو یا چند خطر یا روش طراحی مجاور به یکدیگر هستند، موارد زیر اعمال می‌گردد:

      1. اگر نواحی مورد نظر به‌صورت فیزیکی توسط پرده دود، مانع یا دیواری جدا نشده باشند که بتواند از انتقال حرارت ناشی از آتش در یک ناحیه به نحوی جلوگیری کند که از فعال شدن اسپرینکلرها در ناحیه مجاور جلوگیری کند، الزامات مربوط به طراحی با شدت بیشتر باید به‌اندازه ۱۵ فوت (۴٫۶ متر) فراتر از مرز آن ناحیه گسترش یابد.
      2. الزامات بند (۱) زمانی اعمال نمی‌شود که نواحی با یکی از موارد زیر از هم جدا شده باشند:
      o پرده دود یا مانعی که در بالای راهرو قرار دارد، مشروط بر اینکه راهرو دارای حداقل ۲ فوت (۶۰۰ میلی‌متر) جداسازی افقی از خطر مجاور در هر طرف باشد.
      o دیواری که قادر به جلوگیری از انتقال حرارت از یک ناحیه به ناحیه مجاور و در نتیجه ممانعت از فعال شدن اسپرینکلرهای آن باشد.
      3. الزامات بند (۱) همچنین در مورد گسترش معیارهای طراحی با شدت بیشتر از یک سطح سقف بالاتر به زیر سقف پایین‌تر، زمانی که اختلاف ارتفاع بین دو سطح سقف حداقل ۲ فوت (۶۰۰ میلی‌متر) باشد و این تفاوت در بالای یک راهرو با حداقل ۲ فوت جداسازی افقی از خطر مجاور در هر طرف قرار گرفته باشد، اعمال نمی‌گردد.

      ۱۹.۲.۳
      برای سیستم‌هایی که به‌صورت هیدرولیکی محاسبه می‌شوند، کل نیازمندی‌های تأمین آب سیستم برای هر پایه طراحی باید مطابق با رویه‌های بخش ۲۷.۲، مگر در مواردی که در فصل ۱۹ یا ۲۰ اصلاح شده باشد، تعیین شود.

      ۱۹.۲.۴ تقاضای آب:

      ۱۹.۲.۴.۱*
      نیازمندی‌های تقاضای آب باید از طریق منابع زیر تعیین شود:

      1. رویکردهای کنترل آتش بر اساس خطر اشغال و طراحی‌های خاص در فصل ۱۹
      2. رویکردهای طراحی ذخیره‌سازی در فصل‌های ۲۰ تا ۲۵
      3. رویکردهای ویژه برای اشغال‌های خاص در فصل ۲۶

      ۱۹.۲.۴.۲*
      حداقل نیازمندی‌های تقاضای آب برای یک سیستم اسپرینکلر باید با افزودن میزان جریان مجاز شیلنگ آتش‌نشانی به تقاضای آب مورد نیاز اسپرینکلرها تعیین گردد.

      ۱۹.۲.۵ منابع تأمین آب:

      ۱۹.۲.۵.۱
      حداقل مقدار تأمین آب باید برای حداقل مدت زمان تعیین‌شده در فصل ۱۹ در دسترس باشد.

      ۱۹.۲.۵.۲*
      مخازن باید به گونه‌ای طراحی شوند که بتوانند تجهیزات تحت پوشش خود را تأمین کنند.

      ۱۹.۲.۵.۳*
      پمپ‌ها نیز باید به گونه‌ای طراحی شوند که بتوانند تجهیزات مرتبط خود را تأمین نمایند.

      19.2.6 جریان مجاز شیلنگ آتش‌نشانی (Hose Allowance)

      19.2.6.1 سیستم‌های دارای طبقه‌بندی خطر متعدد:
      برای سیستم‌هایی که شامل چند نوع طبقه‌بندی خطر هستند، جریان مجاز شیلنگ و مدت‌زمان تأمین آب باید مطابق یکی از روش‌های زیر تعیین شود:

      1. الزامات تأمین آب برای بالاترین طبقه‌بندی خطر در سیستم مورد استفاده قرار گیرد.
      2. الزامات تأمین آب برای هر طبقه‌بندی خطر به‌صورت جداگانه و بر اساس ناحیه طراحی مربوط به همان خطر در محاسبات استفاده شود.
      3. اگر طبقه‌بندی خطر بالاتر تنها در اتاق‌هایی مجزا با مساحت کمتر یا مساوی ۴۰۰ فوت مربع (۳۷ مترمربع) باشد و این اتاق‌ها مجاور هم نباشند، الزامات تأمین آب برای کاربری اصلی (principal occupancy) برای سایر بخش‌های سیستم کفایت می‌کند. (یادآوری: این بند دارای تفسیر فنی می‌باشد)

      19.2.6.2*
      مقدار جریان آب مجاز برای شیلنگ‌های خارجی باید به نیازمندی‌های اسپرینکلر در نقطه اتصال به شبکه آب شهری یا نزدیک‌ترین هیدرانت (شیر آتش‌نشانی خصوصی) افزوده شود، هرکدام که به رایزر سیستم نزدیک‌تر باشند.

      19.2.6.3
      در مواردی که استفاده از اتصالات داخلی شیلنگ پیش‌بینی یا الزامی باشد، موارد زیر اعمال می‌گردد:

      1. برای نصب یک اتصال شیلنگ، میزان ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) به تقاضای آب سیستم اسپرینکلر افزوده می‌شود.
      2. برای نصب چند اتصال شیلنگ، میزان ۱۰۰ گالن بر دقیقه (380 لیتر بر دقیقه) به تقاضای آب افزوده می‌شود.
      3. این مقدار باید به‌صورت افزایشی از ۵۰ گالن بر دقیقه (190 لیتر بر دقیقه) در نظر گرفته شود، به‌طوری‌که هر مرحله از دورترین نقطه اتصال شیلنگ محاسبه شده و در فشار موردنیاز سیستم در آن نقطه اضافه گردد.

      19.2.6.3.1
      در صورتی که سیستم به‌صورت ترکیبی از اسپرینکلر و رایزر آتش‌نشانی(کلاس I یا III) باشد و ساختمان به‌طور کامل طبق NFPA 13 اسپرینکلر شده باشد، هیچ نیازی به در نظر گرفتن تقاضای داخلی شیلنگ در خروجی‌های رایزر آتش‌نشانی نیست.

      19.2.6.4*
      زمانی‌که شیر شیلنگ برای استفاده واحد آتش‌نشانی به رایزر سیستم اسپرینکلر از نوع تر (wet pipe) متصل شده باشد، مطابق بند 16.15.2، موارد زیر اعمال می‌شود:

      1. نیازی نیست تقاضای اسپرینکلر به تقاضای رایزر آتش‌نشانی مطابقNFPA 14 افزوده شود.
      2. در صورتی که مجموع تقاضای اسپرینکلر و جریان مجاز شیلنگ طبق جدول 19.3.3.1.2 از الزامات NFPA 14 بیشتر باشد، مقدار بیشتر باید ملاک قرار گیرد.
      3. برای ساختمان‌هایی که تنها بخشی از آن‌ها اسپرینکلر شده، تقاضای اسپرینکلر (بدون احتساب جریان مجاز شیلنگ) طبق شکل 19.3.3.1.1 باید به الزامات مندرج در NFPA 14 اضافه گردد.

      19.2.7 فن‌ های حجیم با سرعت پایین (HVLS – High Volume Low Speed Fans)*

      نصب فن‌های HVLS در ساختمان‌هایی که مجهز به سیستم اسپرینکلر (از جمله اسپرینکلرهای پاسخ بسیار سریع برای فضاهای ذخیره‌سازی – ESFR) هستند، باید مطابق با موارد زیر انجام شود:

      1. قطر حداکثری فن نباید بیش از ۲۴ فوت (۷٫۳ متر) باشد.
      2. فن باید تقریباً در مرکز بین چهار اسپرینکلر مجاور قرار گیرد.
      3. فاصله عمودی بین فن HVLS و پخش‌کننده اسپرینکلر (deflector) باید حداقل ۳ فوت (۰٫۹ متر) باشد.

      19.2.7 – فن‌های HVLS

      بند (4):
      تمامی فن‌های HVLS باید به‌گونه‌ای در مدار سیستم قرار گیرند که به‌محض فعال شدن هشدار جریان آب (waterflow alarm) بلافاصله خاموش شوند.
      در مواردی که ساختمان به سیستم اعلام حریق مجهز باشد، این اینترلاک (مدار قطع خودکار) باید مطابق با الزامات استاندارد NFPA 72 اجرا گردد.

      19.3 رویکرد کنترل حریق بر اساس طبقه‌بندی خطر اشغال برای اسپرینکلرهای پاششی

      19.3.1 کلیات

      19.3.1.1*
      نیازمندی‌های تأمین آب برای این نوع سیستم‌ها باید از یکی از دو روش زیر تعیین شود:

      روش جدول لوله‌کشی (Pipe Schedule Method) طبق بند 19.3.2
      روش محاسبات هیدرولیکی (Hydraulic Calculation Method) طبق بند 19.3.3

      19.3.1.2 طبقه‌بندی نوع اشغال:

      19.3.1.2.1
      طبقه‌بندی نوع اشغال در این استاندارد، فقط مربوط به نصب اسپرینکلرها و تأمین آب آن‌ها است و کاربرد عمومی برای تعیین نوع خطرات ساختمانی ندارد.
      19.3.1.2.2
      طبقه‌بندی اشغال نباید به‌عنوان یک طبقه‌بندی کلی خطرات حریق در ساختمان استفاده شود.
      19.3.1.2.3
      کاربری‌ها یا بخش‌هایی از کاربری‌ها باید بر اساس موارد زیرطبقه‌بندی شوند:
      o مقدار و قابلیت اشتعال محتویات
      o نرخ آزادسازی حرارت مورد انتظار
      o کل پتانسیل آزادسازی انرژی
      o ارتفاع پشته‌سازی مواد
      o وجود مایعات قابل اشتعال یا احتراق
      این عوامل باید طبق تعاریف بندهای 4.3.2 تا 4.3.7 در نظر گرفته شوند.
      19.3.1.2.4 طبقه‌بندی‌ها به شرح زیر هستند:
      1. خطر سبک (Light Hazard)
      2. خطر معمولی – گروه ۱ و ۲ (Ordinary Hazard Group 1 and 2)
      3. خطر بالا – گروه ۱ و ۲ (Extra Hazard Group 1 and 2)
      4. خطرات خاص اشغالی (Special Occupancy Hazards)مراجعه شود به فصل ۲۶

      19.3.2 نیازمندی‌های تأمین آب — روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.1
      برای تعیین حداقل نیازمندی تأمین آب در کاربری‌های خطر سبک و خطر معمولی که سیستم آن‌ها طبق جداول اندازه‌گذاری لوله‌های مندرج در بخش 27.5 طراحی شده، باید از جدول 19.3.2.1 استفاده شود.

      19.3.2.2
      برای کاربری‌های خطر بالا (Extra Hazard)، الزامات فشار و جریان باید صرفاً بر اساس روش محاسبات هیدرولیکی بند 19.3.3 تعیین شود.

      19.3.2.3
      استفاده از روش جدول لوله‌کشی مجاز است فقط در موارد زیر:

      1. افزایش یا اصلاح در سیستم‌های موجودی که بر اساس جدول لوله‌کشی بخش 27.5 طراحی شده‌اند.
      2. افزایش یا اصلاح در سیستم‌های موجود با طبقه‌بندی خطر بالا که با جدول لوله‌کشی طراحی شده‌اند.
      3. سیستم‌های جدیدی با مساحت حداکثر ۵۰۰۰ فوت مربع (۴۶۵مترمربع)

      2Q==

      19.3.2 – نیازمندی‌های تأمین آب – روش جدول لوله‌کشی (Pipe Schedule Method)

      19.3.2.3 بند 4
      سیستم‌های جدیدی که مساحت آن‌ها بیش از ۵۰۰۰ فوت مربع (۴۶۵متر مربع) باشد، در صورتی می‌توانند از جدول 19.3.2.1 استفاده کنند که مقادیر جریان مورد نیاز در آن جدول در حداقل فشار باقیمانده‌ی ۵۰psi (معادل ۳.۴ بار) در بالاترین تراز اسپرینکلر فراهم باشند.

      19.3.2.4
      جهت تعیین حداقل نیازمندی‌های تأمین آب، از جدول 19.3.2.1 استفاده می‌شود.

      19.3.2.5
      مقادیر مدت زمان پایین‌تر در جدول 19.3.2.1 تنها در صورتی قابل قبول هستند که:

      تجهیزات هشدار جریان آب (waterflow alarm)
      و تجهیزات نظارتی (supervisory devices)
      به‌صورت برقی (electrically supervised) بوده
      و این نظارت توسط یک مرکز مورد تأیید و به‌طور دائمی تحت پایش انجام شود.

      19.3.2.6 – فشار باقیمانده (Residual Pressure):

      19.3.2.6.1
      فشار باقیمانده مندرج در جدول 19.3.2.1 باید در تراز بالاترین اسپرینکلر فراهم باشد.

      19.3.2.6.2 افت فشار ناشی از شیرهای برگشت‌ناپذیر (Backflow Prevention Valves):

      19.3.2.6.2.1
      چنانچه در سیستم‌های طراحی شده با جدول لوله‌کشی از شیر برگشت‌ناپذیر استفاده شود، افت فشار ناشی از این شیر باید در محاسبات فشار باقیمانده لحاظ گردد.
      19.3.2.6.2.2
      میزان افت فشار ایجادشده توسط این شیر (بر حسب psi یا bar)، باید به افت فشار ناشی از ارتفاع و فشار باقیمانده مورد نیاز در ردیف بالایی اسپرینکلرها اضافه گردد تا فشار کلی مورد نیاز در محل تأمین آب مشخص شود.

      19.3.2.7
      استفاده از مقادیر جریان پایین‌تر در جدول 19.3.2.1 تنها زمانی مجاز است که:

      ساختمان از مصالح غیرقابل احتراق (noncombustible) ساخته شده باشد
      یا
      نواحی بالقوه‌ی آتش‌سوزی، با توجه به اندازه‌ی ساختمان یا تقسیم‌بندی فضاها (compartmentation)، محدود شده باشند به‌گونه‌ای که هیچ ناحیه‌ی باز (open area) از مقادیر زیر تجاوز نکند:
      o ۳۰۰۰ فوت مربع (۲۸۰ متر مربع) برای کاربری با خطر سبک(Light Hazard)
      o ۴۰۰۰ فوت مربع (۳۷۰ متر مربع) برای کاربری با خطر معمولی (Ordinary Hazard)

      19.3.3 نیازمندی‌های تأمین آب – روش محاسبات هیدرولیکی(Hydraulic Calculation Methods)

      19.3.3.1 کلیات

      19.3.3.1.1
      نیازمندی تأمین آب اسپرینکلر باید تنها بر اساس یکی از روش‌های زیرو به صلاحدید طراح تعیین شود:

      1. منحنی چگالی/مساحت (Density/Area Curves) مطابق شکل 19.3.3.1.1 و روش بند 19.3.3.2
      2. اتاق دارای بیشترین بار آبی (Room Design Method) مطابق بند 19.3.3.3
      3. نواحی طراحی خاص (Special Design Areas) مطابق بند 19.3.3.4

      19.3.3.1.2
      حداقل تأمین آب باید برای مدت زمانی فراهم باشد که در جدول 19.3.3.1.2مشخص شده است.

      19.3.3.1.3
      مقادیر مدت زمان پایین‌تر در جدول مذکور فقط در صورت وجود نظارت برقی و پایش دائمی توسط یک مرکز مورد تأیید قابل قبول هستند.

      19.3.3.1.4 محدودیت‌ها در روش‌های چگالی/مساحت و طراحی اتاق:

      در صورتی که از روش چگالی/مساحت یا روش طراحی اتاق استفاده شود، الزامات زیر اعمال می‌گردد:

      (1)*
      برای کاربری‌های خطر سبک و معمولی، اگر ناحیه عملکرد اسپرینکلر کمتر از ۱۵۰۰ فوت مربع (۱۴۰ متر مربع) باشد، باید چگالی متناظر با ۱۵۰۰ فوت مربع استفاده شود.
      (2)
      برای کاربری‌های خطر بالا، اگر ناحیه عملکرد اسپرینکلر کمتر از ۲۵۰۰ فوت مربع (۲۳۰ متر مربع) باشد، باید چگالی متناظر با ۲۵۰۰ فوت مربع استفاده گردد.

      Z

      19.3.3.1.5 فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر
      19.3.3.1.5.1* هنگام استفاده از روش چگالی/مساحت یا طراحی اتاق، مگر اینکه الزامات بند 19.3.3.1.5.2 رعایت شده باشد، برای ساختمان‌هایی که دارای فضاهای پنهان قابل‌اشتعال بدون اسپرینکلر هستند، همان‌طور که در بندهای 9.2.1 و 9.3.18 توصیف شده است، حداقل مساحت عملکرد اسپرینکلر برای آن بخش از ساختمان باید 3000 فوت مربع (280 متر مربع) باشد.
      (A) ناحیه طراحی 3000 فوت مربع (280 متر مربع) فقط باید به سیستم اسپرینکلر یا بخش‌هایی از سیستم اسپرینکلری که در مجاورت فضای پنهان قابل‌اشتعال واجد شرایط هستند، اعمال شود.
      (B) اصطلاح «مجاور» به هر سیستم اسپرینکلری که فضایی در بالا، پایین یا کنار فضای پنهان واجد شرایط را محافظت می‌کند اطلاق می‌شود، مگر در مواردی که مانعی با درجه مقاومت در برابر آتش معادل با مدت زمان تأمین آب، به‌طور کامل فضای پنهان را از ناحیه دارای اسپرینکلر جدا کرده باشد.

      19.3.3.1.5.2 فضاهای پنهان بدون اسپرینکلر زیر، نیاز به حداقل مساحت عملکرد اسپرینکلر برابر با 3000 فوت مربع (280 متر مربع) ندارند:
      (1) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با بار قابل‌اشتعال ناچیز که دسترسی به آن‌ها وجود ندارد. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (2) فضاهای پنهان غیرقابل‌اشتعال و با قابلیت اشتعال محدود با دسترسی محدود که اجازه اشغال یا ذخیره مواد قابل‌اشتعال را نمی‌دهند. این فضا حتی با وجود بازشوهای کوچک مانند آن‌هایی که برای بازگشت هوا در یک پلنوم استفاده می‌شوند، به‌عنوان فضای پنهان در نظر گرفته می‌شود.
      (3) فضاهای پنهان قابل‌اشتعال که به‌طور کامل با عایق غیرقابل‌اشتعال پر شده‌اند.
      (4)* در کاربری‌های خطر سبک یا معمول، جایی که سقف‌های غیرقابل‌اشتعال یا با قابلیت اشتعال محدود مستقیماً به پایین تیرهای چوبی توپر یا ساختارهای توپر با قابلیت اشتعال محدود یا غیرقابل‌اشتعال متصل شده‌اند، به‌گونه‌ای که فضاهای بسته بین تیرها ایجاد شود با حجم حداکثر 160 فوت مکعب (4.5 متر مکعب)، از جمله فضای زیر عایقی که مستقیماً روی تیرهای سقف یا درون آن‌ها قرار گرفته در یک فضای پنهان که در غیر این صورت دارای اسپرینکلر است.

      2Q==

      (5) فضاهای پنهان که در آن‌ها از مصالح سخت استفاده شده و سطوح در معرض دید با یکی از موارد زیر، در همان شکلی که در فضا نصب شده‌اند، مطابقت دارند:
      (a) مصالح سطحی دارای شاخص گسترش شعله برابر یا کمتر از 25 هستند و ثابت شده که این مصالح در آزمون مطابق با استاندارد ASTM E84 «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی» یا UL 723 «استاندارد آزمون ویژگی‌های احتراقی سطحی مصالح ساختمانی»، که به‌مدت 20 دقیقه اضافی در همان شکل نصب‌شده در فضا ادامه یافته، آتش را بیش از 10.5 فوت (3.2 متر) گسترش نمی‌دهند، یا
      (b) مصالح سطحی با الزامات ASTM E2768، «روش آزمون استاندارد برای ویژگی‌های احتراقی سطحی مصالح ساختمانی با مدت زمان طولانی (آزمون تونلی 30 دقیقه‌ای)» مطابقت دارند.

      (6) فضاهای پنهان که مصالح در معرض دید آن‌ها به‌طور کامل از چوب تیمارشده با مواد مقاوم در برابر حریق ساخته شده‌اند، مطابق تعریف NFPA 703.

      (7) فضاهای پنهان در بالای اتاق‌های کوچک مجزا که مساحت آن‌ها از 55 فوت مربع (5.1 متر مربع) بیشتر نیست.

      (8) مسیرهای عمودی عبور لوله (pipe chases) با مساحت کمتر از 10 فوت مربع (0.9 متر مربع)، به شرطی که در ساختمان‌های چندطبقه، این مسیرها در هر طبقه با استفاده از مصالح معادل ساختار کف، مسدودکننده حریق(firestopped) شده باشند و در صورتی که این مسیرهای لوله‌کشی فاقد منابع اشتعال باشند، لوله‌کشی از مصالح غیرقابل احتراق باشد و نفوذ لوله در هر طبقه به‌درستی آب‌بندی شده باشد.

      (9) ستون‌های خارجی با مساحت کمتر از 10 فوت مربع (0.9 متر مربع) که با تیرک‌ها یا تیرچه‌های چوبی شکل گرفته‌اند و سایبان‌های بیرونی را نگه می‌دارند، به شرطی که این سایبان‌ها به‌طور کامل با سیستم اسپرینکلر محافظت شده باشند.

      (10) فضاهای با خطر سبک یا معمولی که در آن‌ها سقف‌های غیرقابل احتراق یا با قابلیت احتراق محدود مستقیماً یا بر روی کانال‌های فلزی با عمق بیش از 1 اینچ (25 میلی‌متر) به پایین تیرچه‌های چوبی کامپوزیت متصل شده‌اند، به‌شرطی که کانال‌های تیرچه مجاور با مصالحی معادل تخته گچی ½ اینچ (13 میلی‌متر) به حجم‌هایی بیش از 160 فوت مکعب (4.5 متر مکعب) تقسیم‌بندی شده باشند و حداقل 3½ اینچ (90 میلی‌متر) عایق پتویی (batt insulation) در پایین کانال‌های تیرچه نصب شده باشد زمانی که سقف با استفاده از کانال‌های فلزی متصل شده باشد.

      (11) حفره‌ها درون فضاهای دیواری فاقد اسپرینکلر.

      19.3.3.2 روش چگالی/مساحت

      19.3.3.2.1 منبع آب
      19.3.3.2.1.1 الزامات منبع آب فقط برای اسپرینکلرها باید از نمودارهای چگالی/مساحت در شکل 19.3.3.1.1 یا از فصل 26 در مواردی که معیارهای چگالی/مساحت برای خطرات اشغال خاص مشخص شده‌اند، محاسبه شود.
      19.3.3.2.1.2 هنگام استفاده از شکل 19.3.3.1.1، محاسبات باید هر نقطه‌ای منفرد روی منحنی چگالی/مساحت مناسب را ارضا کند.
      19.3.3.2.1.3 هنگام استفاده از شکل 19.3.3.1.1، ضروری نیست که همه نقاط روی منحنی انتخاب‌شده ارضا شوند.

      19.3.3.2.2 اسپرینکلرها
      19.3.3.2.2.1 چگالی‌ها و مساحت‌های ارائه‌شده در شکل 19.3.3.1.1 فقط باید برای استفاده با اسپرینکلرهای اسپری باشد.
      19.3.3.2.2.2 استفاده از اسپرینکلرهای با واکنش سریع در اشغال‌های خطر زیاد یا دیگر اشغال‌هایی که دارای مقادیر قابل توجهی مایعات قابل اشتعال یا گردوغبارهای قابل احتراق هستند مجاز نیست.
      19.3.3.2.2.3 برای اسپرینکلرهای پوشش گسترده (extended coverage)، حداقل مساحت طراحی باید برابر با مساحت مربوط به خطر در شکل 19.3.3.1.1 یا مساحت محافظت‌شده توسط پنج اسپرینکلر، هرکدام که بیشتر است، باشد.
      19.3.3.2.2.4 اسپرینکلرهای پوشش گسترده باید دارای فهرست‌بندی و طراحی برای حداقل دبی مطابق با چگالی برای خطر مورد نظر طبق شکل 19.3.3.1.1 باشند.

      19.3.3.2.3 اسپرینکلرهای با واکنش سریع
      19.3.3.2.3.1 در مواردی که از اسپرینکلرهای با واکنش سریع فهرست‌شده، از جمله اسپرینکلرهای با پوشش گسترده و واکنش سریع، در سراسر یک سیستم یا بخشی از سیستمی که دارای مبنای طراحی هیدرولیکی یکسان است استفاده شود، مساحت عملکرد سیستم می‌تواند بدون تغییر در چگالی، کاهش یابد طبق آنچه در شکل 19.3.3.2.3.1 آمده است، به‌شرطی که همه شرایط زیر برآورده شوند:
      (1) سیستم لوله‌کشی مرطوب باشد
      (2) اشغال خطر سبک یا خطر معمولی باشد
      (3) ارتفاع سقف حداکثر 20 فوت (6.1 متر) باشد

      (4) هیچ فضای سقفیِ بدون محافظت مطابق با موارد مجاز در بندهای 10.2.9 و 11.2.8 نباید بیش از 32 فوت مربع (3.0 متر مربع) باشد.

      (5) هیچ ناحیه‌ای بدون محافظت در بالای سقف‌های ابری (cloud ceilings) مطابق با موارد مجاز در بند 9.2.7 نباید وجود داشته باشد.

      19.3.3.2.3.2 تعداد اسپرینکلرها در ناحیه طراحی نباید هرگز کمتر از پنج عدد باشد.

      19.3.3.2.3.3 در مواردی که از اسپرینکلرهای با واکنش سریع روی سقف یا بام شیب‌دار استفاده می‌شود، برای تعیین درصد کاهش ناحیه طراحی، حداکثر ارتفاع سقف یا بام باید لحاظ شود.

      19.3.3.2.4 سقف‌های شیب‌دار. در مواردی که از انواع زیر از اسپرینکلرها روی سقف‌های شیب‌دار با شیب بیش از 1 به 6 (افزایش 2 واحد در طول 12 واحد، معادل شیب 16.7 درصد) در کاربردهای غیر انباری استفاده می‌شود، ناحیه عملکرد سیستم باید بدون تغییر چگالی، 30 درصد افزایش یابد:

      (1) اسپرینکلرهای اسپری، شامل اسپرینکلرهای پوشش گسترده که طبق بند 11.2.1(4) فهرست شده‌اند، و اسپرینکلرهای با واکنش سریع
      (2) اسپرینکلرهای CMSA

      19.3.3.2.5 سیستم‌های خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف.* برای سیستم‌های لوله‌کشی خشک و سیستم‌های پیش‌فعال دوگانه با قفل مضاعف، ناحیه عملکرد اسپرینکلر باید بدون تغییر چگالی، 30 درصد افزایش یابد.

      19.3.3.2.6 اسپرینکلرهای دمای بالا. در مواردی که از اسپرینکلرهای دمای بالا برای اشغال‌های با خطر زیاد استفاده می‌شود، ناحیه عملکرد اسپرینکلر می‌تواند بدون تغییر چگالی، تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع).

      19.3.3.2.7 در مواردی که از اسپرینکلرهایی با ضریب دبی K-11.2 (160) یا بزرگ‌تر همراه با منحنی‌های طراحی مربوط به Extra Hazard Group 1 یا Extra Hazard Group 2 و مطابق با بند 19.3.3.1.1 استفاده می‌شود، ناحیه طراحی می‌تواند تا 25 درصد کاهش یابد، اما نه کمتر از 2000 فوت مربع (185 متر مربع)، بدون توجه به درجه حرارت اسپرینکلر.

      Z

      19.3.3.2.8* تعدیلات چندگانه
      19.3.3.2.8.1 هنگامی که تعدیلات چندگانه در ناحیه عملکرد باید مطابق با بندهای 19.3.3.2.3، 19.3.3.2.4، 19.3.3.2.5 یا 19.3.3.2.6 انجام گیرد، این تعدیلات باید به صورت مرکب بر پایه ناحیه عملکرد انتخاب‌شده اولیه از شکل 19.3.3.1.1 اعمال شوند.
      19.3.3.2.8.2 اگر ساختمان دارای فضاهای پنهان قابل احتراق و بدون اسپرینکلر باشد، قوانین بند 19.3.3.1.4 باید پس از انجام تمام اصلاحات دیگر اعمال شود.

      19.3.3.3 روش طراحی اتاق
      19.3.3.3.1* نیازمندی‌های تأمین آب برای تنها اسپرینکلرها باید بر پایه اتاقی که بیشترین تقاضا را ایجاد می‌کند، بنا شود.
      19.3.3.3.2 چگالی انتخاب‌شده باید از شکل 19.3.3.1.1 مطابق با طبقه‌بندی خطر اشغال و اندازه اتاق باشد.
      19.3.3.3.3 برای استفاده از روش طراحی اتاق، تمام اتاق‌ها باید دارای دیوارهایی با درجه مقاومت در برابر آتش برابر با مدت زمان تأمین آب ذکر شده در جدول 19.3.3.1.2 باشند.
      19.3.3.3.4 اگر اتاق کوچک‌تر از ناحیه مشخص‌شده در شکل 19.3.3.1.1 باشد، مفاد بندهای 19.3.3.1.4(1) و 19.3.3.1.4(2) باید اعمال شوند.
      19.3.3.3.5 حداقل حفاظت از بازشوها باید به صورت زیر باشد:
      (1) خطر سبک — درب‌های خودبسته‌شونده یا خودکار غیر مقاوم در برابر آتش.
      (2) خطر سبک بدون حفاظت از بازشو — در صورتی که بازشوها حفاظت نشده باشند، محاسبات باید شامل اسپرینکلرهای داخل اتاق به‌علاوه دو اسپرینکلر در فضای ارتباطی نزدیک‌ترین به هر بازشوی حفاظت‌نشده باشد، مگر اینکه فضای ارتباطی تنها دارای یک اسپرینکلر باشد که در این صورت محاسبات باید شامل عملکرد همان یک اسپرینکلر باشد. انتخاب اسپرینکلرهای اتاق و فضای ارتباطی که باید محاسبه شود، باید به گونه‌ای باشد که بیشترین تقاضای هیدرولیکی را تولید کند. برای اشغال‌های خطر سبک با بازشوهای بدون حفاظت در دیوارها، حداقل عمق پیشانی (lintel) برای بازشوها 8 اینچ (200 میلی‌متر) الزامی است و عرض بازشو نباید بیش از 8 فوت (2.4 متر) باشد. داشتن تنها یک بازشوی 36 اینچ (900 میلی‌متر) یا کمتر بدون پیشانی مجاز است، مشروط بر اینکه بازشوی دیگری به فضاهای مجاور وجود نداشته باشد.
      (3) خطر معمولی و خطر بالا — درب‌های خودبسته‌شونده یا خودکار با درجه مقاومت آتش مناسب برای محصورسازی.

      19.3.3.3.6 در صورتی که روش طراحی اتاق استفاده شود و ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای حفاظت‌شده طبق بند 19.3.3.3.5 محافظت می‌شود، حداکثر تعداد اسپرینکلرهایی که نیاز به محاسبه دارند پنج عدد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو خواهد بود.
      19.3.3.3.7 در صورتی که ناحیه مورد نظر راهرویی باشد که توسط یک ردیف اسپرینکلر محافظت شده با بازشوهای بدون حفاظت در یک اشغال خطر سبک محافظت می‌شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای موجود در راهرو تا حداکثر پنج عدد باشد یا، در صورتی که اسپرینکلرهای پوشش گسترده نصب شده باشند، تمام اسپرینکلرهای موجود در 75 فوت طولی (23 متر طولی) از راهرو.

      19.3.3.4 نواحی طراحی ویژه
      19.3.3.4.1 در صورتی که ناحیه طراحی شامل یک شوت خدمات ساختمانی باشد که با رایزر جداگانه‌ای تغذیه می‌شود، حداکثر تعداد اسپرینکلرهایی که باید محاسبه شوند، سه عدد است، که هرکدام باید حداقل ۱۵ گالن در دقیقه (57 لیتر در دقیقه) تخلیه داشته باشند.
      19.3.3.4.2* در صورتی که ناحیه‌ای قرار است تنها توسط یک خط اسپرینکلر محافظت شود، ناحیه طراحی باید شامل تمام اسپرینکلرهای روی خط تا حداکثر هفت عدد باشد.
      19.3.3.4.3 اسپرینکلرهای داخل کانال‌ها که در بخش‌های 8.9 و 9.3.9 توصیف شده‌اند، باید به‌گونه‌ای طراحی هیدرولیکی شوند که فشار تخلیه در هر اسپرینکلر حداقل ۷ psi (0.5 bar) باشد، در حالی که تمام اسپرینکلرهای داخل کانال در حال تخلیه هستند.
      19.3.3.4.4 برج‌های پله: برج‌های پله یا دیگر ساختارهایی با طبقات ناقص، اگر با رایزر مستقل لوله‌کشی شده باشند، از نظر اندازه لوله به‌عنوان یک ناحیه تلقی می‌شوند.

      19.4 رویکردهای طراحی ویژه
      19.4.1 اسپرینکلرهای مسکونی
      19.4.1.1* ناحیه طراحی باید شامل چهار اسپرینکلر مجاور باشد که بیشترین تقاضای هیدرولیکی را ایجاد می‌کنند.
      19.4.1.2* مگر اینکه الزامات بند 19.3.3.1.5.2 برای ساختمان‌هایی که دارای فضاهای پنهان قابل احتراق بدون اسپرینکلر هستند (طبق توصیف در بندهای 9.2.1 و 9.3.18) رعایت شده باشد، حداقل ناحیه طراحی عملکرد اسپرینکلر برای آن بخش از ساختمان باید شامل هشت اسپرینکلر باشد.
      19.4.1.2.1* ناحیه طراحی شامل هشت اسپرینکلر فقط باید برای بخش‌هایی از اسپرینکلرهای مسکونی اعمال شود که در مجاورت فضای پنهان قابل احتراق واجد شرایط قرار دارند.
      19.4.1.2.2 واژه «مجاور» شامل هر سیستم اسپرینکلری می‌شود که فضایی را در بالا، پایین، یا کنار فضای پنهان محافظت می‌کند، مگر آنکه مانعی با درجه مقاومت در برابر آتش معادل حداقل مدت زمان تأمین آب، فضای پنهان را به‌طور کامل از ناحیه دارای اسپرینکلر جدا کرده باشد.
      19.4.1.3 مگر اینکه الزامات بند 19.4.1.4 رعایت شده باشد، حداقل دبی مورد نیاز از هر اسپرینکلر در ناحیه طراحی باید بزرگ‌تر از مقادیر زیر باشد:
      (1) طبق حداقل نرخ جریان ذکر شده در لیستینگ اسپرینکلر
      (2) در اتاق‌ها یا فضاهایی بزرگ‌تر از 800 فوت مربع (74 متر مربع)، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی ناحیه طراحی، طبق مفاد بند 9.5.2.1
      (3) در اتاق‌ها یا فضاهایی با 800 فوت مربع (74 متر مربع) یا کمتر، به‌صورت تحویل حداقل 0.1 gpm/ft² (4.1 mm/min) بر روی سطح اتاق یا فضا با استفاده از مساحت اتاق تقسیم بر تعداد اسپرینکلرهای موجود در آن

      19.4.1.4 برای تغییرات یا افزودن به سیستم‌های موجود مجهز به اسپرینکلرهای مسکونی، معیارهای دبی لیست‌شده کمتر از 0.1 gpm/ft² (4.1 mm/min) مجاز است.
      19.4.1.4.1 در مواردی که اسپرینکلرهای مسکونی تولیدشده پیش از سال 2003 که دیگر توسط تولیدکننده عرضه نمی‌شوند تعویض می‌گردند، و این اسپرینکلرها با چگالی طراحی کمتر از 0.05 gpm/ft² (2.04 mm/min) نصب شده‌اند، استفاده از اسپرینکلر مسکونی با ضریب K معادل (±5 درصد) مجاز است، مشروط بر اینکه سطح پوشش فعلی لیست‌شده برای اسپرینکلر جایگزین تجاوز نکند.

      19.4.1.5 در نواحی مانند اتاق زیر شیروانی، زیرزمین‌ها، یا سایر انواع کاربری‌هایی که خارج از واحدهای مسکونی اما درون همان سازه قرار دارند، این نواحی باید به‌عنوان مبنای طراحی جداگانه طبق بخش 19.2 محافظت شوند.
      19.4.1.6 الزامات اختصاصی برای سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق الزامات کاربری خطر کم(light hazard) در جدول 19.3.3.1.2 باشد.

      19.4.2 حفاظت در برابر مواجهه   (Exposure Protection)

      19.4.2.1* لوله‌کشی باید طبق بخش 27.2 به‌صورت هیدرولیکی طراحی شود به‌نحوی که حداقل ۷ psi (0.5 bar) فشار در هر اسپرینکلر که به سمت ناحیه مواجهه (exposure) قرار گرفته، با فرض فعال بودن تمام این اسپرینکلرها، فراهم گردد.
      19.4.2.2 اگر منبع آب سایر سامانه‌های حفاظت در برابر آتش را نیز تغذیه می‌کند، باید توانایی تأمین هم‌زمان کل تقاضای این سامانه‌ها و همچنین تقاضای سامانه محافظت از مواجهه را داشته باشد.

      19.4.3 پرده‌های آبی (Water Curtains)

      19.4.3.1 اسپرینکلرهای موجود در یک پرده آبی، همان‌طور که در بندهای 9.3.5 یا 9.3.13.2 توصیف شده‌اند، باید به‌گونه‌ای طراحی شوند که حداقل تخلیه 3 گالن در دقیقه برای هر فوت طول (37 لیتر در دقیقه برای هر متر طول) از پرده آبی را فراهم کنند، به‌طوری که هیچ اسپرینکلری کمتر از 15 گالن در دقیقه (57 لیتر در دقیقه) تخلیه نداشته باشد.
      19.4.3.2 برای پرده‌های آبی با اسپرینکلر خودکار (automatic sprinklers)، تعداد اسپرینکلرهایی که در طراحی محاسبه می‌شوند باید برابر با تعداد اسپرینکلرهایی باشد که در طولی مطابق با طول موازی با خطوط انشعاب (branch lines) در ناحیه‌ای که در بند 27.2.4.2 مشخص شده است، قرار دارند.
      19.4.3.3 برای پرده آبی سیستم دلوژ (deluge system) که جهت محافظت از دهانه‌ی صحنه تئاتر (proscenium opening) طبق بند 9.3.13.2 استفاده می‌شود، پرده آبی باید به‌گونه‌ای طراحی شود که همه اسپرینکلرهای باز متصل به آن را تأمین کند.

      19.4.3.4 اسپرینکلرهای زیر سقف یا بام در فضاهای پنهان قابل احتراق با سازه‌های چوبی (Wood Joist یا Wood Truss) با فواصل کمتر از 3 فوت (0.9 متر) و شیب 4 در 12 یا بیشتر

      19.4.3.4.1 در صورتی که فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از 8 فوت (2.4 متر) در جهت عمود بر شیب نباشد، حداقل فشار تخلیه اسپرینکلر باید 7 psi (0.5 bar) باشد.

      19.4.3.4.2 چنانچه فاصله‌گذاری اسپرینکلرها از یکدیگر بیش از ۸ فوت (۲.۴ متر) در جهت عمود بر شیب باشد، حداقل فشار تخلیه اسپرینکلر باید ۲۰ psi (1.4 bar) باشد.
      19.4.3.4.3 الزامات سهمیه جریان شلنگ (hose stream allowance) و مدت زمان تأمین آب باید مطابق با الزامات کاربری خطر کم (light hazard) در جدول 19.3.3.1.2 رعایت شود.

      19.4.3.5 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای پرده آبی و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب پرده آبی باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.

      19.4.4 شیشه محافظت‌شده با اسپرینکلر (Sprinkler-Protected Glazing)

      19.4.4 در مواردی که الزامات شیشه محافظت‌شده با اسپرینکلر باید با بند 9.3.15 مطابقت داشته باشند، مدت زمان تأمین آب برای ناحیه طراحی شامل اسپرینکلرهای پنجره نباید کمتر از درجه‌بندی مورد نیاز مجموعه (assembly) باشد.
      19.4.4.1 برای شیشه محافظت‌شده با اسپرینکلر، تعداد اسپرینکلرهایی که در طراحی هیدرولیکی لحاظ می‌شوند، باید معادل تعداد اسپرینکلرهایی باشند که در طولی برابر با طول موازی با خطوط انشعاب در ناحیه‌ای که توسط بند 27.2.4.2 مشخص شده، قرار دارند.
      19.4.4.2 اگر احتمال دارد که یک آتش‌سوزی به‌طور هم‌زمان اسپرینکلرهای شیشه محافظت‌شده و ناحیه طراحی یک سیستم محاسبه‌شده به‌صورت هیدرولیکی را فعال کند، تأمین آب برای شیشه محافظت‌شده نیز باید به تقاضای آب محاسبه‌شده اضافه شده و با تقاضای ناحیه محاسبه‌شده بالانس گردد.
      19.4.4.3 محاسبات طراحی هیدرولیکی باید شامل ناحیه‌ای از طراحی باشند که اسپرینکلرهای سقفی مجاور شیشه محافظت‌شده با اسپرینکلر را در بر گیرد.

      19.5 سامانه‌های دلوژ (Deluge Systems)

      اسپرینکلرهای باز و سامانه‌های دلوژ باید طبق استانداردهای مربوطه به‌صورت هیدرولیکی طراحی و محاسبه شوند.