الزامات سیستم اطفاء حریق با دی اکسید کربن برای کاربرد دریایی ( کشتی ها و وسایل نقلیه دریایی، مناطق ساحلی، اسکله ها و غیره)

IMG 1613

فصل ۹ سیستم‌های دریایی
9.1 تعاریف ویژه

9.2 کلیات
9.2.1* شرح کلی
این فصل، اصلاحات لازم برای سیستم‌های دریایی را بیان می‌کند.
9.2.2 کلیه الزامات دیگر این استاندارد، مگر آنکه در این فصل به‌صورت خاص تغییر یافته باشند، برای سیستم‌های دریایی نیز اعمال می‌شوند.

9.3 الزامات سیستم
9.3.1 اجزاء
اجزای سیستم باید به‌طور خاص برای کاربرد دریایی سیستم‌های دی‌اکسید کربن لیست یا تأیید شده باشند.

9.3.2 دستورالعمل‌های بهره‌برداری
9.3.2.1 دستورالعمل‌های بهره‌برداری از سیستم باید در مکان واضحی در نزدیکی تمامی کنترل‌های دستی و در اتاق ذخیره‌سازی دی‌اکسید کربن قرار داده شوند.
9.3.2.2 برای سیستم‌هایی که ذخیره‌سازی دی‌اکسید کربن در داخل فضای حفاظت‌شده قرار ندارد، دستورالعمل‌ها باید شامل نموداری باشند که محل کنترل اضطراری را در صورت عدم عملکرد کنترل‌های عادی نشان دهد.

9.3.3 فعال‌سازی
9.3.3.1* در فضاهایی با حجم بیش از ۶۰۰۰ فوت مکعب (۱۷۰متر مکعب)، فعال‌سازی خودکار سیستم دی‌اکسید کربن مجاز نمی‌باشد.
9.3.3.2* فعال‌سازی خودکار برای فضاهایی با حجم ۶۰۰۰ فوت مکعب (۱۷۰ متر مکعب) یا کمتر، در صورتی مجاز است که الزامات بندهای 9.3.3.2.1 تا 9.3.3.2.4 رعایت شوند.

9.3.3.2.1 مسیر خروج افقی از محفظه ماشین‌آلات به عرشه باز باید فراهم شود.
9.3.3.2.2 محفظه باید در زمان عملکرد تجهیزات بدون حضور نفر باشد.
9.3.3.2.3 زمانی که افراد در داخل محفظه حضور دارند، سیستم باید در وضعیت قفل قرار گیرد.
9.3.3.2.4 فعال‌سازی خودکار سیستم نباید با ناوبری ایمن کشتی تداخل داشته باشد.

9.3.3.3 برای عملکرد دستی، باید دو شیر جداگانه برای تخلیه دی‌اکسید کربن در هر فضای محافظت‌شده فراهم شود.
9.3.3.3.1 یکی از شیرها باید تخلیه از مخزن دی‌اکسید کربن را کنترل کند.
9.3.3.3.2 شیر دوم باید تخلیه دی‌اکسید کربن به فضای محافظت‌شده را کنترل کند.
9.3.3.3.3 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای آزادسازی سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

9.3.3.4 کنترل‌ها
9.3.3.4.1 برای هر یک از شیرهای مورد نیاز در بند 9.3.3.3 باید یک کنترل دستی جداگانه فراهم گردد.
9.3.3.4.2 یک مجموعه کنترل باید در خارج از حداقل یکی از مسیرهای اصلی خروج از هر فضای محافظت‌شده قرار گیرد.

9.3.3.5 علاوه بر کنترل‌های دستی مورد نیاز در 9.3.3.4، هر یک از شیرهای ذکر شده در 9.3.3.3 باید دارای کنترل اضطراری دستی مخصوص به خود باشند.

9.3.3.6 جعبه آزادسازی
9.3.3.6.1 کنترل‌های مربوط به شیرهای مورد نیاز در 9.3.3.4 باید درون یک جعبه آزادسازی قرار گیرند که به‌وضوح برای فضای محافظت‌شده شناسایی شده باشد.
9.3.3.6.2 اگر جعبه حاوی کنترل‌ها قفل‌شده باشد، کلید آن باید در یک محفظه از نوع شیشه‌شکن در کنار جعبه و در مکانی مشخص قرار گیرد.

9.3.3.7 منبع نیرو
9.3.3.7.1 علاوه بر الزامات بند 4.3.3.2، آژیرهای هشدار قبل از تخلیه باید به‌گونه‌ای باشند که فقط به فشار دی‌اکسید کربن وابسته بوده و به منبع نیروی دیگری نیاز نداشته باشند.
9.3.3.7.2 تأخیر زمانی مورد نیاز طبق بند 4.5.6.2.2 باید حداقل ۲۰ ثانیه بوده و تنها به فشار دی‌اکسید کربن وابسته باشد.

9.3.4 ذخیره‌سازی دی‌اکسید کربن
9.3.4.1 ذخیره‌سازی دی‌اکسید کربن در فضاهای محافظت‌شده‌ای که معمولاً بدون نفر هستند، برای سیستم‌هایی با حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن و دارای عملکرد خودکار مجاز می‌باشد.
9.3.4.2 سیستم‌های با فشار پایین باید مجهز به دو واحد تبرید بوده و مطابق با مقررات 46 CFR 58.20 ساخته شوند.
9.3.4.3 زمانی که مخازن دی‌اکسید کربن خارج از فضای محافظت‌شده قرار دارند، باید در اتاقی نگهداری شوند که در مکانی ایمن و به‌راحتی قابل دسترس بوده و به‌طور مؤثر تهویه شود تا مخازن ماده اطفاء حریق در معرض دماهای محیطی تعیین‌شده در بند 4.6.5.5 قرار نگیرند.

9.3.4.3.1 دیوارها و عرشه‌های مشترک میان اتاق‌های نگهداری مخازن ماده اطفاء حریق و فضاهای محافظت‌شده باید با عایق ساختاری کلاس A-60 مطابق با استاندارد 46 CFR 72 محافظت شوند.
9.3.4.3.2 درها و سایر روش‌های بسته شدن هرگونه بازشو در این مرزها باید گازبند باشند.
9.3.4.3.3 اتاق‌های نگهداری مخازن ماده اطفاء حریق باید بدون نیاز به عبور از فضای محافظت‌شده قابل دسترسی باشند.
9.3.4.3.4 درب‌های ورودی باید به سمت بیرون باز شوند.
9.3.4.3.5 برای سیستم‌هایی که حداکثر ۱۳۶ کیلوگرم دی‌اکسید کربن ذخیره دارند، تنها یک شیر برای تخلیه سیستم کافی است، به شرطی که فضای محافظت‌شده معمولاً بدون نفر بوده و دارای مسیر خروج افقی باشد.

9.3.5 لوله‌کشی سیستم
9.3.5.1 در صورت نیاز، باید زهکش‌هایی برای تخلیه رطوبت جمع‌شده تعبیه شود.
9.3.5.2 لوله‌کشی دی‌اکسید کربن نباید دارای زهکش یا بازشویی در داخل بخش‌های مسکونی باشد.
9.3.5.3 لوله‌کشی دی‌اکسید کربن نباید برای هیچ منظور دیگری استفاده شود، مگر اینکه در سیستم‌های تشخیص دود از نوع نمونه‌برداری از هوا مورد استفاده قرار گیرد.

9.3.6 طراحی سیستم
طراحی سیستم باید با فصل‌های ۵ تا ۷ مطابقت داشته باشد، مگر در موارد مشخص‌شده در بندهای 9.3.6.1 تا 9.3.6.4.2.

9.3.6.1 فضاهای ماشین‌آلات
فضاهای ماشین‌آلات باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
9.3.6.1.1 ۸۵ درصد از غلظت مورد نیاز طبق بند 9.3.6.1 باید طی ۲ دقیقه از آغاز تخلیه حاصل شود.
9.3.6.1.2 حجم ناخالص باید شامل بدنه پوششی نیز باشد.

9.3.6.2 فضاهای بار
فضاهای بار (غیر از فضاهای وسایل نقلیه) باید بر اساس نسبت ۱ پوند دی‌اکسید کربن به ازای هر ۳۰ فوت مکعب حجم ناخالص مجهز شوند.
9.3.6.2.1 مقدار اولیه دی‌اکسید کربن تخلیه‌شده باید بر اساس حجم خالص فضا و میزان بار موجود تعیین شود.
9.3.6.2.2 در صورت نیاز، دی‌اکسید کربن اضافی باید برای کنترل آتش آزاد شود.
9.3.6.2.3 دستورالعمل‌های شفاف در خصوص فرآیند تخلیه دی‌اکسید کربن باید در داخل اتاق نگهداری مخازن دی‌اکسید کربن نصب شود.

9.3.6.3 فضاهای وسایل نقلیه
9.3.6.3.1 فضاهای وسایل نقلیه که در آن‌ها سوخت وسایل نقلیه بیش از ۱۹ لیتر (۵ گالن) است، باید برای رسیدن به غلظت ۳۴درصد بر اساس حجم ناخالص طراحی شوند.
9.3.6.3.2 ۸۵ درصد از این غلظت باید طی ۲ دقیقه از آغاز تخلیه به دست آید.

9.3.6.4 فضاهای وسایل نقلیه
9.3.6.4.1 فضاهای وسایل نقلیه که میزان سوخت (بنزین یا گازوئیل) موجود در آن‌ها ۱۹ لیتر (۵ گالن) یا کمتر است، باید برای رسیدن به غلظت ۳۴ درصد بر اساس حجم ناخالص طراحی شوند.
9.3.6.4.2 دو سوم این غلظت باید طی ۱۰ دقیقه از آغاز تخلیه حاصل شود.

9.3.7 فضاهای تجهیزات الکتریکی
فضاهای تجهیزات الکتریکی باید به عنوان خطر خشک الکتریکی طبق فصل ۵ در نظر گرفته شوند.

9.4 بازرسی و نگهداری
بازرسی و نگهداری باید مطابق با بند 4.8.3 و بخش 9.4 انجام گیرد.

9.4.1 کلیات
پیش از انجام آزمایش یا عملیات نگهداری سیستم ثابت اطفاء حریق با دی‌اکسید کربن، تمام افراد باید از فضای محافظت‌شده تخلیه شوند. (رجوع شود به بخش 4.3)

9.4.2 تأیید نصب
9.4.2.1 آزمایش تأییدی که در بندهای 9.4.2.1.1 تا 9.4.2.1.4 شرح داده شده، باید پیش از آزمایش‌های الزامی بند 4.4.3 انجام شود.
9.4.2.1.1 تست فشار لوله‌کشی باید مطابق با الزامات بندهای 9.4.2.1.2 تا 9.4.2.1.4 انجام شود.
9.4.2.1.2 سیال آزمایشی باید یک گاز خشک و غیرخورنده نظیر نیتروژن یا دی‌اکسید کربن باشد.
9.4.2.1.3 هنگام وارد کردن فشار به لوله‌ها، فشار باید به صورت افزایشی در گام‌های ۵۰ psi (۳.۵ بار) اعمال شود.
9.4.2.1.4 پس از رسیدن به فشار تست موردنظر، منبع فشار باید قطع و از لوله جدا شود.

⚠️ هشدار
تست فشار پنوماتیکی ممکن است در صورت ترکیدگی سیستم لوله‌کشی، خطر پرتاب اشیاء و آسیب به افراد را ایجاد کند. پیش از انجام این تست، ناحیه‌ای که لوله در آن قرار دارد باید تخلیه شده و اقدامات ایمنی لازم برای حفاظت از افراد انجام شود.

9.4.2.2 سیستم‌های پرفشار
9.4.2.2.1 سیستم‌هایی با شیر توقف
9.4.2.2.1.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا شیرهای توقف باید تحت فشار حداقل ۱۰۰۰ psi (۶۸۹۵ کیلوپاسکال) قرار گیرد.
9.4.2.2.1.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.
9.4.2.2.1.3 تمام لوله‌کشی بین شیرهای توقف و اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷ کیلوپاسکال) قرار گیرد.
9.4.2.2.1.4 افت فشار در این بخش نیز در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

9.4.2.2.2 سیستم‌های بدون شیر توقف
9.4.2.2.2.1 تمام لوله‌کشی از منبع دی‌اکسید کربن تا اسپرینکلرها باید تحت فشار حداقل ۶۰۰ psi (۴۱۳۷کیلوپاسکال) قرار گیرد.
9.4.2.2.2.2 افت فشار در مدت ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

9.4.2.3 سیستم‌های کم‌فشار
9.4.2.3.1 لوله‌کشی‌هایی که به‌طور معمول تحت فشار هستند
9.4.2.3.1.1 تمام لوله‌کشی‌هایی که به طور معمول تحت فشار قرار دارند باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸کیلوپاسکال) قرار گیرند.
9.4.2.3.1.2 در طول آزمایش ۲ دقیقه‌ای، هیچ‌گونه نشتی از لوله‌کشی نباید وجود داشته باشد.

9.4.2.3.2 لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها
9.4.2.3.2.1 تمام لوله‌کشی بین شیر قطع مخزن و اسپرینکلرها باید تحت تست فشار حداقل ۳۰۰ psi (۲۰۶۸ کیلوپاسکال) قرار گیرد.
9.4.2.3.2.2 افت فشار در طول ۲ دقیقه نباید بیش از ۱۰ درصد باشد.

9.4.3 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی‌های سیستم تهویه
9.4.3.1 تأخیرهای پیش‌تخلیه، آژیرها و خاموشی سیستم تهویه باید با عبور جریان دی‌اکسید کربن در سیستم آزمایش شوند.
9.4.3.2 تأخیرهای پیش‌تخلیه‌ای که در دمای ۷۰ درجه فارنهایت (۲۱ درجه سانتی‌گراد) دقت ±۲۰ درصد از مقدار نامی را ندارند، باید تعویض شوند.

9.4.4 تأیید
رعایت الزامات بند 9.3.2 باید مورد تأیید قرار گیرد

نوشته‌های مشابه

  • راهنمای جامع استفاده از بیم دتکتور دودی اعلام حریق

    تشخیص نوری بیم راهکاری اقتصادی برای شناسایی دود در فضاهای باز بزرگ مانند مراکز خرید، انبارها و فرودگاه‌ها ارائه می‌دهد.

    ابتدا بیایید به دیگر روش‌های تشخیص که معمولاً استفاده می‌شوند نگاه کنیم و دلیل انتخاب بیم دتکتور دودی اعلام حریق به جای آن‌ها را بررسی کنیم.

    دتکتور نقطه‌ای اغلب استفاده می‌شود اما می‌تواند منجر به شبکه‌ای پیچیده از چندین دتکتور همپوشان گردد که نصب آن‌ها بسیار زمان‌بر، سیم‌کشی آن‌ها پرهزینه و دسترسی به آن‌ها هنگام تعمیر و نگهداری دشوار خواهد بود. یک بیم دتکتور دودی اعلام حریق نوری به طور کلی می‌تواند جایگزین حدود ۱۶ دتکتور نقطه‌ای منفرد گردد و ۱۵۰۰ متر مربع را پوشش دهد.WhatsApp Image 2025 09 18 at 2.08.33 AM

    سیستم‌های نمونه‌برداری مکشی معمولاً روی سقف نصب می‌شوند اما پیچیده و زمان‌بر برای نصب هستند. این سیستم‌ها شامل شبکه‌ای از لوله‌های نمونه‌برداری، درپوش‌ها و زانوها می‌باشند. همه این‌ها نیاز به نصب و نگهداری دارند. خود لوله‌کشی می‌تواند مزاحم باشد و نیاز به پنهان کردن در ساختار ساختمان داشته باشد.

    WhatsApp Image 2025 09 18 at 2.08.33 AM1

    WhatsApp Image 2025 09 18 at 2.08.34 AM

    برخی کدهای اجرایی نصب همچنین ارتفاعی را که دتکتور نقطه‌ای و مکشی می‌توانند استفاده شوند محدود می‌کنند زیرا هرچه سقف بالاتر باشد، چگالی ذرات کمتر خواهد شد و ممکن است زیر آستانه هشدار مورد نیاز این نوع دتکتورها قرار گیرد. بیم دتکتور دودی اعلام حریق در ارتفاع کارآمدتر است زیرا وقتی دود بالا می‌رود پخش می‌شود و ناحیه بزرگ‌تری را تحت تأثیر قرار می‌دهد و به این ترتیب مسیر بیم بیشتری تحت تأثیر قرار می‌گیرد. این مسیر تشخیص گسترده کارآمدتر از محفظه کوچک یک دتکتور نقطه‌ای است.

    WhatsApp Image 2025 09 18 at 2.08.34 AM1

    سیستم‌های تشخیص نقطه‌ای و مکشی به بالارفتن دود تا سقف وابسته هستند. مشکلاتی نیز می‌تواند به دلیل لایه‌ای موسوم به لایه استراتیفیکیشن ایجاد شود. ذرات دود سنگین‌تر از هوا هستند و توسط هوای گرم اطرافشان از میان هوای خنک‌تر بالا برده می‌شوند. این هوای خنک اطراف، ستون دود را سرد کرده و هوای گرم محبوس شده در زیر سقف یک لایه حرارتی تشکیل می‌دهد که مانع رسیدن دود به سقف می‌شود.

    WhatsApp Image 2025 09 18 at 2.08.34 AM2

    دتکتور نقطه‌ای و مکشی ممکن است به دلیل این پدیده قادر به تشخیص دود نباشند. با این حال، بیم دتکتور دودی اعلام حریق معمولاً ۶۰۰ میلی‌متر پایین‌تر از سقف نصب می‌شود (مطابق BS5839) که به این معناست کمتر احتمال دارد بالای خط استراتیفیکیشن قرار گیرد.

    تشخیص شعله و ویدئویی: نوعی بسیار تخصصی و پرهزینه از تشخیص که اغلب به عنوان یک روش ثانویه با حساسیت بالا و سریع در محیط‌های با ارزش بالا مانند تولید هواپیما استفاده می‌شود.

    انتخاب نوع دتکتور در نهایت با ارزیابی وضعیت، ویژگی‌های ساختمان، محیط، سرعت تشخیص، ارزیابی ریسک‌های بالقوه و مواد موجود تعیین می‌گردد.

    بیم دتکتور دودی اعلام حریق راهکاری همه‌کاره و مقرون‌به‌صرفه برای حفاظت از نواحی وسیع، به‌ویژه با سقف‌های بلند ارائه می‌دهد.

    انواع بیم دتکتور دودی اعلام حریق نوری: سه نوع اصلی بیم وجود دارد که باید در نظر گرفت.

    بیم دتکتور دودی اعلام حریق غیر موتوری «رفلکتیو»: این نوع به سادگی با ارسال یک پرتو نامرئی مادون قرمز که به یک رفلکتور در انتهای مقابل برخورد می‌کند کار می‌کند و سپس مسیر دید را برای انسداد مانیتور می‌کند. هر دو فرستنده و گیرنده در یک واحد قرار دارند. این نوع معمولاً استفاده می‌شود اما تنها باید در محیط مناسب استفاده گردد. فقط در فضاهایی باید استفاده شود که ساختار آن‌ها صلب بوده و فاقد هرگونه حرکت باشند. ساختمان‌ها می‌توانند به دلایل متعددی حرکت کنند، ساختمان‌های جدید می‌توانند نشست کنند، انبارهای فلزی بزرگ می‌توانند در شرایط گرم و سرد تاب بردارند و شرایط آب‌وهوایی نامساعد مانند برف می‌تواند ساختمان‌ها را تغییر شکل دهد. باید توجه داشت که یک درجه حرکت ساختمان می‌تواند باعث انحراف بیم حدود ۱.۴ متر در ۱۰۰ متر شود که منجر به آلارم کاذب در یک بیم ثابت خواهد شد. راه‌اندازی، تنظیم و نگهداری بیم فقط در ارتفاع قابل انجام است و نیاز به تجهیزات دسترسی در ارتفاع خواهد داشت.

    بیم دتکتور دودی اعلام حریق انتها به انتها: این نوع معمولاً یک کاربرد تخصصی و پرهزینه است که نیاز به شلیک پرتو از میان فضاهای کوچک دارد که ممکن است برای بیم‌های رفلکتوری مشکل‌ساز باشند زیرا احتمال بازگشت ناخواسته سیگنال از سازه‌های نزدیک وجود دارد. آن‌ها با یک فرستنده در یک انتها و یک گیرنده در انتهای مقابل کار می‌کنند که انسداد را بررسی می‌کند. این نوع تشخیص نیاز به سیم‌کشی در هر دو انتها دارد که می‌تواند به معنای اجرای پرهزینه کابل‌های ۱۰۰ متر یا بیشتر و دسترسی در ارتفاع برای راه‌اندازی، تنظیم و نگهداری باشد.

    بیم دتکتور دودی اعلام حریق موتوری: پیشرفتی که به دلیل محدودیت‌های بیم ثابت و انتها به انتها ایجاد شده است. موتوری بودن و هوشمندی بیم به این معناست که می‌توان آن‌ها را به طور خودکار هم‌تراز و راه‌اندازی کرد و این کار در سطح زمین از طریق یک کنترلر از راه دور چندزبانه با کاربری ساده انجام می‌شود. تنظیم پارامترهای بیم مانند زمان واکنش نیز می‌تواند از طریق این کنترلر انجام گیرد. هنگامی که بیم هوشمند موتوری هم‌تراز شد، در سرویس به طور مداوم هم‌ترازی خود را حفظ می‌کند، به این معنا که حرکت ساختمان دیگر مشکلی ایجاد نمی‌کند و در نتیجه صرفه‌جویی در زمان، هزینه، اعتبار و به طور مهم کاهش آلارم‌های کاذب حاصل خواهد شد.

    چه مواردی باید هنگام استفاده از بیم دتکتور دودی اعلام حریق در نظر گرفته شود؟

    بیم دتکتور دودی اعلام حریق با اندازه‌گیری انسداد سیگنال دریافتی خود کار می‌کند. ساختمان‌هایی با دیواره‌های باز یا فضاهای باز به بیرون می‌توانند نسبت به ابر و مه حساس باشند. تغییرات شدید دمای ساختمان می‌تواند باعث ایجاد میعان روی رفلکتور یا سر بیم شود که موجب قرائت‌های کاذب خواهد شد. باید مراقب سناریوهای مختلف جوی به‌ویژه در ماه‌های زمستان بود. برخی بیم‌ها دارای راه‌حل‌های ضد میعان هستند. محیط‌هایی که دود و بخار تولید می‌کنند مانند سالن‌های جوشکاری و پایانه‌های اتوبوس می‌توانند مشکل‌ساز باشند.

    بیم‌های موتوری اکنون به گزینه اصلی صنعت تبدیل شده‌اند و در سراسر جهان فروخته می‌شوند و با فراهم کردن ایمنی کار از سطح زمین موجب صرفه‌جویی در زمان و هزینه می‌شوند.

     

  • نقص سیستم حفاظت در برابر آتش با عامل گازی

    12.1 * کلیات

    12.1.1 این فصل حداقل الزامات برای برنامه نقص سیستم حفاظت در برابر آتش را ارائه می‌دهد.
    12.1.2 اقداماتی باید در هنگام بروز نقص در سیستم انجام شود تا اطمینان حاصل گردد که خطرات افزایش یافته به حداقل رسیده و مدت زمان نقص محدود باشد.

    12.2 هماهنگ‌کننده نقص

    12.2.1 مالک ملک یا نماینده منصوب باید یک هماهنگ‌کننده نقص را برای رعایت الزامات این فصل منصوب کند.
    12.2.2 در غیاب یک فرد خاص منصوب، مالک ملک یا نماینده منصوب به‌عنوان هماهنگ‌کننده نقص در نظر گرفته می‌شود.
    12.2.3 اگر قرارداد اجاره، توافق‌نامه استفاده کتبی، یا قرارداد مدیریت به‌طور خاص اختیار بازرسی، آزمایش و نگهداری سیستم‌های حفاظت در برابر آتش را به مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده اعطا کند، مستأجر، شرکت مدیریت یا فرد مدیریت‌کننده باید یک نفر را به‌عنوان هماهنگ‌کننده نقص منصوب کند.

    12.3 سیستم برچسب نقص

    12.3.1 یک برچسب باید برای نشان دادن اینکه سیستم یا بخشی از آن از سرویس خارج شده است، استفاده شود.
    12.3.2 یک برچسب باید در جزء سیستم عامل تمیز که باعث نقص شده، واحد کنترل آزادسازی سیستم، واحد کنترل آژیر آتش‌سوزی ساختمان در صورت لزوم و سایر مکان‌های مورد نیاز توسط مقام ذی‌صلاح نصب شود تا نشان دهد کدام سیستم یا بخشی از آن از سرویس خارج شده است.

    12.4 برنامه‌های نقص پیش‌بینی‌شده

    12.4.1 تمام نقص‌های پیش‌بینی‌شده باید توسط هماهنگ‌کننده نقص مجاز شوند.
    12.4.2 نیاز به حفاظت موقتی در برابر آتش، خاتمه تمامی عملیات خطرناک و فراوانی بازرسی‌ها در نواحی درگیر باید مشخص شود.
    12.4.3 قبل از اعطای مجوز، هماهنگ‌کننده نقص مسئول است تا اطمینان حاصل کند که مراحل زیر انجام شده است:
    1. میزان و مدت زمان مورد انتظار نقص تعیین شده است.
    2. نواحی یا ساختمان‌های درگیر بازرسی شده و خطرات افزایش یافته مشخص شده‌اند.
    3. پیشنهاداتی برای کاهش خطرات افزایش یافته به مدیریت یا مالک ملک یا نماینده منصوب ارسال شده است.
    4. اگر سیستم حفاظت در برابر آتش با عامل تمیز به‌عنوان حفاظت اولیه عمل می‌کند و بیش از 10 ساعت در یک دوره 24 ساعته از سرویس خارج است، ترتیباتی برای یکی از موارد زیر انجام می‌شود:
    (a) تخلیه ساختمان یا بخش از ساختمان که تحت تأثیر سیستم خارج از سرویس قرار گرفته است.
    (b) * یک نگهبانی آتش‌نشانی تأیید شده.
    (c) * برقراری و اجرای یک برنامه تأیید شده برای حذف منابع بالقوه احتراق و محدود کردن میزان سوخت در دسترس برای آتش.
    (5) اطلاع‌رسانی به اداره آتش‌نشانی.
    (6) اطلاع‌رسانی به شرکت بیمه، شرکت آژیر، مالک ملک یا نماینده منصوب، و دیگر مقامات ذی‌صلاح.
    (7) اطلاع‌رسانی به سرپرستان در نواحی تحت تأثیر.
    (8) اجرای یک سیستم برچسب نقص. (به بخش 12.3 مراجعه کنید.)
    (9) جمع‌آوری تمام ابزارها و مواد ضروری در محل نقص.

    12.5 نقص‌های اضطراری

    12.5.1 نقص‌های اضطراری شامل، اما نه محدود به، قطع تأمین عامل تمیز، شکستگی یا آسیب لوله‌ها، خرابی تجهیزات، و از دست رفتن یکپارچگی محفظه، و شامل نقص‌هایی است که در حین بازرسی، آزمایش یا نگهداری شناسایی می‌شود.
    12.5.2 در صورت وقوع نقص اضطراری، هماهنگ‌کننده باید مراحل مشخص شده در 12.4.2 و 12.4.3 را اجرا کند.
    12.5.3 هنگامی که یک یا چند نقص در حین بازرسی، آزمایش و نگهداری شناسایی می‌شود، مالک یا نماینده مجاز مالک باید به صورت کتبی اطلاع‌رسانی شود.

    12.6 بازگرداندن سیستم‌ها به سرویس

    هنگامی که تمام تجهیزات معیوب به حالت عادی باز می‌گردد، هماهنگ‌کننده نقص باید تأیید کند که مراحل زیر اجرا شده است:
    1. هر بازرسی و آزمایش ضروری انجام شده تا اطمینان حاصل شود که سیستم‌های تحت تأثیر عملیاتی هستند.
    2. به سرپرستان اطلاع داده شده که حفاظت دوباره برقرار شده است.
    3. به اداره آتش‌نشانی اطلاع داده شده که حفاظت دوباره برقرار شده است.
    4. به مالک ملک یا نماینده منصوب، شرکت بیمه، شرکت آژیر در صورت لزوم، و دیگر مقامات ذی‌صلاح اطلاع داده شده که حفاظت دوباره برقرار شده است.
    5. تمام برچسب‌های نقص برداشته شده‌اند.

  • مکان‌های مناسب برای نصب دتکتور گاز

    مکان نصب دتکتور گاز بسته به ویژگی‌های خاص گاز مورد پایش متفاوت است. توضیحات زیر برای هر نوع دتکتور، با در نظر گرفتن این ویژگی‌ها، راهنمایی ارائه می‌دهد.

    گاز طبیعی / متان (CH₄) و هیدروژن (H₂)
    دتکتورهای گاز طبیعی (متان، CH₄) و هیدروژن (H₂) باید در ارتفاع بالا، تقریباً ۱۵۰ میلی‌متر از سقف نصب شوند. باید از گوشه‌ها و نقاطی که ممکن است هوای ساکن داشته باشند، اجتناب شود.

    WhatsApp Image 2025 09 22 at 1.05.30 AM
    نکات کلیدی:

    • ارتفاع نصب: دتکتور گاز طبیعی نباید پایین‌تر از ارتفاع بالای در نصب شود. چون گاز طبیعی کمی از هوا سبک‌تر است، به سمت بالا حرکت کرده و از سقف به پایین پخش می‌شود. در نتیجه، ممکن است از قسمت بالای در به اتاق‌های مجاور نشت کند.
    • زمان پاسخ: اگر دتکتورها پایین‌تر از این ارتفاع نصب شوند، زمان بیشتری طول می‌کشد تا گاز به دتکتور برسد که می‌تواند زمان واکنش در صورت نشت گاز را به تأخیر بیندازد. جانمایی صحیح باعث می‌شود دتکتور سریع‌تر غلظت گاز در حال افزایش را شناسایی کند.
    • نکات نصب: دتکتورها باید دور از سامانه‌های تهویه و موانعی که ممکن است جریان گاز را مختل کنند، نصب شوند. نگهداری و آزمون منظم دتکتورها نیز برای اطمینان از عملکرد مناسب توصیه می‌شود.

    ال‌پی‌جی / پروپان (C₃H₈)
    دتکتورهای LPG (پروپان، C₃H₈) باید به دلیل سنگینی بیشتر نسبت به هوا، در ارتفاع پایین نصب شوند. دتکتورها باید حدود ۱۵۰ میلی‌متر (با حداکثر ارتفاع ۴۰۰ میلی‌متر) از کف زمین فاصله داشته باشند.

    WhatsApp Image 2025 09 22 at 1.05.30 AM1
    نکات کلیدی:

    • ارتفاع نصب: به دلیل چگالی بیشتر، LPG تمایل دارد در نزدیکی زمین تجمع یابد. جانمایی در ارتفاع مناسب باعث می‌شود دتکتور سریعاً نشت احتمالی گاز را شناسایی کند.
    • عوامل محیطی: در هنگام تعیین ارتفاع نصب، باید شرایط مرطوب مانند زمین خیس شده توسط طی‌کشی یا ریختگی‌ها در نظر گرفته شود. در این موارد، دتکتورها باید بالاتر از ارتفاع تجمع احتمالی آب نصب شوند تا از هشدارهای کاذب جلوگیری شود.
    • نکات نصب: دتکتورها نباید در مجاورت جریان‌های قوی هوا مانند درها، پنجره‌ها یا سامانه‌های تهویه نصب شوند. آزمون و نگهداری منظم برای اطمینان از عملکرد بهینه ضروری است.

    منوکسید کربن (CO)، دی‌اکسید کربن (CO₂)

    منوکسید کربن (CO):
    چون وزن منوکسید کربن تقریباً با هوا برابر است، دتکتورها باید در ارتفاع بین ۱.۶ تا ۱.۸ متر از سطح زمین نصب شوند، ترجیحاً در ناحیه تنفسی.

    • ارتفاع نصب: این ارتفاع امکان شناسایی مؤثر CO در جایی که افراد تنفس می‌کنند را فراهم می‌کند.

    WhatsApp Image 2025 09 22 at 1.05.31 AM

    • نکات نصب: از نصب دتکتورها در نزدیکی سامانه‌های تهویه یا مناطق دارای جریان هوا اجتناب شود، چون ممکن است غلظت گاز را رقیق کرده و قرائت‌ها را نادقیق کند.

    دی‌اکسید کربن (CO₂):

    • دتکتورهای کلاس درس: بر اساس راهنمای IGEM/UP11، دتکتورها باید در ارتفاع سر نشسته نصب شوند. اما تجربه میدانی نشان می‌دهد که این موقعیت ممکن است باعث قرائت‌های نادرست ناشی از بازدم مستقیم شود.
    • یک گزینه: برای کاهش احتمال هشدارهای کاذب، پیروی از روش نصب دتکتورهای CO₂ مشابه آشپزخانه‌های صنعتی، یعنی بالاتر از سر ایستاده، توصیه می‌شود.
    • دتکتورهای آشپزخانه صنعتی: باید غلظت کلی CO₂ در مناطق کاری کارکنان را پایش کنند.
    • ارتفاع و موقعیت: دتکتورها باید بین ۱ تا ۳ متر از خط پخت، بالاتر از سر ایستاده نصب شوند. نباید نزدیک لبه هود یا در مسیر مستقیم جریان تهویه نصب شوند.
    • دتکتورهای آزمایشگاهی (CO₂ لوله‌کشی یا کپسولی): باید در نزدیک‌ترین نقاط نشت احتمالی مانند شیرهای گاز، رگولاتورها و محل ذخیره کپسول نصب شوند.
    • ارتفاع نصب: چون CO₂ سنگین‌تر از هوا است، دتکتورها باید در ارتفاع پایین نصب شوند.
    • نکات کلیدی: بازرسی و آزمون منظم این دتکتورها برای حفظ ایمنی و پایش مؤثر نشت‌ها حیاتی است.

    WhatsApp Image 2025 09 22 at 1.05.31 AM1

    کاهش اکسیژن (O₂):
    پایش کاهش اکسیژن یک اقدام ایمنی حیاتی برای شناسایی حضور گازهای خنثی یا نجیب است که می‌توانند جای اکسیژن را بگیرند و منجر به خفگی شوند. گازهایی مانند نیتروژن (N₂) و آرگون (Ar) در محیط‌های آزمایشگاهی رایج هستند.

    نیتروژن (N₂):
    نیتروژن یک گاز بی‌اثر، بی‌رنگ و بی‌بو است که کمی از هوا سبک‌تر بوده و به عنوان یک گاز خفه‌کننده عمل می‌کند. نیتروژن به‌طور گسترده در آزمایشگاه‌ها به عنوان گاز حامل استفاده می‌شود و از طریق کپسول‌های قابل حمل یا لوله‌کشی تأمین می‌شود.

    آرگون (Ar):
    آرگون گازی بی‌اثر، بی‌رنگ، بی‌بو و بدون طعم است. غیرسمی بوده و از احتراق پشتیبانی نمی‌کند. حدود ۰.۹۳٪ از جو زمین را تشکیل می‌دهد و در کاربردهایی نیازمند اتمسفر بی‌اثر استفاده می‌شود.

    • فرآیندهای صنعتی: در جوشکاری و فلزکاری برای جلوگیری از اکسیداسیون و واکنش‌های شیمیایی استفاده می‌شود.
    • نگهداری مواد غذایی: برای حذف اکسیژن در بسته‌بندی و افزایش ماندگاری کاربرد دارد.
    • روشنایی: در لامپ‌های فلورسنت و رشته‌ای برای جلوگیری از اکسیداسیون رشته استفاده می‌شود.

    خطر خفگی: مشابه نیتروژن، آرگون با جایگزینی اکسیژن باعث کاهش سطح اکسیژن قابل تنفس می‌شود و در غلظت‌های بالا بسیار خطرناک است.

    نصب دتکتور:

    • نیاز به پایش: چون آرگون سنگین‌تر از هوا است، دتکتورهای پایش کاهش اکسیژن باید در ارتفاع پایین نصب شوند.
    • زمان پاسخ: نصب صحیح برای هشدار زودهنگام در صورت نشت ضروری است. اگر دتکتورها خیلی بالا نصب شوند، ممکن است افراد فرصت کافی برای واکنش نداشته باشند.
    • تهویه: تهویه مناسب در محیط‌هایی که از آرگون استفاده می‌شود برای کاهش خطرات حیاتی است.
    • غنی‌سازی اکسیژن (O₂)
      غنی‌سازی اکسیژن به افزایش سطح اکسیژن فراتر از غلظت معمول جو، که حدود ۲۱ درصد است، اطلاق می‌شود. این پدیده می‌تواند تأثیر قابل‌توجهی بر پویایی آتش و ایمنی کلی در محیط‌های مختلف داشته باشد.
    • نکات کلیدی:
      خطر آتش‌سوزی: افزایش سطح اکسیژن می‌تواند فرآیند احتراق را تسریع کند و منجر به افزایش خطر آتش‌سوزی شود. موادی که در شرایط عادی ایمن یا غیرقابل اشتعال در نظر گرفته می‌شوند، ممکن است در جوهای غنی از اکسیژن بسیار قابل اشتعال شوند.
      اهمیت شناسایی: شناسایی نشتی اکسیژن برای پیشگیری از خطرات احتمالی آتش‌سوزی ضروری است. پایش منظم سطح اکسیژن در محیط‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد، مانند آزمایشگاه‌ها، مراکز درمانی و کاربردهای صنعتی که از اکسیژن خالص یا با غلظت بالا استفاده می‌کنند، ضروری است.
    • راهبردهای تشخیص:
      نصب دتکتور اکسیژن: دتکتورهای اکسیژن باید به‌صورت راهبردی در محل‌هایی که احتمال غنی‌سازی اکسیژن وجود دارد نصب شوند؛ مانند نزدیک مخازن ذخیره‌سازی اکسیژن، سامانه‌های لوله‌کشی یا تجهیزاتی که از اکسیژن خالص استفاده می‌کنند.
      اقدامات تهویه: تأمین تهویه مناسب در نواحی با پتانسیل غنی‌سازی اکسیژن می‌تواند خطر آتش‌سوزی را کاهش دهد. جریان مناسب هوا می‌تواند غلظت اضافی اکسیژن را رقیق کرده و احتمال وقوع آتش‌سوزی را کاهش دهد.
    • غنی‌سازی اکسیژن خطرات قابل‌توجهی ایجاد می‌کند که باید از طریق پایش مستمر، نصب راهبردی دتکتورها و اجرای پروتکل‌های اضطراری مناسب، مدیریت شوند. با مدیریت فعالانه سطح اکسیژن، سازمان‌ها می‌توانند احتمال وقوع حوادث ناشی از آتش‌سوزی را به‌طور چشمگیری کاهش دهند.

     

    • پوشش منطقه‌ای: ملاحظات
      تعداد دتکتورهای گاز موردنیاز در یک منطقه مشخص، به چند عامل کلیدی بستگی دارد که شامل موارد زیر است:
    • ۱. ابعاد منطقه مورد پوشش:
      ابعاد کلی فضا تعیین می‌کند که برای پوشش کافی و تشخیص به‌موقع نشت گاز به چند دتکتور نیاز است.
    • ۲. ارتفاع اتاق:
      ارتفاع اتاق می‌تواند بر پراکندگی گاز تأثیر بگذارد. دتکتورها باید در ارتفاع مناسب بسته به نوع گاز پایش‌شده نصب شوند (برای گازهای سنگین مانند LPG در ارتفاع پایین و برای گازهای سبک مانند متان در ارتفاع بالا).
    • ۳. تجهیزات نصب‌شده:
      وجود و نوع تجهیزات موجود در منطقه، مانند دیگ‌های گازی، اجاق‌ها یا آب‌گرم‌کن‌ها، می‌توانند ریسک‌های خاصی ایجاد کنند و نیاز به دتکتورهای اضافی داشته باشند.
    • ۴. میزان لوله‌کشی:
      پیچیدگی و گستردگی لوله‌کشی گاز در منطقه می‌تواند احتمال نشتی را افزایش دهد. در نزدیکی اتصالات حیاتی یا مسیرهای طولانی لوله، ممکن است به دتکتورهای بیشتری نیاز باشد.
    • ۵. نوع گاز هدف و کاربری فضا:
      هر گاز ویژگی‌ها و رفتار خاصی دارد. درک نوع گاز هدف، چگالی آن و رفتار آن در محیط برای تعیین محل نصب دتکتور ضروری است. همچنین، نوع کاربری فضا (مثلاً فضای آموزشی در برابر آشپزخانه تجاری) الزامات پایش متفاوتی را ایجاب می‌کند.

     

    • راهنمایی درباره پوشش دتکتورها:
    • برد پوشش معمول:
      برای دتکتورهای گاز طبیعی، برد پوشش معمول ممکن است تا شعاع ۵ متر در صورت نصب روی دیوار باشد. برای دتکتورهای مونوکسید کربن، این برد می‌تواند تا ۱۰ متر افزایش یابد.
    • پایش دی‌اکسید کربن:
      در محیط‌های آموزشی و آشپزخانه‌های تجاری، دتکتورهای CO₂ باید به‌گونه‌ای راهبردی نصب شوند که شرایط محیطی نماینده را، به‌ویژه در ناحیه تنفسی، پایش کنند.
    • نوع پوشش:
      باید نوع پوشش موردنیاز نیز بررسی شود. این شامل ارزیابی این است که آیا پایش پیوسته (“پوشش گسترده”) لازم است یا بررسی نقطه‌ای (“پوشش هدفمند”) کافی است، بسته به خطرات خاص موجود در منطقه.

     

    • پوشش مؤثر منطقه‌ای برای تضمین ایمنی و قابلیت اطمینان سامانه دتکتور گاز ضروری است. با ارزیابی دقیق عوامل فوق، سازمان‌ها می‌توانند راهبردهای پایش گاز خود را بهینه کرده و از خطرات ناشی از نشت گاز و پیامدهای آن جلوگیری کنند.
    • پوشش گسترده (Blanket Coverage)
    • پوشش گسترده به استقرار راهبردی چندین دتکتور گاز به‌صورت یکنواخت در سراسر یک ناحیه مشخص، مانند یک اتاق تجهیزات صنعتی، برای اطمینان از پایش کامل و ایمنی اطلاق می‌شود.
    • 🔹 نکات کلیدی در مورد پوشش گسترده:
      توزیع یکنواخت:
      دتکتورها باید به‌صورت یکنواخت در سراسر فضا توزیع شوند تا از ایجاد هرگونه خلأ در پوشش جلوگیری شود. این امر تضمین می‌کند که هرگونه نشت گاز بدون توجه به محل وقوع آن، به‌سرعت شناسایی شود.
    • هم‌پوشانی در نواحی آشکارسازی:
      چیدمان دتکتورها به‌گونه‌ای که نواحی پوشش آن‌ها کمی هم‌پوشانی داشته باشند مفید است. این افزونگی تضمین می‌کند که در صورت خرابی یا انسداد یک دتکتور، دتکتور دیگری بتواند آن ناحیه را پوشش دهد.
    • طرح و چیدمان اتاق:
      چیدمان فیزیکی اتاق، از جمله نحوه قرارگیری تجهیزات، نواحی انبارش، و سامانه‌های تهویه باید در هنگام تعیین محل نصب دتکتورها در نظر گرفته شود. از نصب دتکتور در مکان‌هایی که ممکن است مسدود شده یا تحت تأثیر جریان هوا از فن‌ها یا کانال‌های تهویه قرار گیرند، باید اجتناب شود.
    • نوع دتکتورها:
      گازهای مختلف ممکن است به دتکتورهای خاصی نیاز داشته باشند. باید اطمینان حاصل شود که دتکتور متناسب با گاز موجود در فضا و ویژگی‌های آن (مانند سنگین‌تر یا سبک‌تر بودن از هوا) انتخاب شده باشد.
    • نگهداری و آزمون منظم:
      سامانه‌ای متشکل از چندین دتکتور نیازمند برنامه‌ نگهداری دقیق برای اطمینان از عملکرد مناسب تمامی واحدهاست. باید آزمون‌ها و کالیبراسیون منظم به‌منظور تضمین دقت و قابلیت اطمینان انجام شود.
    • ❗ همچنین، تعداد دتکتورها نیز باید مورد توجه قرار گیرد. خرابی یا برداشتن یک دتکتور برای تعمیرات نباید ایمنی ناحیه تحت پوشش را به خطر اندازد. ممکن است برای پایش پیوسته و جلوگیری از آلارم‌های کاذب، تکرار (یا سه‌برابر کردن) دتکتورها و تجهیزات کنترلی الزامی باشد.
    • اجرای رویکرد پوشش گسترده با دتکتورهایی که به‌طور یکنواخت مستقر شده‌اند، راهکاری ایمن و قوی برای پایش نشت گاز در نواحی حیاتی مانند اتاق تجهیزات فراهم می‌آورد. این کار با تضمین پوشش کامل، توان واکنش سازمان را در برابر خطرات احتمالی گاز بهبود می‌بخشد.

     

    • پوشش هدفمند (Targeted Coverage)
    • پوشش هدفمند شامل نصب راهبردی دتکتورهای گاز در مکان‌های خاصی است که احتمال نشت گاز در آن‌ها بیشتر است. این رویکرد تضمین می‌کند که پایش بر نواحی بحرانی که بیشترین احتمال نشت گاز را دارند متمرکز باشد و از این طریق ایمنی و اثربخشی واکنش را افزایش می‌دهد.
    • 🔹 نکات کلیدی در مورد پوشش هدفمند:
    • شناسایی نقاط احتمالی نشت:
      یک ارزیابی ریسک جامع باید انجام شود تا نقاط احتمالی نشت در تأسیسات شناسایی شود. نواحی رایج شامل موارد زیر هستند:
      ▪ دیگ‌های بخار: به‌عنوان تجهیزات اصلی مصرف‌کننده گاز، نقاط بحرانی برای نشت محسوب می‌شوند.
      ▪ لوله‌کشی‌ها: هرگونه اتصال، خم، یا اتصال در سامانه‌های لوله‌کشی گاز ممکن است در معرض نشت باشد.
      ▪ شیرها: عملکرد شیرها، به‌ویژه در سامانه‌های پرفشار، می‌تواند منجر به نشت احتمالی شود.
      ▪ دودکش‌ها و خروجی‌ها: در صورت وجود انسداد یا خرابی، گاز ممکن است از این مسیرها نشت کند.
    • نزدیکی به منابع گاز:
      دتکتورها باید تا حد امکان نزدیک به نقاط شناسایی‌شده نشت نصب شوند، بدون اینکه دسترسی برای تعمیر یا بهره‌برداری محدود شود. این نوع استقرار امکان شناسایی و واکنش سریع‌تر را فراهم می‌کند.
    • نوع دتکتورها:
      باید اطمینان حاصل شود که نوع دتکتور متناسب با گاز خاص مورد پایش انتخاب شود. برای مثال، از دتکتورهای گاز قابل اشتعال در نزدیکی دیگ‌ها و خطوط گاز طبیعی، و از دتکتورهای CO در نزدیکی تجهیزات احتراقی استفاده شود.
    • عوامل محیطی:
      شرایط محیطی پیرامون نقاط نشت احتمالی باید در نظر گرفته شود. عواملی مانند جریان هوا، دما و رطوبت می‌توانند بر پراکندگی گاز و اثربخشی دتکتورها تأثیر بگذارند. باید اطمینان حاصل شود که دتکتورها در موقعیتی قرار گیرند که کمترین تداخل از این عوامل را داشته باشند.
    • نگهداری و کالیبراسیون منظم:
      دتکتورهایی که در نقاط هدفمند نصب می‌شوند باید در قالب برنامه نگهداری منظم بررسی شوند، شامل آزمون‌های مکرر برای عملکرد و کالیبراسیون مجدد به‌منظور تضمین دقت اندازه‌گیری.
    • اجرای پوشش هدفمند با نصب دتکتورها در نقاط بحرانی نشت، توانایی پایش گاز را به‌طور چشمگیری افزایش می‌دهد. با تمرکز منابع در نواحی پُرخطر، سازمان‌ها می‌توانند واکنشی سریع‌تر نسبت به خطرات احتمالی گاز ارائه دهند و ایمنی کلی را بهبود ببخشند.
    • ❗ همچنین می‌توان از ترکیب هر دو تکنیک پایش برای افزایش سطح نظارت استفاده کرد.
  • بررسی انواع دتکتورهای گاز

    1. گاز چیست؟

    2-1. ترکیب هوا

    هوا تقریباً از 78٪ نیتروژن، 21٪ اکسیژن و 1٪ گازهای دیگر (مانند آرگون و دی‌اکسید کربن) تشکیل شده است. نیتروژن، که بزرگ‌ترین جزء هواست، پایه‌ی پروتئین‌های ساخته‌شده از اسیدهای آمینه را تشکیل می‌دهد و در بسیاری از موجودات زنده یافت می‌شود. نیتروژن برای تقریباً تمام حیات روی این سیاره ضروری است. با این حال، نیتروژن مستقیماً از هوا به بدن جذب نمی‌شود. نیتروژنی که ما استنشاق می‌کنیم، صرفاً هنگام بازدم خارج می‌شود. اکسیژن، که برای حیات ضروری است و مستقیماً به بدن ما جذب می‌شود، 21٪ از هوا را تشکیل می‌دهد. دی‌اکسید کربن، که برای فتوسنتز گیاهان حیاتی است، کمتر از 1٪ است. جانوران اکسیژن جذب می‌کنند و دی‌اکسید کربن دفع می‌کنند و گیاهان دی‌اکسید کربن جذب می‌کنند و اکسیژن دفع می‌کنند، که این امر تعادل ثابتی در ترکیب کلی هوا و فرآیندهای حیاتی روی این سیاره حفظ می‌کند.

    2-2. خطرات گاز

    به طور کلی، خطرات گاز به سه دسته زیر تقسیم می‌شوند:

     

    گازهای قابل اشتعال

    گازهایی که در صورت ترکیب با هوا، محدوده انفجاری (محدوده اشتعال) دارند.

    بر اساس سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی (GHS*)، این مواد در حالت گازی در فشار استاندارد اتمسفر (101.3 کیلوپاسکال) و دمای 20 درجه سانتی‌گراد تعریف می‌شوند.

    * GHS: سیستم جهانی هماهنگ طبقه‌بندی و برچسب‌گذاری مواد شیمیایی

     

    گازهای سمی

    گازهایی که عملکرد بیولوژیکی انسان را مختل می‌کنند.

    گازهای سمی بر اساس مقادیر آستانه‌ای تنظیم می‌شوند که برای محافظت از اثرات مضر سلامتی کارگرانی که در محل کار روزانه 8 ساعت و هفته‌ای 40 ساعت در معرض این مواد قرار می‌گیرند، تعیین شده‌اند.

     

    کمبود اکسیژن

    بدن انسان می‌تواند در غلظت اکسیژن جو حدود 21% به طور طبیعی عمل کند.

    اگر اکسیژن مصرف شود و غلظت آن کاهش یابد (مثلاً در اثر اکسیداسیون فلزات یا فعالیت میکروارگانیسم‌ها) یا اگر اکسیژن توسط گازهای دیگر (مانند N₂ و Ar) جایگزین شود، اثرات آن بر بدن انسان زمانی آشکار می‌شود که غلظت اکسیژن به زیر حدود 18% برسد. در غلظت‌های 6% تا 8% خطر مرگ وجود دارد.

    1. خطرات گازهای قابل اشتعال

    3-1. سه عنصر لازم برای احتراق

     

    احتراق به طور کلی به واکنش اکسیداسیونی گفته می‌شود (که در آن مواد با اکسیژن ترکیب می‌شوند) که همراه با تولید گرما و نور است.

    ماده سوختنی

    گاز حامی احتراق

    منبع اشتعال

    در صورت نبود هر یک از این عناصر، احتراق امکان‌پذیر نیست. برای جلوگیری از احتراق گاز، ضروری است که غلظت گاز را زیر حدی که بتواند مشتعل شود تنظیم و حفظ کرد (با فرض وجود گاز حامی احتراق و منبع اشتعال).

    WhatsApp Image 2025 09 26 at 9.39.48 AM

    3-2. محدوده انفجاری

    اگر یک گاز قابل اشتعال یا بخار ناشی از یک مایع قابل اشتعال با هوا یا اکسیژن مخلوط شود، در صورت وجود منبع احتراق و قرار گرفتن غلظت در محدوده خاصی، منفجر خواهد شد. این محدوده غلظت، محدوده انفجاری نامیده می‌شود. حد پایینی غلظت، حد انفجاری پایین (LEL) و حد بالایی غلظت، حد انفجاری بالا (UEL) نام دارد.

    WhatsApp Image 2025 09 26 at 9.39.48 AM1

    مثال: هیدروژن

    حد انفجاری پایین مقداری است که به صورت تجربی تعیین می‌شود، اما نتایج به‌دست‌آمده ممکن است بسته به شرایط و روش‌های آزمایش متفاوت باشد. بنابراین احتیاط لازم است و مقادیر ذکرشده ممکن است بسته به منبع مرجع متغیر باشند.

     

    رایج است که آشکارسازهای گاز، غلظت گاز را بر اساس حد انفجاری پایین پایش می‌کنند. دلیل این امر آن است که حتی اگر غلظت گاز از حد انفجاری بالا بیشتر باشد، در صورت نشت گاز به اتمسفر، گاز بلافاصله رقیق شده و پخش می‌شود و غلظت آن به محدوده انفجاری می‌رسد. واحد %LEL معمولاً برای بیان غلظت نسبت به حد انفجاری پایین استفاده می‌شود (100%LEL).

     

    3-3. بخار قابل اشتعال

    اگرچه هر دو در حالت گازی هستند، اما گاز و بخار به طور کلی به دو چیز متفاوت اشاره دارند. بخار به ماده‌ای گفته می‌شود که در دمای معمولی به حالت مایع (یا جامد) وجود دارد، اما تحت شرایط خاصی از فاز مایع به فاز گازی تبخیر می‌شود. ویژگی‌های فیزیکی زیر، که بر اساس تغییرات دما تعیین می‌شوند، مشخص می‌کنند که آیا بخار قابل اشتعال می‌تواند به یک خطر تبدیل شود یا خیر.

     

    1. فشار بخار اشباع

    این فشار به فشاری اشاره دارد که در آن یک ماده در دمای خاصی از مایع به گاز تبخیر می‌شود. فشار بخار معمولاً با افزایش دما بالا می‌رود. دمایی که در آن فشار برابر با فشار اتمسفر (101.3 کیلوپاسکال ≈ 760 میلی‌متر جیوه) می‌شود، نقطه جوش نامیده می‌شود. غلظت (غلظت حجمی) گازی که در دمای خاصی تبخیر می‌شود را می‌توان با محاسبه درصد فشار بخار نسبت به فشار اتمسفر تعیین کرد.

    WhatsApp Image 2025 09 26 at 9.39.49 AM

    شکل بالا، منحنی‌های فشار بخار اشباع برای اتانول و آب را نشان می‌دهد. از آنجا که نقطه جوش آب ۱۰۰ درجه سانتی‌گراد است، مشاهده می‌شود که منحنی فشار بخار در فشار ۱۰۱.۳ کیلوپاسکال، دمای ۱۰۰ درجه سانتی‌گراد را نشان می‌دهد. به عبارت دیگر، غلظت بخار آب اشباع در این نقطه ۱۰۰ درصد حجمی است.

     

    از طرف دیگر، اتانول مایعی فرّارتر از آب است (یعنی فشار بخار بالاتری دارد)، همانطور که هر کسی که قبل از تزریق در بیمارستان با اتانول ضدعفونی شده باشد، به راحتی درک می‌کند. در عمل، نقطه جوش اتانول ۷۸ درجه سانتی‌گراد است. این داده نیز نشان می‌دهد که اتانول فرّارتر از آب است.

     

    می‌توانیم غلظت گاز اتانول را در دمای خاصی بر اساس فشار بخار آن دما محاسبه کنیم. به عنوان مثال، از منحنی فشار بخار اشباع می‌توان دریافت که فشار بخار اتانول در ۲۰ درجه سانتی‌گراد تقریباً ۵.۸ کیلوپاسکال است. این مقدار را می‌توان در معادله زیر قرار داد تا غلظت گاز محاسبه شود:

     

    =غلظت گاز (درصد حجمی) = (فشار بخار در دمای مشخص) ÷ (فشار اتمسفر) × ۱۰۰

    = ۵.۸ (kPa) ÷ ۱۰۱.۳ (kPa) × ۱۰۰

    = ۵.۷ درصد حجمی

     

    این محاسبه ارزش به خاطر سپردن دارد. حتی اگر منحنی فشار بخار مانند شکل بالا در دسترس نباشد، معمولاً برگه اطلاعات ایمنی (SDS) ارائه‌شده توسط تولیدکننده مواد شیمیایی، داده‌های فشار بخار را برای دماهای معمولی (۲۰ تا ۳۰ درجه سانتی‌گراد) شامل می‌شود که می‌توان از آنها برای محاسبه غلظت گاز استفاده کرد.

     

    ۲. نقطه اشتعال (Flash Point)

    نقطه اشتعال به کمترین دمایی اشاره دارد که در آن، غلظت بخار یک ماده در هوا به حدی می‌رسد که در صورت وجود منبع احتراق، قابلیت اشتعال پیدا می‌کند. این دما را می‌توان به عنوان دمایی تفسیر کرد که در آن، غلظت بخار قابل اشتعال به حد انفجاری پایین (LEL) می‌رسد. اگر نقطه اشتعال مایعی که بخار قابل اشتعال تولید می‌کند، پایین‌تر از دمای محیطی باشد که مایع در آن استفاده می‌شود، به دلیل خطر بالای آتش‌سوزی و انفجار، احتیاط زیادی در ارزیابی خطر اشتعال لازم است.

     

    ۳. نقطه خودسوزی (Ignition Point)

    این دما به کمترین دمایی اشاره دارد که یک ماده قابل اشتعال در هوا، به دلیل افزایش دمای خود ماده (و نه تماس موضعی با یک جسم داغ مانند جرقه الکتریکی، شعله یا سیم فلزی گداخته) به صورت خودبه‌خود مشتعل می‌شود. تولیدکنندگان تجهیزات الکتریکی ضد انفجار باید دستگاه‌ها را به گونه‌ای طراحی و تولید کنند که دمای سطحی تجهیزات که احتمال تماس با گاز یا بخار قابل اشتعال را دارد، از نقطه خودسوزی گاز یا بخار مربوطه تجاوز نکند.

    ۴-۱. خطرات گازهای سمی

    گازهای مورد استفاده یا تولیدشده به عنوان گازهای فرآیندی در صنایع مختلف، شامل گازهای سمی هستند که حتی در غلظت‌های بسیار کم می‌توانند آسیب‌های جدی به سلامت انسان وارد کنند یا حتی منجر به مرگ شوند.

     

    برخی گازها مانند **سولفید هیدروژن (H₂S)** و **آمونیاک (NH₃)** بوی مشخصی دارند که انسان می‌تواند حضور آن‌ها را تشخیص دهد. با این حال، حس بویایی انسان قادر نیست تعیین کند که آیا غلظت این گازها به سطوح خطرناک رسیده است یا خیر (به عنوان مثال، حد آستانه مجاز مواجهه شغلی برای H₂S موسوم به **TLV-TWA: 1 ppm** طبق استاندارد ACGIH 2018).

     

    **۱ ppm** معادل غلظتی است که با اضافه کردن تنها **یک قطره (۱ میلی‌لیتر = ۱ گرم یا ۱ سی‌سی)** از یک مایع سمی به یک مخزن بزرگ **۱۰۰۰ لیتری (۱ تن یا ۱ مترمکعب)** آب و مخلوط کردن کامل آن به دست می‌آید. فرض کنید این یک قطره (۱ ppm) سس سویا باشد. نه تنها تشخیص آن پس از مخلوط شدن به صورت بصری غیرممکن است، بلکه حتی با چشیدن نیز قابل تشخیص نخواهد بود. هرچند گازها با مایعات متفاوت هستند، بسیاری از گازهای سمی هم **بی‌رنگ** و هم **بی‌بو** هستند.

     

    یک نمونه از چنین گاز سمی، **مونوکسید کربن (CO)** است که گازی بالقوه کشنده بوده و می‌تواند در اثر احتراق ناقص بخاری‌های گازی در منازل تولید شود. این گاز گاهی اوقات به عنوان **قاتل خاموش** شناخته می‌شود، زیرا می‌تواند بدون آنکه تشخیص داده شود، باعث مسمومیت یا مرگ شود.

    ### **۵-۱. خطرات کمبود اکسیژن**

     

    اکسیژن ماده‌ای ضروری برای حفظ عملکرد بیولوژیکی انسان است. **کمبود اکسیژن (هیپوکسی)** تأثیرات جدی بر بدن، به‌ویژه مغز، می‌گذارد و وضعیتی بسیار خطرناک با نرخ مرگ‌ومیر بالا در محیط‌های کاری محسوب می‌شود.

    WhatsApp Image 2025 09 26 at 9.39.53 AM

    بررسی حوادث صنعتی مرتبط با کمبود اکسیژن در ژاپن نشان می‌دهد که بیشتر این موارد در بخش‌های **تولیدی و ساختمانی** رخ داده و سالانه منجر به تلفات متعددی می‌شود.

     

    **طبق آیین‌نامه پیشگیری از کمبود اکسیژن در قانون ایمنی و بهداشت صنعتی ژاپن:**

    – **شرایط کمبود اکسیژن** زمانی است که غلظت اکسیژن در هوا کمتر از ۱۸٪ باشد.

    – از دتکتورهای گاز برای اطمینان از حفظ غلظت اکسیژن بالاتر از ۱۸٪ استفاده می‌شود.

     

    ### **علائم کمبود اکسیژن:**

    – **۱۸٪ – ۱۶٪ اکسیژن:** افزایش تنفس، ضربان قلب سریع‌تر، اختلال در قضاوت و هماهنگی حرکتی.

    – **۱۶٪ – ۱۲٪ اکسیژن:** تنفس سنگین، گیجی، سردرد، خواب‌آلودگی، کاهش قدرت تفکر و حرکت.

    – **۱۲٪ – ۱۰٪ اکسیژن:** حالت تهوع، استفراغ، بیهوشی جزئی، کبودی لب‌ها و پوست.

    – **زیر ۱۰٪ اکسیژن:** بیهوشی، تشنج، آسیب مغزی، ایست تنفسی و مرگ در مدت‌زمان کوتاه.

     

    **هشدار:** در محیط‌های بسته یا فضاهای محدود (مانند مخازن، تونل‌ها، چاه‌ها) احتمال کاهش اکسیژن به‌دلیل واکنش‌های شیمیایی، جابجایی با گازهای دیگر یا مصرف اکسیژن وجود دارد. نظارت مستمر با دستگاه‌های سنجش اکسیژن و استفاده از تجهیزات تنفسی مناسب الزامی است.**

    البته، در ادامه ترجمه‌ی دقیق و روان متن موردنظر بدون هیچگونه افزودنی ارائه شده است:

     

    5-2. سه علت اصلی کمبود اکسیژن

    1. مصرف اکسیژن موجود در هوا
      علل اصلی مصرف اکسیژن:
      اکسیداسیون آهن و فلزات دیگر (ماسه آهن، لوله‌های فلزی، مخازن فلزی)،
      اکسیداسیون رنگ، مصرف زیستی اکسیژن (تنفس انسان‌ها و میکروارگانیسم‌ها)
    2. تخلیه یا ورود هوای کم‌اکسیژن
      هوای کم‌اکسیژن که به دلایل مختلفی ایجاد می‌شود، در صورتی که به‌دلیل شرایط کاری، روش‌های ساخت‌وساز یا شرایط آب‌وهوایی، تخلیه یا وارد مکان‌هایی با کمبود اکسیژن شود، می‌تواند موجب بی‌اکسیژنی گردد.
    3. تولید متان یا ورود گاز بی‌اثر
      کمبود اکسیژن می‌تواند ناشی از انتشار متان (که در طبیعت وجود دارد) یا نشت گازهای بی‌اثر (مانند نیتروژن، دی‌اکسید کربن، آرگون) از مخازن یا لوله‌ها در صنایع تولیدی باشد.

     

    5-3. اکسیژن بیش‌ازحد
    اگرچه اکسیژن برای عملکرد زیستی انسان ضروری است، اما قرارگیری مداوم در معرض غلظت‌ها یا فشارهای جزئی بالای اکسیژن می‌تواند منجر به مسمومیت با اکسیژن شود.
    مسمومیت با اکسیژن باعث تشنج عمومی و از دست دادن هوشیاری می‌شود و در بدترین حالت، منجر به مرگ می‌گردد.
    در محیط‌هایی که امکان بروز اکسیژن بیش‌ازحد وجود دارد، باید غلظت گازها نه‌فقط برای کمبود اکسیژن (کمتر از ۱۸٪)، بلکه برای جلوگیری از غلظت‌های بیش‌ازحد نیز پایش شود.

    البته، در ادامه ترجمه‌ی دقیق و روان متن خواسته‌شده بدون هیچ‌گونه افزودنی آورده شده است:

     

    مناطق معمولی که نیاز به تشخیص گاز دارند
    6-1. بازار دستگاه‌های گازسنج
    بازار دستگاه‌های گازسنج شامل تمامی بازارهایی است که در آن‌ها از گاز استفاده می‌شود.

    1. آزمایشگاه‌ها، دانشگاه‌ها، بیمارستان‌ها
      مراکز تحقیقاتی که از طیف گسترده‌ای از گازها، از جمله گازهای قابل اشتعال و سمی استفاده می‌کنند، تدابیری برای ایمنی کارکنان تحقیقاتی اتخاذ می‌کنند؛ مانند تشخیص سریع نشت گاز از طریق پایش محیط با استفاده از گازسنج‌های ثابت شرکت Riken Keiki.
      علاوه بر گازسنج‌ها، سیستم‌های تحلیلی که قادر به انجام هم‌زمان تحلیل پراش اشعه ایکس (XRD) و فلورسانس اشعه ایکس (XRF) در محل هستند نیز برای کاربردهایی مانند تحقیقات روی آثار فرهنگی غیرقابل‌انتقال مورد استفاده قرار می‌گیرند.
    2. صنعت الکترونیک
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD از گازهایی موسوم به گازهای مواد ویژه (گازهای بسیار سمی و قابل اشتعال) مانند سیلان، آرسین و فسفین استفاده می‌کنند.
      در مورد این گازها، نشت در غلظت‌های بسیار پایین (چند ppm تا چند ده ppm) نیز غیرقابل‌قبول است.
      کارخانه‌های تولید نیمه‌رساناها و پنل‌های LCD ممکن است صدها تا هزاران دستگاه گازسنج Riken Keiki برای محافظت از کارکنان در برابر نشت گاز نصب کرده باشند.
      این دستگاه‌ها مجهز به حسگرهای روش الکترولیز پتانسیواستاتیکی هستند که قادر به تشخیص نشت گاز در حد چند ppm می‌باشند.

     

    1. صنعت فولاد
      گازهایی که به‌عنوان محصولات جانبی در فرآیندهای تولید فولاد (گاز کک، گاز کوره بلند، گاز مبدل) تولید می‌شوند، دارای مقادیر زیادی هیدروژن و مونوکسید کربن هستند.
      این گازها به‌عنوان سوخت برای تولید برق در کارخانه‌های فولاد مجدداً مورد استفاده قرار می‌گیرند.
      گازسنج‌های قابل‌حمل Riken Keiki کارکنان داخل کارخانه‌های فولاد را در برابر خطرات انفجار و مسمومیت محافظت می‌کنند.

     

    1. صنعت پالایش نفت و پتروشیمی
      صنعت پالایش نفت و پتروشیمی در فرآیندهای تولید خود با طیف گسترده‌ای از گازهای قابل اشتعال و سمی سروکار دارد.
      گازسنج‌های ثابت و قابل‌حمل Riken Keiki در کاربردهایی مانند تشخیص نشت گازهای سمی و قابل اشتعال از تجهیزات و لوله‌ها، مدیریت فرآیند و اندازه‌گیری محیط کار مورد استفاده قرار می‌گیرند.
      پایشگرهای ثابت گازهای سمی برای مدیریت گازهای سمی در مرزهای کارخانه نیز به‌طور فزاینده‌ای مورد استفاده قرار می‌گیرند
    2. مناطق آتشفشانی و چشمه‌های آب گرم
      گازهای آتشفشانی در نزدیکی دهانه‌های آتشفشان و در مناطقی که چشمه‌های آب گرم تخلیه می‌شوند، تولید می‌گردند.
      این گازهای آتشفشانی حاوی گازهای سمی مانند دی‌اکسید گوگرد و سولفید هیدروژن هستند که در صورت استنشاق برای انسان مضرند.
      غلظت این گازها به‌طور مداوم به‌دلیل فعالیت‌های آتشفشانی و عوامل دیگر تغییر می‌کند.
      دستگاه‌های گازسنج تخصصی برای پایش شبانه‌روزی غلظت دی‌اکسید گوگرد و سولفید هیدروژن به کار می‌روند تا از کارکنان و گردشگران محافظت شود.

     

    1. صنعت مواد غذایی
      در صنعت مواد غذایی، نیتروژن و دی‌اکسید کربن در فرآیند بسته‌بندی برای جلوگیری از اکسید شدن غذا مورد استفاده قرار می‌گیرند.
      از آنجا که این گازها خفه‌کننده هستند، گازسنج‌های اکسیژن تخصصی در کارخانه‌های مواد غذایی نصب می‌شوند تا از کارکنان در برابر بی‌اکسیژنی محافظت کنند.

     

    1. صنعت ساخت‌وساز
      کار در حفاری‌های زیرزمینی برای ساخت تونل‌ها و همچنین کار درون منهول‌ها می‌تواند کارکنان را در معرض تولید سولفید هیدروژن و شرایط کمبود اکسیژن قرار دهد؛ این وضعیت ناشی از باکتری‌های مصرف‌کننده اکسیژن موجود در لایه‌های زیرزمینی است.
      گازسنج‌های قابل‌حمل اکسیژن و سولفید هیدروژن از کارکنان در برابر خطرات ناشی از کمبود اکسیژن و مسمومیت با سولفید هیدروژن محافظت می‌کنند.
    2. آتش‌نشانی و امداد و نجات
      صحنه‌های آتش‌سوزی و حوادث، کارکنان را در معرض خطرات مختلفی قرار می‌دهند؛ از جمله انفجار ناشی از گازهای قابل اشتعال، کمبود اکسیژن، مسمومیت با مونوکسید کربن در اثر احتراق ناقص، و گازهای سمی مانند سولفید هیدروژن.
      گازسنج‌های شخصی چهارگازه برای پایش هم‌زمان چهار گاز مختلف استفاده می‌شوند. این دستگاه‌ها برای موقعیت‌هایی که نوع دقیق گازهای خطرناک ناشناخته است، بسیار مناسب هستند.

     

    1. حمل‌ونقل دریایی و کشتی‌سازی
      کشتی‌هایی که مقادیر زیادی نفت خام، LNG یا LPG حمل می‌کنند، با خطر نشت گازهای قابل اشتعال از مخازن بار مواجه هستند.
      گازسنج‌های ثابت تخصصی برای پایش نشت گاز در این کشتی‌ها به‌کار می‌روند. این دستگاه‌ها امکان شناسایی سریع نشت‌ها را فراهم کرده و از وقوع انفجار و آلودگی دریایی جلوگیری می‌کنند.
      همچنین، گازسنج‌های قابل‌حمل توسط کارکنان در حین انجام عملیات ساخت‌وساز پوشیده می‌شوند تا آن‌ها را در برابر کمبود خطرناک اکسیژن و مسمومیت با گازهای سمی محافظت کنند.

     

    1. هوافضا
      سوخت موشک‌ها حاوی هیدروژن (گاز قابل اشتعال و بسیار انفجاری) و هیدرازین (گاز سمی برای انسان) است.
      پایش این گازها برای ایمنی کاملاً ضروری است.
      گازسنج‌های ضدانفجار در مکان‌هایی که خطر انفجار بالا وجود دارد، مانند مناطقی که سوخت موشک با آن‌ها سروکار دارد، برای اطمینان از ایمنی استفاده می‌شوند.

    فناوری‌های تشخیص گاز
    7-1. فناوری‌های حسگر گاز
    برای مواجهه با محیط‌ها و انواع گازهای متنوع در طیف گسترده‌ای از صنایع، فناوری‌های مختلف حسگر گاز توسعه یافته‌اند.
    در این بخش، ۱۳ نوع از رایج‌ترین فناوری‌هایی که معمولاً در صنعت استفاده می‌شوند معرفی می‌گردند:

    1. روش احتراق کاتالیستی
    2. روش جدید کاتالیستی سرامیکی
    3. روش نیمه‌رسانا
    4. روش نیمه‌رسانای سیم داغ
    5. روش رسانش گرمایی
    6. روش الکترولیز پتانسیواستاتیکی
    7. روش الکترود با غشای جداکننده
    8. روش سلول گالوانیکی با غشای نفوذپذیر
    9. روش مادون قرمز غیرپراکنشی (NDIR)
    10. روش تداخل‌سنجی
    11. روش نوار شیمیایی
    12. آشکارساز یونش نوری (PID)
    13. روش آشکارسازی ذرات ناشی از پیرولیز

    7-2. روش احتراق کاتالیستی

    1. توضیح مختصر

    این حسگر بر پایه گرمای تولیدشده از سوزاندن گاز قابل اشتعال روی کاتالیست اکسیداسیون، گاز را شناسایی می‌کند. این حسگر رایج‌ترین حسگر گاز است که به‌طور خاص برای گازهای قابل اشتعال طراحی شده است.

    WhatsApp Image 2025 09 26 at 9.39.54 AM

    1. ساختار و اصول عملکرد

    [ساختار]
    این حسگر از یک المان آشکارساز و یک المان جبرانی تشکیل شده است.
    المان آشکارساز شامل سیم پیچ فلز گران‌بها (مانند پلاتین) و کاتالیست اکسیدکننده – ماده‌ای فعال در برابر گاز قابل اشتعال – است که همراه با یک پایه آلومینا روی سیم پخته (سینتر) شده‌اند. این المان در واکنش با هر گاز قابل شناسایی می‌سوزد.
    المان جبرانی شامل سیم پیچ فلز گران‌بها و شیشه – ماده‌ای غیرفعال در برابر گاز قابل اشتعال – است که همراه با پایه آلومینا روی سیم پخته شده‌اند. این المان اثرات محیط را تصحیح می‌کند.

    [اصول عملکرد]
    سیم پیچ فلز گران‌بها، المان آشکارساز را تا دمای ۳۰۰ تا ۴۵۰ درجه سانتی‌گراد گرم می‌کند. سپس گاز قابل اشتعال روی سطح المان آشکارساز می‌سوزد و دمای آن افزایش می‌یابد.
    با تغییر دما، مقاومت سیم پیچ فلز گران‌بها – که بخشی از المان است – تغییر می‌کند. این تغییر مقاومت تقریباً متناسب با غلظت گاز است.
    مدار پل نشان‌داده‌شده در شکل سمت راست به حسگر اجازه می‌دهد تغییر مقاومت را به ولتاژ تبدیل کرده و از آن برای تعیین غلظت گاز استفاده کند.

    حسگر ثابت –
    دسته: حالت جامد
    گاز قابل شناسایی: گازهای قابل اشتعال

     

     

    ویژگی‌ها

    O ویژگی‌های خروجی:
    سیم پیچ فلز گران‌بها که منبع حرارت است، ضریب مقاومت وابسته به دما را به‌صورت خطی تغییر می‌دهد.
    در محدوده غلظت کمتر از حد انفجار (LEL)، واکنش احتراقی متناسب با غلظت گاز است.
    در این محدوده، خروجی حسگر به‌آرامی متناسب با تغییرات غلظت گاز تغییر می‌کند.

    WhatsApp Image 2025 09 26 at 9.39.54 AM1

    پاسخ‌دهی:
    گرمای احتراق تولیدشده روی سطح المان آشکارساز به سیم پیچ فلز گران‌بها منتقل شده و مقاومت مدار پل را تغییر می‌دهد و سپس به سیگنال تبدیل می‌گردد.

    WhatsApp Image 2025 09 26 at 9.39.55 AM

    با نرخ واکنش بالا، این حسگر در پاسخ‌دهی، دقت و قابلیت تکرار عملکرد بسیار خوبی دارد.

    O ویژگی‌های دما و رطوبت:
    مواد به‌کاررفته در اجزای حسگر دارای مقاومت الکتریکی بالا هستند و کمتر تحت تأثیر دما و رطوبت محیط استفاده قرار می‌گیرند، بنابراین قرائت‌ها تقریباً ثابت باقی می‌مانند.

    WhatsApp Image 2025 09 26 at 9.39.55 AM1

    توسعه کاتالیست:
    المان آشکارساز از کاتالیستی استفاده می‌کند که واکنش احتراقی را تسهیل می‌کند.
    این کاتالیست به‌طور اختصاصی برای حسگرهای گاز توسعه یافته و با بهره‌گیری از دانش فنی خاص طراحی شده است، که پایداری بلندمدت را فراهم می‌کند.

     

    ۷–۴. تشخیص گاز با دتکتورهای گاز نیمه‌رسانا

    حسگر ثابت

    **۱. شرح مختصر دتکتورهای گاز نیمه‌رسانا

    این حسگر از یک نیمه‌رسانای اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. حسگر این تغییر مقاومت را به‌عنوان غلظت گاز تشخیص می‌دهد. این یک حسگر همه‌کاره است که انواع گازها از گازهای سمی تا گازهای قابل اشتعال را شناسایی می‌کند. 

     

    **۲. ساختار و اصول کار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی         تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا        در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند

    **[ساختار دتکتورهای گاز نیمه‌رسانا

    حسگر شامل یک سیم گرم‌کن و یک نیمه‌رسانای اکسید فلزی (SnO₂) تشکیل‌شده روی یک لوله آلومینا است. دو الکترود طلا (Au) در دو انتهای لوله برای اندازه‌گیری مقاومت نیمه‌رسانا تعبیه شده‌اند. 

    WhatsApp Image 2025 09 26 at 9.39.55 AM2

     

    **[اصول کار دتکتورهای گاز نیمه‌رسانا

    سیم گرم‌کن، سطح نیمه‌رسانای اکسید فلزی را تا ۴۰۰–۳۵۰°C گرم می‌کند. با جذب اکسیژن هوا روی این سطح به‌صورت O و O₂، نیمه‌رسانا مقاومت ثابتی حفظ می‌کند. سپس، گاز متان یا مشابه آن با سطح تماس یافته و جذب شیمیایی می‌شود. این گاز توسط یون‌های O اکسید شده و تجزیه می‌شود. واکنش روی سطح حسگر به‌صورت زیر است: 

     

    CH₄ + ۴O⁻ → CO₂ + ۲H₂O + ۸e⁻ 

    WhatsApp Image 2025 09 26 at 9.39.56 AM

    به‌طور خلاصه، گاز متان روی سطح حسگر جذب شده و اکسیژن جذب‌شده را جدا می‌کند. این امر الکترون‌های آزاد درون حسگر را افزایش داده و مقاومت را کاهش می‌دهد. حسگر با اندازه‌گیری تغییر مقاومت، غلظت گاز را تعیین می‌کند. 

     

    **۳. ویژگی‌های دتکتورهای گاز نیمه‌رسانا 

    **ویژگی‌های خروجی دتکتورهای گاز نیمه‌رسانا

    حسگر تغییرات مقاومت نیمه‌رسانا را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (در سطح ppm) که توسط حسگرهای سرامیکی جدید قابل تشخیص نیستند را نیز شناسایی می‌کند. این حسگر برای غلظت‌های کم بسیار حساس بوده و سطح خروجی بالایی دارد. 

    WhatsApp Image 2025 09 26 at 9.39.56 AM1

    **تشخیص گازهای سمی در دتکتورهای گاز نیمه‌رسانا

    از آنجا که در اصل، مقاومت با تغییر تعداد الکترون‌ها و تحرک آن‌ها تغییر می‌کند، این حسگر طیف وسیعی از گازها از جمله گازهای سمی که گرمای احتراق کمتری تولید می‌کنند را تشخیص می‌دهد. 

     

    **ویژگی‌های پیری دتکتورهای گاز نیمه‌رسانا

    حسگر در بلندمدت پایداری خود را حفظ کرده و عمر طولانی دارد. در مقایسه با حسگرهای مبتنی بر احتراق کاتالیستی، این نوع حسگر مقاومت بالایی در برابر سمیت و شرایط سخت جوی دارد. 

     

    **انتخاب‌پذیری گاز در دتکتورهای گاز نیمه‌رسانا

    با افزودن ناخالصی به ماده نیمه‌رسانا، اثر تداخل تغییر می‌کند. این ویژگی به حسگر اجازه می‌دهد تا برخی گازها را به‌صورت انتخابی تشخیص دهد.

     

     

     

    ۷-۵.تشخیص گاز از طریق روش نیمه‌هادی نوع سیم داغ

     

    سنسور ثابت

    سنسور قابل حمل نیمه‌هادی نوع سیم داغ

     

    ۱. شرح مختصر از دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    این سنسور از یک نیمه‌هادی اکسید فلزی استفاده می‌کند که مقاومت آن در تماس با گاز قابل تشخیص تغییر می‌کند. سنسور این تغییر مقاومت را به عنوان غلظت گاز تشخیص می‌دهد. این یک سنسور گاز با حساسیت بالا برای غلظت‌های کم است.

     

    ۲. ساختار و اصول  دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    [ساختار]

    سنسور از یک المان تشخیصی تشکیل شده است که شامل یک سیم پیچ از جنس فلز گران‌بها (مثلاً پلاتین) و یک نیمه‌هادی اکسید فلزی پخته شده روی سیم پیچ است، و یک المان جبرانی که ماده‌ای غیرفعال در برابر گازهای قابل تشخیص روی آن پخته شده است.

    WhatsApp Image 2025 09 26 at 9.39.57 AM

    [اصول  عملکرد دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM1

    مقاومت (R) المان تشخیصی، ترکیبی از مقاومت (RS) نیمه‌هادی و مقاومت (RH) سیم پیچ فلز گران‌بها است. المان تشخیصی توسط سیم پیچ فلز گران‌بها تا ۳۰۰°C تا ۴۰۰°C گرم می‌شود و مقاومت ثابتی را حفظ می‌کند. سپس، گاز متان یا مشابه با المان تشخیصی تماس پیدا می‌کند و اکسیژن جذب شده روی سطح نیمه‌هادی اکسید فلزی را جدا می‌کند. این امر تعداد الکترون‌های آزاد در داخل نیمه‌هادی را افزایش داده و مقاومت نیمه‌هادی را کاهش می‌دهد. در نتیجه مقاومت کل المان تشخیصی کاهش می‌یابد. با تشخیص تغییر مقاومت توسط مدار پل، سنسور غلظت گاز را تعیین می‌کند.

     

    رده جامد

    گاز قابل تشخیص

     

    ۳. ویژگی‌های دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    ویژگی‌های خروجی  دتکتور گاز نیمه‌هادی نوع سیم داغ

    WhatsApp Image 2025 09 26 at 9.39.57 AM2

    سنسور تغییرات مقاومت نیمه‌هادی را تشخیص می‌دهد، یعنی حتی غلظت‌های کم (سطح ppm) که توسط سنسورهای سرامیکی جدید قابل تشخیص نیستند را نیز تشخیص می‌دهد.

     

     

     

    کوچک‌سازی و صرفه‌جویی در انرژی  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سیم پیچ فلز گران‌بها برای گرم‌کن را می‌توان کوچک‌تر کرد تا سنسوری کوچکتر با مصرف انرژی کمتر فراهم شود.

     

    ویژگی‌های پیری  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    سنسور در بلندمدت پایداری خود را حفظ می‌کند و عمر طولانی دارد. در مقایسه با سنسورهای مبتنی بر احتراق کاتالیستی، این نوع سنسور مقاومت بالایی در برابر سمیت و جو شدید دارد.

     

    انتخاب‌پذیری گاز  در دتکتور گاز نیمه‌هادی نوع سیم داغ

     

    با افزودن یک ناخالصی به نیمه‌هادی اکسید فلزی، اثر تداخل تغییر می‌کند. این ویژگی به سنسور اجازه می‌دهد تا برخی گازها را به صورت انتخابی تشخیص دهد.

     

     

    دتکتور گاز رسانائی گرمائی

    1. توضیح مختصر دتکتور گاز رسانائی گرمائی

     

    این دتکتور با تشخیص تفاوت در رسانایی گرمایی، غلظت گاز را تعیین می‌کند. این یک دتکتور اثبات‌شده برای گازهای قابل اشتعال است که به‌طور مؤثر گازهای با غلظت بالا را تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM

    [ساختار  دتکتور گاز رسانائی گرمائی

    این دتکتور از یک المان تشخیص و یک المان جبران تشکیل شده است. المان‌های تشخیص و جبران در دو نوع موجود هستند: یکی شامل یک سیم‌پیچ پلاتین و مخلوطی از شیشه (یک ماده غیرفعال در برابر گاز قابل اشتعال) و یک پایه آلومینا است که روی سیم‌پیچ پخته شده است، و دیگری شامل یک سیم‌پیچ و یک فلز غیرفعال یا مشابه است که روی سیم‌پیچ پوشش داده شده است. المان تشخیص به گونه‌ای طراحی شده است که گازهای قابل تشخیص با آن تماس پیدا کنند. المان جبران محصور شده است تا هیچ گاز قابل تشخیصی با آن تماس نداشته باشد.

     

    [اصول دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.58 AM1

    سیم‌پیچ پلاتین، المان تشخیص را تا 200 تا 500 درجه سانتی‌گراد گرم می‌کند. سپس، یک گاز قابل تشخیص با المان تشخیص تماس پیدا می‌کند و به دلیل رسانایی گرمایی خاص گاز، شرایط اتلاف گرما را تغییر می‌دهد و دمای المان تشخیص را افزایش می‌دهد. با این تغییر دما، مقاومت سیم‌پیچ پلاتین، که بخشی از المان است، تغییر می‌کند. تغییر مقاومت تقریباً متناسب با غلظت گاز است.

     

    با تشخیص تغییر مقاومت توسط مدار پل، دتکتور غلظت گاز را تعیین می‌کند.

     

    1. ویژگی‌های دتکتور گاز رسانائی گرمائی

     

    ویژگی‌های خروجی  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور تغییرات مقاومت سیم‌پیچ پلاتین را تشخیص می‌دهد، خروجی تا رسیدن به صد درصد حجمی تقریباً متناسب با غلظت است. این دتکتور برای تشخیص گازهای با غلظت بالا مناسب است.

    WhatsApp Image 2025 09 26 at 9.39.59 AM

    تشخیص در شرایط بی‌اکسیژن  دتکتور گاز رسانائی گرمائی

    WhatsApp Image 2025 09 26 at 9.39.59 AM1

    از آنجا که دتکتور تغییرات رسانایی گرمایی را تشخیص می‌دهد، می‌تواند گازها را حتی در جو بی‌اکسیژن نیز تشخیص دهد. اما گازهایی با تفاوت کوچک در رسانایی گرمایی با گاز مرجع را تشخیص نمی‌دهد.

     

    دتکتور به‌صورت فیزیکی تغییرات رسانایی گرمایی گاز را تشخیص می‌دهد و شامل واکنش شیمیایی مانند واکنش احتراق نیست. این بدان معناست که با تخریب یا مسمومیت کاتالیزور ارتباطی ندارد و پایداری بلندمدت را فراهم می‌کند.

     

    تشخیص گازهای غیرقابل اشتعال  دتکتور گاز رسانائی گرمائی

     

    از آنجا که دتکتور از رسانایی گرمایی خاص گاز استفاده می‌کند، حتی گازهای غیرقابل اشتعال با تفاوت زیاد در رسانایی گرمایی، مانند آرگون، نیتروژن و دی‌اکسید کربن با غلظت بالا را نیز تشخیص می‌دهد.

     

     

     

     

     

    ۷-۷. روش الکترولیز پتانسیواستاتیک

     

     

    ۱. شرح مختصر دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.39.59 AM2

    این دتکتور گاز قابل تشخیص را با استفاده از یک الکترود در پتانسیل ثابت الکترولیز می‌کند تا جریان ایجاد شود و سپس با اندازه‌گیری جریان، غلظت گاز را تعیین می‌نماید. این دتکتور گاز برای تشخیص گازهای سمی بسیار مناسب است. می‌توان پتانسیل خاصی را برای تشخیص گاز خاصی تنظیم کرد.

     

    ۲. ساختار و اصول  دتکتور گاز الکترولیز پتانسیواستاتیک

    [ساختار دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک الکترود (الکترود عمل) همراه با یک غشاء نفوذپذیر گاز و کاتالیزور (مثل طلا یا پلاتین)، الکترود مرجع و الکترود مقابل تشکیل شده که درون محفظه‌ای پلاستیکی پر از محلول الکترولیت قرار گرفته‌اند.

     

    [اصول عملکرد دتکتور گاز الکترولیز پتانسیواستاتیک

    دتکتور از یک مدار پتانسیواستاتیک برای ثابت نگه داشتن پتانسیل بین الکترود عمل و الکترود مرجع استفاده می‌کند. الکترود عمل گاز قابل تشخیص را مستقیماً الکترولیز می‌کند. اگر گاز قابل تشخیص H2S باشد، واکنش‌های زیر رخ می‌دهد:

    الکترود عمل: H2S + 4H2O → H2SO4 + 8H+ + 8e

    الکترود مقابل: 2O2 + 8H+ + 8e → 4H2O

    جریان تولیدشده متناسب با غلظت گاز است. با اندازه‌گیری جریان بین الکترود عمل و الکترود مقابل، دتکتور غلظت گاز را تعیین می‌کند.

     

    ۳. ویژگی‌های دتکتور گاز الکترولیز پتانسیواستاتیک

    ویژگی‌های خروجی دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون تغییر خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

     

    واکنش‌دهی  دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.00 AM1

    منحنی پاسخ همانطور که در شکل سمت راست نشان داده شده است. دتکتور با استفاده از واکنش کاتالیزوری گاز را به جریان تبدیل می‌کند. از آنجا که H2S کاتالیزور الکترود را تغییر نمی‌دهد، دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

    ویژگی‌های پیری  دتکتور گاز الکترولیز پتانسیواستاتیک

    تقریباً تا دو سال، حساسیت دتکتور در سطح حدود ۸۰٪ حساسیت اولیه باقی می‌ماند. از آنجا که رطوبت تأثیر جزئی بر حساسیت دارد، ممکن است خوانش بسته به فصل تغییر کند.

     

    ویژگی‌های دمای دتکتور گاز الکترولیز پتانسیواستاتیک

    WhatsApp Image 2025 09 26 at 9.40.01 AM

    با خوانش تقریباً پایدار در دماهای بالا، حساسیت دتکتور با کاهش دما ممکن است کاهش یابد. حتی در ۰°C، حساسیت دتکتور کمتر از ۸۰٪ نخواهد شد. با انجام تصحیح دما، نوسانات خوانش به حداقل می‌رسد.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    ۷-۸. روش تشخیص گاز با دتکتور گاز با الکترود با غشای جداکننده

    ۱. شرح مختصر  دتکتور گاز با الکترود با غشای جداکننده

    بر اساس اصول دتکتور پایه‌گذاری شده بر الکترولیز پتانسیواستاتیک، این دتکتور با یک فیلم نفوذپذیر گاز (غشای جداکننده) و یک الکترود عمل کاملاً جدا از هم ساختار یافته است. این یک دتکتور گاز سمی با انتخاب‌پذیری عالی است.

    WhatsApp Image 2025 09 26 at 9.40.01 AM1

    . ساختار و اصول  دتکتور گاز با الکترود با غشای جداکننده

    [ساختار دتکتور گاز با الکترود با غشای جداکننده

    دتکتور با یک الکترود عمل – یک الکترود فلزی با یک فیلم نفوذپذیر گاز که روی آن قرار گرفته – همراه با الکترودهای مرجع و مقابل ساختار یافته است. این الکترودها در یک محفظه پلاستیکی پر از محلول الکترولیت قرار دارند. بین الکترود عمل و فیلم، یک لایه بسیار نازک از محلول الکترولیت وجود دارد.

     

    [اصول دتکتور گاز با الکترود با غشای جداکننده

    یک گاز قابل تشخیص از طریق فیلم نفوذپذیر گاز عبور کرده و با یون‌های موجود در محلول الکترولیت واکنش می‌دهد که هالوژن تولید می‌کند. اگر گاز قابل تشخیص Cl باشد، واکنش زیر رخ می‌دهد:

    Cl2 + 2I- → 2Cl- + I2

    I2 تولید شده توسط این واکنش در الکترود عمل کاهش می‌یابد، باعث می‌شود جریانی از مدار عبور کند. از آنجا که این جریان متناسب با غلظت گاز است، دتکتور مقدار جریان را برای تعیین غلظت گاز اندازه می‌گیرد. گاز قابل تشخیص قبل از واکنش با الکترود عمل با محلول الکترولیت واکنش می‌دهد و بنابراین هیچ تداخلی با گازهایی که با محلول الکترولیت واکنش نمی‌دهند رخ نمی‌دهد. این ویژگی به دتکتور انتخاب‌پذیری عالی می‌بخشد.

     

     

    ۳. ویژگی‌ها ی دتکتور گاز با الکترود با غشای جداکننده

    ویژگی‌های خروجی  دتکتور گاز با الکترود با غشای جداکننده

    غلظت گاز متناسب با مقدار جریان است. دتکتور مقدار جریان را بدون هیچ تغییری خروجی می‌دهد و بنابراین غلظت گاز متناسب با خروجی دتکتور است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM

    پاسخ‌دهی  دتکتور گاز با الکترود با غشای جداکننده

    دتکتور به سرعت پاسخ می‌دهد. از آنجا که الکترودها یا محلول الکترولیت به ندرت توسط گاز کلر خورده می‌شوند، دتکتور از دقت و تکرارپذیری عالی برخوردار است.

    WhatsApp Image 2025 09 26 at 9.40.02 AM1

    ویژگی‌های پیری  دتکتور گاز با الکترود با غشای جداکننده

    عملکرد دتکتور با گذشت زمان کاهش نمی‌یابد و تقریباً هیچ تغییری در خروجی مشاهده نمی‌شود. با این حال، اگر فیلم نفوذپذیر گاز به دلیل چسبیدن ذرات خارجی، نفوذپذیری گاز را از دست بدهد، این ممکن است منجر به کاهش خروجی شود.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با الکترود با غشای جداکننده

    WhatsApp Image 2025 09 26 at 9.40.02 AM2

    دماهای بالا تقریباً هیچ تأثیری بر خروجی ندارند در حالی که دماهای پایین احتمالاً خروجی را کاهش می‌دهند. حتی در دمای ۰ درجه سانتی‌گراد، دتکتور حساسیت خود را در سطحی نه کمتر از ۸۰٪ حفظ می‌کند. با انجام تصحیحات دما، نوسانات قرائت به حداقل می‌رسد. خروجی تحت تأثیر رطوبت قرار نمی‌گیرد.

     

    ۷-۹. روش تشخیص گاز با دتکتور گاز با سلول گالوانیک غشایی

     

    ۱. شرح مختصر  دتکتور گاز با سلول گالوانیک غشایی

     

     

    این دتکتور ساده و سنتی بر اساس اصول سلول‌ها عمل می‌کند. این دتکتور بدون نیاز به منبع تغذیه خارجی، پایداری بلندمدت دارد.

     

    ۲. ساختار و اصول  دتکتور گاز با سلول گالوانیک غشایی

     

     

    [ساختار دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.03 AM

    دتکتور از یک کاتد (فلز گران‌بها) و آند (سرب) قرارگرفته در یک محلول الکترولیتی تشکیل شده است. یک غشای جداساز به سطح خارجی کاتد چسبیده است. با اتصال کاتد و آند از طریق یک مقاومت ثابت، مقدار ولتاژ خروجی تولید می‌شود.

     

    [اصول دتکتور گاز با سلول گالوانیک غشایی

     

     

    اکسیژن از غشای جداساز عبور کرده و در کاتد کاهش می‌یابد. همزمان در آند، سرب در محلول الکترولیتی حل می‌شود (اکسید می‌شود). واکنش‌های زیر در الکترودها رخ می‌دهد:

    کاتد: O2 + 2H2O + 4e → 4OH

    آند: 2Pb → 2Pb2+ + 4e

     

    جریان ناشی از واکنش کاهش، توسط مقاومت به ولتاژ تبدیل شده و از ترمینال خروجی خارج می‌شود. خروجی دتکتور متناسب با غلظت اکسیژن (فشار جزئی) است.

     

    ۳. ویژگی‌های دتکتور گاز با سلول گالوانیک غشایی

     

     

    ویژگی‌های خروجی  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.04 AM

    غلظت اکسیژن با مقدار جریان متناسب است. دتکتور مقدار جریان را به ولتاژ تبدیل کرده و سپس آن را خروجی می‌دهد. بنابراین، خروجی دتکتور در محدوده ۰ تا ۱۰۰٪ با غلظت اکسیژن متناسب است.

     

    سرعت پاسخ  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM

    با سرعت پاسخ بالا، این دتکتور از دقت و تکرارپذیری بالایی برخوردار است.

     

     

     

    ویژگی‌های پیری

    با عمر طولانی، این دتکتور می‌تواند به مدت دو تا سه سال مورد استفاده قرار گیرد.

     

    ویژگی‌های دما و رطوبت  دتکتور گاز با سلول گالوانیک غشایی

    WhatsApp Image 2025 09 26 at 9.40.05 AM1

    دتکتور از یک ترمیستور داخلی برای جبران دمایی استفاده می‌کند، بنابراین خوانش تقریباً به دما وابسته نیست.

    ۷-۱۰.تشخیص گاز به  روش مادون قرمز غیرپاشنده

    ۱. شرح مختصر  دتکتور مادون قرمز غیرپاشنده

    بر اساس این واقعیت که بسیاری از گازها اشعه مادون قرمز را جذب می‌کنند، این دتکتور نور مادون قرمز را به سلول اندازه‌گیری اعمال می‌کند تا تغییرات نور مادون قرمز ناشی از جذب گاز قابل تشخیص را شناسایی کند. این روش تمام نور مادون قرمز در محدوده طول‌موج خاصی را بدون تفکیک (پاشش) نور مادون قرمز بر اساس طول‌موج، به‌صورت یکپارچه تشخیص می‌دهد. WhatsApp Image 2025 09 26 at 9.40.06 AM

    . ساختار و اصول  دتکتور مادون قرمز غیرپاشنده

    [ساختار دتکتور مادون قرمز غیرپاشنده

    این دتکتور از یک منبع نور مادون قرمز و یک سنسور مادون قرمز تشکیل شده است که بین آن‌ها یک سلول اندازه‌گیری و یک فیلتر نوری قرار گرفته است. منبع نور مادون قرمز، نور را ساطع می‌کند که از طریق سلول اندازه‌گیری و فیلتر نوری عبور کرده و توسط سنسور مادون قرمز تشخیص داده می‌شود. فیلتر نوری به طول‌موج‌های مادون قرمز که توسط گاز قابل تشخیص جذب می‌شوند، اجازه عبور انتخابی می‌دهد.

     

    [اصول عملکرد دتکتور مادون قرمز غیرپاشنده

    یک گاز قابل تشخیص وارد سلول اندازه‌گیری شده و نور مادون قرمز را جذب می‌کند. این امر باعث کاهش مقدار نور مادون قرمز تشخیص‌داده شده توسط سنسور مادون قرمز می‌شود. برخی از گازهای قابل تشخیص با غلظت‌های شناخته شده وارد می‌شوند تا رابطه (منحنی کالیبراسیون) بین کاهش مقدار نور مادون قرمز و غلظت هر گاز قابل تشخیص تعیین شود. هنگامی که یک گاز قابل تشخیص با غلظت ناشناخته وارد می‌شود، دتکتور از منحنی کالیبراسیون بر اساس کاهش اندازه‌گیری‌شده مقدار نور مادون قرمز برای تعیین غلظت گاز استفاده می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.06 AM1

    . ویژگی‌های دتکتور مادون قرمز غیرپاشنده

    ویژگی‌های خروجی  دتکتور مادون قرمز غیرپاشنده

    WhatsApp Image 2025 09 26 at 9.40.06 AM3

    غلظت گاز و خروجی دتکتور رابطه متناسب ندارند، بلکه رابطه آن‌ها مطابق منحنی نشان‌داده شده در شکل پائین است. (i-C4H10: ایزوبوتان)

     

    ویژگی‌های پاسخ‌دهی  دتکتور مادون قرمز غیرپاشنده

    هنگامی که گاز با دبی ثابت به دتکتور گاز تغذیه می‌شود، دتکتور پاسخ‌های قابل تکرار و دقیقی ارائه می‌دهد. WhatsApp Image 2025 09 26 at 9.40.07 AM2

    ویژگی‌های پیری  در دتکتور مادون قرمز غیرپاشنده

    در محیطی با تغییرات دمایی کم، دتکتور پایدار باقی می‌ماند و بدون کاهش دقت خوانش در طول زمان عمل می‌کند. بسته به محیط، ممکن است دتکتور با گذشت زمان به‌طور قابل توجهی تخریب شود. در این صورت، می‌توان با انجام کالیبراسیون گاز هر شش ماه یکبار، تخریب را به حداقل رساند.

     

    ویژگی‌های دما و رطوبت  در دتکتور مادون قرمز غیرپاشنده

    با انجام تصحیحات دمایی، می‌توان وابستگی خوانش‌ها به دما را در محدوده دمایی مشخص‌شده به حداقل رساند.

    WhatsApp Image 2025 09 26 at 9.40.07 AM3

    در صورت عدم تشکیل میعان (%LEL) در داخل سلول گاز، دتکتور تقریباً تحت تأثیر رطوبت قرار نمی‌گیرد.

    . روش تشخیص گاز با تداخل سنجی

    ۱. شرح کلی  دتکتور گاز تداخل سنجی

    این دتکتور گاز، که یکی از قدیمیترین حسگرهای گاز ماست، تغییرات در ضریب شکست گاز را تشخیص میدهد. با دقت بالا، پایداری بلندمدت را حفظ میکند. در گذشته، داخل معادن زغالسنگ برای اندازهگیری غلظت متان استفاده میشد و در سالهای اخیر، بهطور گسترده برای اندازهگیری غلظت حلالها یا مقادیر حرارتی گازهای سوختی مانند گاز طبیعی کاربرد دارد.

    ۲. ساختار و اصول  دتکتور گاز تداخل سنجی

    [ساختار دتکتور گاز تداخل سنجی

    WhatsApp Image 2025 09 26 at 9.40.08 AM

    منبع نور، نور را ساطع میکند که توسط آینه تخت موازی به دو پرتو نور (A و B) تقسیم و توسط منشور بازتاب میشود. پرتو A یک سفر رفت و برگشت در محفظه گاز D، که گاز قابل تشخیص جریان دارد، انجام میدهد و پرتو B یک سفر رفت و برگشت در محفظه گاز E، که گاز مرجع جریان دارد، انجام میدهد. دو پرتو نور A و B در نقطه C آینه تخت موازی به هم میرسند و یک الگوی تداخلی روی سنسور تصویر از طریق آینه و لنز تشکیل میدهند.

     

    [اصول عملکرد دتکتور گاز تداخل سنجی

    یک الگوی تداخلی به نسبت تفاوت در ضریب شکست بین گاز قابل تشخیص و گاز مرجع حرکت میکند. حسگر مبتنی بر تداخلسنج نوری، مسافت حرکت الگوی تداخلی را اندازهگیری میکند تا ضریب شکست گاز قابل تشخیص را تعیین و آن را به غلظت گاز یا مقدار حرارتی تبدیل کند.

     

    ۳. ویژگی های دتکتور گاز تداخل سنجی

    مسافت حرکت الگوی تداخلی AB که توسط این حسگر اندازهگیری میشود، با معادله زیر نشان داده میشود:

    ویژگیهای خروجی  دتکتور گاز تداخل سنجی

    الگوی تداخلی

    از آنجا که تغییر در ضریب شکست متناسب با تغییر در غلظت گاز است، حسگر خطیبودن بسیار بالایی ارائه میدهد.

     

    پاسخدهی  دتکتور گاز تداخل سنجی

    حسگر اندازهگیری را با تکمیل جایگزینی در محفظه گاز با حجم ۰.۵ تا ۵ میلیلیتر به پایان میرساند. برخی مدلها اندازهگیری را در ۵ تا ۱۰ ثانیه با پاسخ ۹۰٪ تکمیل میکنند.

     

    ویژگیهای پیری  دتکتور گاز تداخل سنجی

    بارزترین ویژگی این حسگر این است که حساسیت آن کاهش نمییابد. حساسیت حسگر فقط به طول محفظه گاز L و طول موج منبع نور λ بستگی دارد. از آنجا که هر دو این پارامترها ثابت هستند، حسگر حساسیت پایدار بلندمدت ارائه میدهد. حتی اگر عنصر نوری کثیف شود، تأثیری بر مسافت حرکت الگوی تداخلی ندارد؛ بنابراین، حسگر تا زمانی که بتواند الگو را تشخیص دهد، حساسیت آن کاهش نمییابد.

     

    ویژگیهای فشار و دما در دتکتور گاز تداخل سنجی

    اگرچه ضریب شکست گاز بسته به دما T و فشار P تغییر میکند، حسگر دما و فشار را اندازهگیری میکند تا آنها را تصحیح کند و بنابراین تحت تأثیر آنها قرار نمیگیرد.

     

     

     

     

     

     

    7-12.تشخیص گاز به روش نوار شیمیایی

    1. شرح کلی دتکتور گاز با نوار شیمیائی

    این حسگر از نوار سلولزی آغشته به ماده رنگزا استفاده می‌کند. با عبور یا نفوذ گاز قابل تشخیص به داخل این نوار، واکنشی شیمیایی رخ داده و رنگ نوار تغییر می‌کند. حسگر با اندازه‌گیری نور بازتاب‌شده از رنگ ایجادشده بر اثر واکنش بین ماده رنگزا و گاز، غلظت بسیار کم گازهای سمی را به صورت کمی تشخیص می‌دهد.

     

    1. ساختار و اصول دتکتور گاز با نوار شیمیائی

    [ساختار دتکتور گاز با نوار شیمیائی

    حسگر دارای محفظه‌ای است که گاز قابل تشخیص وارد آن می‌شود. این محفظه یک ظرف ضد نور است که داخل آن منبع نور و بخش گیرنده نور برای تشخیص رنگ نوار قرار گرفته‌اند. حسگر شامل این محفظه گاز و اجزای دیگری مانند مکانیسم قرقره برای جمع‌آوری نوار پس از هر اندازه‌گیری است.

    WhatsApp Image 2025 09 26 at 9.40.08 AM1

    [اصول دتکتور گاز با نوار شیمیائی

    وقتی گاز قابل تشخیص با نوار آغشته به ماده رنگزا تماس پیدا می‌کند، واکنش شیمیایی رخ داده و نوار رنگ می‌گیرد. به عنوان مثال، اگر فسفین (PH3) با نوار تماس پیدا کند، کلوئید نقره طبق فرمول زیر تولید می‌شود و یک لکه رنگی روی نوار سفید ظاهر می‌شود:

    PH3 + AgCIO → Ag + H3PO4 + 1/2 Cl2

     

    حسگر نور را به نقطه رنگی‌شده نوار تابانده و تغییر شدت نور بازتاب‌شده قبل و بعد از ورود گاز را اندازه‌گیری می‌کند؛ بنابراین غلظت گاز را به دقت محاسبه می‌کند.

     

    1. ویژگی‌ها ی دتکتور گاز با نوار شیمیائی

    ویژگی‌های خروجی دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.08 AM2

    وقتی گاز قابل تشخیص وارد بخش تشخیص می‌شود، نوار شروع به رنگ‌گرفتن می‌کند و خروجی به تدریج افزایش می‌یابد. از آنجا که حسگر تغییرات رنگ را اندازه‌گیری می‌کند، خروجی به صورت منحنی نمایش داده می‌شود.

     

     

    ویژگی‌های دما و رطوبت در دتکتور گاز با نوار شیمیائی

    WhatsApp Image 2025 09 26 at 9.40.09 AM

    برای فسفین (PH3)، حسگرهای نوار‌ای وابسته به دما نیستند. همچنین بدون وابستگی زیاد به رطوبت، این حسگر در محدوده دمایی و رطوبتی عملیاتی، قرائت دقیقی ارائه می‌دهد.

     

    ویژگی‌های پیری در دتکتور گاز با نوار شیمیائی

    آزمایش‌های مداوم روی حسگر نشان می‌دهد که بدون کاهش حساسیت به گاز، اندازه‌گیری پایدار انجام می‌دهد.

     

    ویژگی‌های دتکتور گاز با نوار شیمیائی

    – حساسیت بسیار بالا با انتخاب‌پذیری عالی

    – استفاده از نوار کاست که تعویض آن آسان است

    – تغذیه نوار برای هر اندازه‌گیری، که هیچ هیسترزیسی ایجاد نمی‌کند

    – رنگ‌گرفتن نوار بر اثر گاز قابل تشخیص تجمع می‌یابد، که امکان تشخیص غلظت‌های بسیار کم گاز را فراهم می‌کند.

     

     

     

     

     

     

     

     

    7-13. دتکتور یونیزاسیون نوری

    1. شرح کلی دتکتور یونیزاسیون نوری

    این حسگر گاز با اعمال نور فرابنفش به گاز قابل تشخیص، باعث یونیزه شدن آن می‌شود. این عمل جریان یونی ایجاد می‌کند. حسگر این جریان را اندازه‌گیری کرده و غلظت گاز را تعیین می‌نماید. این حسگر محدوده وسیعی از گازها را بدون توجه به آلی یا معدنی بودن آنها تشخیص می‌دهد. معمولاً برای اندازه‌گیری غلظت ترکیبات آلی فرار (VOCs) در محدوده ppb تا ppm استفاده می‌شود.

     

    1. ساختار و اصول دتکتور یونیزاسیون نوری

    [ساختار دتکتور یونیزاسیون نوری

    حسگر از یک محفظه یونیزاسیون برای ورود گاز قابل تشخیص، یک لامپ فرابنفش برای تابش نور و الکترودهای مثبت و منفی برای تشخیص جریان یونی تشکیل شده است.

     

    [اصول عملکرد دتکتور یونیزاسیون نوری

    گاز قابل تشخیص وارد محفظه یونیزاسیون شده و در معرض نور فرابنفش از منبع نور (لامپ فرابنفش) قرار می‌گیرد. این عمل باعث آزاد شدن الکترون‌ها و تولید کاتیون می‌شود. کاتیون‌ها و الکترون‌های تولید شده توسط الکترودهای مثبت و منفی جذب شده و جریان الکتریکی ایجاد می‌کنند. از آنجا که این جریان متناسب با غلظت گاز است، حسگر با اندازه‌گیری مقدار جریان، غلظت گاز قابل تشخیص را تعیین می‌کند.

    WhatsApp Image 2025 09 26 at 9.40.09 AM1

    برای یونیزه کردن یک گاز، نیاز به اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص آن گاز است. انرژی فوتون با واحد الکترون ولت (eV) بیان می‌شود. این حسگر از لامپ‌هایی با انرژی فوتونی 10.6 eV و 11.7 eV استفاده می‌کند. هرچه انرژی فوتون بیشتر باشد، مقدار بیشتری از گاز قابل تشخیص یونیزه می‌شود.

     

    1. ویژگی‌های دتکتور یونیزاسیون نوری

    ویژگی‌های خروجی دتکتور یونیزاسیون نوری

    WhatsApp Image 2025 09 26 at 9.40.10 AM

    برای گازهایی با غلظت پایین (چند صد ppm)، خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد.

    برای گازهایی با غلظت پایین خروجی حسگر تقریباً متناسب با غلظت گاز بوده و به صورت خطی با افزایش غلظت گاز، افزایش می‌یابد

    لامپ فرابنفش:

    انرژی فوتونی (eV) لامپ فرابنفش توسط ترکیب گاز موجود در لامپ و جنس پنجره لامپ تعیین می‌شود.

     

     

    انرژی یونیزاسیون مواد معمول:

    با اعمال انرژی فوتونی بیشتر از انرژی یونیزاسیون خاص هر گاز، حسگر گاز را یونیزه کرده و غلظت آن را تعیین می‌کند. این حسگر معمولاً از لامپ‌های 10.6 eV یا 11.7 eV استفاده می‌کند.

     

    جدول انرژی فوتونی:

    گاز داخل لامپ | جنس پنجره | انرژی فوتونی (eV)

    زنون | یاقوت کبود | 8.4

    کریپتون | فلورید منیزیم | 10.6

    آرگون | فلورید لیتیم | 11.7

     

     

    WhatsApp Image 2025 09 26 at 9.40.10 AM1

     

    7-14. روش تشخیص گاز با ذرات پیرولیز شده

    1. شرح کلی دتکتور گاز با ذرات پیرولیز شده

    این حسگر گاز، گاز قابل تشخیص را حرارت داده تا اکسید تولید کند و سپس ذرات اکسید را با استفاده از یک حسگر ذره سنجی می‌کند. این حسگر پایداری بلندمدت داشته و مقاومت عالی در برابر تداخل و پاسخگویی سریع دارد. حسگر ذره بر اساس اصول مشابه حسگرهای دود یونیزاسیونی که از پرتوها استفاده می‌کنند، کار می‌کند.

     

    1. ساختار و اصول دتکتور گاز با ذرات پیرولیز شده

    [ساختار دتکتور گاز با ذرات پیرولیز شده

    این حسگر معمولاً ترکیبی از یک تجزیه‌گر حرارتی و حسگر ذره است. در مرکز تجزیه‌گر حرارتی یک لوله کوارتزی پیچیده شده با عنصر گرمایشی قرار دارد.

    حسگر ذره شامل یک محفظه اندازه‌گیری (که به طور مداوم با استفاده از پرتوهای آلفا جریان یون تولید می‌کند) و یک محفظه جبران است. گاز قابل تشخیص فقط وارد محفظه اندازه‌گیری می‌شود، در حالی که محفظه جبران به اتمسفر باز است.

     

    [اصول دتکتور گاز با ذرات پیرولیز شده

    بسیاری از گازهای آلی فلزی مانند TEOS در اثر حرارت، اکسید ذره‌ای تولید می‌کنند. گاز قابل تشخیص از طریق تجزیه‌گر حرارتی اکسید شده و وارد حسگر ذره می‌شود.

    در محفظه اندازه‌گیری حسگر ذره، از یک منبع پرتو آلفا برای یونیزه کردن هوا استفاده می‌شود که باعث جریان یونی می‌شود. ذرات وارد محفظه اندازه‌گیری شده و یون‌ها را جذب می‌کنند؛ این امر جریان یونی را کاهش داده و در نتیجه خروجی حسگر کم می‌شود. بر اساس میزان کاهش خروجی، غلظت گاز تعیین می‌شود. محفظه جبران، نوسانات خروجی حسگر ناشی از دما، رطوبت و/یا فشار را جبران می‌کند.

     

     

    1. ویژگی‌های دتکتور گاز با ذرات پیرولیز شده

    ویژگی‌های خروجی دتکتور گاز با ذرات پیرولیز شده

    خروجی حسگر به غلظت ذرات تولید شده از طریق تجزیه حرارتی بستگی دارد. حسگر از یک منحنی کالیبراسیون استفاده می‌کند تا غلظت گاز نسبت به قرائت خطی باشد.

     

    پاسخگویی دتکتور گاز با ذرات پیرولیز شده

    از آنجا که گاز وارد شده به بخش تشخیص بلافاصله در تجزیه‌گر حرارتی اکسید می‌شود، حسگر از سرعت پاسخ بالا و تکرارپذیری عالی برخوردار است.

     

    ویژگی‌های پیری در دتکتور گاز با ذرات پیرولیز شده

    حسگر از Am-241 به عنوان منبع پرتو استفاده می‌کند که نیمه عمر بسیار طولانی (حدود 400 سال) دارد و در نتیجه عملکرد حسگر به مرور زمان به سختی کاهش می‌یابد.

     

    ویژگی‌های دمایی در دتکتور گاز با ذرات پیرولیز شده

    حسگر از محفظه جبران برای جبران اثرات دما استفاده می‌کند و بنابراین ویژگی‌های دمایی عالی از خود نشان می‌دهد.

     

  • مزایای دتکتور دودی مکشی یا اسپیراتینگ برای کاربری های متنوع

    زمانی‌که تشخیص دود در مرحله ابتدایی حریق حیاتی است، سیستم‌های دتکتور دودی مکشی مزایای زیادی دارند.

    سطوح اولیه تشخیص
    توانایی سیستم‌های دتکتور دودی مکشی در تشخیص ذرات دود در سطح بسیار پایین کاهش دید، آن‌ها را برای مناطقی که نیاز به سریع‌ترین تشخیص ممکن دارند (پیش از آغاز احتراق و آسیب)، ایده‌آل می‌کند. کاربردهای معمول شامل موزه‌ها، ساختمان‌های تاریخی، اماکن با ارزش فرهنگی، و مراکز حیاتی مانند دیتا سنترها هستند. همچنین محدوده‌های حساسیت قابل برنامه‌ریزی، امکان سفارشی‌سازی سیستم دتکتور دودی مکشی بر اساس خطر خاص موجود را فراهم می‌کند، که به مالک انعطاف‌پذیری بیشتری می‌دهد.

    تشخیص قابل اعتماد
    نرم‌افزار تشخیص در سیستم دتکتور دودی مکشی این امکان را می‌دهد که محفظه حسگر بین ذرات دود و ذرات گردوغبار معلق در هوای نمونه‌برداری‌شده تمایز قائل شود. این فناوری باعث مقاومت سیستم در برابر هشدارهای کاذب شده و از هشدارهای ناخواسته‌ای که ممکن است منجر به خاموش شدن غیرضروری تجهیزات، توقف فعالیت‌ها یا تخلیه زودهنگام ساختمان شوند، جلوگیری می‌کند.

    تأثیرناپذیری از جریان هوای بالا
    اتاق‌هایی با جریان هوای بالا، مانند دیتا سنترها، مراکز مخابراتی و اتاق‌های تمیز، یک چالش رایج هستند. جریان هوای بالا باعث ایجاد تغییرات مکرر در هوای محیط و رقیق شدن دود می‌شود، که تشخیص دود را دشوارتر می‌کند.

    سرعت بالای جریان هوا
    سرعت بالای جریان هوا، ذرات دود را از دتکتورهای دودی نقطه‌ای نصب‌شده روی سقف دور کرده و به سمت واحدهای تهویه (HVAC) منتقل می‌کند. ذرات بزرگ‌تر در واحد تهویه فیلتر می‌شوند، اما ذرات ریز از فیلتر عبور کرده و به داخل فضا بازمی‌گردند. در این حالت، ذرات دود به بخشی از هوای محیط تبدیل می‌شوند، اما چون دتکتور دودی مکشی به‌صورت فعال از هوای فضای حفاظت‌شده نمونه‌برداری می‌کند، می‌تواند آن‌ها را تشخیص دهد.

    عدم تأثیر بر زیبایی فضا و مقاوم در برابر دستکاری
    یکی دیگر از مزایای سیستم دتکتور دودی مکشی، امکان پنهان‌سازی لوله نمونه‌برداری و نصب دتکتور در مکانی دور از دید است. این ویژگی آن را برای محیط‌هایی که احتمال دستکاری وجود دارد (مانند زندان‌ها یا مدارس) مناسب می‌سازد. همچنین برای فضاهایی که زیبایی ظاهری اهمیت دارد (مانند اماکن تاریخی یا فرهنگی) نیز ایده‌آل است.

    قابل استفاده در محیط‌های سخت
    در محیط‌های سخت یا آلوده، ذرات بزرگ می‌توانند به مدارهای الکترونیکی دتکتورهای سنتی آسیب وارد کنند و ذرات کوچک نیز می‌توانند هشدارهای کاذب ایجاد کنند. سیستم دتکتور دودی مکشی از هوای فضای حفاظت‌شده نمونه‌برداری کرده و ذرات آسیب‌زننده را فیلتر می‌کند، که این ویژگی آن را برای نصب در چنین محیط‌هایی مناسب می‌سازد. همچنین، چون دتکتور در خارج از فضای حفاظت‌شده نصب می‌شود، این سیستم برای فضاهایی با دمای بسیار بالا یا پایین (مانند سردخانه‌ها و فریزرها) نیز مناسب است.

    نگهداری آسان
    پس از نصب دتکتور دودی مکشی و لوله نمونه‌برداری، زمان‌های انتقال و فشار هوای داخل لوله باید ثبت شود. سپس، نگهداری سالیانه شامل تست دورترین منفذ نمونه‌گیری و مقایسه زمان انتقال آن با مستندات اولیه می‌باشد. در مواقعی که لوله در سقف بلند یا زیر کف نصب شده، می‌توان یک نقطه نمونه‌برداری در سطح زمین تعبیه کرد تا آزمایش سالیانه آسان‌تر و هزینه‌های نگهداری کمتر شود.

    هر شبکه لوله‌کشی که برای استفاده با سیستم FAAST طراحی می‌شود، باید با استفاده از نرم‌افزار PipeIQ تأیید گردد.

  • راهنمای دتکتورهای دودی مکشی یا اسپیراتینگ ها برای مهندسین

    دتکتور دود مکشی (Aspirating Smoke Detector)

    تمام سیستم‌های دتکتور دود مکشی (ASD) دارای تجهیزات مشابهی هستند، اما نوع فناوری تشخیص آن‌ها متفاوت است. در حال حاضر چند نوع فناوری تشخیص وجود دارد:

    سیستم‌های مبتنی بر لیزر (دارای فیلتر)

    در این روش، از لیزر به‌عنوان منبع نوری در داخل محفظه تشخیص استفاده می‌شود. ابتدا هوا از یک سیستم فیلتراسیون عبور می‌کند تا ذرات بزرگ حذف شوند. سپس نمونه‌ی هوای فیلتر شده از مقابل لیزر عبور داده می‌شود و پراکندگی نور ناشی از ذرات دود توسط یک کلکتور نوری اندازه‌گیری می‌شود. الکترونیک پیشرفته‌ی دتکتور، میزان ذرات دود موجود در محفظه را تعیین می‌کند.

    سیستم‌های مبتنی بر لیزر (بدون فیلتر)

    این روش که معمولاً با عنوان “شمارش ذرات” شناخته می‌شود نیز از لیزر به عنوان منبع نوری استفاده می‌کند. اما در این پیکربندی، هوا بدون عبور از فیلتر مستقیماً وارد محفظه حسگر می‌شود. با عبور هوا از مقابل لیزر، کلکتور نوری تعداد ذرات در اندازه میکرونی مشخص را شمارش می‌کند تا تعیین شود که آیا میزان کافی از ذرات دود وجود دارد یا خیر. الکترونیک پیشرفته این فناوری قادر است بین ذرات معلق گرد و غبار و ذرات دود در نمونه تفاوت قائل شود.

    اتاقک ابری (Cloud Chamber)

    این روش قدیمی‌ترین و ابتدایی‌ترین فناوری مکشی تشخیص دود است. عنصر حسگر آن یک محفظه‌ی مهر و موم‌شده حاوی بخار آب بسیار متراکم است. هنگامی که یک ذره دود باردار با بخار آب متراکم برخورد می‌کند، یونیزه می‌شود. یون‌های ایجاد شده به عنوان هسته‌های تراکم عمل می‌کنند که مه در اطراف آن‌ها شکل می‌گیرد (زیرا بخار آب بسیار متراکم بوده و در آستانه‌ی چگالش قرار دارد). این فرآیند باعث بزرگ‌تر شدن اندازه ذره می‌شود، به‌طوری که از حالت نامرئی (زیر طول موج نور) به حالتی می‌رسد که قابل شناسایی توسط سلول نوری درون محفظه می‌شود.

    حسگر با منبع دوگانه (Dual Source Sensor)

    در این روش، از یک LED آبی برای شناسایی غلظت‌های بسیار پایین دود و از یک لیزر مادون قرمز برای تشخیص موارد مزاحم مانند گرد و غبار استفاده می‌شود که ممکن است باعث آلارم‌های اشتباه شوند. الگوریتم‌های پیشرفته سیگنال‌های هر دو منبع را تفسیر می‌کنند تا مشخص شود که نمونه‌ی هوا حاوی دود است یا فقط گرد و غبار معلق. سطح تشخیص ذرات می‌تواند تا حداقل 0.0015% بر متر (یا 0.00046% بر فوت) کاهش یابد.

    اصول اگزاست (تخلیه هوا) در دتکتور دود مکشی

    در کاربردهای عادی، معمولاً فشار هوا در فضای حفاظت‌شده با فشار هوا (APS) برابر با فشار هوای فضای نصب دتکتور است، و لوله اگزاست از خروجی فشار اگزاست دتکتور (AES) خارج می‌شود. به همین دلیل، نرم‌افزار طراحی که زمان انتقال و حساسیت دتکتور را محاسبه می‌کند، فرض می‌کند که فشار هوای دو فضا برابر است.

    اندازه سوراخ‌های نمونه‌برداری، اندازه لوله، زمان انتقال و سرعت فن مکنده همگی تابعی از حجم هوایی هستند که از محفظه نمونه‌برداری عبور می‌کند. محفظه حسگر برای تشخیص ذرات دود طراحی شده که با سرعت مشخص فن از درون آن عبور می‌کنند.

    • اگر فشار APS بیشتر از AES باشد، سرعت ورود هوا به محفظه حسگر ممکن است بیشتر از سرعت نامی فن شود که می‌تواند بر دقت تشخیص دود اثر مستقیم بگذارد.
    • مهم: اگر AES بیشتر از APS باشد، فشار هوا در حال فشار آوردن به هوای خروجی است و در نتیجه باعث ایجاد مقاومت و کند شدن فن می‌شود. این امر موجب افزایش زمان انتقال و کاهش حجم هوای ورودی به محفظه حسگر می‌گردد.

    نکته: برای حذف تفاوت فشار، باید هوای خروجی دوباره به همان اتاقی که از آن نمونه‌برداری شده بازگردانده شود (مطابق شکل 6 صفحه بعد).

    می‌توان لوله‌ای را به پورت خروجی متصل کرد تا هوای خروجی را از محل واحد دور کند؛ به‌عنوان مثال برای کاهش نویز، کاهش خطر تداخل یا انسداد عمدی، یا بهبود حفاظت محیطی. باید از لوله‌ای با مشخصات مشابه لوله‌های نمونه‌برداری استفاده شود و در تعیین محل خروجی جدید دقت شود تا مسدود شدن تصادفی یا عمدی آن رخ ندهد.

    روش‌های نمونه‌برداری دتکتور حرارتی خطی (ASD)

    برای هدف این راهنما، پنج روش نمونه‌برداری قابل قبول برای تمام کاربردهای ممکن وجود دارد:

    نمونه‌برداری اولیه (Primary Sampling)

    نام این روش گمراه‌کننده است؛ زیرا معمولاً به‌عنوان یک سیستم تکمیلی استفاده می‌شود و نه سیستم تشخیص اصلی. در نمونه‌برداری اولیه، نمونه‌گیری هوا از یک محل خاص یا جایی انجام می‌شود که احتمال حرکت هوا در آن بیشتر است. برای مناطقی با جریان هوای بالا، مانند دیتاسنترها یا اتاق‌های تمیز، محل نمونه‌برداری اولیه در دریچه‌های برگشت هوا، واحدهای هواساز (AHU) یا کانال‌های برگشت هوا قرار دارد.

    نمونه‌برداری ثانویه (Secondary Sampling)

    در این روش، سوراخ‌های نمونه‌برداری در سطح سقف و در مکان‌هایی مشابه با دتکتورهای نقطه‌ای دود نصب می‌شوند. فاصله‌گذاری بین سوراخ‌ها باید مطابق با استاندارد یا آیین‌نامه مربوطه باشد.

    نمونه‌برداری موضعی (Localised Sampling)

    WhatsApp Image 2025 09 30 at 3.50.37 PM

    این روش شامل حفاظت از تجهیزات یا نواحی خاص در یک فضای باز بزرگ است. نمونه‌برداری موضعی ممکن است در سیستم نمونه‌برداری رک‌ها (Rack Sampling) در یک انبار بزرگ باز استفاده شود.

    نمونه‌برداری داخل کابینت
    در این نوع روش نمونه‌برداری، سوراخ‌های مکش هوا به‌گونه‌ای نصب می‌شوند که تجهیزات خاصی را در یک فضای باز بزرگ‌تر پایش کنند. این روش با نمونه‌برداری موضعی متفاوت است، زیرا حجم تحت حفاظت بسیار کوچک‌تر بوده و تجهیز مورد نظر معمولاً به‌صورت خودکفا درون یک کابینت یا رک رایانه‌ای قرار دارد. سامانه تشخیص مکشی (ASD) هوایی را که برای خنک‌سازی تجهیزات استفاده می‌شود، پایش می‌کند. این نوع نمونه‌برداری معمولاً بر روی تجهیزاتی نصب می‌شود که آسیب دیدن آن‌ها در اثر آتش می‌تواند نتایج فاجعه‌باری به دنبال داشته باشد.

    نمونه‌برداری درون کانال
    در این نوع نمونه‌برداری، به‌جای استفاده از آشکارسازهای دود کانال‌نصب سنتی، از سامانه تشخیص مکشی (ASD) استفاده می‌شود تا در صورت وقوع آتش‌سوزی، سامانه تهویه مطبوع (HVAC) مرتبط خاموش شده یا دمپرها بسته شوند تا از گسترش دود جلوگیری گردد. همچنین می‌توان از آن برای تشخیص ذرات دود موجود در هوای خروجی (یا ورودی) استفاده کرد، به‌ویژه زمانی که آشکارسازی با حساسیت بیشتر مورد نیاز است.