درک دتکتورهای گازی، انواع، ویژگی‌ها و روندهای آینده

Types of Gas Detectors

WhatsApp Image 2025 09 23 at 12.36.44 AM

در چشم‌انداز همواره در حال تحول صنعتی و زیست‌محیطی، شناسایی گازها به یکی از اجزای حیاتی برای حفظ ایمنی، سلامت و استانداردهای زیست‌محیطی تبدیل شده است. دتکتورهای گازی در شناسایی گازهای خطرناک در محیط‌های مختلف، از جمله کارخانه‌های صنعتی، آزمایشگاه‌ها و فضاهای عمومی نقش اساسی دارند. این دتکتورها برای شناسایی و پایش گازهایی طراحی شده‌اند که خطراتی مانند سمیت، قابلیت اشتعال یا خفگی ایجاد می‌کنند.

WhatsApp Image 2025 09 23 at 12.36.44 AM1

اما چند نوع دتکتور گازی وجود دارد و این دتکتورها از نظر عملکرد، کاربرد و فناوری چه تفاوت‌هایی دارند؟ در این مقاله، انواع مختلف دتکتورهای گازی، اصول عملکرد، ویژگی‌ها و موارد استفاده خاص آن‌ها را بررسی می‌کنیم تا راهنمای جامعی در این زمینه ارائه دهیم.

دتکتور گازی چیست؟

WhatsApp Image 2025 09 23 at 12.36.44 AM2

دتکتورهای گازی تجهیزات ایمنی هستند که برای پایش و اندازه‌گیری غلظت گازها در یک منطقه طراحی شده‌اند. این دتکتورها هنگام افزایش غلظت گاز از سطح ایمن، به افراد هشدار داده یا به طور خودکار پروتکل‌های ایمنی را فعال می‌کنند. این دتکتورها در صنایعی مانند نفت و گاز، تولیدی، کارخانه‌های شیمیایی و حتی در منازل، جایی که نشت گاز می‌تواند منجر به انفجار، مسمومیت یا خطرات سلامتی شود، ضروری هستند.

 

انواع دتکتور گازی

دتکتورهای گازی به‌طور کلی بر اساس روش شناسایی گاز، نوع گاز شناسایی‌شده و محیط مورد استفاده تقسیم‌بندی می‌شوند. در ادامه، انواع کلیدی آن‌ها را معرفی می‌کنیم:

۱. دتکتور گازی ثابت

دتکتورهای گازی ثابت به‌صورت دائم در مکان‌های خاص صنعتی، تجاری یا مسکونی نصب می‌شوند. این دتکتورها برای پایش مداوم هوا در محیط‌های بالقوه خطرناک بسیار حیاتی‌اند.

مزایا:

  • پایش مداوم به‌صورت ۲۴ ساعته
  • توانایی شناسایی همزمان چندین گاز
  • هشدار زودهنگام در صورت نشتی یا شرایط خطرناک

WhatsApp Image 2025 09 23 at 12.36.45 AM

عملکرد: به سامانه کنترل مرکزی متصل می‌شوند و داده‌ها را به‌صورت لحظه‌ای ثبت و اعلام می‌کنند.

موارد استفاده: پالایشگاه‌ها، کارخانه‌های شیمیایی، معادن، نیروگاه‌ها، فضاهای بسته مانند تونل‌ها و فاضلاب‌ها

 

۲. دتکتور گازی قابل حمل

دتکتورهای قابل حمل، دستگاه‌هایی دستی هستند که برای کارگران یا تیم‌های امداد طراحی شده‌اند تا در محیط‌های متغیر و متحرک، سطح گازها را پایش کنند.

مزایا:

  • سبک و قابل حمل
  • انعطاف‌پذیر برای استفاده در موقعیت‌های مختلف
  • مناسب برای پایش فردی یا بررسی‌های نقطه‌ای

عملکرد: با باتری شارژی یا قابل تعویض کار می‌کنند و دارای صفحه‌نمایش، آلارم صوتی و هشدار لرزشی هستند.

موارد استفاده: فضاهای بسته، پروژه‌های عمرانی، تیم‌های امدادی در حوادث شیمیایی یا صنعتی

 

۳. دتکتور گازی تک‌گاز

دتکتورهای تک‌گاز، ابزارهایی تخصصی برای شناسایی تنها یک نوع گاز خاص هستند و معمولاً برای اندازه‌گیری دقیق گازهای خطرناک خاص استفاده می‌شوند.

WhatsApp Image 2025 09 23 at 12.36.45 AM1

مزایا:

  • کاربری ساده و مقرون‌به‌صرفه
  • کوچک و سبک
  • طراحی‌شده برای کاربردهای خاص صنعتی یا اضطراری

موارد استفاده: فضاهای بسته، حفاظت فردی در برابر گازهایی مانند مونوکسید کربن یا اکسیژن

 

۴. دتکتور گازی چندگاز

دتکتورهای چندگاز ابزارهایی چندمنظوره هستند که می‌توانند به‌صورت هم‌زمان دو یا چند گاز را شناسایی کنند. این دتکتورها برای محیط‌هایی که احتمال وجود چند گاز خطرناک وجود دارد، طراحی شده‌اند.

مزایا:

  • مقرون‌به‌صرفه برای صنایع با چندین نوع گاز
  • امکان پایش هم‌زمان چند گاز
  • مناسب برای محیط‌های با شرایط متغیر

موارد استفاده: صنایع معدن، تولید مواد شیمیایی، تصفیه‌خانه‌های فاضلاب، فضاهای بسته

WhatsApp Image 2025 09 23 at 12.36.45 AM2

۵. دتکتور گازی مادون‌قرمز (IR)

دتکتورهای مادون‌قرمز از نور مادون‌قرمز برای شناسایی گاز استفاده می‌کنند. در این روش، نور از هوای نمونه عبور داده شده و جذب آن توسط مولکول‌های گاز اندازه‌گیری می‌شود.

عملکرد: گازهایی مانند دی‌اکسید کربن، متان و سایر هیدروکربن‌ها را با دقت بالا تشخیص می‌دهند.

مزایا:

  • دقت بالا در شناسایی هیدروکربن‌ها
  • طول عمر زیاد و نیاز به نگهداری کم
  • مقاوم در برابر دما و رطوبت

موارد استفاده: محیط‌های صنعتی مانند پالایشگاه‌ها و تأسیسات نفت و گاز

 

۶. دتکتور گازی الکتروشیمیایی

دتکتورهای الکتروشیمیایی با استفاده از واکنش الکتروشیمیایی، گاز خاصی را شناسایی کرده و جریان الکتریکی متناسب با غلظت گاز تولید می‌کنند.

مزایا:

  • حساسیت و انتخاب‌پذیری بالا برای گازهای سمی
  • قیمت مناسب
  • مناسب برای محیط‌هایی با غلظت پایین اما خطرناک

موارد استفاده: تشخیص گازهایی مانند مونوکسید کربن، سولفید هیدروژن، دی‌اکسید نیتروژن

 

۷. دتکتور گازی کاتالیتیکی

این دتکتورها از سنسور احتراق کاتالیتیکی برای تشخیص گازهای قابل اشتعال استفاده می‌کنند. با اکسید شدن گاز روی رشته پلاتینی داغ، گرما و تغییر مقاومت الکتریکی ایجاد می‌شود.

مزایا:

  • حساسیت بالا به گازهای قابل اشتعال
  • مقرون‌به‌صرفه و قابل اعتماد
  • قابل استفاده در محیط‌های صنعتی و مسکونی

موارد استفاده: صنایع نفت و گاز، تأسیسات تصفیه فاضلاب، سامانه‌های تهویه مطبوع

 

۸. دتکتور گازی فوتو‌یونیزاسیون (PID)

این دتکتورها با استفاده از نور فرابنفش، مولکول‌های گاز را یونیزه کرده و ذرات باردار حاصل را اندازه‌گیری می‌کنند. برای شناسایی ترکیبات آلی فرار (VOCs) و گازهای سمی بسیار کاربردی هستند.

مزایا:

  • بسیار حساس با پاسخ سریع
  • مناسب برای گازهای با غلظت پایین
  • توانایی شناسایی گستره وسیعی از گازهای سمی و VOC

موارد استفاده: نشت‌های شیمیایی، پایش محیط زیست، بهداشت صنعتی

 

۹. دتکتور گازی نیمه‌هادی

این دتکتورها از مواد نیمه‌هادی مانند دی‌اکسید قلع استفاده می‌کنند که در حضور گاز، مقاومت الکتریکی آن‌ها تغییر می‌کند.

مزایا:

  • استفاده آسان و کم‌هزینه
  • حساس به طیف وسیعی از گازها
  • نگهداری کم و عمر طولانی

موارد استفاده: تشخیص نشت گاز در منازل، پایش کیفیت هوا، پایش محیطی

 

۱۰. دتکتور گازی فراصوتی

این دتکتورها با شنود امواج صوتی با فرکانس بالا، نشت گاز از ظروف تحت فشار را شناسایی می‌کنند.

مزایا:

  • مؤثر در محیط‌های پر سروصدا
  • روش غیر تماسی
  • مناسب برای سیستم‌های تحت فشار در محیط‌های خطرناک

موارد استفاده: خطوط لوله و سامانه‌های صنعتی بزرگ

 

دتکتورهای گازی از چه سنسورهایی استفاده می‌کنند؟

دتکتورهای گازی برای تشخیص وجود گازهای مضر، از سنسورهای تخصصی استفاده می‌کنند. این سنسورها حضور یا غلظت گاز خاصی را به سیگنال الکتریکی تبدیل می‌کنند.

انواع رایج سنسورها در دتکتورهای گازی:

  • الکتروشیمیایی
  • مادون‌قرمز
  • کاتالیتیکی
  • فوتو‌یونیزاسیون
  • نیمه‌هادی

 

مزایا و معایب دتکتورهای گازی مختلف

دتکتور ثابت

مزایا:

  • پایش مداوم
  • مناسب برای محیط‌های پرخطر
  • قابلیت شناسایی چند گاز

معایب:

  • هزینه نصب اولیه بالا
  • غیرقابل جابجایی

دتکتور قابل حمل

مزایا:

  • قابل استفاده در مکان‌های مختلف
  • سبک و مناسب برای کارهای میدانی
  • مناسب برای ایمنی فردی

معایب:

  • عمر باتری محدود
  • فاقد قابلیت پایش مداوم

دتکتور تک‌گاز

مزایا:

  • ساده و مقرون‌به‌صرفه
  • سبک و کوچک

معایب:

  • فقط یک گاز را شناسایی می‌کند
  • مناسب برای محیط‌های دارای چند گاز نیست

دتکتور چندگاز

مزایا:

  • پایش هم‌زمان چند گاز
  • کاربردی در صنایع مختلف

معایب:

  • گران‌تر از دتکتورهای تک‌گاز
  • بزرگ‌تر و نیازمند نگهداری بیشتر

 

انتخاب دتکتور مناسب

در انتخاب دتکتور گازی، عوامل زیر را باید در نظر گرفت:

  • نوع گاز: قابل اشتعال، سمی یا چندگانه
  • محل استفاده: فضاهای بسته یا سایت‌های صنعتی
  • فناوری مورد نیاز: الکتروشیمیایی، مادون‌قرمز، کاتالیتیکی و …
  • نگهداری: نیاز به کالیبراسیون یا تعویض سنسور

 

روندهای آینده در فناوری دتکتور گازی

  • دتکتورهای بی‌سیم: پایش لحظه‌ای بدون نیاز به اتصال فیزیکی
  • کوچک‌سازی: دتکتورهای شخصی با دقت بالا
  • هوش مصنوعی و تحلیل داده: بهبود نگهداری پیش‌بینی‌شده و ایمنی
  • اتصال به اینترنت اشیا: پایش از راه دور و آنالیز داده
  • سنسورهای پیشرفته: مانند سنسورهای مبتنی بر گرافن با حساسیت بالا و مصرف انرژی کم

 

نتیجه‌گیری

دتکتورهای گازی ابزارهای ضروری برای حفظ سلامت، ایمنی و استانداردهای زیست‌محیطی در صنایع مختلف هستند. چه از نوع تک‌گاز و چه چندگاز، انتخاب درست دتکتور متناسب با نیازهای خاص محیط کاری، امری حیاتی است. با درک انواع مختلف دتکتورها، ویژگی‌ها و روندهای نوین، می‌توان انتخابی آگاهانه و ایمن داشت.

 

نوشته‌های مشابه

  • استفاده از بیم دتکتور با الگوی پیشرفته

    هدف این راهنما ارائه اطلاعات در مورد نصب صحیح بیم دتکتورهای دود در کاربردهای حفاظت از جان و مال است. این راهنما به طور خلاصه اصول عملکرد بیم دتکتورها، الزامات طراحی آنها و کاربردهای عملی آنها به عنوان بخشی از سیستم اعلام حریق را شرح می‌دهد.

    بیم دتکتورها می‌توانند اجزای مهمی از یک سیستم اعلام حریق با طراحی مناسب باشند. قابلیت‌های منحصر به فرد آنها این امکان را فراهم می‌کند تا بسیاری از مشکلات و محدودیت‌های دتکتورهای نقطه‌ای و سیستم‌های مکنده در برخی کاربردها را برطرف کنند. این راهنما برای کمک به درک قابلیت‌ها و محدودیت‌های بیم دتکتورها و تفاوت آنها با دتکتورهای نقطه‌ای تهیه شده است.

    توجه: این سند تنها به عنوان یک راهنمای کلی برای کاربرد بیم دتکتورها در نظر گرفته شده است. همیشه باید به الزامات و دستورالعمل‌های نصب سازنده دتکتور و استانداردهای محلی مراجعه شود.

     

    **دتکتورهای دود مکنده**

    هوا از طریق شبکه‌ای از لوله‌ها مکیده می‌شود تا دود تشخیص داده شود. دود وارد محفظه نمونه‌برداری می‌شود که با تشخیص نور پراکنده‌شده توسط ذرات دود معلق در هوا، وجود آنها را شناسایی می‌کند.

     

    **بیم دتکتور دود نوری (بیم)**

    یک دتکتور آتش که از پرتو نور (معمولاً مادون قرمز) استفاده می‌کند و آن را در یک فضای باز منتشر می‌نماید تا دود ناشی از آتش اولیه را نظارت کند. دو نوع اصلی بیم دتکتور وجود دارد:

    – **انتهایی به انتهایی:** فرستنده و گیرنده در دو انتهای ناحیه تحت حفاظت نصب می‌شوند.

    – **بازتابی:** فرستنده و گیرنده در یک محفظه واحد نصب شده‌اند و پرتو به یک بازتابنده ویژه هدایت می‌شود که در انتهای مقابل ناحیه تحت حفاظت قرار دارد.

     

    **فرستنده (معروف به پرتاب‌کننده، TX)**

    این دستگاه در سیستم بیم دتکتور انتهایی به انتهایی با یک گیرنده اختصاصی جفت می‌شود و سیگنال نوری را در ناحیه تحت حفاظت منتشر می‌کند. فرستنده می‌تواند به صورت یکپارچه با گیرنده در یک واحد ترکیب شود.

     

    گیرنده (معروف به حسگر، RX)
    این دستگاه در سیستم بیم دتکتور دود نوع انتهایی به انتهایی با یک فرستنده اختصاصی جفت می‌شود و سطح سیگنال نور دریافت‌شده پس از عبور از ناحیه تحت حفاظت را نظارت می‌کند.

    کنترلر
    این قطعه از سیستم بیم دتکتور دود نوری است که به مهندس اعلام حریق یا فرد صلاحیت‌دار اجازه می‌دهد تنظیمات، پیکربندی و عیب‌یابی بیم‌ها را در سطح زمین انجام دهد و نیاز به استفاده از تجهیزات دسترسی در ارتفاع را برطرف می‌کند.

    محدوده بیم
    این فاصله کلی بین فرستنده و گیرنده بیم در دتکتورهای نوع انتهایی به انتهایی و فاصله بین فرستنده/گیرنده تا بازتابنده در دتکتورهای بازتابی است.

    این محدوده معمولاً به صورت ‘A تا B’ بیان می‌شود که در آن:

    • A حداقل محدوده عملیاتی (از ۰ متر)
    • B حداکثر محدوده عملیاتی (از ۰ متر) است.

    مثال: محدوده ۵ تا ۱۰۰ متر به این معنی است که بیم می‌تواند در فاصله حداقل ۵ متر و حداکثر ۱۰۰ متر به درستی عمل کند.

    **پوشش دتکتور**

    پوشش دتکتور به ناحیه‌ای گفته می‌شود که در آن دتکتور قادر به تشخیص مؤثر آتش‌سوزی در حال وقوع است. این ناحیه بر اساس استانداردهای محلی و بین‌المللی تعریف می‌شود و معمولاً به صورت عرضی یا مدور از مرکز دتکتور محاسبه می‌گردد.

     

    **جبران انحراف (دریفت)**

    این قابلیت به دتکتور اجازه می‌دهد به صورت خودکار موقعیت و/یا سیگنال ارسالی را تنظیم کند تا همترازی بهینه حفظ شود. این ویژگی با محدودیت‌هایی طراحی شده تا:

    – توانایی تشخیص آتش‌های با رشد کند (آتش‌های کم‌دود) حفظ شود

    – اثرات تجمع آلودگی روی سطوح دتکتور خنثی گردد

    – جابجایی‌های جزئی ساختمان جبران شود

     

    **منشور (بازتابنده)**

    این قطعه در بیم‌های بازتابی استفاده می‌شود. ویژگی بازتاب بالای آن امکان بازگرداندن نور به منبع نور و حسگر مجاور را حتی در مسافت‌های طولانی فراهم می‌کند. با استفاده از آرایه‌ای از منشورها می‌توان به بردهای تا ۱۲۰ متر دست یافت.

     

    **تیرگی (ابسکیوریشن)**

    تیرگی مقدار کاهش شدت نور در اثر وجود ذرات یا مواد نیمه‌شفاف در مسیر بیم است. این مقدار معمولاً به صورت درصد یا کاهش دسی‌بل (dB) بیان می‌شود و معیاری برای تشخیص دود محسوب می‌گردد.

     

    **حساسیت**

    توانایی دتکتور دود در واکنش به سطح معینی از دود. این ویژگی در بیم دتکتورها معمولاً قابل تنظیم است.

     

    **دتکتور نقطهای**

    دستگاهی که آتش اولیه را در یک نقطه مشخص تشخیص میدهد و معمولاً از فناوری تشخیص دود نوری یا یونیزاسیون و یا تشخیص حرارت استفاده میکند. محدوده پوشش دتکتور نقطهای توسط استانداردهای محلی یا ملی تعریف میشود.

     

    **لایهبندی (استراتیفیکیشن)**

    پدیدهای که هنگام گرمتر بودن دود از هوای اطراف رخ میدهد، به طوری که دود تا رسیدن به دمای برابر با هوای اطراف بالا میرود و سپس متوقف میشود.

     

    **چه کسانی باید این راهنما را مطالعه کنند؟**

    در صورتی که یکی از موارد زیر در مورد شما صدق میکند، این راهنما برای شما مفید خواهد بود:

    – شما مسئول طراحی یا مشخص کردن سیستمهای تشخیص حریق هستید

    – مسئول سیستم حفاظت از حریق ساختمان هستید

    – مسئول ایمنی آتش (مارشال آتش) در محل کار خود هستید

    – قصد نصب بیم دتکتور دود یا سایر سیستمهای تشخیص دود را دارید

    – در حوزه ارزیابی ریسک حفاظت از حریق فعالیت میکنید

    – در پشتیبانی یا فروش سیستمهای تشخیص حریق نقش دارید

    – در خدمات آتشنشانی و نجات فعالیت میکنید

     

    **توجه:** این راهنما تنها راهنمای کلی ارائه میدهد. شما باید مقررات محلی و ملی و همچنین مشخصات فنی سازنده را برای دتکتورهای خاص نیز بررسی کنید

    **بیم دتکتور دودی اعلام حریق چیست؟**

     

    رایج‌ترین نوع دتکتور دود، **دتکتور نقطهای دودی** است. این دستگاه شامل یک پرتو نور مادون قرمز است که درون محفظه‌ای کوچک در بدنه دستگاه تابیده می‌شود. هنگام ورود دود به محفظه از طریق منافذ بدنه، پرتو نور تحت تأثیر قرار گرفته و دستگاه را به حالت هشدار می‌برد.

     

    **بیم دتکتورهای دودی اعلام حریق** بر همین اصل کار می‌کنند، با این تفاوت که پرتو نور در فضای باز ساختمان منتشر می‌شود. این سیستم به‌طور مؤثر کل فضای ساختمان را به یک محفظه تشخیص دود تبدیل می‌کند که امکان شناسایی دود در طول مسیر پرتو را فراهم می‌نماید.

    WhatsApp Image 2025 09 27 at 11.49.58 PM

     

    **نحوه عملکرد بیم دتکتور دودی اعلام حریق**

    سیستم تشخیص دود با پرتو نوری به این صورت عمل می‌کند:

    1. **تشکیل پرتو نامرئی**: یک پرتو مادون قرمز نامرئی بین فرستنده و گیرنده برقرار می‌شود.
    2. **تأثیر دود بر پرتو**: هنگام عبور دود از مسیر پرتو، ذرات جامد و قطرات مایع موجود در دود باعث پراکندگی و انعکاس فوتون‌های نور می‌شوند.
    3. **کاهش شدت نور**: این پراکندگی منجر به کاهش شدت نور در سمت مقابل ابر دود می‌گردد.
    4. **تشخیص و هشدار**: سیستم این کاهش شدت نور (که به عنوان تیرگی شناخته می‌شود) را تشخیص داده و آن را به عنوان علامت وجود آتش تفسیر می‌کند.

     

    **مزایای کلیدی:**

    – پوشش گسترده‌تر نسبت به دتکتورهای نقطهای

    – حساسیت تنظیم‌پذیر برای تشخیص دود

    – مناسب برای فضاهای بزرگ و سقف‌های بلند

    WhatsApp Image 2025 09 27 at 11.49.58 PM1

    WhatsApp Image 2025 09 27 at 11.49.59 PM

    انواع بیم دتکتورهای موجود چیست؟

    دو نوع پیکربندی اصلی برای بیم دتکتورها وجود دارد:

    و یا رفلکتوری و انتها به انتها**بازتابشی** و **انتهایی**.

    هر دو شامل یک فرستنده (T) (منبع نور) و یک گیرنده (R) (دتکتور) هستند.

    WhatsApp Image 2025 09 27 at 11.49.59 PM1

    **نصب و نگهداری**

    بیم دتکتورهای بازتابشی نصب و نگهداری آسان‌تر و کم‌هزینه‌تری نسبت به نوع انتهایی دارند، زیرا تنها به کابل‌کشی الکتریکی در یک سمت فضای تحت حفاظت نیاز است و تنها یک دستگاه برای تمیزکاری و نگهداری در زمان سرویس وجود دارد.

     

    **ترازکردن**

    معمولاً ترازکردن بیم بازتابشی ساده‌تر است، زیرا تنها یک قطعه تجهیز در یک انتهای بیم نیاز به تنظیم دارد (معمولاً بازتابنده قابل تنظیم نیست)، درحالی که دتکتورهای انتهایی نیاز به تنظیم در هر دو انتهای بیم دارند.

     

    **فضای مورد نیاز بیم**

    بیم بازتابشی با عبور از فضای بازگشتی از بازتابنده، واگرا می‌شود و بنابراین فضای بیشتری اشغال می‌کند. درحالی که یک بیم انتهایی می‌تواند از فاصله‌ای باریک‌تر عبور کند

    WhatsApp Image 2025 09 27 at 11.49.59 PM2

    تفاوت آن‌ها با سایرین چیست؟
    دتکتورهای دود نقطه‌ای، همان‌طور که از نامشان پیداست، دود را در فاصله‌های بسیار کوتاه و با استفاده از یک محفظه درون خود دتکتور شناسایی می‌کنند. برخی مدل‌ها از اصل پراکندگی نور استفاده می‌کنند، جایی که وجود دود جهت پرتو نور را تغییر می‌دهد تا توسط یک فوتودیود تشخیص داده شود. مدل‌های دیگر تغییر در ویژگی‌های الکتریکی هوای داخل دتکتور را که ناشی از وجود دود است، شناسایی می‌کنند.

    دتکتورهای دود مکنده، هوا را از طریق شبکه‌ای از نقاط نمونه‌برداری متصل به سیستم لوله‌کشی به یک محفظه حسگر می‌کشند. تشخیص دود در این سیستم‌ها بر اساس اصول مشابه دتکتورهای نقطه‌ای انجام می‌شود.

    مهم‌ترین تفاوت بین این فناوری‌ها، نحوه پایش منطقه تحت حفاظت است.

    نحوه نصب صحیح بیم دتکتورهای نوری
    رعایت دستورالعمل‌های زیر عملکرد بهینه دتکتورها را تضمین کرده و از خطاها و هشدارهای کاذب جلوگیری می‌کند:

    نصب بر سطوح سازه‌ای مستحکم:
    فرستنده/گیرنده/بازتابنده را بر بخش‌های سازه‌ای ثابت ساختمان نصب کنید که حداقل جابجایی ناشی از تغییرات دما، ارتعاش یا نشست را تجربه می‌کنند. از دتکتورهای دارای قابلیت تنظیم مجدد خودکار برای جبران جابجایی‌های طولانی‌مدت ساختمان استفاده نمایید.

    انتخاب نوع مناسب بیم برای نصب:
    اگر فضای تحت حفاظت برای یک بیم واحد بیش‌ازحد طولانی است، از آرایش‌های پشت‌به‌پشت، رو‌به‌پشت یا رو‌به‌رو استفاده کنید. یا از دتکتورهای مجهز به فازبندی پویا بیم برای جلوگیری از تداخل بیم‌ها و حذف نیاز به محافظ اضافی بهره ببرید.

    تضمین خط دید واضح برای بیم:
    از سطوح براق در مسیر بیم اجتناب کنید و در دتکتورهای بازتابشی این سطوح را حداقل یک متر از مرکز بیم دور نگه دارید (این فاصله در دتکتورهای انتهایی می‌تواند کمتر باشد).

    همراستایی صحیح بیم:
    از دتکتورهای دارای شاخص‌های همترازی مؤثر یا روال‌های تراز خودکار استفاده کنید تا از راه‌اندازی بیم‌های ناهمتراز جلوگیری شود.

    چیدمان بهینه بیم‌ها برای پوشش فضایی مطلوب:
    بیم‌ها می‌توانند بدون ایجاد سیگنال‌های ناخواسته در گیرنده‌ها، یکدیگر را قطع کنند.

    اجتناب از نور مستقیم خورشید:
    در صورت اجتناب‌ناپذیری (مثلاً در آتریوم‌های شیشه‌ای)، از دتکتورهای دارای الگوریتم‌های جبران نور برای تنظیم تغییرات سطح نور محیط استفاده کنید.

    تعیین وظایف/فواصل نگهداری مناسب:
    میزان آلودگی نوری ناشی از گردوغبار یا تعریق را با بررسی سطوح نزدیک به دتکتورها ارزیابی کنید. آستانه هشدار را متناسب با سطح آلودگی احتمالی تنظیم نمایید. از دتکتورهای دارای الگوریتم‌های پایش و تنظیم بهره برای جبران تغییرات تدریجی سیگنال استفاده کنید. برنامه‌ای برای تمیزکاری دوره‌ای اجزای نوری تعیین نمایید.

    تنظیمات مناسب سیستم:
    مشخصه تأخیر تا خطا را متناسب با عملیات ساختمان پیکربندی کنید (مثلاً برای تحمل انسدادهای موقت بیم توسط ماشین‌آلات). اگر تغییرات عملیاتی مکرر است، یک کنترلر سطح پایین نصب کنید تا تنظیمات به‌راحتی بهینه شوند. از دتکتورهای پیشرفته‌ای که روند شدت بیم را پایش می‌کنند، برای تفکیک آتش واقعی از اثرات دیگر استفاده نمایید

    WhatsApp Image 2025 09 27 at 11.50.00 PM

    جلوگیری از نشستن پرندگان:
    در صورت لزوم، تمهیداتی برای ممانعت از نشستن پرندگان روی دتکتورها و انسداد احتمالی بیم بیندیشید

     

    ثبت گزارش سیستم:
    بیم دتکتورها تجهیزات ایمنی حیاتی هستند. مستندسازی نصب برای نگهداری آینده و اطمینان از ایمنی و صحت نصب ضروری است.

    آرایش‌های نصب

    برای نصب بیم دتکتورهای نوری، آرایش‌های مختلفی وجود دارد که بسته به شرایط محیط و نیازهای حفاظتی می‌توان از آنها استفاده کرد:

    1. آرایش انتهایی (End-to-End):
      • فرستنده (T) و گیرنده (R) در دو طرف فضای تحت حفاظت نصب می‌شوند.
      • مناسب برای فضاهای با مسیر مستقیم و بدون مانع.
    2. آرایش بازتابشی (Reflective):
      • فرستنده/گیرنده (TR) در یک سمت و بازتابنده (Reflector) در سمت مقابل نصب می‌شود.
      • مناسب برای مکان‌هایی که کابل‌کشی به سمت مقابل دشوار است.
    3. آرایش پشت‌به‌پشت (Back-to-Back):
      • دو دتکتور به صورت پشت‌به‌هم نصب شده و هر کدام فضای مجاور را پوشش می‌دهند.
      • برای فضاهای بزرگ با نیاز به پوشش چندمنطقه.
    4. آرایش رو‌به‌پشت (Face-to-Back):
      • فرستنده یک دتکتور به گیرنده دتکتور دیگر نشانه‌گیری می‌کند.
      • جهت پوشش‌دهی زوایای خاص یا فضاهای نامنظم.
    5. آرایش رو‌به‌رو (Face-to-Face):
      • فرستنده و گیرنده دو دتکتور به صورت مستقیم به هم نشانه‌گیری می‌کنند.
      • برای افزایش حساسیت در مناطق حساس.

    انتخاب آرایش مناسب به عواملی مانند ابعاد فضای تحت پوشش، موانع فیزیکی، سهولت نصب و هزینه‌های نگهداری بستگی دارد.

    WhatsApp Image 2025 09 27 at 11.50.00 PM1

    **توصیه‌های استاندارد (BS 5839 بخش 1)**

     

    استاندارد **BS 5839 Part 1** راهنمایی برای **طراحی، نصب، راه‌اندازی و نگهداری** سیستم‌های تشخیص خودکار حریق در ساختمان‌های غیرمسکونی ارائه می‌دهد. برخی از توصیه‌های کلیدی مربوط به **بیم دتکتورهای نوری** به شرح زیر است:

     

    *(این مطالب صرفاً جهت راهنمایی کلی است. برای اطلاعات دقیق‌تر به متن استاندارد مراجعه کنید.)*

     

    ### **ارتفاع نصب دتکتورها**

    – بیم دتکتورها باید **تا حد امکان نزدیک به سقف** نصب شوند تا از تجمع و گسترش دود (Smoke Plume) در زمان آتش‌سوزی بهره‌برداری کنند.

    – **حداکثر ارتفاع قابل پوشش** توسط یک دتکتور به دو عامل بستگی دارد:

    1. **تخت بودن یا نبودن سقف**
    2. **حساسیت دتکتور**

     

    **راهنمای ارتفاع بر اساس حساسیت:**

    WhatsApp Image 2025 09 27 at 11.50.01 PM

    – **حساسیت معمولی** (Normal Sensitivity):

    – آستانه هشدار دتکتور >35% تضعیف سیگنال

    – مناسب برای فضاهای با ارتفاع استاندارد.

     

    – **حساسیت افزایش‌یافته** (Enhanced Sensitivity):

    – آستانه هشدار دتکتور ≤35% تضعیف سیگنال

    – در فضاهای بلندتر، **تشخیص مکمل (Supplementary Detection)** در ارتفاع پایین‌تر نیز توصیه می‌شود (به بخش *«فاصله افقی دتکتورها»* مراجعه کنید).

     

     

    ### **ملاحظات اضافی برای فضاهای بلند:**

    – در محیط‌های با ارتفاع زیاد، ممکن است نیاز به **نصب دتکتورهای اضافی در سطوح پایین‌تر** باشد تا از پوشش بهینه اطمینان حاصل شود.

    – در سقف‌های غیرتخت (مانند سقف‌های شیبدار یا قوسی)، محاسبه ارتفاع نصب باید با دقت بیشتری انجام شود.

     

    *(برای جزئیات فنی بیشتر، از جمله جدول‌های دقیق ارتفاع و فاصله، به استاندارد BS 5839 Part 1 مراجعه نمایید.)*

    بیم دتکتورها را می‌توان در ارتفاعی بسیار بیشتر از دتکتورهای نقطه‌ای (حداکثر ۱۰.۵ متر) نصب کرد، زیرا طول بیشتر فضای تحت حفاظت، مشکل تشخیص چگالی کمتر دود را هنگام پراکندگی آن جبران می‌کند

    WhatsApp Image 2025 09 27 at 11.50.01 PM1

    در برخی مکان‌ها مانند آتریوم‌ها یا زیر نورگیرها، نصب بیم‌ها در نزدیکی حداکثر فاصله مجاز زیر سقف ایمن‌تر است تا بتوانند لایه‌های دود طبقه‌بندی شده‌ای را که به سقف نمی‌رسند تشخیص دهند.

    WhatsApp Image 2025 09 27 at 11.50.01 PM2

    فاصله از سطوح عمودی

    WhatsApp Image 2025 09 27 at 11.50.02 PM

    دتکتورها باید حداقل 0.5 متر فاصله از موارد زیر داشته باشند:

    • نزدیک‌ترین دیوار عمودی؛
    • هر سطح نصب‌شده روی سقف (مانند تیر یا کانال) که بیش از 10% از ارتفاع کل سقف به داخل فضا پیش‌آمدگی دارد؛
    • هر سطح نصب‌شده روی کف که کمتر از 300 میلی‌متر به سقف نزدیک شده است
    • فاصله افقی بیم دتکتورها
      در ارتفاع سقف، حداکثر فاصله افقی بین هر نقطه و بخشی از یک بیم باید ۷.۵ متر باشد

    WhatsApp Image 2025 09 27 at 11.50.02 PM1

    • همین محدودیت ۷.۵ متری برای دتکتورهای نقطه‌ای و دتکتورهای مکنده دود نیز اعمال می‌شود که این موضوع مزیت آشکاری برای بیم دتکتور در فضاهای بزرگ فراهم می‌کند، زیرا پوشش‌دهی بسیار کارآمدتری دارد.
      در مثال نشان داده شده برای یک سطح به مساحت ۱۲۶۰ متر مربع، ۲ بیم دتکتور کافی است، در حالی که ۱۲ دتکتور نقطه‌ای یا نقاط نمونه‌برداری مکنده مورد نیاز است
    • بیم دتکتورهایی که در رأس سقف‌های شیب‌دار نصب می‌شوند، به دلیل اثر «هدایت‌کنندگی» سقف، می‌توانند مناطق افقی وسیع‌تری را پوشش دهند.
      فاصله را به ازای هر ۱ درجه شیب سقف، ۱٪ افزایش دهید تا حداکثر افزایش ۲۵٪ حاصل شود (که حداکثر فاصله ۹.۳۸ متر خواهد بود)

    WhatsApp Image 2025 09 27 at 11.50.02 PM2

    استفاده از تشخیص تکمیلی برای ساختمان‌هایی با سقف‌های بسیار بلند توصیه می‌شود. این کار می‌تواند تشخیص زودتر حریق را فراهم کند و از اثر لایه‌بندی جلوگیری نماید.

    WhatsApp Image 2025 09 27 at 11.50.03 PM

    محدودیت‌های فاصله افقی در این حالت کمتر از فاصله در ارتفاع سقف است، زیرا در بالای حجم تحت حفاظت، سطحی وجود ندارد که از پراکندگی ستون دود جلوگیری کند.

    چه ابزاری برای نصب آن نیاز دارید؟
    دستورالعمل‌های نصب، تراز کردن و آزمایش بیم دتکتور اعلام حریق بسته به مدل و سازنده متفاوت است، بنابراین باید دستورالعمل‌های ارائه‌شده همراه با سیستم خود را دنبال کنید. با این حال، ابزارها و تجهیزات زیر هنگام نصب هر نوع سیستم تشخیص مفید هستند:

    ابزارهای لازم برای نصب دتکتورها روی سازه ساختمان:
    دریل، پیچ‌گوشتی چهارسو و دوسو و غیره.

    کیت راه‌اندازی و آزمایش: این کیت از تأمین‌کننده شما قابل تهیه است و شامل تمام ابزارهای لازم برای آزمایش دتکتور در برابر حریق و خطا می‌باشد.

    مولتی‌متر و سیم‌های آزمایش: برای بررسی منبع تغذیه ورودی هنگام عیب‌یابی.

    بالابر قیچی‌شو یا سایر تجهیزات دسترسی در ارتفاع: برای نصب دتکتورها استفاده می‌شود. همچنین میله‌های دسترسی برای آزمایش دتکتورها پس از نصب مفید هستند، زیرا در وقت صرفه‌جویی کرده و از نیاز به کار در ارتفاع جلوگیری می‌کنند.

    الزامات نگهداری برای بیم دتکتور اعلام حریق چیست؟
    برای حفظ عملکرد دتکتورها، به صورت دوره‌ای مراحل زیر را انجام دهید (فاصله زمانی این کار بستگی به میزان تمیزی محیط عملکرد دارد):

    ۱. دتکتورها را از پنل کنترل سیستم اعلام حریق جدا کنید.
    ۲. اجزای نوری (فرستنده/گیرنده/بازتاب‌دهنده) را با یک پارچه نرم و بدون پرز تمیز کنید.
    ۳. دتکتورها را مجدداً تراز کنید تا از بهینه بودن سطح سیگنال اطمینان حاصل شود.
    ۴. دتکتورها را به پنل کنترل سیستم اعلام حریق متصل کنید.
    ۵. دتکتورها را آزمایش کنید (این معمولاً شامل مسدود کردن بیم در محل گیرنده است).

    WhatsApp Image 2025 09 27 at 11.50.03 PM1

    کجا می‌توان آن‌ها را نصب کرد؟
    فاصله‌های طولانی و بدون مانع:
    – انبارها
    – آشیانه هواپیما
    – ترمینال‌های فرودگاه
    – مراکز ورزشی
    – چاه‌های آسانسور

    ساختمان‌های بلند
    – تأسیسات تولیدی
    – ترمینال‌های فرودگاه
    – آشیانه‌های هواپیما
    – کلیساها
    – آتریوم‌ها

    دسترسی محدود
    – پایانه‌های حمل‌ونقل عمومی
    – ترمینال‌های فرودگاه
    – ساختمان‌های دولتی
    – سایت‌های تولیدی

    تعداد محدود دتکتورها قابل قبول است
    – ملاحظات معماری (ساختمان‌های باستانی، سبک‌های مدرن مینیمالیستی)
    – نصب روی سقف امکان‌پذیر نیست (آتریوم‌ها، سقف‌های شیشه‌ای)
    – دفاتر با پلان باز
    – تشخیص غیر ملموس و نامحسوس مطلوب است (نگارخانه‌های هنری، موزه‌ها، کتابخانه‌ها)

    فضاهای انفجاری
    – تجهیزات الکترونیکی می‌توانند در محفظه‌های ضد انفجار مهر و موم شوند.
    – کنترلر سطح پایین در ناحیه‌ای ایمن و دور از محل خطر برای پایش سیستم قرار می‌گیرد.

    WhatsApp Image 2025 09 27 at 11.50.04 PM

    آیا می‌دانستید؟
    بیم دتکتورهای اعلام حریق تنها قادر به محافظت از فضاها به صورت افقی نیستند. این دتکتورها با موفقیت برای محافظت از نصب‌های عمودی مانند چاه‌های آسانسور نیز استفاده شده‌اند، جایی که تنها یک یا دو دتکتور برای محافظت از چندین طبقه نصب و نگهداری می‌شود، به جای تعداد بسیار بیشتری از دتکتورهای نقطه‌ای.

  • دتکتور حرارتی خطی آنالوگ یا قابل استفاده مجدد چیست

    WhatsApp Image 2025 09 14 at 9.31.18 AM

    کابل دتکتور حرارتی خطی آنالوگ قابل ریست l که دارای روکش پلی‌اتیلن مقاوم در برابر شعله (FRPE) است، برای تشخیص زودهنگام شرایط حریق و داغ‌شدگی در موقعیت‌هایی طراحی شده است که سایر روش‌های تشخیص به‌دلیل شرایط محیطی یا هزینه‌های بالا قابل استفاده نیستند.

    طول‌های گسترده‌ای از کابل دتکتور حرارتی خطی آنالوگ قابل ریست (LHDC) می‌توانند به‌صورت یک منطقه نصب شوند و قابلیت فعال‌سازی آلارم در صورت وجود نقاط داغ (Hot Spot) در بخش‌های بسیار کوچکی از کابل را داشته باشند.

    دتکتور حرارتی خطی در طیف وسیعی از کاربردها قابل استفاده است، اما به‌ویژه برای شرایط محیطی سخت، محدودیت دسترسی فیزیکی یا خطرناک به منطقه تحت حفاظت، و یا نیاز به نصب مقرون‌به‌صرفه در مجاورت خطرات مناسب است.

    ویژگی‌های اصلی دتکتور حرارتی خطی  عبارت‌اند از:

    WhatsApp Image 2025 09 14 at 9.31.19 AM

    • تشخیص زودهنگام خطرات در دماهایی بسیار کمتر از نقطه شعله‌وری
    • تولید دود کم و بدون هالوژن (LS0H)
    • ساختار مقاوم برای استفاده در محیط‌های سخت
    • نصب آسان با گزینه‌های متنوع برای نصب
    • سازگار با بسیاری از مانیتورهای منطقه‌ای و تجهیزات کنترلی موجود
    • قابلیت بازیابی و ریست‌پذیر (قابل تست) برخلاف دتکتور حرارتی خطی دیجیتال

    WhatsApp Image 2025 09 14 at 9.31.19 AM1

    • قابلیت پیکربندی ایمنی ذاتی برای مناطق خطرناک
    • تطابق با استانداردهای صنعتی (مانند CEGB GDCD-187)
    • طیف گسترده‌ای از کاربردهای اثبات‌شده

    WhatsApp Image 2025 09 14 at 9.31.20 AM

    اصول عملکرد

    دتکتور حرارتی خطی کابلی هم‌محور است که شامل یک رسانای مرکزی از جنس فولاد با روکش مس، یک لایه عایق داخلی (دی‌الکتریک)، یک لایه بافت مسی قلع‌زده، و یک غلاف محافظ بیرونی است.

    مکانیسم اصلی تشخیص حرارت (حریق) بر اساس مقاومت دی‌الکتریک است که بین رسانای مرکزی و لایه بافت مسی مانیتور می‌شود و دارای ضریب دمایی منفی (NTC) است.

    WhatsApp Image 2025 09 14 at 9.31.20 AM1

    این ویژگی NTC تابعی لگاریتمی است، بنابراین مقاومت در دماهای محیطی نرمال بیشتر از دماهای غیرعادی هشداردهنده خواهد بود.

    ویژگی‌های دیگری مانند اثرات خازنی نیز در کابل دیده می‌شود. این کابل باید همراه با ماژول‌های مانیتورینگ مناسب استفاده شود.

    در صورت پیکربندی صحیح، می‌توان طول‌های زیادی از دتکتور را نصب کرد و همچنان قابلیت تشخیص نقاط داغ در بخش‌های کوچکی از کابل حفظ می‌شود.

    رجوع شود به:
    «ویژگی‌ها به عنوان کابل تشخیص آتش»

    کاربردها

    دتکتور حرارتی خطی همراه با یک واحد پایانی عملکردی (EOL Terminator) و یک ماژول رابط LHDC یا پنل کنترلی مجهز به کانال رابط مناسب استفاده می‌شود.

    دتکتور حرارتی خطی می‌تواند از طریق مانع‌های ایمنی ذاتی (Zener Barrier) در مناطق خطرناک نصب شود. همچنین، زمانی‌که منطقه حفاظت‌شده از تجهیزات مانیتورینگ دور باشد، می‌توان از کابل‌های رابط استفاده کرد. (برای نوع توصیه‌شده با شرکت اسپین الکتریک تماس بگیرید.)

    دتکتور حرارتی خطی بسیار انعطاف‌پذیر است، هم می‌تواند جایگزین دتکتورهای نقطه‌ای در حفاظت ناحیه‌ای شود و هم به آسانی در نزدیکی خطرات مورد پایش نصب گردد.

    این دتکتور به‌ویژه در کاربردهایی مناسب است که شرایط محیطی سخت استفاده از سایر روش‌های تشخیص را ناممکن می‌سازد.

    نیاز پایین به تعمیر و نگهداری این دتکتور، آن را به راه‌حلی منحصر‌به‌فرد برای شناسایی حریق در مناطقی با محدودیت دسترسی به‌دلیل موانع فیزیکی یا خطرات بهداشتی برای افراد تبدیل کرده است.

    کاربردهای رایج:

    • تونل‌ها، کانال‌ها و سقف‌های کاذب
    • پله‌های برقی و مسیرهای متحرک
    • مخازن ذخیره‌سازی پتروشیمی
    • سالن‌های رنگ و اتاقک‌های اسپری
    • نقاله‌ها – زغال‌سنگ، چوب، گوگرد و…
    • فضاهای سقفی و زیرشیروانی
    • مسیرهای تونل‌های جاده‌ای و ریلی و حوضچه‌ها
    • مناطق تأسیسات نیروگاه هسته‌ای
    • انبارهای سرد و سردخانه‌ها
    • تابلوهای کنترل و کلیدهای برق
    • قفسه‌های مرتفع انبارها
    • سکوهای نفتی دریایی
    • هودهای آزمایشگاهی و محفظه‌های دستکش‌دار
    • سیلوهای غلات و انبارهای کشاورزی
    • محفظه‌های موتور خودروهای جاده‌ای / ریلی
    • نشت بخار و خطاهای گرمایش ردیابی‌شده
    • خطوط تولید – فلنج‌ها، شیرآلات و پمپ‌ها
    • فضاهای زیرکفی اتاق‌های کامپیوتر

    ویژگی‌ها به عنوان کابل تشخیص آتش

    در استفاده از این نوع دتکتور دو جنبه اصلی برای هر کاربرد خاص باید در نظر گرفته شود:

    • طول کل کابل (منطقه) مورد استفاده و دماهای محیطی نرمالی که کابل بدون فعال شدن هشدار می‌تواند تحمل کند
    • نقطه‌ای که در آن، در صورت افزایش دمای غیرعادی در بخشی (یا تمام) کابل، هشدار فعال می‌شود

    ماژول‌های رابط LHDC دارای تنظیمات حساسیت و آستانه فعال‌سازی هستند. نمودارها سه تنظیم معمول را نشان می‌دهند و بدترین شرایط ممکن و تلرانس تولید LHDC را در نظر می‌گیرند.

    WhatsApp Image 2025 09 14 at 9.31.21 AM

    همچنین به مثال ارائه‌شده رجوع شود.

    مثال

    این مثال نشان می‌دهد که چگونه ۳۰۰ متر کابل دتکتور حرارتی خطی همراه با یک ماژول رابط با نقطه تنظیم ۳ ولت استفاده شده است.

    • نمودار پایین نشان می‌دهد که کل منطقه تا دمای محیطی ۵۳ درجه سانتی‌گراد را بدون فعال شدن هشدار تحمل می‌کند.
    • نمودار بالا نشان می‌دهد که یک بخش ۱۰ متری از منطقه در دمای حدود ۱۱۸ درجه سانتی‌گراد باعث فعال شدن هشدار می‌شود. منطقه ۳۰۰ متری در دمای ۶۵ درجه سانتی‌گراد هشدار می‌دهد.
    • حاشیه ایمنی و تلرانس در منحنی‌ها اعمال شده‌اند. در عمل، تحمل ممکن است بیشتر از ۵۳ درجه باشد. همچنین، نمودار تشخیص فرض می‌کند که باقی کابل منطقه در دمای بسیار پایین‌تری قرار دارد. در شرایط محیطی نرمال، آستانه هشدار کمتر از ۱۱۸ درجه خواهد بود.

    عملکرد دو مرحله‌ای

    اطلاعات صفحه قبل، ویژگی «فعال‌سازی» دتکتور حرارتی خطی را برای یک «نقطه تنظیم» توضیح می‌دهد.

    .  شرکت اسپین الکتریک ماژول‌های رابطی ارائه می‌دهد که دارای دو نقطه تنظیم قابل تنظیم هستند، بنابراین عملکرد دو مرحله‌ای یا پیش‌هشدار را فراهم می‌کنند.

    عملکرد دو مرحله‌ای – تأیید فعال‌سازی – پیش‌هشدار

    یکی از مزایای منحصر‌به‌فرد دتکتور حرارتی خطی آنالوگ قابل ریست .  شرکت اسپین الکتریک این است که می‌توان وضعیت‌های غیرعادی متغیر را به‌صورت پیوسته پایش کرد.  شرکت اسپین الکتریک ماژول‌هایی ارائه می‌دهد که دارای دو سطح فعال‌سازی قابل تنظیم هستند. این ماژول‌ها کلید راه‌اندازی سیستم‌هایی هستند که نیاز به تأیید شرایط آتش‌سوزی قبل از انجام اقدامات خودکار مانند اطفای حریق یا خاموشی دارند. این ویژگی همچنین در سیستم‌های اعلام حریق آدرس‌پذیر هوشمند که دارای اعلان پیش‌هشدار هستند بسیار مفید است.

    مشخصات پایه

    • قطر کلی: ۳.۳ میلی‌متر ±۱۰٪
    • رنگ: قرمز
    • غلاف بیرونی: پلی‌اتیلن مقاوم در برابر شعله (FRPE)
    • بافت: سیم مسی قلع‌زده
    • دی‌الکتریک داخلی: سفید
    • رسانای مرکزی: فولاد با روکش مس
    • استحکام کششی: ۲۰۰ نیوتن

    WhatsApp Image 2025 09 14 at 9.31.21 AM1

    دتکتور حرارتی خطی با حفاظت اضافه – مقاوم‌سازی‌شده

    ساختار اصلی دتکتور حرارتی خطی LS0H بسیار مقاوم است و برای تقریباً تمام کاربردها از جمله تأسیسات پتروشیمی مناسب است.

    با این حال، برخی محیط‌ها و/یا مشخصات پروژه ممکن است به حفاظت تقویت‌شده برای دتکتور حرارتی خطی نیاز داشته باشند.

    انواع خاصی از این دتکتور که در انبار نگهداری می‌شود شامل مدل‌هایی با بافت فولاد ضدزنگ هستند.

    پیکربندی سیستم و سازگاری تجهیزات

    دتکتور حرارتی خطی با بسیاری از تجهیزات و نصب‌های موجود سازگار است.  شرکت اسپین الکتریک آماده ارائه مشاوره در مورد مناسب بودن این دتکتور به‌عنوان جایگزین برای سیستم‌های موجود می‌باشد.

    دتکتور حرارتی خطی را می‌توان در مناطق خطرناک با استفاده از مانع ایمنی ذاتی مناسب نصب کرد.

  • دتکتورهای تشخیص آتش مبتنی بر انرژی تابشی در استاندارد NFPA72

    1) حسگرهای شعله. حسگرهای شعله فرابنفش معمولاً از یک لوله گایگر-مولر فوتودیود خلاء برای تشخیص شعله استفاده می‌کنند.

    9k=

    این حسگرها همچنین تابش فرابنفش تولید شده توسط شعله را تشخیص می‌دهند. فوتودیود اجازه می‌دهد تا یک جریان ناگهانی برای هر فوتون فرابنفشی که به ناحیه فعال لوله برخورد می‌کند، جاری شود. هنگامی که تعداد جریان‌های ناگهانی در واحد زمان به سطح از پیش تعیین‌شده‌ای برسد، حسگر هشدار را فعال می‌کند. یک حسگر شعله مادون‌قرمز با طول‌موج واحد از یکی از چندین نوع فوتوسل برای تشخیص تابش مادون‌قرمز در یک باند طول‌موج واحد که توسط شعله تولید می‌شود، استفاده می‌کند. این حسگرها معمولاً شامل تمهیداتی برای کاهش هشدارهای ناشی از منابع رایج مادون‌قرمز مانند نور لامپ‌های رشته‌ای یا نور خورشید هستند. یک حسگر شعله فرابنفش/مادون‌قرمز (UV/IR) تابش فرابنفش را با استفاده از یک لوله فوتودیود خلاء و یک طول‌موج انتخابی از تابش مادون‌قرمز را با استفاده از یک فوتوسل تشخیص می‌دهد.

    یک سیگنال هشدار می‌تواند فعال شود. یک حسگر شعله مادون‌قرمز با چند طول‌موج (IR/IR) تابش را در دو یا چند باند باریک از طول‌موج‌ها در طیف مادون‌قرمز تشخیص می‌دهد. این حسگرها به صورت الکترونیکی تابش‌ها را بین باندها مقایسه کرده و در صورتی که رابطه بین دو باند نشان‌دهنده آتش باشد، یک سیگنال فعال می‌کنند.

    9k=

    (2) حسگرهای جرقه/ذغال. یک حسگر جرقه/ذغال معمولاً از یک فوتودیود حالت جامد یا فوتوترانزیستور برای تشخیص انرژی تابشی ساطع شده از ذغال‌ها استفاده می‌کند که معمولاً بین ۰.۵میکرون تا ۲.۰ میکرون در محیط‌های معمولاً تاریک است. این حسگرها می‌توانند بسیار حساس (در حد میکرووات) ساخته شوند و زمان پاسخ‌دهی آنها می‌تواند بسیار کوتاه (در حد میکروثانیه) باشد.

    A.17.8.2.1 انرژی تابشی ساطع شده از یک شعله یا جرقه/ذغال شامل تابش‌هایی در باندهای مختلف طیف فرابنفش، مرئی و مادون‌قرمز است. مقدار نسبی تابش ساطع شده در هر بخش از طیف توسط شیمی سوخت، دما و سرعت احتراق تعیین می‌شود. حسگر باید با ویژگی‌های آتش تطبیق داده شود.

    Z

    تقریباً تمام موادی که در احتراق شعله‌ور شرکت می‌کنند، تا حدی در طول احتراق شعله‌ور تابش فرابنفش ساطع می‌کنند، در حالی که فقط سوخت‌های حاوی کربن تابش قابل توجهی در باند ۴.۳۵میکرون (دی‌اکسید کربن) که توسط بسیاری از انواع حسگرها برای تشخیص شعله استفاده می‌شود، ساطع می‌کنند.به شکلA.17.8.2.1 مراجعه کنید.

    Z

    انرژی تابشی ساطع شده از یک ذغال عمدتاً توسط دمای سوخت (تابش بر اساس قانون پلانک) و گسیل‌پذیری سوخت تعیین می‌شود. انرژی تابشی ساطع شده از یک ذغال عمدتاً در محدوده مادون‌قرمز و به میزان کم‌تری در محدوده مرئی است. به طور کلی، ذغال‌ها تا زمانی که به دمای ۳۲۴۰ درجه فارنهایت (۱۷۲۷ درجه سانتی‌گراد یا ۲۰۰۰ کلوین) برسند، انرژی فرابنفش را به مقدار قابل توجهی (۰.۱ درصد از کل تابش) ساطع نمی‌کنند. در بیشتر موارد، تابش‌ها در محدوده ۰.۸ میکرون تا ۲.۰ میکرون قرار می‌گیرند که مربوط به دماهای تقریبی ۷۵۰ درجه فارنهایت تا ۱۸۳۰ درجه فارنهایت (۳۹۸ درجه سانتی‌گراد تا ۱۰۰۰ درجه سانتی‌گراد) است.

    بیشتر حسگرهای انرژی تابشی دارای نوعی مدار تأیید درون خود هستند که از زمان برای کمک به تشخیص بین سیگنال‌های گذرا و نادرست و هشدارهای واقعی آتش استفاده می‌کنند. این مدارها در مواردی که سناریوی آتش مورد انتظار و توانایی حسگر برای پاسخ به آن آتش مورد انتظار در نظر گرفته می‌شود، بسیار مهم می‌شوند. به عنوان مثال، یک حسگر که از یک مدار انتگرال‌گیر یا زمان‌بندی برای پاسخ به نور سوسو‌زننده یک آتش استفاده می‌کند، ممکن است به خوبی به یک انفجار ناشی از اشتعال بخارات و گازهای قابل اشتعال تجمع‌یافته یا در مواردی که آتش یک جرقه است که با سرعت تا ۳۲۸ فوت بر ثانیه (۱۰۰ متر بر ثانیه) از مقابل حسگر عبور می‌کند، پاسخ ندهد. در این شرایط، یک حسگر با قابلیت پاسخ‌دهی سریع بسیار مناسب است. از طرف دیگر، در کاربردهایی که توسعه آتش کندتر است، یک حسگر که از زمان برای تأیید سیگنال‌های تکراری استفاده می‌کند، مناسب است. در نتیجه، نرخ رشد آتش باید در انتخاب حسگر در نظر گرفته شود. عملکرد حسگر باید به گونه‌ای انتخاب شود که به آتش مورد انتظار پاسخ دهد.

    تابش‌های انرژی تنها معیار مورد توجه نیستند. محیط بین آتش مورد انتظار و حسگر نیز بسیار مهم است. طول‌موج‌های مختلف انرژی تابشی با درجات مختلفی از کارایی توسط موادی که در هوا معلق هستند یا روی سطوح نوری حسگر تجمع می‌کنند، جذب می‌شوند. به طور کلی، آئروسل‌ها و رسوبات سطحی حساسیت حسگر را کاهش می‌دهند. تشخیص فناوری مورد استفاده باید آئروسل‌ها و رسوبات سطحی که به طور معمول اتفاق می‌افتند را در نظر بگیرد تا کاهش پاسخ سیستم بین فواصل تعمیر و نگهداری به حداقل برسد. لازم به ذکر است که دود ناشی از احتراق تقطیرات نفتی با فراکسیون‌های متوسط و سنگین، به شدت در انتهای طیف فرابنفش جذب‌کننده است. اگر از این نوع تشخیص استفاده می‌شود، سیستم باید به گونه‌ای طراحی شود که اثر تداخلی دود بر پاسخ سیستم تشخیص را به حداقل برساند.

    Z

    محیط و شرایط محیطی پیش‌بینی‌شده در منطقه تحت حفاظت، بر انتخاب حسگر تأثیر می‌گذارد. همه حسگرها محدودیت‌هایی در محدوده دمای محیطی دارند که در آن محدوده، مطابق با حساسیت‌های آزمایش‌شده یا تأیید‌شده خود پاسخ می‌دهند. طراح باید اطمینان حاصل کند که حسگر با محدوده دمای محیطی پیش‌بینی‌شده در منطقه‌ای که نصب می‌شود، سازگار است. علاوه بر این، باران، برف و یخ هر دو تابش فرابنفش و مادون‌قرمز را به درجات مختلف تضعیف می‌کنند. در مواردی که این شرایط پیش‌بینی می‌شود، باید تمهیداتی برای محافظت از حسگر در برابر تجمع این مواد روی سطوح نوری آن در نظر گرفته شود.

    A.17.8.2.2 تابش‌های انرژی طبیعی که از آتش ناشی نمی‌شوند، ممکن است در منطقه خطر وجود داشته باشند. هنگام انتخاب حسگر برای یک منطقه، سایر منابع احتمالی تابش انرژی باید ارزیابی شوند. برای اطلاعات بیشتر به A.17.8.2.1 مراجعه کنید.

    A.17.8.3.1.1 همه حسگرهای نوری بر اساس معادله نظری زیر پاسخ می‌دهند:

    Z

    که در آن:

    S = توان تابشی که به حسگر می‌رسد
    k = ثابت تناسب برای حسگر
    P = توان تابشی ساطع‌شده توسط آتش
    e = پایه لگاریتم نپر (۲.۷۱۸۳)
    ζ = ضریب تضعیف هوا
    d = فاصله بین آتش و حسگر

    2Q==

    حساسیت (S) معمولاً بر حسب نانووات اندازه‌گیری می‌شود. این معادله منحنی‌هایی مشابه منحنی نشان‌داده‌شده در شکلA.17.8.3.1.1 را تولید می‌کند.
    این منحنی حداکثر فاصله‌ای را تعریف می‌کند که در آن حسگر به طور مداوم آتش با اندازه و سوخت مشخصی را تشخیص می‌دهد. حسگرها باید فقط در ناحیه سایه‌دار بالای منحنی استفاده شوند.
    در بهترین شرایط و بدون جذب جوی، توان تابشی که به حسگر می‌رسد، اگر فاصله بین حسگر و آتش دو برابر شود، به میزان یک چهارم کاهش می‌یابد. برای محاسبه تضعیف جوی، عبارت نمایی زتا (ζ) به معادله اضافه می‌شود. زتا معیاری از شفافیت هوا در طول‌موج مورد نظر است. زتا تحت تأثیر رطوبت، گرد و غبار و هرگونه آلاینده دیگر در هوا قرار می‌گیرد که در طول‌موج مورد نظر جذب‌کننده هستند. زتا معمولاً مقادیری بین ۰.۰۰۱- و ۰.۱- برای هوای محیطی معمولی دارد.

  • مواد نصب و نگهدارنده‌های لوله در دتکتورهای دودی مکشی یا اسپیراتینگ ها

    پایه‌ها و آویزهای نگهدارنده
    شبکه لوله‌کشی با استفاده از پایه‌های نصب لوله، همان‌طور که در شکل ۶ در سمت چپ نشان داده شده است، به سقف یا اجزای سازه‌ای محکم نصب می‌شود. همچنین می‌توان آن را با استفاده از بست‌های ساده لوله، آویزهای یو (Clevis)، بست‌های قابل تنظیم، گیره‌های C شکل و میل‌گردهای رزوه‌شده از سقف بتنی آویزان کرد. انواع مختلفی از پایه‌ها نیز موجود است، از جمله کلیپس‌ها، بست‌های زینی یا بست‌های کمربندی، همان‌طور که در شکل ۷ در بالا نشان داده شده است. انتخاب ابزار نصب بستگی به نوع مصالح نصب، شرایط محیطی و کدها و مقررات محلی دارد.

    فواصل نصب بست‌ها و نگهدارنده‌های لوله نمونه‌برداری بر اساس دما و قطر لوله تعیین می‌شود، همان‌طور که در جدول ۱ زیر نشان داده شده است.

    نصب بست‌ها و آویزهای نگهدارنده با فواصل مشخص‌شده بسیار حائز اهمیت است تا از خم شدن لوله و ایجاد فشار در محل اتصالات، زانویی‌ها و رابط‌ها جلوگیری شود؛ چراکه این فشار ممکن است باعث ترک‌خوردگی یا شکستگی لوله گردد.

    IMG 1306

    کلیپس‌های نصب باز نباید به‌صورت وارونه استفاده شوند، به‌طوری‌که قسمت باز آن‌ها رو به پایین قرار گیرد، زیرا ممکن است لوله به‌صورت ناگهانی از کلیپس خارج شود.

    در کاربردهایی که لوله نمونه‌برداری زیر کف کاذب نصب می‌شود، می‌توان لوله را مستقیماً به پایه‌های کف کاذب با استفاده از بست‌های سیمی، بست‌های کانال یا سایر تجهیزات نصب، متصل کرد.

    برچسب‌گذاری لوله‌ها
    طبق استانداردهای شناخته‌شده‌ای مانند NFPA 72، FIA و سایر کدها و مقررات، لازم است لوله‌های سیستم اسپیراتینگ برچسب‌گذاری شوند تا از سایر لوله‌ها متمایز شده و به‌طور مشخص به‌عنوان بخشی از سیستم تشخیص حریق شناسایی گردند.

    هم شبکه لوله‌کشی نمونه‌برداری و هم هر سوراخ نمونه‌برداری باید مشخص شوند. لوله و سوراخ‌های نمونه‌برداری باید در محل‌های زیر برچسب‌گذاری شوند:

    ۱. در محل تغییر جهت یا انشعاب لوله‌کشی
    ۲. در هر دو طرف نفوذ از دیوارها، کف‌ها یا سایر موانع
    ۳. در فواصل مناسب روی لوله‌ها به‌گونه‌ای که در فضا قابل مشاهده باشند، اما فاصله بین آن‌ها بیشتر از ۶۱ متر (۲۰ فوت) نباشد
    ۴. در محل هر سوراخ نمونه‌برداری

    لوله باید با عبارتی مشابه این برچسب‌گذاری شود:
    «لوله نمونه‌برداری آشکارساز دود – از جابه‌جایی خودداری شود»
    برای مشاهده نمونه برچسب لوله و سوراخ نمونه‌برداری به شکل ۸مراجعه کنید.

    IMG 1307 IMG 1308 IMG 1309

    اجزاء نگهداری
    پیشنهاد می‌شود که یک شیر توپی ایزوله و یک اتصالات T-joint همراه با درپوش انتهایی روی لوله نمونه‌برداری نصب شود، تقریبا ۵ تا ۳۰ سانتیمتر (۶ اینچ تا ۱ فوت) از ورودی لوله آشکارسازدتکتور دودی مکشی. این شیر در طول نگهداری مکرر استفاده خواهد شد. این موضوع به‌ویژه برای سیستم‌های دتکتور دودی مکشی که از محیط‌های کثیف محافظت می‌کنند یا در مکان‌هایی که نیاز به نگهداری مکرر است، اهمیت دارد. شکل ۹ را در زیر سمت چپ مشاهده کنید.

  • دتکتور حرارتی خطی دو کاناله چیست؟

    ویژگی‌های دتکتور حرارتی خطی فیبر نوری
    ● اندازه‌گیری خطی دما برای تشخیص سریع حریق و تعیین دقیق محل منبع آتش
    ● دو کانال اندازه‌گیری نوری مستقل
    ● حداکثر طول کابل دتکتور بدون نیاز به نگهداری = ۲۰ کیلومتر (۲ × ۱۰ کیلومتر)WhatsApp Image 2025 09 18 at 2.26.41 AM

    پردازش سیگنال با فناوری OFDR (بازتاب‌سنجی ناحیه فرکانس نوری)
    ● ۱۰۰۰ ناحیه قابل برنامه‌ریزی
    ● معیارهای هشدار قابل انتخاب
    ● دقت مکانی بالا تا ۰٫۲۵ متر
    ● ارائه اطلاعات در مورد جهت گسترش آتش
    ● امکان استفاده از سیستم دتکتور افزونه
    ● مناسب برای سرعت باد تا ۱۰ متر بر ثانیه
    ● کلاس لیزر 1M طبق استاندارد DIN EN 60825-1:2014

    اصل اندازه‌گیری
    سیستم FibroLaser بر اساس عبور یک پرتو لیزر از طریق کابل فیبر نوری عمل می‌کند. کابل فیبر نوری در هر نقطه، بخشی کوچک از تابش لیزر را به سمت منبع بازمی‌تاباند. بازتاب اندازه‌گیری‌شده توسط کنترلر ثبت می‌شود.
    دو کابل دتکتور مستقل می‌توانند به یک دتکتور حرارتی خطی دو کاناله متصل شوند. تابش نوری LED لیزری با طول‌موج نزدیک به مادون‌قرمز که منتشر می‌شود، توسط کابل فیبر نوری به شکل‌های مختلفی پراکنده می‌شود:

    WhatsApp Image 2025 09 18 at 2.26.41 AM1

    پراکندگی ریلی (Rayleigh)
    ● پراکندگی استوکس (Stokes)
    ● پراکندگی آنتی‌استوکس (Anti-Stokes)

    نور پراکنده‌شده ریلی دارای همان طول‌موج پرتوی لیزر است، پراکندگی استوکس دارای طول‌موج کمی بالاتر، و آنتی‌استوکس دارای طول‌موجی کمی پایین‌تر است. دو نوع پراکندگی استوکس معمولاً به‌عنوان پراکندگی رامان نیز شناخته می‌شوند. درحالی‌که پراکندگی استوکس وابستگی زیادی به دما ندارد، پراکندگی آنتی‌استوکس تحت تأثیر انرژی حرارتی دمای محلی کابل فیبر نوری قرار دارد؛ شدت آن با افزایش دما افزایش می‌یابد. دمای کابل فیبر نوری با استفاده از نسبت شدت بین پراکندگی استوکس و آنتی‌استوکس محاسبه می‌شود.

    کنترلر
    فرستنده
    – شامل لیزر و مدار کنترل آن است.

    • گیرنده
      – شامل کل سیستم نوری است.
      – کوپل کردن نور لیزر تولیدشده در فرستنده به کابل دتکتور
      – تبدیل نور بازتاب‌شده از فیبر نوری به سیگنال الکتریکی و پردازش آن
    • واحد دیجیتال
      – این ماژول کنترل کامل دستگاه و فرایند اندازه‌گیری را بر عهده دارد.
      – محاسبه پروفایل دما در طول کابل دتکتور بر اساس داده‌های اندازه‌گیری دریافت‌شده
      – مدیریت ۴ ورودی داخلی (قابل افزایش تا ۴۰ ورودی) برای ریست کردن، ارسال آلارم‌های خارجی یا پایش عملکرد
      – کنترل ۱۲ خروجی (قابل افزایش تا ۱۰۶ خروجی) برای انتقال آلارم‌ها و خطاها به تابلوی کنترل اعلام حریق
      – رابط USB یا اترنت برای راه‌اندازی اولیه استفاده می‌شود. در صورت نیاز، رایانه‌ای می‌تواند به این رابط متصل شود تا نواحی و/یا پروفایل دما را نمایش دهد (نرم‌افزار تصویری FibroManager).
      – پشتیبانی از پروتکل‌های کنترلر نسل قبلی (OTS-100, OTS-X)
    • منبع تغذیه
      – تأمین ولتاژ موردنیاز تمام اجزای کنترلر
      – قابل انتخاب به‌صورت ۲۴ ولت DC (پیش‌فرض) یا ۱۱۵/۲۳۰ ولت AC (اختیاری)

    کاربرد
    دتکتورهای حرارتی خطی عمدتاً در کاربردهایی مانند تونل‌های جاده‌ای و تونل‌های ریلی مورد استفاده قرار می‌گیرند. سیستم FibroLaser همچنین برای پایش موارد زیر مناسب است:
    ● نوار نقاله‌ها
    ● سیستم‌های حمل‌ونقل معادن زیرزمینی
    ● پارکینگ‌های طبقاتی
    ● تأسیسات تولید صنعتی
    ● سالن‌های تئاتر و اپرا
    ● سینی کابل و کانال‌های کابل
    ● پله‌برقی‌ها در متروها و مراکز خرید
    ● مناطق مستعد انفجار در پالایشگاه‌ها (نسخه ضدانفجار)
    ● نیروگاه‌ها برای پایش مناطق آلوده به مواد رادیواکتیو (انبار موقت، حوضچه پمپ)

     

  • سامانه‌های شلنگ دستی در سیستم اطفاء حریق با گاز دی اکسید کربن

    1 اطلاعات کلی
    7.1.1* توصیف. سامانه‌های شلنگ دستی شامل قرقره یا رک شلنگ، شلنگ و مجموعه اسپرینکلر تخلیه هستند که از طریق لوله‌کشی ثابت به منبع دی‌اکسید کربن متصل شده‌اند.
    7.1.2 موارد استفاده. سامانه‌های شلنگ دستی می‌توانند برای تکمیل سامانه‌های ثابت اطفاء حریق یا برای پشتیبانی از خاموش‌کننده‌های دستی اولیه جهت اطفاء خطرات خاصی که عامل خاموش‌کننده آن‌ها دی‌اکسید کربن است، مورد استفاده قرار گیرند.
    7.1.2.1 این سامانه‌ها نباید به‌عنوان جایگزینی برای سایر سامانه‌های ثابت اطفاء حریق با دی‌اکسید کربن که به اسپرینکلرهای ثابت مجهز هستند، استفاده شوند، مگر اینکه اطفاء حریق ثابت برای خطر مورد نظر به‌طور مناسب یا مقرون‌به‌صرفه قابل اجرا نباشد.
    7.1.2.2 تصمیم‌گیری درباره مناسب بودن استفاده از شلنگ دستی برای خطر خاص بر عهده مرجع ذی‌صلاح است.
    7.1.3 الزامات عمومی. سامانه‌های شلنگ دستی باید طبق الزامات مربوطه فصل‌های ۴ تا ۶ نصب و نگهداری شوند، مگر در مواردی که در بخش‌های 7.2 تا 7.6 به‌طور خاص بیان شده است.
    7.1.4* الزامات ایمنی.

    7.2 مشخصات خطر. سامانه‌های شلنگ دستی می‌توانند برای مقابله با آتش‌سوزی در تمام خطراتی که در فصل ۱ پوشش داده شده‌اند مورد استفاده قرار گیرند، به‌جز مواردی که غیرقابل دسترسی بوده و فراتر از توان اطفاء دستی هستند.

    7.3 محل قرارگیری و فاصله‌گذاری
    7.3.1 محل قرارگیری
    7.3.1.1 ایستگاه‌های شلنگ دستی باید به‌گونه‌ای نصب شوند که به‌راحتی قابل دسترسی بوده و در محدوده دسترسی به دورترین بخش از اتاق سروری باشند که قرار است توسط آن‌ها اطفاء حریق شود.
    7.3.1.2 به‌طور کلی، ایستگاه‌های شلنگ دستی نباید در معرض خطر مستقیم قرار گیرند و نباید در داخل هرگونه ناحیه خطر که تحت پوشش سیستم غرقابی کامل است، نصب شوند.

    7.3.2 فاصله‌گذاری
    اگر از چندین ایستگاه شلنگ استفاده شود، باید به‌گونه‌ای فاصله‌گذاری شوند که هر ناحیه‌ای از اتاق سرور با یک یا چند شلنگ پوشش داده شود.

    7.4 الزامات دی‌اکسید کربن
    7.4.1 نرخ و مدت زمان تخلیه
    7.4.1.1 نرخ و مدت زمان تخلیه، و در نتیجه مقدار دی‌اکسید کربن مورد نیاز، باید بر اساس نوع و اندازه احتمالی خطر تعیین شود.
    7.4.1.2 یک شلنگ دستی باید مقدار کافی دی‌اکسید کربن برای استفاده حداقل به‌مدت ۱ دقیقه داشته باشد.

    7.4.2 پیش‌بینی استفاده توسط افراد ناآشنا
    امکان استفاده از این شلنگ‌ها توسط افراد بدون تجربه باید در نظر گرفته شود و باید تدابیری اندیشیده شود تا تأمین دی‌اکسید کربن کافی برای خاموش‌کردن خطرات احتمالی که این افراد با آن‌ها مواجه می‌شوند، وجود داشته باشد.

    7.4.3 استفاده هم‌زمان
    7.4.3.1 در مواقعی که استفاده هم‌زمان از دو یا چند شلنگ ممکن است، باید مقدار کافی دی‌اکسید کربن فراهم باشد تا از حداکثر تعداد اسپرینکلری که ممکن است هم‌زمان استفاده شوند، به‌مدت حداقل ۱ دقیقه پشتیبانی کند.
    7.4.3.2 تمام لوله‌های تأمین باید برای عملکرد هم‌زمان تعداد اسپرینکلرهایی که احتمال استفاده از آن‌ها وجود دارد، سایزبندی شوند.

    7.5 مشخصات تجهیزات
    7.5.1 شلنگ
    شلنگ‌های سامانه‌هایی با منبع فشار بالا باید حداقل فشار ترکیدگی 5000 psi (34474 کیلوپاسکال) داشته باشند و شلنگ‌های سامانه‌های با منبع فشار پایین باید حداقل فشار ترکیدگی 1800 psi (12411 کیلوپاسکال) داشته باشند. (رجوع شود به بند 4.8.2)

    7.5.2* مجموعه اسپرینکلر تخلیه
    شلنگ‌ها باید به مجموعه‌ای از اسپرینکلر تخلیه مجهز باشند که به‌راحتی توسط یک نفر قابل استفاده باشد و دارای یک شیر قطع‌و‌وصل سریع برای کنترل جریان دی‌اکسید کربن از طریق اسپرینکلر و دسته‌ای برای هدایت تخلیه باشد.

    7.5.3 نگهداری شلنگ
    7.5.3.1 شلنگ باید به‌صورت پیچیده‌شده روی قرقره یا رک نگهداری شود تا بلافاصله قابل استفاده باشد، بدون نیاز به اتصال اضافی، و با کمترین تأخیر قابل باز شدن باشد.
    7.5.3.2 اگر در فضای باز نصب شده باشد، شلنگ باید در برابر شرایط جوی محافظت شود.

    7.5.4* شارژ شلنگ
    7.5.4.1 تمام کنترل‌های فعال‌سازی سامانه باید در مجاورت قرقره شلنگ قرار داشته باشند.

    7.5.4.2* منبع دی‌اکسید کربن باید تا حد امکان نزدیک به قرقره شلنگ قرار گیرد تا مایع دی‌اکسید کربن با حداقل تأخیر پس از فعال‌سازی به شلنگ منتقل شود.
    7.5.4.3 به‌جز در زمان استفاده واقعی، نباید هیچ فشاری در داخل شلنگ باقی بماند.

    7.6 آموزش
    7.6.1 موفقیت در اطفاء حریق با استفاده از شلنگ دستی تا حد زیادی به توانایی فردی و مهارت کاربر بستگی دارد.
    7.6.2 کلیه افرادی که ممکن است در زمان وقوع آتش‌سوزی از این تجهیزات استفاده کنند، باید در نحوه عملکرد آن و در تکنیک‌های اطفاء حریق مربوط به این تجهیزات آموزش ببینند.